Index

а	agriculture wastewater purification
Acacia mangium 275	494–495
acid-catalysed precipitation 393–394	agro-industrial biomass 24
acid dyeing technique 167	air-classification assisted milling 86
acid dyes 167	air pollution 7
acidic process	albumin 292
concentrated acid process 49	alcohol dehydrogenase 295
dilute acid process 49	alcohols, from hemicellulosic sugarcane
activated carbon 477, 479, 480	straw 259
plant-based biomass conversion into	aldehyde assisted process 49–50
443–444	algae
activated carbon production 444	application of 214
reactor configuration 445-447	bio-pigments in 216-217
activation of biomasses 444-445	algal-based natural dyes 227-229
adsorbent-based process 480–481	utilization of 230-231
advanced functional polymers	alkali/acid method 168
polyphenols in winery residues 348	alkaline process 47
agave leaf-activated carbon production	sulfur-free process
447	ammonia process 48
agricultural biomass 279	lime process 48
Cassava 282–283	soda process 48
coconut 283-284	sulfur process
corn 279–280	Kraft pulping 47
oil palm 280–281	sulfite pulping 47
primary biomass, composition of 285	alkaloids 36
rice plantation 284	α-naphthoquinone dye 164
sugar cane 280	ammonia process 48
wheat 281-282	amylopectin, chemical structure of 32
agricultural by-products 469	amylose 31
agricultural peel-based biomass 471	chemical structure of 32
agricultural waste biomass 247, 272, 545	anaerobic digestion 562
agricultural waste peels, as bio-adsorbent	anaerobic storage systems 583
sources 484	anhydrous sodium sulfate 122

Plant Biomass Derived Materials: Sources, Extractions, and Applications, First Edition. Edited by Seiko Jose, Sabu Thomas, Lata Samant, and Sneha Sabu Mathew. © 2024 WILEY-VCH GmbH. Published 2024 by WILEY-VCH GmbH.

anthraquinone dyes 164	biodiesel synthesis, plant-based catalysts
aqueous extraction 167	for 451, 453
arabinogalactan 28	bioeconomy 557
Aspergillus 191–193	bioenergy 294
Aurofusarin 200	bioenergy conversions 578, 580, 583, 585
b	bioethanol 250–253, 345–346
Bale storage of biomass 581	bioethanol catalytic dehydration 298
bamboo kraft lignin 405	biogas, from hemicellulosic sugarcane
Barley Hordeum vulgare 75–76	straw 259
basal soil respiration (BSR) 9	biohydrogen 254
basic dyes 167	biological conversion of plant biomass
bio-based plastics 423	562
bio-based polymeric materials 550	biological funneling 31
bio-based polymers 545	biomass 1, 141, 271, 441, 575
classes of 539	advantages 3, 576
production of 293	agricultural 279, 284
bio-based raw materials 117	applications and resources 142
biochar 565	Bale storage of 581
thermochemical modification of	bio-economy of 15
477–478	chemical composition 578
bio-compatible 423	classification 3
biocomposites 365–366, 421,	components of 142, 245
523-524	defined 468
sustainability and environmental	energy source 4
effects 528–529	environmental concern of 6
for aerospace application	extraction and application 285–286
advantages 526–527	feedstocks, harvesting and collection of
animal based fiber reinforcement	579
524–525	limitations of 3
biofillers 525	particle size 577
components in aerospace structures	pretreatment classification of 245
528	regeneration ability and reusability of
continuous fiber reinforcement 524	495–497
disadvantages 527	safe disposal of 13
material selection and properties	sources of 2, 272, 545
525	thermo-plasticization of 546
plant based fiber reinforcement 524	transportation 580
biodegradability of common bio-based	woody 271
and synthetic composite fiber	biomass ash 7–8
reinforcements and resin matrix	biomass-based water purifiers 497
binder 529	biomaterials production 294
biodegradable 423	biomethane 253–254
biodegradable pristine membrane 486	bio-monomers transformation 330
biodiesel production, from plant oils 294	condensation polymerization 333–336

free radical polymerization 336–339	biowaste derived functional materials
ring-opening polymerization 330–333	15–16
bio-oils, from winemaking residues	bio-water-retting 468
347–348	Bisphenol A (BPA) 517
bio-pigments 216	Björkman process 51
diversity of 216-217	black pigments 163
extraction methods of 220	bone fixation and regeneration 88
in textile industry 229–230	B-type crystals 65
bioplastics 422–424	1,4-butanodiol 308
application fields 427	,
cellulose 432-434	C
classification 423	cake-like xanthate biosorbents 477, 478
global market 427–429	calcined plant-based biomass,
PBAT 432	components of 444
poly (butylene succinate) 432	Cam peachy wood 166
polyamides 430–431	carbonated loofah and carbon nanofiber
propylene 431	(CL-CNF) SSGD 482
and synthesis methods 425	carbon-based materials 14
biopolymers 389	carbonization 478
bio-polymers production	***************************************
olive tree and olive oil residues as	carbon monoxide poisoning 8 cardiovascular disease 13
feedstock for 339-345	
winemaking residues for 345-348	carotenoid dyes 165
biorefinery concept 243, 245	carotenoids (CA) 216, 218
challenges and future perspectives	carthamin 164
262–263	cashew nut shell liquid (CNSL)
economic strength 246	anthraquinone-based dyes 125–126
raw materials 248	bifunctional chemicals 128–129
research in 246	bioactive nanocarriers 127
for sugarcane straw valorization	decontamination of polluted
cellulose-derived bioproducts 250,	environment 131–133
254–257	flame retardants 129–130
extractives and ash derived	global production 118
bioproducts 260	green catalyst 127–128
hemicellulose-derived bioproducts	mechanical extraction 119-120
254–258	natural 121–122
lignin-derived bioproducts 259-260	pharmaceutical drugs from cardanol
sugarcane trash and straw,	123–124
bibliographic records on 249	preparation of resins, adhesives, and
biorefining 31	coatings 133
bioresins 518-519	solvent extraction 120
biodegradability and properties of	synthesis of nanomaterials 130–131
519-522	technical 122
glass transition temperature 520	thermal extraction 118–119
biosorption 482–485	UV absorbers 126-127

Cassava (Manihot esculenta, Crantz) 67–69	combustion, of plant biomass 559, 561–562
Cassava plantation 282	commercial softwood timbers 274
cataracts 13	community biomass 468
cell milking 224	compatibilizers 432
	complexation, heavy metal removal 488
	composite materials 364
cellulose 25–26, 367, 443, 577	types of 364
processing and applications 432–434	compostable 423
extraction of 443	composters 423
cellulose-derived bioproducts 250	compression molding 375
bioethanol 250–253	concentrated acid process 49
biohydrogen 254	concentrated acid process 45
biomethane 253–254	concentration effect on surface tension
cellulose nanocrystals 253	of DL-malic acid 155
cellulose nanofibers 253	of L-methionine 155
cellulose nanocrystals (CNC) 434	condensation polymerization 333–336
cellulose nanofibers (CNF) 433	contaminants removal 465
cellulosic packaging 538	corn 279–280
chelation, heavy metal removal 487	Zea mays L 72–73
chemical activation, of biomass 445	corn stover ensiling 583
chemical activation method 478	corona treatment 373
chemical/enzymatic hydrolytic methods	cottonseed activated carbon 449
295	cradle-to-grave analysis 562
chemical grafting 372	Culmorin 200
chemically modified lemon peel biomass	Cumorii 200
471	d
chemically modified plant biomass, for	decarbonization 4
water purification 474, 475	decarboxylated CNSL 121
chemical oxygen demand (COD) of	deep eutectic solvents process 51
OMWW 340	deforestation 11
chitin 292	delignification (de-waxing) 371
chitosan 548	delignification procedures 47
chlorophyll 216, 217	desorption 495
chlorophyllin 217	detoxification process 258
chondroitin sulfate 292	dew retting 286
chronic obstructive pulmonary disease	differential scanning calorimetry (DSC)
(COPD) 12	73
cinnabar 162	diffuse pollution 465
circular bio-economy (CBE) 248	diglycidyl ether of bisphenol A (DGEBA)
circular economy (CE) 557	epoxy resin 518
classic extraction of pigments 220	dilute acid process 49
clean energy 14	dinitrosalicylic acid (DNS) method 255
coconut 283–284	Dioscorea spp. see yams
collagen 292	direct dyes 167

disaccharides 294	enzymatic saccharification of
domestic wastewater purification 494	cellulose/hemicellulose 341
drinking water pollutants, classification of	ethanol 297–299
492	ethyl acetate/hexane 122
drinking water purification 491–493	ethylene diamine tetraacetic acid (EDTA)
drug delivery systems 87	495
dry grinding 80	ethylene glycol 308
dry milling process 80, 81	eucalyptus bark dust 472
dry pin millingor 85	
dry storage systems, of biomass 581–583	f
dust 7	fermentation 291, 562
dye removal from water, plant biomass for	extraction 169
486–487	fibre crops 276
dyer's rocket 165	fibrin 292
,	filament winding 376
e	film-blowing process 547
eco-balance analysis 562	fixed-bed combustion 561
electro-based methods 224	flash precipitation 394
electrochemical hydrogen storage, in	flavonoid dyes 165
plant-based activated carbon	flax/PP composites 377
electrodes 450	floating aquatic plant-based wetlands
electroextraction 224–225	473
electrospinning 376	fluidized-bed combustion 561
electrostatic separation 86	fluidized bed reactors, for activated
energy storage, plant based carbon	carbon production 445
materials for 447, 453	fly ash 8
enhanced floating treatment wetland	foaming technology 547
(EFTW) for wastewater treatment	food packaging
473	from agricultural biomass 547–550
ensiling 583	rice straw 548–549
environmental impact of food packaging	sugarcane bagasse 549–550
543–545	wheat straw 549
environmental remediation, plant-based	biomass processing to 546, 547
advanced materials in 441	ceramic 537
environmental sustainability 443	chemical reactivity 540
and solar technology 456	durability 541
use of activating agent 445	environmental impact of 543, 545
enzymatic changes in foods 542	feature of 537
enzymatic extraction 221	gas barrier properties 541
enzymatic method 171	individual package properties
enzymatic method 1/1 enzymatic mild acidolysis lignin (EMAL)	542–543
392	material, biopolymers as 538
	material proporties 539, 543
enzymatic process 52	material properties 540–542
enzymatic ROP 333	mechanical properties 540

h
hand lay-up 375
hardwood species 274
hardwood trees 273
health hazards 11
heavy metals removal from water, plant
biomass for 487–489
hemicellulose 26–27, 443, 577
arabinogalactan 28
mannans 27–28
xylans 27
hemicellulose-derived bioproducts 254,
259
hemicellulose-derived materials 548
hemp and glass fiber production 529
heparin 292
heterofermentative bacteria 583
heterogeneous catalysts 444
heterogeneous green catalysts
raw materials used 454
hexose monosaccharides 443
Hibiscus cannabinus L. 278
high-density plant biomass 479
high-performance size-exclusion
chromatography 76
high-pressure homogenization (HPH)
222
high-value-added materials 53
high voltage electrical discharge (HVED)
226
homofermentative bacteria 583
homogalacturonan
rhamnogalacturonan I pectin (RG-I)
29
rhamnogalacturonan II pectin (RG-II)
29
homogenization 395-396
hot oil bath technique 119
hyaluronic acid 292
hybrid solar-biomass power plant with
water cooling and desalination
482
hybrid supercapacitors 449
hydro-char 478

hydrodynamic cavitation technique 226	Klason process 49
hydrogen storage 449–450	KOH activated carbon 449
hydrolysis processes, of lignocellulosic	Kraft lignin (KL) 392
materials 347	Kraft pulping 47
hydrophilic plant fibers 367	
hydrophobic polymer matrices 367	l
hydrothermal liquefaction, in plant	lactic acid 299-301
biomass energy conversion 558	lactic acid xylitol 346
hydrothermal methods 341	land degradation 11
hydroxy acids 303	laser 226
for poly(hydroxyalkanoates) 303–305	leaf-based biomass 471
3-hydroxybutyric acid 305	Legumes 76, 79
4-hydroxybutyric acid 305	levulinic acid 308
hydroxycinnamic acids 35	L-glutamine, density and pH of aqueous
5-hydroxymethylfurfural 302	solutions 150
hydroxymethylfurfural synthesis 295	life cycle assessment (LCA) 558
3-hydroxypropionic acid 298, 305	for plant biomass recycling 564–568
hyphomycetes 201	processes involved in 562-564
	lignin 30, 43, 389, 442, 548, 577
i	application 53
indigoid dyes 163–164	biomedical applications 400–402
indoor pollution 11	catalysis and environmental
industrial grade lignin 400	remediation 405
industrial wastewater purification 493	civil engineering applications 406
insect repellent properties 176	energy storage applications 406
integrated biorefinery 243	environmental applications 402–404
internal transcribed spacer (ITS) 192	high temperature requiring
interstitial lung disease 12	applications 398
interstitial sorption 482	structure and energy bonds 45
ion exchange, heavy metal removal 487	thermochemical conversion of 53
ionic liquid process 50	thermochemical treatment 405
Ipomoea batatas Lam. see sweetpotato	types of 392
iron tannate 166	valorization 31
irrigation tailwater 494	lignin-based nanoparticles 393
isoprene 307	acid-catalysed precipitation 393–394
isosorbide 308	flash precipitation 394
itaconic acid 301	homogenization 395-396
	nanoprecipitation 394
j	solvent exchange 395
jute cultivation 278	ultrasonication 395-396
	water-in-oil microemulsion methods
k	395
Kenaf cultivation 278	lignin content and monolignol proportion
kenaf fiber reinforced composites 377	391

lignin-derived bioproducts 259-260	low-density plant biomass 479
lignin-derived nanomaterials 53-57	lower birth weight 11
in biomedical applications 54, 55	lung cancer 12
for energy storage applications 55,	
56	m
lignin extraction 45, 443	machine-based purification techniques
acidic process 48	465
concentrated acid process 49	maize 279
dilute acid process 49	mannans 27–28
alkaline process 47	marine-degradable 423
sulfite pulping 47	marketed plant alkaloids 36
sulfur-free process 48	matrix reinforcement bonding 365, 366
sulfur process 47	membrane filtration process 485, 486
average yielding of 393	metal packaging 538
enzymatic process 52	metal salts mordants 172
physical-assisted extraction process	methylene blue 487
microwave-assisted process 51	micro and nano polymer composites
milled-wood process 51	application areas of 378
solvent-assisted extraction process	biodegradability of 377-378
aldehyde assisted process 49	mechanical properties 376-377
deep eutectic solvents process 51	microbial biomaterial 484
GVL assisted process 50	microbial fuel cells 450-451
ionic liquid process 50	microplastics 544
organosolv process 49	microporous carbon 477
lignin nanoparticles	microwave-assisted acid pretreatment
as flame retardant additive 400	258
properties and applications 397	microwave-assisted delignification
lignin nanoparticles-matrix interactions	process 52
397–398	microwave-assisted extraction (MWAE)
lignin thermal properties 398	51, 222
lignocellulose 43, 577	microwave-assisted starch extraction
composition in biomass 44	85–86
lignocellulosic agro-waste 548	microwave reactors, for activated carbon
lignocellulosic biomass 23, 243	production 446, 447
composition and extraction 442–443	mild acidolysis lignin (MAL) 392
lignocellulosic materials 271	milled wood lignin (MWL) 392
lignosulfonates 392	milled-wood process 51
lime process 48	mineral oil 2
linoleum fiber reinforced composite	modern extraction methods 222–225
displacement 524	modified LaMer mechanism 394
lipids 33–34	Monascus purpureus 196–197
fatty acids 33–34	monolignols 43, 259, 390
triacylglycerol (TAG) 34	formation of 44
L-lactic acid 156	monosaccharides 294
long-term bale storage 582	mordanting 171–172

mordanting methods 173	natural fiber-reinforced polymer
multi-effect dehumidification (MED)	composites 526
process 482	natural forest 272
Musa paradisiaca agricultural biomass	natural plant-originated polymers 468
peels 471	natural red dyes 165–166
myxospermous seeds 144	natural virgin fiber cultivation 468
myxospermy 144	natural yellow dyes 165
	Nectriaceae 198
n	Nigella sativa L 488
nanoclays 520	nitrogen and boron dual-doped aerogel
nano-fibrillated-cellulose 486	(NB-PPCA) 15
nano-lignin composites 408	nonaqueous extraction 168–169
nanoprecipitation 394–395	nonbiodegradable polymers 538
naphthoquinone dyes 164–165	non-edible materials 247
natural and synthetic fibre properties	non-respiratory illness
526	in adults 13–15
natural biomass fibers 468	in children 11–12
natural black dyes 166	non-timber plantation species 276–279
natural blue dyes 166	non-wood-based plant reinforcement
natural brown dyes 166	524
natural colorants 160	novolacs resins 133
animal sources 162	nutrient agar (NA) 192
antimicrobial properties of 173, 174	nutritional deficiency 12
microbial and fungal 163	•
mineral-based 162-163	0
plant based 160	oats 74-75
natural colors 159	ohmic heating (OH) 226–227
natural dyes 159	oil mordants 172
advantages of 177-178	oil palm tree 280–281
algal-based 227-229	olive cake, chemical composition of 340
deodorant property of 175, 176	olive pomace 340
disadvantages of 178	olive stones 341
fastness properties of 176-177	open molding techniques for
insect repellent properties of 176	thermoplastic composites 375
natural fiber(s) 365–367	open storage method, of biomass 581
natural fiber-derived composites 421	organosolv lignin (OSL) 392
natural fiber reinforced composites	organosolv processes 49, 392
(NFRCs)	origin-based natural fibers classification
application areas of 378, 379	468, 469
biodegradability of 377-378	
fabrication 373-376	p
fiber treatment and modification	pectin 28–29
371–373	pelletized plant biomass 580
life cycle of 365	Penicillium 193–194
mechanical properties of 376-377	pentose monosaccharides 443

petroleum-based materials 518	plant-based mucilages and exudates 141
petroleum-based plastics 538	plant-based natural colorants 160-161
petroleum-based polymers 517, 546	plant-based natural fibers 366-367
carbon footprint and harmful impact of	plant biomass 271
544-545	biological conversion of 562
packaging material 544	for bioenergy production 566-568
PHA synthase enzyme (PhaC) 303	characteristics 576–578
Phenylpropanoid(s) 35	dry storage systems 581–583
phenylpropanoid pathways 44	for dye removal 486–487
pH-sensitive LNPs 395	handling 578–580
phycobilins biosynthesis 219	for heavy metal removal 487-489
phycobilins proteins (PBPs) 218, 219	industrially relevant monomers and
phycobilins joining with 219	precursors from
phycobilisome (PBS) 218-219	5-hydroxymethylfurfural 302
phycocyanin (PC) 219	ethanol 297–299
phycoerythrin (PE) 220	hydroxy acids for
phycoerythrocyanin (PEC) 218–219, 229	poly(hydroxyalkanoates)
phycoviolobilin (PVB) 219	303-305
physical activation, of biomass 444	itaconic acid 301
physical activation method 478	lactic acid 299-301
physical-assisted extraction process	saccharides 294–297
microwave-assisted process 51-52	sorbitol 302
milled-wood process 51	succinic acid 301
physical modification of plant biomass	xylitol 302
473–474	for other compounds removal 489
physicochemical activation method 445,	preservation 585–586
478	recycling process 558–562
Pinus radiata 276	biological conversion 562
Pistia stratiotes L. macrophytes 473	combustion 561–562
plantation forest 274–279	gasification 559-560
plant-based advanced materials 441–442	pyrolysis 560–561
plant-based biomass	technology categorization 558
advantage of 141	sources for water purification 469–473
challenges 456, 497–498	agricultural peel-based biomass 473
conversion into activated carbon 443–444	floating plants, beds and wetlands 473
future outlooks 497–498	leaf-based biomass 471–472
hydrogen storage 449-450	powder and dust-based biomass
limitations 497–498	472–473
microbial fuel cells 450-451	stems and roots-based biomass 472
in supercapacitor 448–449	sources of 575
plant-based catalysts, for biodiesel	structural composition 578
synthesis 451–453	supply chain and handling 579
plant-based lignocellulosic biomass	for wastewater pollutant removal
442–445	496–497

for wastewater treatment 473–479	Pleosporaceae spp. 205, 207
chemical modification 474-477	point source pollution 465
physical modification 473-474	poly(butylene adipate-co-terephthalate)
thermochemical modification	(PBAT) 432
477–479	poly (butylene succinate) (PBS) 432
wet biomass storage systems 583-584	poly(hydroxyalkanoates) 347
plant biomass-based monomers	poly (malic acid) 307
self-condensation and step-growth	poly (mandelic acid) 307
polymerizations 335	polyamides 430-431
polymerization of 331, 332	poly(caffeic acid)-coated molecularly
plant biomass-based solar steam	imprinted magnetic nanoparticles
generation devices for water	344
purification 483	poly-generation process 482
plant biomass cycle 577	polyglycolic acid 308
plant fiber reinforcements 365	polyhydroxyalkanoates (PHAs) 292, 299,
plant mucilage	303, 342–343
density measurements 145	polymeric food packaging 538
extraction and preparation 144	polymerization 329
hydrophilic behavior 143	of plant biomass-based monomers
model compounds preparation 145	332
and organic acids 143	polymer(s) 363, 426
temperature effect on density	polymer matrix 367, 370
of basil mucilage aqueous solutions	composites 421
146	polyphenols
of basil seed mucilage 147	in olive tree residues for advanced
of chia seed mucilage 147	functional polymers 343–345
of flax seed mucilage 147	in winery residues 348
of L-glutamine 149	polysaccharides 294
of L-lactic acid 149	poplar lignin 406
of L-valine 149	porous carbon material 442
temperature effect on viscosity	potato 63-65
of basil seed mucilage 151	potato dextrose agar (PDA) 192
of chia and flax seed mucilage 152	powder and dust-based biomass
of chia basil and flax mucilage 152	472–473
of chia seed mucilage 151	powdered activated carbon (PAC) 477
of flax seed mucilage 150	precipitation, heavy metal removal 488
viscosity measurements 145	pre-mordanting 173
water absorption 143	pressure-driven membrane filtration 485
plant-oils based acrylic monomers 337	pressurized liquid extraction (PLE) 222
plastic(s) 424	pressurized systems 222
plastic-based waste 544	primary processed wood products 286
plastic debris 544	propionic acid 307
plastic packaging materials 538	propylene 431
plastic-reinforced composite materials	pulsed electric fields (PEFs) 224
517	pultrusion 376

pyrolysis 559	saturated anacardic acid 132
of plant biomass 294, 560–561	screw press technique 119
pyruvate decarboxylase 295	secondary metabolites 34–36, 261 alkaloids 36
r	phenylpropanoids 35
radiation-based extraction 169–170	terpenoids 35
rapid visco analyzer (RVA) 75	secondary processed wood products 286
red pigments 162	second generation bioethanol and
red-purple yeast 196	platform chemicals 341–342
renewable carbon sources for chemicals	simultaneous saccharification and
production 291	fermentation (SSF) 259
renewable energy sources 441, 575	single-layer ambient biomass storage
renewable source 424	581
residual biomass 243	single-use plastics 422
residual oils, exploitation of 343	size reduction 81
resin transfer molding technique 375	small-scale biomass 580
resistant starch 94	soda process 48
resole resins 133	sodium lignin (SL) 392
respiratory illness, in adults 12	softwood trees 273
rhamnogalacturonan II pectin (RG-II)	soil impact 9, 22
29	soil pollution 9
rhamnogalacturonan I pectin (RG-I) 29	Solanum tuberosum L see potato
rice	solar concentrators 447
amylopectin 73	solar driven steam generation (SSGD)
Oryza sativa L. 73, 74	process 481
plantation 284	solar irradiated furnaces, for activated
starch 89	carbon production 447 solid biomass 4
rice-straw-based cellulose 548	
ring-opening metathesis polymerization (ROMP) 330	solvent-assisted extraction process aldehyde assisted process 49–50
ring-opening polymerization (ROP)	deep eutectic solvents process 51
330–333	GVL assisted process 50
roots-based biomass 472	ionic liquid process 50–51
rotary kiln reactors, for activated carbon	organosolv process 49
production 445, 446	solvent exchange process 395
RTM6 epoxy 519, 520	solvent extraction 121, 168, 220–221
rubber tree plantation 276	sorbitol 302
rubrofusarin 200	Soxhlet extractor 118
	species biomass 468
S	spray lay-up technique 375
saccharides 294–297	starch, definition of 31–32, 546
Saccharum edule 280	starch extraction 80-87
S. officinarum 280	from cereals and pulses 83–85
S. robustum 280	from tuber 82–83
S. sinense 280	starch hydrolysis 32

starch source 63	synthetic fiber-reinforced polymer
agricultural applications 90, 92	composites 527
cereal 70-76	synthetic fiber(s) 365, 366
food applications 94, 95	synthetic polymer production 305
non-conventional 76-77	monomers and precursors for 309
packaging applications 93	-
root and tuber 63-70	t
starch structure	Talaromyces 194–196
dry milling process 80–81	tannin-based dyes 165
effect of milling process on 81–82	tannins 172
wet milling process 81	tarped storage systems 581
stems and roots-based biomass 472	Teak 276
succinic acid 301, 346-347	Tectona grandis 276
sucrose 32–33	terpenoids 35
biosynthesis 33	textile dyeing 161
sugarcane 280	thermal treatment 221
global production of 244	thermochemical biomass processing, of
bagasse 549–550	plant residues 558
sugarcane straw	thermo-plasticization of biomass
composition 245	546–547
utilization of 244	thermoplastic matrix materials 370, 371
sugarcane straw valorization, biorefinery	thermoplastic polymers 367
concepts for	thermosetting matrix materials 371
cellulose-derived bioproducts	thermosetting polymers 367
250-254	three-dimensional porous cake-like
extractives and ash derived bioproducts	biosorbent 474–477
260–262	timber plantation species 275–276
hemicellulose-derived bioproducts	tissue adhesives 89
254–259	tobacco dust-based adsorbent 473
lignin-derived bioproducts 259–260	torrefaction 579
sulfite pulping 47	total biomass of a plant 271
sulfonated saw dust-based biomass	toxic 424
purifier 472	transesterification process 451–452
sulfur-free process	triacylglycerol (TAG) 34
ammonia process 48	Trichocomaceae 191
lime process 48	Trichoderma harzianum 202–204
soda process 48	T. spirale 205
supercapacitors 448-449	tuberculosis (TB) 12
supercritical extraction 170–171	tubular electric furnaces, for activated
supercritical fluid extraction (SPE) 225	carbon production 445
surface sorption 482	
surgical sutures 88	u
sustainability 518	ultrasonic-assisted extraction (UAE) 170
sweetpotato 65-67	ultrasonication 395-396
synthetic dye 189	ultrasonic radiation 170, 171

ultrasound-assisted extraction (UAE) 222	stems and roots-based biomass 472 sector-based 489–495
ultrasound-assisted milling 85	water purification mechanisms,
ultraviolet radiation 170	difficulties in 468
unsaturated fatty acids (UFAs) 33, 34	water source contamination 490
uridine diphosphate (UDP) 33	water treatment 89–90
	water use and water pollution 8–9
V	wave-energy-based cell disruption
vacuum-aided resin transfer molding	222–223
(VARTM) 375	wet biomass storage systems 583, 584
valorization	wet layup process 375
of biomass 442	wet milling process 80, 81
of lignin 389	wheat 281–282
of sugarcane cellulose and derived	Triticum aestivum L. 70–71
products 251	wheat straw 549
of sugarcane hemicellulose and derived	winemaking residues for biopolymers
products 256	production 345-348
vat dyes 166	bioethanol 345–346
vegetable peels, as bio-adsorbent sources	fufural 346
484	lactic acid xylitol 346
Vermillion 162	poly(hydroxyalkanoates) 347
virgin forest 272, 274	succinic acid 346–347
	wood-based plant reinforcement 524
W	woody biomass 271
water-in-oil (W/O) microemulsion	
methods 395	X
water pollutant categories 466	X-ray diffraction 71
water pollution 465	Xylans 27
source of 490	xylitol 302
water purification	from hemicellulosic sugarcane straw
plant biomass–based techniques 480	258–259
adsorbent-based process 480–481	xylooligosaccharides, from hemicellulosic
biosorption 482–485	sugarcane straw 258
membrane filtration 485–486	xylose, from hemicellulosic sugarcane
solar steam generation device for	straw 258
desalination and filtration	
481–482	y
plant biomass sources for 469	yams 69, 70
agricultural peel-based biomass 471	yellow pigments 162
floating plants, beds, and wetlands	_
473	Z
leaf-based biomass 471–472	Zein 546, 547
powder and dust-based biomass 472–473	zero waste 245