Contents

 \oplus

1	A Journey from Molecular Phthalocyanines to Polymeric Materials
1.1	Introduction 1
1.2	Monophthalocyanines 4
1.2.1	Tetra-Substituted Monophthalocyanines 6
1.2.2	Octa-Substituted Monophthalocyanines 7
1.3	Phthalocyanine-Based Oligomers 9
1.3.1	Sandwich-Type Phthalocyanine-Based Complexes 9
1.3.2	μ-Oxo-Linked Phthalocyanine-Based Oligomers 12
1.3.3	Phthalocyanine-Based Supramolecular Oligomers 13
1.3.4	Phthalocyanine-Based Covalent-Bonded Oligomers 16
1.3.4.1	Phthalocyanine-Based Fused Oligomers 16
1.3.4.2	Phthalocyanine-Based Covalent-Linked Oligomers 19
1.3.5	Cofacial and Cage-Like Phthalocyanine-Based Compounds 20
1.4	Phthalocyanine-Based Polymeric Materials 23
1.4.1	Phthalocyanine-Based Porous Molecular Crystals 23
1.4.2	Phthalocyanine-Based Coordination Polymers 25
1.4.3	Phthalocyanine-Based Organic Polymers 29
1.4.3.1	Amorphous Phthalocyanine-Based Organic Polymers 29
1.4.3.2	Phthalocyanine-Based COFs 33
1.5	Porous Polymeric Materials for Functional Applications 36
1.5.1	Phthalocyanine-Based Polymeric Materials for Chemical Sensors 36
1.5.2	Phthalocyanine-Based Polymeric Materials for Electrocatalysis 37
1.5.3	Phthalocyanine-Based Polymeric Materials for Photocatalysts 40
1.5.4	Phthalocyanine-Based Polymeric Materials for Energy Storage 42
1.6	Conclusion 43
	Abbreviations 43
	References 44
2	Phthalocyanine-Based Cages 55

 \oplus

 \oplus

v

- 2.1 Introduction 55
- 2.1.1 Metal–Organic Cages 55

- vi Contents
 - 2.1.2 Porous Organic Cages 56
 - 2.2 Phthalocyanine-Based Cages 57
 - 2.2.1 Pc-Based MOCs 57
 - 2.2.2 Pc-Based POCs 58
 - 2.2.3 Subphthalocyanine-Based Cages 64
 - 2.2.4 Other Phthalocyanine-Based Molecule Cages 65
 - 2.3 Electrochemical Properties of Pc-Based Cages 73
 - 2.4 Photophysical Properties of Pc-Based Cage 77
 - 2.5 Gas-Sensing Properties of Pc-Based Cage 80
 - 2.6 Host-Guest Properties of Pc-Based Molecular Cages 80
 - 2.7 Conclusion 82
 - Abbreviations 84
 - References 84

3 Phthalocyanine-Based Coordination Polymers 89

- 3.1 Introduction 89
- 3.2 Synthesis of Pc-Based MOFs 90
- 3.2.1 The First Pc-Based Porous Coordination Polymers 91
- 3.2.2 MOFs Based on Octahydroxy-Pcs 92
- 3.2.3 MOFs Based on Amino-Pcs 98
- 3.2.4 MOFs Based on Carboxyl-Substituted Pcs 103
- 3.3 Electrochemical Properties of Pc-Based MOFs 106
- 3.4 The Nanocomposite of Pcs with Different MOFs Systems 113
- 3.5 The Axial Polymer of Pcs 125
- 3.6 The Polymers Based on the Co-Assembly of Pcs with Cyclodextrin 128
- 3.7 The Nanocomposite of Pcs with MOFs and COFs 130
- 3.8 Conclusion 132
 - Abbreviations 132 References 133

4 Porous Phthalocyanine-Based Organic Polymers 137

- 4.1 Introduction 137
- 4.2 Pc-Based CMPs 139
- 4.2.1 Imine-Linked Pc-Based CMPs 140
- 4.2.2 Ethynyl-Linked Pc-Based CMPs 144
- 4.2.3 Other Mode-Linked Pc-Based CMPs 146
- 4.3 Pc-Based COFs 148
- 4.3.1 Octahydroxyphthalocyanine-Derived COFs 150
- 4.3.2 Octaaminophthalocyanine-Derived COFs 157
- 4.3.3 Octacarboxyphthalocyanine-Derived COFs 164
- 4.3.4 Hexadecafluorophthalocyanine-Derived COFs 169
- 4.4 Polyphthalocyanines 172
- 4.4.1 Amorphous Polyphthalocyanines 173
- 4.4.2 Crystalline Polyphthalocyanines 180
- 4.5 Conclusion 184

Contents vii

Abbreviations 185 References 188

5 Sensors Based on Phthalocyanine Polymers and Covalent **Organic Frameworks** 193 Introduction 193 5.1 Basic Parameters for Sensors 194 5.2 5.3 Pc-Based NO₂/NH₃/NO₂⁻ Sensors 195 Pc-Based ³O₂/¹O₂/H₂O₂ Sensors 199 5.4 5.5 Pc-Based Neurotransmitters and Stimulants Sensors 204 5.6 Pc-Based Cancer Biomarker (L-Cysteine) Sensors 206 5.7 Pc-Based Glucose Sensors 208 Pc-Based Ion Sensors 210 5.8 5.9 Pc-Based Organic Compounds Sensors 212 Pc-Based Temperature/Pressure Sensors 219 5.10 5.11 Conclusion 220 Abbreviations 221 References 223 6 Application of Phthalocyanine in Electrocatalysis 227 6.1 Introduction 227 6.2 Phthalocyanine for CO₂ Electroreduction 227 6.3 Phthalocyanine for ORR 255 Phthalocyanine for OER 259 6.4 6.5 Phthalocyanine for HER 260 Phthalocyanine for Nitrogen Reduction Reaction (NRR) 260 6.6 6.7 Phthalocyanine for Electrochemical H₂O₂ Generation 264 6.8 Conclusion and Outlook 265 Abbreviations 265 References 266 7 Application of Phthalocyanine in Photocatalysis 269 7.1 Introduction 269 7.2 Phthalocyanine for CO₂ Photoreduction 270 7.3 Phthalocyanine for H₂O₂ Photosynthesis 285 7.4 Phthalocyanine for Photocatalytic Degradation 287 7.5 Phthalocyanine for Photocatalytic Water Splitting 305 7.6 Conclusion and Outlook 308 Abbreviations 309 References 309 8 Applications of Phthalocyanine-Based Polymeric Materials for Energy Storage 313 Introduction 313 8.1 8.2 Metal-Ion Battery 313

- viii Contents
 - 8.3 Lithium-Ion Battery 314
 - 8.3.1 Cathode Material 314
 - 8.3.2 Anode Material *316*
 - 8.3.3 Bipolar Electrode Material *321*
 - 8.3.4 Interface-Modified Film 325
 - 8.3.5 Lithium–Sulfur Battery Catalyst 326
 - 8.4 Sodium-Ion Battery *328*
 - 8.4.1 Anode Material 328
 - 8.4.2 Bipolar Electrode Material 329
 - 8.4.3 Sodium-Iodide Battery Catalyst 332
 - 8.5 Potassium-Ion Battery 332
 - 8.6 Metal–Air Battery *335*
 - 8.7 Li-O_2 Battery 336
 - 8.8 Li–CO₂ Battery 338
 - 8.9 Zinc–Air Battery 339
 - 8.10 Supercapacitor 351
 - 8.11 Aqueous Electrolyte System 354
 - 8.12 Nonaqueous Electrolyte System 355
 - 8.13 Gel Electrolyte System 358
 - 8.14 Conclusions and Outlook 360 Abbreviations 361 References 362

Index 365