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1.1 Introduction

Zeolites are microporous crystals that are constructed by tetrahedral SiO4 and AlO4
species interlinked by sharing O atoms, and they demonstrate remarkable appli-
cation prospects in adsorption, separation, ion exchange, and heterogeneous
solid-acid catalysis [1]. Typically, a part of the framework of Si and Al atoms can be
replaced by heteroatoms, such as Ti, Sn, Ge, Zr, B, P, V, and Ga, via isomorphous
substitution, resulting in heteroatomic zeolites or metallosilicates [2–4]. Among
these heteroatomic zeolites, titanosilicate is the most representative one, and it can
catalyze diverse selective oxidation reactions, such as alkene epoxidation, aldehyde
or ketone ammoxidation, benzene or phenol hydroxylation, 1,4-dioxane oxidation,
selective oxidation of pyridine derivatives, and oxidation desulfurization [5–9], as
well as acid-catalyzed reactions, such as ring-opening reactions of epoxides [10–12],
ethylenediamine condensation [13], and Beckmann rearrangement of oxime [14]
(as shown in Figure 1.1). Moreover, the discovery of titanosilicates has expanded
the application scope of zeolites, as heterogeneous catalysts, from acid catalysis to
the redox field. Several reviews and monographs have proposed opportunities and
challenges for titanosilicates in synthetic and catalytic applications [3–9, 15–18].
As depicted in Figure 1.2, the number of annual publications related to titanosil-
icates has rapidly increased from 1983 to 2023, and this number has remained at
approximately 200–350 over the last decade.

Notably, titanosilicates can be divided into microporous, mesoporous, and hier-
archical types based on their textural properties and pore sizes. Among these,
microporous titanosilicates, with isolated tetrahedral Ti species, possess pores that
are <2 nm in size, and these include small- and medium-pore titanosilicate zeolites
with 8- or 10-membered ring (MR), 12-MR large-pore zeolites, and extra-large-pore
zeolites with ≥14 MRs. Among the 255 ordered zeolite framework structures with
three-letter codes and the partially disordered zeolite structures recognized by
the International Zeolite Association Structure Commission (IZA), 28 structures
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Figure 1.1 Reactions catalyzed by titanosilicates.

can be synthesized as microporous titanosilicates. Owing to their unique porosity
and hydrophobicity, microporous titanosilicates can activate H2O2 molecules and
catalyze selective oxidation reactions. Titanosilicalite-1 (TS-1), with MFI topology,
was the first microporous titanosilicate to be employed as a commercial catalyst.
For example, the application of TS-1 in the liquid-phase epoxidation of propylene
to propylene oxide using H2O2 as the oxidant was first reported by EniChem in
1983 [19] and was implemented on a commercial scale by Evonik and SKC in
South Korea in 2008. Mesoporous titanosilicates, such as Ti-MCM-41, Ti-MCM-48,
Ti-KIT-5, Ti-SBA-15, and Ti-SBA-16, possess pores that are >2 nm in size and
amorphous pore walls [5]. They are more active than microporous materials in the
oxidation of bulky substrates with cumene hydroperoxide or tert-butyl hydroper-
oxide (TBHP) as the oxidant. However, they are much less active in oxidation
reactions using hydrogen peroxide as the oxidant owing to their extremely high
hydrophilicity derived from abundant surface silanols on their amorphous pore
walls [20]. Hierarchical titanosilicates contain both micropores and mesopores and
exhibit better catalytic properties than their microporous counterparts, particularly
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Figure 1.2 Change trend of annual publication number for titanosilicates. Source:
SciFinder.

in catalytic reactions involving bulky substrates and/or organic hydroperoxide
oxidants [5, 18].

Titanosilicates are primarily synthesized via hydrothermal synthesis (HTS),
dry-gel conversion (DGC), fluoride-assisted synthesis, and post-synthesis methods
(see Figure 1.3). Among these, HTS has been the most widely adopted approach
for zeolite synthesis. This is because the contents and distributions of Ti species,
crystal sizes, morphologies, and other physicochemical properties of titanosilicates
can be tailored by adjusting the composition of synthetic gels and the crystallization
conditions [15]. Particularly, the formation of anatase TiO2 via the oligomerization
of Ti monomers in a HTS process is generally easy owing to the faster hydrolysis
rate of the Ti precursor compared to that of the Si precursor. However, the forma-
tion of anatase TiO2 results in low activity and selectivity in catalytic reactions.
Consequently, several strategies have been proposed to inhibit the generation of
the anatase phase by using additional additives, such as H2O2, isopropanol, Triton
X-100, Tween-20, and (NH4)2CO3, as well as by accurately adjusting the feeding
rate [21–27]. These methods generally slow the hydrolysis of Ti precursors to match
that of the Si precursors, thereby lowering the anatase content. As an example, Lin
et al. [28] proposed a reversed-oligomerization synthesis strategy to address the
mismatched hydrolysis rates between Si and Ti precursors, which was implemented
by the fast oligomerization of Ti monomers and subsequent de-oligomerization
to Ti monomers with the aid of hydroxyl free radicals (•OH) generated in situ by
ultraviolet (UV) irradiation.
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Figure 1.3 Overview of the synthesis methods of titanosilicates with different structures.
HTS indicates hydrothermal synthesis, PS indicates post-synthesis, DGC indicates dry-gel
conversion, F− indicates fluoride-assisted method. Small and medium-pore stands for 8-MR
and 10-MR titanosilicates, large-pore for 12-MR and extra-large pore for ≥14-MR.

The DGC method can be classified into vapor-phase transport (VPT) and
steam-assisted crystallization (SAC) based on the volatility of structure-directing
agents (SDAs) [9]. The VPT approach is applicable to volatile SDAs, where
SDAs and water are not present in dried synthetic gels but are transferred to them
via the vapor phase. The SAC approach can be realized by adding non-volatile
SDAs to the dried synthetic gels with water placed below them; subsequently, the
synthetic gels can be crystallized using steam. Compared with traditional HTS
methods, the DGC method presents several advantages, such as lower SDA
consumption, higher product yield, and shorter crystallization time. The crystal
sizes obtained by DGC methods can differ from those obtained by direct HTS.
For instance, for Ti-Beta synthesized through the DGC method, the crystal size is
much smaller than that obtained by the HTS method [29], whereas the opposite is
true for MWW-type titanosilicates [30]. In addition, DGC can be used to prepare
hierarchical titanosilicate zeolites [31–33].

In fluoride-assisted synthesis, the presence of F− can accelerate the crystallization
process; however, titanosilicate crystals are usually larger than those obtained via
HTS [34]. In contrast to aluminosilicates, the concentrations of alkali metal ions
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(such as Na+ and K+) in synthetic gels should be limited to obtain titanosilicates
with high activities. Notably, MOR- and MSE-type zeolites barely crystallize in
siliceous gels in the absence of Al3+ and alkali metal ions. Thus, the post-synthesis
method is another available approach for titanosilicates. The post-synthesis method
can proceed in the gas–solid [35], liquid–solid [36], or solid–solid phase [37],
depending on the phase of the Ti source. In this chapter, we highlight the most
remarkable achievements in the synthesis of titanosilicates with different pore
topologies, including medium-pore, large-pore, extra-large-pore, mesopore, and
Engelhard Ti silicates (ETS).

1.2 Synthesis of Medium-Pore Titanosilicates

1.2.1 TS-1 Synthesis

TS-1 (MFI topology), which possesses a three-dimensional (3D) medium-pore
system (10-MR, ∼0.55 nm), is one of the most studied titanosilicates and has been
applied in many industrial processes, such as propylene epoxidation [19], phenol
hydroxylation [38], and cyclohexanone ammoximation [39]. The first discovery
of a TS-1 zeolite can be dated back to the patent disclosed by Taramasso et al. in
1983 [19], which was based on the matching hydrolysis of tetraethylorthosilicate
(TEOS) and tetraethylorthotitanate (TEOT) using tetrapropylammonium hydroxide
(TPAOH) as the SDA.

Extra-framework Ti species tend to form in TS-1 in the presence of Na+ and K+

from commercial aqueous TPAOH solutions as impurities [40, 41]. The diffraction
peaks ascribed to the extra-framework anatase TiO2 can even be detected in
the X-ray diffraction patterns of TS-1 zeolites once the Na+ concentration in the
synthetic gel reaches a very high level. Moreover, residual alkali metal cations in the
synthesized titanosilicates are detrimental to their reactivity in selective catalytic
oxidation reactions [42].

In addition to alkali metal cations, the Ti content in synthetic gels and crystal-
lization temperature were also found to be key factors for TS-1 synthesis [43]. The
Ti content of the TS-1 samples is always lower than that of synthetic gels, implying
that the Ti atoms in the synthetic gels could not be completely introduced into
the MFI framework. Excess Ti in the synthetic gel increases the risk of forming
extra-framework anatase TiO2 as an impurity. Hence, several attempts have been
made to maximize the amount of tetrahedrally incorporated Ti species in the
framework to achieve a higher activity. It has been found that TPAOH should be
slowly added into the synthetic gels at low temperatures under vigorous stirring
to inhibit the formation of extra-framework Ti species [44]. In other words, it is
necessary to match the hydrolysis rates between the Si and Ti precursors to obtain
abundant silanol groups for condensation with the monomeric Ti species generated
by hydrolysis. Fan et al. proposed that the Si/Ti molar ratio in the framework of the
TS-1 zeolite can be decreased to 34 using (NH4)2CO3 as a crystallization-mediating
agent to match the hydrolysis rate of the Ti precursor with that of the Si precursor
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and the crystallization rate [23]. In contrast, the Si/Ti ratio was 58 in the absence of
(NH4)2CO3.

Recent research on the synthesis of TS-1 has mainly focused on (a) enhancing the
accessibility of the framework Ti species by constructing hierarchical TS-1 zeolites
by tuning the particle size and morphology and (b) developing alternative SDAs
to replace expensive TPAOH for practical applications. Representative approaches
for constructing hierarchical TS-1, such as mesoporogen-directed methods,
mesoporogen-free methods (kinetic-regulated or DGC methods), and demetalliza-
tion methods, have been reviewed previously [2, 5, 18]. On the other hand, the
high cost of TPAOH has stimulated many researchers to concentrate on reducing
its dosage or finding an alternative SDA. TS-1 can be prepared using a cheaper
SDA of tetrapropylammonium bromide (TPABr); however, the large zeolite crystals
(15× 8× 1.5 μm) obtained in earlier studies are undesirable [45]. Zuo et al. reported
the synthesis of TS-1 with a crystal size of 200 nm using TPABr as the SDA, where
seeding played a crucial role in reducing the crystal size [46].

TS-1 zeolites with novel morphologies have also been reported. In contrast to
the raspberry morphology of traditional TS-1 zeolites, a lamellar TS-1 zeolite with
oriented growth and sheet-like morphology (0.5–1.0 μm length and 20–50 nm
thickness) was synthesized with a bifunctional surfactant as the SDA [47]. Due to its
hierarchical structure, layered TS-1 showed a higher activity than conventional TS-1,
Ti-MWW, Ti-Beta, or even mesoporous titanosilicate Ti-MCM-41 in cyclohexene
epoxidation with TBHP as the oxidant. Wang et al. [48] reported the one-pot synthe-
sis of TS-1 microspheres that were approximately 10 μm using a triblock copolymer
(F127) as the supporting additive through a temperature-programed self-assembly
strategy. The TS-1 microspheres were self-assembled from TS-1 nanoparticles
(50–100 nm) and possessed more intercrystal mesopores than traditional TS-1
zeolite, resulting in higher activities during the oxidation of bulky substrates, such
as 3-picoline and cyclohexene. Moreover, these TS-1 microspheres exhibited high
mechanical stability under harsh thermal and hydrothermal conditions. Thus,
because of their high reactivity and mechanical strength, TS-1 microspheres have
potential applications in slurry reactors [49].

1.2.2 Ti-MWW Synthesis

Ti-MWW is another medium-pore titanosilicate with a two-dimensional (2D)
pore system consisting of intralayer 10-MR sinusoidal pore channels and an
interlayer 10-MR pore channel linked to intracrystalline 12-MR supercages [50].
Direct HTS of Ti-MWW is challenging [51]. A key breakthrough was achieved by
introducing H3BO3 as a structure-supporting agent for the synthesis of Ti-MWW
zeolites with high activity, inspired by the HTS of the borosilicate MWW-type
zeolite ERB-1. Nevertheless, a higher B content in the synthetic gel is required for
Ti-MWW zeolite than for ERB-1 because the introduction of Ti4+ ions considerably
hinders the crystallization of the MWW framework [52]. The UV–visible spectra
of the as-synthesized Ti-MWW had an adsorption band at ca. 220 nm, attributed
to the tetrahedrally coordinated framework Ti species, together with another band
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at 260 nm, related to the extra-framework octahedral Ti species on the external
surface of the Ti-MWW zeolites [52]. Irrespective of the Ti content in the synthetic
gel, a band at approximately 330 nm was not observed in the UV–visible spectra of
Ti-MWW, implying that the generation of the anatase TiO2 phase was effectively
inhibited.

Hexamethyleneimine (HMI) and piperidine (PI) can be employed as SDAs for
Ti-MWW synthesis, and the obtained samples are denoted as Ti-MWW(HMI) and
Ti-MWW(PI), respectively. The two Ti-MWW zeolites have similar specific surface
areas but significantly different Ti4+ distributions owing to their different particle
sizes. Irrespective of the Si/Ti molar ratio in the zeolites, the Ti-MWW(PI) zeolite
showed the main adsorption band at approximately 260 nm, together with a band at
approximately 220 nm, indicating more extra-framework Ti species (Figure 1.4). In
contrast, the main absorption band in the UV–visible spectrum of Ti-MWW(HMI)
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Figure 1.4 UV-visible spectra of as-synthesized (A) and calcined Ti-MWW(PI) (C), and
as-synthesized (B) and calcined Ti-MWW(HMI) (D) with the Si/Ti molar ratios of 100
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shifted from 260 to 220 nm with increasing Si/Ti molar ratio, indicating that
the incorporation of Ti species preferentially occurred in the framework. After
calcination of the as-synthesized Ti-MWW zeolites, a new band at approximately
330 nm, attributed to the anatase TiO2 phase, emerged in the UV–visible spectra for
both Ti-MWW(HMI) and Ti-MWW(PI), signifying that the neighboring external
surface Ti species partially condensed and aggregated upon calcination. The formed
anatase TiO2 in the calcined Ti-MWW zeolite was barely removed by acid treatment.
Therefore, acid treatment is usually performed on as-synthesized Ti-MWW zeolites
rather than on calcined zeolites to remove the extra-framework Ti species on the
surface, accompanied by a small amount of framework Ti species.

The B content in the Ti-MWW zeolite framework was far below that of the
synthetic gel, implying that most of the B species were not involved in building
the MWW structure. Additionally, owing to the weak acidity and increased elec-
tronegativity of the zeolite framework, the presence of residual framework boron is
detrimental to selective oxidation reactions, although most of the framework boron
atoms are extracted from the MWW framework by acid treatment. Hence, many
other methods, such as the fluoride-assisted method [9] and DGC method [30],
have been developed to synthesize Ti-MWW zeolites with reduced boron content in
synthetic gels. Wu et al. developed a post-synthesis method to prepare boron-free
Ti-MWW by incorporating Ti species into the framework of deboronated MWW via
PI-assisted reversible 3D–2D–3D structure conversion [53]. However, boron-free
Ti-MWW synthesized via the gas-phase atom planting strategy showed relatively
low reactivity in oxidation reactions because of the presence of extra-framework
octahedral Ti species and the anatase TiO2 phase [54]. Lu et al. [36] recently
reported the boron-free synthesis of Ti-MWW by introducing framework Ti species
into an acidic medium, and the obtained Ti-MWW zeolites showed outstanding
catalytic properties for 1-hexene epoxidation. In addition to post-synthesis methods,
boron-free Ti-MWW can be one-pot hydrothermally synthesized using HMI and
N,N,N-trimethyl-1-adamantammonium hydroxide (1-TMAdaOH) as dual-SDAs
with a small amount of K+ [55]. This method was inspired by the synthesis of
a highly siliceous MWW zeolite (ITQ-1). After the detrimental K+ was removed
by mild acid treatment, the obtained Ti-MWW catalyst showed high activity in
epoxidation reactions.

1.2.3 TS-2 Synthesis

TS-2 with its MEL topology of two intersecting 10-MR pore channels shows a
catalytic performance similar to that of the TS-1 zeolite because of the similar
secondary building units. In contrast to the abundant literature on TS-1 synthesis,
studies on TS-2 synthesis are limited. The synthesis of TS-2 was first reported by
Reddy et al. via the crystallization of synthetic gels containing TEOS, tetrabutyl
orthotitanate (TBOT), and tetrabutylammonium hydroxide (TBAOH) [56, 57].
Moreover, the crystallization process can be accelerated by microwave-assisted
heating [58]. Tuel et al. [59] found that tetrabutylphosphonium hydroxide was an
alternative SDA for TS-2 synthesis. In addition to HTS, DGC [60] and F−-assisted
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methods [61] have also been applied to TS-2 synthesis. Moreover, TS-2 can be pre-
pared by the solid–gas reaction of the borosilicate MEL-type zeolite B-ZSM-11 with
saturated TiCl4 vapor; however, it shows poor catalytic reactivity in epoxidation
reactions owing to the presence of anatase TiO2 [62]. Xu et al. recently reported
an intergrowth-triggered TS-2 microsphere formed by adjusting the synthetic
parameters [63]. The initially formed microspheres were well preserved during the
crystallization process because of the special intergrowth stacking style occurred in
the synthetic gels with high alkalinity.

1.2.4 Synthesis of Other Medium-Pore Titanosilicates

Ti-FER zeolites with 2D-intersecting 10× 8-MR pore channels can be synthesized
using HF/pyridine as the mineralizing agent with [64] or without seeds [65].
FER zeolites can also be synthesized as 2D-layered zeolites, on which structural
modifications are applicable to construct Ti-FER zeolites with larger pore systems.
The structural diversity of layered Ti-FER zeolites is available in Chapter 2.
Ti-ZSM-48, with non-interpenetrating linear 10-MR pore channels (5.3× 5.6 Å
in diameter) and Si/Ti molar ratios ≥30, can be hydrothermally synthesized
using diaminooctane, hexamethonium hydroxide, or trimethylpropylammonium
hydroxide as SDAs [66–68]. However, Ti-ZSM-48, which has a partially disordered
structure, is inactive for phenol hydroxylation with H2O2 because of diffusional
limitations or subtle differences in the Ti microenvironment compared to TS-1
and TS-2 [68, 69]. In addition, small- and medium-pore titanosilicates with other
topologies, such as STF [70], CHA [71–74], LTA [75, 76], CDO [77], AEI [78], STT
[79], and PCR [80, 81], have also been successfully synthesized, but were inactive
or showed less attractive activity in catalytic reactions because of mass transfer
limitations.

1.3 Synthesis of Large-Pore Titanosilicates

1.3.1 Ti-Beta Synthesis

Titanoaluminosilicate Ti-Al-Beta, with 3D 12-MR pore channels, was first prepared
by a HTS method via the isomorphous substitution of Si4+ by Ti4+ in the alumi-
nosilicate Al-Beta. It showed higher activity than TS-1 in the selective oxidation
of cycloalkanes with H2O2 as the oxidant [22], indicating that titanosilicates with
relatively large pores are more efficient for oxidation reactions involving bulky
substrates. Further study on the synthesis and characterization of Ti-Al-Beta was
conducted to illustrate the influence of synthetic parameters on the Ti-coordinated
states and catalytic properties in selective oxidation reactions [82, 83]. The Ti
species introduced in Ti-Al-Beta tends to adopt extra-framework octahedral coor-
dination rather than framework tetrahedral coordination. Moreover, the acidity
derived from the framework tetrahedral Al in Ti-Al-Beta easily accelerates the
ring opening of epoxides, decreasing epoxide selectivity in alkene epoxidation [83].
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Thus, the amount of Al in Ti-Al-Beta should be decreased to eliminate the adverse
effects of Al on catalytic performance. Al-free Ti-Beta titanosilicate has been
successfully synthesized with tetraethylammonium hydroxide (TEAOH) and
dealuminated Beta as the SDA and seed, respectively, as reported by Corma et al.
[84]. However, Al-free Ti-Beta obtained by the above seeding methodology still
showed very low-epoxide selectivity in alkene epoxidation. A similar phenomenon
was observed for an Al-free Ti-Beta zeolite prepared by a solid–gas phase reaction
between borosilicate B-Beta and saturated TiCl4 vapor [85]. This phenomenon can
be illustrated by the presence of numerous internal Si—OH groups (framework
defects) in the Al-free Ti-Beta (Ti-Beta(OH)) obtained in OH− media. Some Si—OH
groups are formed after the elimination of TEA+ and are balanced by SiO− groups
upon calcination [84]. Corma et al. found that TEA+ can be neutralized by F−

instead of SiO− for synthesis in an F− medium, resulting in the formation of
defect-less Ti-Beta zeolites (Ti-Beta(F)) with high crystallinity, hydrophobicity, and
hydrothermal stability [34, 86]. Because of its hydrophobicity, Ti-Beta(F) is superior
to Ti-Beta(OH) in unsaturated fatty oil epoxidation reactions in terms of reactivity
and epoxide selectivity [34, 87]. Additionally, several other approaches, such as
the DGC method, interzeolite transformation, and dissolution–recrystallization
methods, have also been reported for the synthesis of Ti-Beta zeolites [29, 88–90].
Inspired by the DGC method for preparing high-silica Beta zeolite [91], large-pore
Ti-Beta with high hydrophobicity has been prepared by the DGC method, even
in the presence of alkali metal cations [29, 88]. The hydrophobic Ti-Beta obtained
by the DGC method showed higher catalytic reactivity and selectivity to epoxides
than the hydrophilic Ti-Beta(OH) in selective oxidation reactions [29, 92], which
is in accordance with previous conclusions related to the effects of zeolite polarity
on the catalytic properties in selective oxidation reactions [34, 86]. Zhu et al.
[89] reported the interzeolite transformation of Ti-MWW zeolite into Ti-Beta
zeolite (as shown in Figure 1.5), which showed excellent catalytic properties for
cyclohexene epoxidation with H2O2 as the oxidant. The framework structure
similarity between MWW and Beta zeolites and the addition of Beta seeds play
crucial roles in the crystallization of Ti-Beta. The interzeolite transformation of
Ti-MWW (10× 10-MR pore channels) to large-pore Ti-Beta (12× 12× 12-MR pore
channels) breaks the traditional interzeolite transformation concept (spontaneous
transformation toward a denser zeolite framework) of zeolite synthesis [93–95].
The dissolution–recrystallization of dealuminated-Beta zeolite in a mixture of a
tetraethylammonium aqueous solution and a Ti precursor produced Ti-Beta with
nanosized crystals, high Ti content, and intercrystal mesoporosity, which showed
outstanding catalytic properties in cyclohexene epoxidation with hydrogen peroxide
or TBHP as the oxidant [90].

1.3.2 Ti-MOR Synthesis

Ti-MOR, which contains 12-MR pore channels, has shown unique catalytic prop-
erties both in the hydroxylation of toluene and ammoximation of ketones [96, 97].
Until now, MOR structures have not been crystallized in siliceous gels without
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Figure 1.5 Flow Diagram for the interzeolite transformation of Ti-MWW zeolites into
Ti-Beta zeolites. Source: Reprinted with permission from Zhu et al. [89]. Copyright Royal
Society of Chemistry (2019).

the assistance of Al3+ [98]. Thus, a highly active Ti-MOR can only be prepared by
dealumination of the aluminosilicate zeolite Al-MOR and the subsequent gas–solid
reaction between TiCl4 vapor and the dealuminated MOR at elevated temperature
[99]. The transport of TiCl4 molecules and reactants is strongly related to the length
of the 12-MR pore channel along the c-axis. In this sense, Yang et al. investigated
Ti-MOR zeolites with different crystal lengths along the c-axis to understand the
role of the 12-MR pore channel length on the catalytic performance (Figure 1.6)
[100]. The crystal length along the c-axis plays a critical role in the diffusion of
framework Al species out of the 12-MR pore channels and the diffusion of Ti species
into the 12-MR pore channels, which affects the amount of Ti inserted and the
catalytic activity.



12 1 Synthesis of Titanosilicates

(a) (c) (e)

(b)

1 μm 2 μm 2 μm

2 μm2 μm

(d) (f)

a

c

7.0

6.5

5.7

2.6

4.8

3.4

c channel

12-MR

c channel

8-MR

b window

8-MR
b

Figure 1.6 The SEM images of MOR zeolites with different crystal lengths of 110 nm
(a), 230 nm (b), 630 nm (c), 2450 nm (d), 5160 nm (e) and the pore channels of MOR zeolite
(f). Source: Yang et.al. [100]/Reproduced with permission from Elsevier.

1.3.3 Ti-MSE Synthesis

The Ti-containing MSE zeolite is another large-pore titanosilicate with 3D
12× 10× 10-MR pore channels and an 18× 12-MR supercage linked to the 10-MR
pore channel. Similar to the MOR, the MSE structure cannot be obtained via
hydrothermal crystallization without the assistance of Al3+. Kubota et al. attempted
to synthesize Ti-MSE by introducing a Ti tetrabutoxide and H2O2 aqueous solution
into an aluminosilicate gel with N,N,N′,N′-tetraethylbicyclo[2.2.2]oct-7-ene-
2,3:5,6-dipyrrolidinium diiodide (TEBOP2+(I−)2) as the SDA [101]. Most framework
Al atoms were extracted from the zeolite framework via acid treatment. However,
titanoaluminosilicates show low phenol hydroxylation activity after acid treat-
ment, possibly because of their hydrophilic nature. Thus, highly active Ti-MSE
zeolites can only be synthesized using the post-atom planting method. Ti-MSEs are
known as Ti-MCM-68 [101–105], Ti-UZM-35 [106], and Ti-YNU-2 [107] according
to the parent materials used for Ti planting. Ti-MCM-68 was first synthesized
by dealumination of Al-MCM-68 (HTS using TEBOP2+(I−)2 as the SDA) and a
subsequent gas–solid reaction between TiCl4 vapor and dealuminated MCM-68
[104]. The obtained Ti-MCM-68 showed superior catalytic performance compared
to that of TS-1 for phenol hydroxylation with hydrogen peroxide in terms of
reactivity and para-product selectivity. However, the HTS of Al-MCM-68 requires
an extremely long crystallization period (>14 days) using TEBOP2+(I−)2 as the
SDA. Peng et al. [105] found that Al-MCM-68 could be rapidly crystallized in only
one day via the inter-zeolite transformation method using siliceous Beta zeolite
as the silica source. The corresponding Ti-MCM-68 showed high catalytic activity
for anisole hydroxylation. In addition, another MSE titanosilicate, Ti-UZM-35,
synthesized by the combination of the dealumination of Al-UZM-35 (synthesized
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using dimethyldipropylammonium hydroxide (DMDPAOH) as the SDA) and a
subsequent gas–solid reaction [106] showed comparable reactivity and product
selectivity to the Ti-MCM-68 zeolite in the hydroxylation of phenol. Ti-YNU-2 exhib-
ited remarkably enhanced catalytic properties compared to Ti-MCM-68 although
the preparation process was relatively complex [107]. To prepare Ti-YNU-2, an
all-silica YNU-2P precursor with abundant internal defects was stabilized by steam
treatment and subsequently treated with TiCl4 vapor. Kubota et al. claimed that
new five- or six-coordinated Ti species were present in Ti-YNU-2, which accounted
for the enhanced catalytic reactivity and para-selectivity in phenol hydroxylation.
In addition to the gas-phase Ti source, Ti-MCM-68, which has a high catalytic
reactivity and para-selectivity for phenol hydroxylation, has been prepared using a
liquid-phase source [102].

1.3.4 Synthesis of Other Large-Pore Titanosilicates

Other large-pore titanosilicates, such as Ti-ZSM-12 (unidimensional 12-MR pore
channel) [108], Ti-ITQ-39 (3D 12× 12× 10-MR pore channel) [109], Ti-ITQ-7 (3D
12× 12× 12-MR pore channel) [110, 111], Ti-SSZ-33 (3D 12× 12× 10-MR pore
channel) [112], Ti-IPC-2 (2D 12× 10-MR pore channel) [80, 113], Ti-SSZ-42 (uni-
dimensional 12-MR pore channel) [114], Ti-SAPO-5 (unidimensional 12-MR pore
channel) [115], and Ti-ITQ-17 (3D 12× 12× 12-MR pore channel) [116], have also
been successfully synthesized. Ti-ZSM-12 has been prepared using hexamethylene
bis(diethylmethylammonium) hydroxide as the SDA via HTS [108]. However,
the catalytic activities of Ti-ZSM-12 in cyclohexene epoxidation with H2O2 and
TBHP were both much lower than those of Ti-Beta, possibly due to its smaller
unidimensional micropore channels (5.6× 6.0 Å) compared to Beta. Ti-ITQ-39,
with its combination of medium- and large-pore channels, was synthesized
using the HTS method [109]. Ti-ITQ-39 was highly active in linear and cyclic
alkene epoxidation with H2O2, showing unique epoxide selectivities compared
to TS-1 (medium-pore) and Ti-Beta (large-pore). Ti-SSZ-33 and Ti-SSZ-42, with
topologies of CON [112] and IFR [114], respectively, were post-synthesized by
the insertion of Ti species into the corresponding borosilicates and were active
for cycloalkene epoxidation. Similar to the Beta zeolite, ITQ-7 possesses 3D
12-MR pore channels with one sinusoidal 12-MR pore channel along the c-axis
and two straight 12-MR pore channels along the a- and b-axes [117]. Ti-ITQ-7
was synthesized using 1,3,3-trimethyl-6-azonium-tricyclo[3.2.1.46,6]dodecane
as the SDA in F− media [111] and showed catalytic properties comparable to
those of Ti-Beta(F) owing to the similar secondary building units in the two zeolite
structures. The crystallization time was reduced from 12 days to 12 hours, and
the Ti incorporation efficiency was increased from 17.2% to 51% by introducing
Ge atoms into the synthetic gels because of the enhanced structural stability of
the Ge atoms located in the double-four ring cages [110, 118]. With a higher
Ti content, Ti-Ge-ITQ-7 showed superior activity in the epoxidation of various
alkenes compared to Ti-ITQ-7. ITQ-17, with the BEC topology, has a 3D 12-MR
pore channel system (6.3× 7.5 Å and 6.0× 6.9 Å). However, the titanogermanium
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Figure 1.7 Different SDAs used for the synthesis of Ti-ITQ-17. Source: Reprinted with
permission from Moliner et al. [116]. Copyright American Chemical Society (2008).

silicate ITQ-17 shows very low hydrothermal stability [116], and ITQ-17 with its
stable zeolite structure can only be in the form of germanate [119] or silicoger-
manate [120]. Nevertheless, it was expected that Ge-free Ti-ITQ-17 should exhibit a
superior catalytic behavior to Ti-Beta because the former has a larger pore opening
compared to Ti-Beta (6.6× 6.7 Å and 5.6× 5.6 Å). All-silica ITQ-17 was first syn-
thesized using 4,4-dimethyl-4-azonia-tricyclo[5.2.2.02,6]undec-8-ene Iodide as the
SDA in buffered media containing hexafluorosilicate species and K+ [121]. After the
successful synthesis of all-silica ITQ-17, Ti-ITQ-17 was synthesized under similar
conditions. However, the incorporation of Ti species into the zeolite framework was
inhibited by K+ [116]. Thus, further theoretical molecular modeling using different
organic molecules as the SDA was performed to find a suitable SDA for Ti-ITQ-17
synthesis that would allow crystallization in the absence of K+. Among the nine
designed SDAs, SDA9 showed an optimum directing ability for the crystallization of
Ti-ITQ-17 (see Figure 1.7) [116]. The obtained Ti-ITQ-17 exhibited higher reactivity
and epoxide selectivity than Ti-Beta for the epoxidation of bulky cycloalkenes.

1.4 Synthesis of Extra-Large-Pore Titanosilicates

The synthesis of extra-large-pore Ti-zeolites with 14-MR or larger is desirable
because of the combination of high hydrothermal stability and accessibility to bulky
molecules [122]. In recent years, many extra-large-pore titanosilicates have been
obtained by crystallization in highly concentrated gels in the presence of Ge
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atoms and F− or by post-synthesis methods. Ti-DON [123] and Ti-CFI [124] with
unidimensional 14-MR pore channels were synthesized using bis(pentamethyl-
cyclopentadienyl) cobalt(III) hydroxide and N-methylsparteinium hydroxide as
SDAs, respectively. However, the isomorphous incorporation of Ti atoms into
the frameworks of DON and CFI is more difficult than that of TS-1. Moreover,
extra-framework Ti species were found in both the Ti-DON and Ti-CFI samples.
Recently, Ti-UTL, with a 2D intersecting 14-MR and 12-MR pore channels, was
successfully synthesized in the form of titanogermanosilicate [80]. In addition,
other extra-large-pore titanosilicates, such as Ti-ECNU-9 (2D 14× 12-MR pore
channels) [125] and Ti-IWV (2D 12× 10-MR pore channels) [126], were success-
fully synthesized using post-synthesis methods, which will be further described in
Chapter 2.

1.5 Synthesis of Mesoporous Titanosilicates

Ordered mesoporous molecular sieves with amorphous pore walls and uniform
mesopore sizes up to 43 nm were first developed by Mobil in 1992 [127]. Corma
et al. reported the first Ti-containing mesoporous molecular sieve, MCM-41
(Ti-MCM-41), which was active in selective epoxidation reactions involving bulky
substrates [128]. Subsequently, a similar mesoporous titanosilicate Ti-HMS (hexag-
onal mesoporous silica) with higher activity than Ti-MCM-41 was developed by
Tanev et al. [129]. Tatsumi et al. synthesized cubic Ti-MCM-48 with a 3D pore
channel system [130] and Ti-SBA-15 with uniform tubular main channels varying
from 5 to 30 nm and linked to micropores [131]. Ti-SBA-15 exhibited not only high
hydrothermal stability but also excellent resistance to Ti leaching compared to
Ti-MCM-41. Other mesoporous titanosilicates, such as hexagonal Ti-SBA-12 [132],
cubic Ti-SBA-16 [132], and Ti-KIT-5 [133], have also been prepared. Generally,
there are two strategies for synthesizing mesoporous titanosilicates: (i) direct HTS
and (ii) the post-atom planting method [134]. In direct HTS, mesoporous titanosil-
icates are usually synthesized by adding Ti sources, such as TEOT, tetrapropyl
orthotitanate, or TBOT, to the synthetic gels for the corresponding all-silica meso-
porous materials and crystallization under similar conditions [129, 132]. However,
some Ti atoms are trapped inside the amorphous pore walls and are inaccessible.
Post-atom incorporation is a robust and universal method [134–136], which is
more beneficial for introducing highly accessible Ti atoms than the direct HTS
method. Benefiting from the high accessibility of the mesoporous structure, all of
the above mesoporous titanosilicates are active in epoxidation reactions containing
bulky substrates. The relationship between the synthesis conditions and formation
of anatase TiO2 is ambiguous although anatase TiO2 has been observed in some
mesoporous titanosilicates [132, 133]. Nevertheless, the anatase TiO2 phase does
not negatively affect epoxidation with organic hydroperoxides. In addition to the
Ti coordination state, the hydrophilicity/hydrophobicity is another important
property of mesoporous titanosilicates. The amorphous pore walls of mesoporous
titanosilicates generate numerous silanol groups on the surface, which negatively
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affect epoxidation reactions in terms of activity and epoxide selectivity [20].
Silylation with trimethylsilyl chloride [137] or hexamethyldisilazane [135] is simple
but very effective for enhancing the hydrophobicity of mesoporous titanosilicates,
although the thermal stability of such silylated samples is limited. In contrast,
mesoporous titanosilicates silylated with fluorosilane species can be calcined at an
elevated temperature of 500 ∘C in air [138]. After the silylation of Ti-SBA-15 with
triethoxyfluorosilane, the adsorption capacity of water decreased by 85% compared
to that of the parent material [138].

Mesoporosity was introduced into microporous zeolites for the fabrication of hier-
archical zeolites to enhance the accessibility of active sites inside the micropores.
The construction methods for hierarchical zeolites can be divided into top-down
and bottom-up approaches. In the top-down route, a secondary pore structure is
formed by the selective extraction of framework atoms from microporous zeolites
via post-treatments, such as acid or alkaline leaching, steaming, or irradiation
[139–145]. For titanosilicate zeolites, alkaline-derived desilication is more effective
than acid-derived demetallation for introducing mesoporosity because of the
Si-rich framework composition of titanosilicate zeolites. The concentration of
NaOH aqueous solution should be below 0.2 mol L−1 to avoid the collapse of zeolite
structures when desilication of TS-1 is carried out in NaOH aqueous solution [146].
A hierarchical TS-1 zeolite with a hollow structure was synthesized using a mixture
of TPAOH and NaOH. This TPAOH-assisted method is usually accompanied by
a recrystallization process owing to the structure-directing nature of TPAOH,
resulting in a well-preserved crystallinity and hierarchical structure. The removal
of residual Na+ is necessary after desilication because the presence of Na+ is detri-
mental to the catalytic reactivity of the formed hierarchical titanosilicate zeolites
[147]. In addition, hierarchical structures can be formed by treating microporous
TS-1 zeolites with TBAOH and NaOH under appropriate treatment conditions
[142]. Using bottom-up approaches, mesoporosity can be established during the
synthesis of zeolites with or without the presence of a secondary template. Sec-
ondary templating methods can be further divided into hard- and soft-templating
strategies. For hierarchical TS-1 zeolites obtained via hard-templating, the resultant
shape and size of the mesopores are closely related to the template morphology.
Nanocarbon particles, polymers, and biological materials can be used as hard tem-
plates for the synthesis of hierarchical titanosilicates [148–151]. This method can
be used to successfully construct hierarchical zeolites with a controllable mesopore
size distribution. The soft-templating route, using surfactants or organosilanes as
secondary templates, is another option for constructing hierarchical titanosilicates.
However, the relatively small SDAs for microporous structures and relatively
large soft templates for mesoporous structures usually work in a competitive
manner instead of cooperatively, leading to the formation of separated phases of
microporous zeolites and mesoporous materials rather than hierarchical zeolite
structures. Tuel et al. [152] reported the synthesis of a hierarchical TS-1 zeolite with
organosilane as both a Si source and mesoporogenic agent that could be introduced
into growing zeolite domains via the formation of covalent bonds with SiO2 or
TiO2, thus avoiding the phase-separation phenomenon. Secondary soft templates,
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which are used in the synthesis of hierarchical titanosilicate zeolites, can also direct
the synthesis of mesoporous titanosilicates [153–155]. Secondary template-free
strategies, including seed assistance, kinetic regulation of crystallization, and DGC,
are efficient synthetic approaches for the construction of hierarchical zeolites [156].
The seed-assisted method is used not only to accelerate the crystallization process,
enhance zeolite purity, adjust the morphology and crystalline size, and lower the
synthetic cost but also to construct hierarchical titanosilicates [157]. However,
significant challenges exist in constructing hierarchical titanosilicates with regular
mesopore sizes and elucidating the formation mechanism of mesopores. In addition
to the seed-assisted method, the kinetically regulated crystallization method has
also been employed to construct hierarchical TS-1 zeolites by adjusting the zeolite
nucleation and crystal growth, as well as manipulating the coordination and
distribution of Ti species [158, 159].

1.6 Synthesis of ETSs

ETS is a class of zeolite-type titanosilicate materials that share SiO4 tetrahedra
and TiO6

2− octahedra and possess strong Lewis basicity derived from the TiO6
2−

octahedra. The most representative ETS type titanosilicates are ETS-10 and ETS-4.
The microporous titanosilicate ETS-10 was developed for the first time by Kuznicki
[160]. It possesses a 12-MR pore channel approximately 4.9× 7.6 Å in diameter and
is widely used in ion-exchange reactions, such as those involving rare-earth cations
[161–164], dehydration [165], catalysis [166, 167], photocatalysis [168], and sensor
materials [169]. ETS-10 can be hydrothermally synthesized in the presence of
SDAs, including pyrrolidine, tetramethylammonium chloride, 1,2-diaminoethane,
choline chloride, tetraethylammonium chloride, TPABr, tetrabutylammonium
bromide, and hexaethyl diquat-5 bromide [170–177]. Several different Ti precur-
sors, such as TiCl3 [178], TiCl4 [179], TiF4 [178, 180], (NH4)2TiF6 [178], and TiO2
(anatase or rutile) [170, 178, 181], can be employed as Ti sources for the synthesis
of ETS-10. The catalytic properties of ETS-10 are closely related to its morphology,
which depends on the synthesis conditions and SDAs [182, 183]. ETS-10 can be
synthesized as powders and pellets. In comparison with the powder form, ETS-10 in
pellet form is easier to apply and recover. Moreover, self-bonded pellets avoid the
negative effects of binders on the diffusion of reactants to the Ti species [184]. In
addition, carbon nanotubes are also used for to prepare self-linked ETS-10 [185].

ETS-4, with two types of 8- and 12-MR pore channels, has a structure similar
to that of mineral zorite [160, 186, 187]. Because the 12-MR pore channels are
inaccessible owing to the pronounced stacking disorder along the c-direction, guest
molecules can only enter the crystal interior via the 8-MR pore channels. The size
of the 8-MR pore channels can be modulated by dehydration, i.e. the so-called
molecular gate effect, which has been successfully applied in the commercial
separation of nature gas [188]. The dehydration process is usually performed at
150–300 ∘C [188, 189]. The thermal stability of ETS-4 can be improved by using
alkaline earth cations instead of Na+ [188, 190]. The most representative example
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is Sr-exchanged ETS-4, which has a thermal stability up to 350 ∘C [188]. In addition
to the thermal adjustment of the pore size, replacing the anions in ETS-4 for the
adjustment of openings can be used for the purification of multicomponent gases
[191]. ETS-4 has been employed in the adsorption–separation of CH4/N2, O2/Ar,
O2/N2, and H2/CH4 [192–194]. In particular, Sr-exchanged ETS-4 shows high
stability for the adsorption–separation of CH4 and N2 in pressure swing adsorption
processes [195, 196]. ETS-4 can adsorb and enrich CH4 from natural gases to
alleviate energy shortages.

1.7 Conclusions

Titanosilicates, which can be divided into microporous, mesoporous, and hierar-
chical titanosilicates based on their textural properties and pore sizes, possess
isolated tetrahedral Ti species as active sites and have expanded the application
scope of zeolites as heterogeneous catalysts from the acid catalysis to redox fields.
Although the HTS, DGC, fluoride-assisted media, and post-synthesis methods have
achieved great success in the synthesis of titanosilicates, several challenges with
regard to increasing the content and accessibility of Ti active sites still remain.
Therefore, efforts should be directed toward developing hierarchical titanosilicates
with high Ti contents and manipulating the coordination and distribution of Ti
species.
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