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1.1  Introduction

Breast cancer (BC) has become one of the most prevalent malignant tumors in 
women and is increasing at an alarming rate. Based on the population growth, 
experts have predicted that by 2050, there will be roughly 3.2 million new cases per 
year globally  [1]. Not only is the number of patients with BC rising all over the 
world, but also the age of affected patients is tending to be younger [2]. Many factors 
contribute to these circumstances including age, family history, lifestyle surround-
ings, and many others [1, 3, 4]. Although the relative risk of BC is inevitable, it is 
possible to reduce BC mortality rate. Its survival rate largely depends upon the 
woman’s timely access to effective and affordable detection and treatment pro-
cesses [5]. The World Health Organization (WHO) has also described two different 
but related approaches to reduce BC, i.e. early diagnosis, which is the recognition of 
symptomatic cancer at an early stage, and screening, which is the identification of 
asymptomatic disease in a target population of apparently healthy individuals [6]. 
In many developing countries, women are unaware about the BC because of which 
it is detected at later stages [7]. However, there are various organizations working 
for generating awareness and promoting self‐examination of the breast among 
women. Such efforts will promote the early detection and will help in reduction of 
the BC mortality rate.

Even previous research has shown that early BC detection, if combined with 
appropriate treatment, could greatly reduce BC death rates in the long run. 
Therefore, detecting BC at an early stage is vital. There are different techniques used 
for its diagnosis. Presently, mammography (MG), breast ultrasound, and breast 
magnetic resonance imaging (MRI) examination are the most common diagnostic 
techniques available for the detection of BC  [8, 9]. These procedures necessitate 
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specialized equipment, skilled practitioners, and expert analysis but the cost of 
detection is significantly high. In comparison to these methods, biosensor detection 
is far more reliable and affordable [10]. Weaver and Leung have summarized the 
various definitions and applications of biomarkers in imaging BC [11]. On the one 
hand, breast tumor indicators are critical in the early detection of BC, the charac-
terization of molecular subgroups, the selection of treatment options, and the 
assessment of survival [12–14], whereas biosensors, on the other hand, provide sub-
stantial benefits over standard tumor marker detection methods in terms of speci-
ficity, sensitivity, speed, and cost of detection [15, 16] such as chemiluminescence 
immunoassay  [17], enzyme‐linked immunosorbent assay  [18], proteomics  [17], 
molecular biology methods, and liquid biopsy. Several biosensors with improved 
sensitivity, selectivity, stability, and low cost have been created in the previous 
decade [19].

In this chapter, many diagnostic methods such as MG, ultrasonography (US), 
MRI, microwave BC detection techniques, and various biosensors will be discussed. 
We herein discuss their most recent advances, as well as their benefits and draw-
backs. This will aid researchers and those working on BC diagnostic methods in 
selecting appropriate approaches for properly diagnosing BC in its early stages.

1.2  Imaging Techniques

The use of imaging techniques reveals the anatomy and position of malignant cells 
and provides clinicians with valuable clinical information. When contrast agents 
and high‐energy rays are used in imaging procedures, unfortunately, patients may 
be harmed. As a result, we should discuss different imaging modalities and decide 
which one is best for BC patients. These techniques mainly include MG, US, MRI, 
positron emission computed tomography (PET), computed tomography (CT), and 
single‐photon emission computed tomography (SPECT). The benefits and draw-
backs of these imaging techniques are listed in Table 1.1.

PET, CT, and SPECT are not advised for diagnosing BC patients due to their high 
cost, limited practicability, and radiation damage [20]. However, in some circum-
stances, such as screening for metastatic BC and the presence of bone and lym-
phatic metastases, these techniques can be employed as additional diagnostic 
procedures for diagnosing BC. As a result, we solely discuss MG, US, and MRI, 
which are the primary modalities for detecting BC. These common imaging proce-
dures will be summarized and evaluated to assist clinicians to serve their patients in 
a better way.

1.2.1  Mammography (MG)

MG is the primary method used for screening and diagnosing BC, and it aids clini-
cians in gathering clinical data on BC patients. This method is especially advanta-
geous to women between the ages of 40 and 74. Early MG screening may reduce the 
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death rate of BC patients by 30% to 40%, according to one of the earlier research [21]. 
However, MG has a significant rate of false‐positive and false‐negative results, espe-
cially in individuals with dense breasts (for subjects under 40 years old) [22, 23]. But 
with time, MG is progressing continuously and has shown good results in terms of 
diagnostic accuracy, sensitivity, and resolution. Presently, two key diagnostic meth-
ods are under practice for detection, i.e. contrast‐enhanced mammography (CEM) 
and digital breast tomosynthesis (DBT) [24, 25]. CEM has been found to be superior 

Table 1.1  Benefits and drawbacks of imaging techniques.

Imaging 
techniques Advantages Disadvantages

XRM 1)  Standard for diagnosing BC 
patients

2)  Suitable as a screening 
method for BC

3)  Finding mammary gland 
calcification

1)  Not for people under 40
2)  Not for people with high gland density
3)  No more than twice a year

US 1)  Screening for young women
2)  Noninvasive diagnostic 

method
3)  Finding mammary gland 

inflammation

1)  Not for small mass and a typical tissue
2)  Affected by the examining doctor
3)  Definition and resolution are not high

MRI 1)  High sensitivity and 
specificity to invasive BC

2)  Screening of high‐risk groups 
such as family history of BC

3)  For patients with breast‐
conserving surgery

1)  Not for everyone such as patients with 
claustrophobia

2)  Not for wide‐scale screening
3)  Not for BC staging

PET 1)  High sensitivity to BC 
recurrence and metastasis

2)  Helpful for staging of the BC
3)  High sensitivity to small 

breast tumor

1)  High cost, not recommended as 
routine screening

2)  Not for patients with hypersensitivity 
to developer

CT 1)  Supplementary diagnostic 
method for BC, such as 
identifying BC with or 
without intrapulmonary 
metastases

1)  Not the first choice for diagnosing BC
2)  Radiation damage
3)  Poor spatial resolution and need 

experienced doctors

SPECT 1)  High resolution, small field of 
vision

2)  Recommended use when 
suspects metastasis

1)  Obtaining little clinic information
2)  Not for patients with inflammatory 

bone lesions and bone proliferative 
metabolic abnormalities or variations

CT, computed technology, MRI, magnetic resonance imaging, PET, positron emission 
tomography, SPECT, single-photon emission computed tomography, US, ultrasonography, 
XRM, X-ray mammography.
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to full‐field digital mammography (FFDM) in terms of diagnostic accuracy and 
disease extent assessment, and its efficiency is also comparable to that of MRI as 
well as US [26–28]. When compared to FFDM, DBT also offers good performance in 
terms of specificity (96.4%, 57 229/59 381% versus 97.5%, 23 427/24 020, 
P < 0.001)  [29]. Computer‐aided detection (CAD) is an artificial intelligence (AI) 
technique that has improved the sensitivity of the instrument and decreased human 
errors as well as false‐positive and false‐negative results in detection [30]. The com-
bination of CAD with CEM and DBT can significantly improve the performance of 
these imaging techniques [31, 32]. In individuals who have no indications or symp-
toms of BC, a 3D MG is utilized to detect the disease as shown in Figure 1.1. The 
study demonstrated that combining 3D and traditional MG minimizes the need for 
extra imaging and has increased the accuracy of MVGG up to 94.3% [34]. Various 
algorithms have been proposed to enhance the MG images. After many experiments 
and selecting suitable settings, Montaha et  al. suggested the BreastNet18  model, 
which is based on the fine‐tuned VGG16. The accuracy of the algorithm grew to 
98.02% of the proposed model [35]. Such type of research will help the doctors in 
efficient and accurate diagnosis of BC.

From the above discussion, we can conclude that MG is an essential component 
of early diagnosis for BC patients because of its several benefits, including rapid 
screening, high accuracy, low cost, and suitability for promoted use. Despite these 
benefits, MG is not suitable for everyone. It requires a hazardous contrast agent and 
X‐ray to perform imaging, cannot be used frequently in a short period of time, and 
is not suggested for people under the age of 40 [36]. But in the coming years, with 
significant developments like high resolution, MG will be quite safe. Moreover, 
advances in AI technology have made it possible to simplify the detection and analy-
sis of BC.

3D 2D

Figure 1.1  3D versus 2D mammography. Source: Andersson et al. [33]/Reproduced with 
permission from Springer Nature.
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1.2.2  Ultrasonography (US)

US is a technique for evaluating the form and status of tumor tissues, as well as cor-
rectly locating lesions. The early grayscale US merely showed whether the tumor 
existed at the detecting point, and because its resolution was inadequate, it was dif-
ficult to discriminate benign and malignant tumors  [37, 38]. US images showing 
normal, benign, and malignant BC are given in Figure 1.2.

The flat photographs of tumors received from the two‐dimensional (2D) US might 
affect the physician’s assessment. Therefore, three‐dimensional (3D) US technology 
was introduced so that one can have 3D imaging of tumor anatomy and blood vessel 
distribution in diagnosed patients [40]. The color Doppler ultrasound is one of the 
3D techniques of ultrasounds that may vividly display tumor and blood flow infor-
mation and offer clinicians more useful information, allowing them to discriminate 
between malignant and benign tumors [41]. Krouskop discovered elastic variations 
in different tissues laying the theoretical groundwork for constructing elastic 
US [42]. Furthermore, some studies revealed that employing elastic US to screen 
suspected diseased tissues considerably enhances the accuracy of diagnosing 
BC [43, 44]. The elastic US, when paired with 3D US, can diagnose axillary lym-
phadenopathy and classify the patient’s tumor state [45]. Although MG is the best 
tool for detecting BC calcification, when the calcification is too tiny, it is difficult to 
identify with MG or normal US; so, MicroPure, a new US image‐processing 
method, was developed [46]. By analyzing images of multidimensional array and 
frequency, this method may decrease random noise and produce high‐resolution 
images and tissue homogeneity [47]. Machado et al. examined ex vivo surgical breast 
specimens with MicroPure and discovered that MicroPure has a high detection rate 
for BC microcalcifications, whereas conventional US cannot detect [48].

This technique has significant advantages that include the use of less contrast 
agents, the absence of high‐energy rays, and the fact that it is suited for people of all 
ages. US has been suggested as a supplement to MG for women at high risk of BC, 
pregnant women, and those who are unable to get MG [49]. Furthermore, it involves 
the use of skilled radiologists, which has a major impact on sensitivity and specific-
ity. Breast ultrasound has a high false‐positive rate while being routinely shown to 
detect mammographically hidden malignancies. However, using AI, radiologists 

Normal Benign Malignant

Figure 1.2  Samples of ultrasonography breast images dataset. Source: Dhabyani 
et al. [39]/with permission from Elsevier/CC BY 4.0.
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were able to cut false positive rates by 37.3% and requested biopsies by 27.8% while 
retaining the same sensitivity level (Area Under the Receiver Operating 
Characteristic Curve [AUROC]: 0.962 AI, 0.924 ± 0.02 radiologists) [50]. AI has the 
potential to improve the accuracy, consistency, and efficiency of breast ultrasound 
diagnosis in the future, which will help doctors achieve more accurate diagnostic 
results by reducing errors caused by unprofessional judgments.

1.2.3  Magnetic Resonance Imaging (MRI)

MRI enables the early diagnosis of BC, independent of the patient’s age, breast den-
sity, or risk status  [51]. The common approach for breast imaging is dynamic 
contrast‐enhanced magnetic resonance imaging (DCE‐MRI), which focuses on the 
introduction of contrast agents and displays the malignant vascularity, anatomy, 
and kinetics of breast tumors [52]. DCE‐MRI has been demonstrated as a screening 
technique for women with a variety of risk levels, with sensitivity ranging from 81% 
to 100% [53]. The positive prognostic value of DCE‐MRI is 98%, which is higher than 
the positive prognostic value of MRI alone, i.e. 77% and the specificity is 97%, 
according to the experts [54]. Another recently developed method that allows for 
excellent spatial and temporal resolution is ultrafast DCE‐MRI in which various 
amplification approaches, such as parallel imaging and compressed sensing, are 
applied, and its ability to characterize BC aggressiveness and tumor subtypes has 
been proven  [55]. There is another technique called Magnetic Resonance 
Diffusion Weighted (MRDW). It is also used in BC diagnosis that shows clear 
movement of water molecules in the body, as for different tissues there exist differ-
ent water dispersion coefficients. Researchers can detect benign and malignant 
breast tumors by utilizing MRDW to evaluate apparent diffusion coefficient (ADC) 
values (which reflect diffusion‐limited effects) of tumors, i.e. ADC values: normal 
breast group > benign group > malignant group [56, 57]. DWI has the advantage of 
being a non‐contrast technology with a fast scan time  [58]. Moreover, DWI was 
found to be more accurate than MG in detecting cancer in a sample of asympto-
matic women [59].

Magnetic resonance spectroscopy (MRS) is an important method that is used 
to describe the functional state of malignant, benign, and normal breast tissues in 
three ways: in vivo, ex vivo, and in vitro. Table 1.2 compares the studies of in vitro, 
ex vivo, and in vivo MRS and MRI techniques in the diagnosis of BC [60]. MRS is a 
noninvasive technology that can enhance the rate of BC diagnosis by assessing the 
risk of BC and leading to BC treatment [61, 62]. Solid‐state MR spectroscopic exami-
nation of intact biopsied tissues employing the high‐resolution magic angle spin-
ning (HRMAS) approach was also employed in studies to monitor metabolite levels 
for breast tumor diagnosis/prognosis [63–68]. High amounts of choline‐containing 
metabolites (tCho) were found in breast in vivo MRS experiments, indicating the 
rapid proliferation of malignant tumors [69–76]. Hyperpolarized 13C MRI (HP 13C 
MRI) has recently been used to investigate abnormal tumor metabolism [77].
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Magnetic resonance elastography (MRE) is a type of magnetic resonance 
technology that uses the transmission of mechanical waves in tissues to offer 
information on tissue elasticity. MRE’s future tendency is to identify preoperative 
tumors and predict treatment response and metastatic potential of primary 
tumors  [78]. PET/MRI or PET and MRI can reveal soft tissue structures in the 
breast and chest wall. PET can offer molecular‐level information in vivo, and PET/
MRI has a high value in evaluating BC metastasis and can improve the positive 
predictive rate of patients [6, 79, 80]. Moreover, AI‐enhanced model of 18F‐FDG 
PET/MRI (18F‐fluorodeoxyglucose positron emission tomography magnetic reso-
nance imaging) has accurately shown the difference between benign and malig-
nant breast lesions [81].

MRI is a supplementary method for diagnosing BC that seems to have a number 
of advantages. Unfortunately, numerous factors influence the widespread use of 
MRI, i.e. prolonged imaging time, high price, and the fact that it cannot be per-
formed if the patient’s body contains metal material. As a result, future research 
should focus on lowering the cost of MR procedures and reducing the need for con-
trast agents, so that they can be used at early stages of the BC. Radiomics is a fast‐
developing area that uses AI algorithms to analyze medical scans digitally, allowing 
for thorough tumor characterization [82–84]. So, radiomics applications should be 
thoroughly investigated, and there is a need to improve radiologists’ grasp of basic 
principles and the development of standardized and reproducible methods and data 
exchange for clinical applications.

1.3  Microwave Breast Imaging Methods

The microwave region ranging between 300 MHz and 300 GHz has received the 
least attention but has sparked a lot of interest in medical imaging in the last two 
decades. In this, the interaction of electromagnetic signals with the matter is deter-
mined by the dielectric properties of the matter, i.e. electric permittivity and con-
ductivity [85]. Microwave imaging (MWI) has evolved as a technology for creating 
dielectric maps of various body sections. Basically, a MWI system includes an 
antenna array, a microwave signal transmitter and receiver, and a radio‐frequency 
switch to switch between the arrays’ multiple parts [86]. There are some applica-
tions of MWI in brain stroke detection [87], extremity imaging [88, 89], and lung 
cancer detection [90]. However, in this chapter, we have mainly discussed its appli-
cation in BC detection. Tumors have high water content when compared to normal 
cells. This is due to the biology of tumor cells, which retain more fluid than normal 
cells. The dielectric characteristics of breast tissues are altered by this additional 
fluid, which is in the form of bound water. Tumors are diagnosed by MWI using 
scattered or reflected waves emerged from variations in dielectric characteristics 
between normal and malignant breast tissues [91–93]. Table 1.3 shows the differ-
ence in the dielectric properties of the female breast tissue at 3.2 GHz [94].
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1.3 Microwave Breast Imaging Method     11

The MWI techniques can be classified into two groups, active MWI and passive 
MWI. The active MWI techniques are further subcategorized into microwave 
tomography (MWT) and radar‐based MWI. Active MWI examines the difference in 
dielectric properties between the healthy and malignant tissues, and passive MWI 
measures the temperature between the healthy and cancerous tissues using radiom-
etry [95]. The primary distinction between these two approaches is that natural elec-
tromagnetic radiation released by living tissues is measured in passive systems, 
whereas in active systems, an electromagnetic signal from a source is incident on 
the tissues and the reflected signals are measured (as depicted in Figure 1.3) [85].

1.3.1  Microwave Tomography

MWT is a technique that uses electromagnetic field alterations to obtain 2D slices or 
pictures of the dielectric characteristics of a sample. Typically, MWT setup includes 
imaging chamber, which is filled with the matching medium, and to improve the 

Table 1.3  Dielectric properties of female breast tissue at 3.2 GHz.

Tissue type Relative permittivity Conductivity (mS cm−1) Water content (%)

Fatty tissue 2.8–7.6 0.5–2.9 11–31

Normal tissue 9.8–46 3.7–34 41–76

Benign tissue 15–67 7–49 62–84

Malignant tissue 9–59 2–34 66–79

Source: Adapted from Campbell and Land [94].

Detector

(a) (c)

(b) (d)

Receiver Transmitter/receiver

Breast tissue

Breast tissue

Natural EM radiation

Reflected signals Incident signal

Figure 1.3  Methods of microwave breast imaging. The figures on the left show (a) passive 
versus (b) active approaches. The figures on the right show patient’s orientations for (c) 
planar systems (supine position) versus (d) cylindrical systems (prone position). Source: 
AlSawaftah et al. [85] ©MDPI/Public Domain CC BY 4.0.
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performance of this system matching medium, is selected carefully so that most of 
the microwave electromagnetic signals can couple with breast tissue. Imaging 
chamber also has array of antennas surrounding the sample, where each antenna 
transmits a continuous wave (CW) of single‐ or multifrequency electromagnetic sig-
nals. The electromagnetic signals scattered by matching medium and sample 
because of differences in their dielectric properties are measured by non‐transmitting 
antennas. After analyzing data using algorithms, 2D images of dielectric properties 
are created. So, we can say that there are basically three steps to create image, i.e. 
collecting microwave tomogram, data analyzing, and then image display using 
MWT [85].

Several theoretical and experimental research studies have been done on the use 
of this method in BC diagnosis  [96–100]. Meaney et  al.  [99] have done series of 
experiments to improve the performance of this technique. First multifrequency 
MWT prototype for breast imaging was set up of a cylindrical array of 16 monopole 
antennas operating at 300–1000 MHz  [96]. This study revealed the relationship 
between the breast permittivity and radiological breast density. Another experiment 
with glycerin and water mixture as matching medium was done and found that it 
helped in the reduction of coupling noises between array elements. The results of 
these clinical investigations showed that tumors as small as 1 cm in diameter can be 
diagnosed, indicating that MWT has the ability to detect early‐stage BC [101–103].

In recent research, magnetic nanoparticles and compressive sensing (CS) tech-
niques are used as contrast agents to improve the accuracy, sensitivity, and specific-
ity of MWT in BC detection [104, 105]. The results showed that the CS‐based MWT 
with 12 antennas and an MWT with 70 antennas provided equal‐quality breast pic-
tures. Thus, we can conclude that CS‐based MWT technique lowered operation 
costs and data‐gathering time significantly.

1.3.2  Radio-Based Microwave Imaging

During BC detection, a radio‐based MWI technology exploits reflected waves caused 
by differences in dielectric characteristics between normal and malignant tumor 
cells and gives valuable information about the location, size, and characteristics of 
tumor cells. First radar‐based MW system was proposed by Bridge [106]. In Bridge’s 
method, ultrawideband (UWB) of microwave frequency ranging from 1 to 10 GHz 
was used to illuminate BC tissue from array of antennas placed at different positions 
around the breast  [107, 108]. Radar‐based MW has more advantages over MWT 
such as being computationally less expensive, having higher resolution, and having 
better specificity [108, 109].

As per the developments in radar‐based MW, it is classified into five groups [95]:

●● Confocal microwave imaging (CMI): Hagness et  al., first proposed this 
approach and used pulsed confocal techniques with time gating to improve tumor 
identification while decreasing tissue asymmetry and absorption effects  [110]. 
Their work involves finite‐difference time‐domain (FDTD), and its results 
showed that cancer cells having 2 mm diameter can be detected by the 2D CMI.  
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By utilizing a resistive bowtie antenna and using 3D‐FDTD simulations, Hagness 
et al. improved the prior design [111]. This technique has the potential to produce 
high‐resolution images, but its limitation is that it can’t distinguish between 
errors and noise.

●● Multi‐static adaptive (MSA) system: The high‐impact radar‐based MWI sys-
tem was developed in which real aperture array of UWM antennas was used. 
It consisted of 16 UWB aperture‐coupled stacked‐patch antennas located on the 
section of hemisphere that were arranged in such a way as to improve the confor-
mation to the curve of the breast  [112–114]. The results of the clinical trials 
showed that this system was successful in detecting the 4–6 mm diameter of can-
cerous cells [113]. The Breast Care Center in Bristol, UK, conducted a substantial 
initial trial of the group’s 31‐element prototype radar system in 2010. Despite the 
fact that this technique produced good results, the clinical trial findings were 
mixed. The results were shown to be irreproducible when performed by different 
clinicians. This is due to slight patient movements throughout the 90‐second 
scans, as well as certain ambiguities caused by changes in blood flow and tem-
perature. In order to resolve these flaws, the team developed a 60‐antenna array 
system to improve the system’s immunity to clutter and reduce the scan time to 
10 seconds. The results showed increase in the accuracy of the images obtained 
while also delivering a more convenient and acceptable clinical experience for 
patients [85].

●● Tissue‐sensing adaptive radar (TSAR): Fear et al. investigated the use of TSAR 
in BC imaging [115, 116]. This system required the use of two scans of each breast. 
The first scan specifies the basic location of the breast volume relative to the tank 
(containing coupling fluid and antennas) obtained at the antenna after the first 
reflection. The second scan is done in a sagittal direction, from the nipple to the 
chest wall, providing data for the tumor detection algorithm [116]. The results of 
these clinical experiments showed that TSAR has the potential to detect and local-
ize tumor with more than 4 mm in diameter [117]. However, the huge reflections 
created by skin, the construction of adequate antennas, and the desire to develop 
high‐speed electronics for real‐time photography all posed hurdles to this system. 
Development of appropriate sensors, research of practical implementation chal-
lenges, enhancement of imaging algorithms, and testing on breast models are all 
part of the current work on TSAR [95, 118].

●● Microwave imaging via space–time (MIST) beamforming: This type of tech-
nique involves the use of continuous transmission of UWB signals from antenna 
placed near the breast surface, and the received reflected signals are spatially 
focused using a space–time beam former. Because of the considerable difference 
in the dielectric characteristics of normal and malignant tissue, discrete regions 
of high backscattered energy levels appear in the reconstructed pictures, corre-
sponding to malignant tumors [119]. The first MIST system was introduced by 
Bond et al.  [119], resulting in the detection and localization of very small syn-
thetic tumors embedded in breast phantoms [119]. Bond et al. also developed a 
MIST system with implementation of a planar array of 16 horn antennas that 
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transmitted UWB microwave signals from each antenna located close to the breast 
surface [119]. This has resulted in significant improvement in the performance of 
the UWB‐based MI approach. However, further improvements enabled the sys-
tem to localize, identify, and resolve multiple tumors [118, 119].

●● Holographic microwave imaging (HMI): HMI has the ability to provide real‐
time images at a substantially cheaper cost than other radar‐based MWI 
approaches since it does not require expensive ultra‐high‐speed electronics. 
In this approach, MWI is performed in two stages: recording of a sampled intensity 
pattern followed by image reconstruction [120]. Smith and coworkers presented a 
near‐field indirect HMI approach that involves capturing the breast intensity and 
reconstructing the image from that data  [120, 121]. However, before this tech-
nique can be used in clinical settings, it needs to be validated further.

Wang et al. proposed far‐field HMI in which 3D HMI image was reconstructed 
using 2D HMI images obtained at different vertical positions with single frequency 
(12.6 GHz) for early detection of BC [122]. It included one transmitter and an array 
of 15 receivers placed under the breast phantom. In this system, matching solution 
medium is not required and air between the antennas and breast phantom. The 
results of the experiments demonstrated that the suggested 2D HMIA approach 
could successfully detect tiny tumors with a diameter of less than 5 mm in various 
places [122]. The other experiment was done by combining the above approach with 
CS, and results showed that CS‐HMIA has the capability of detecting randomly dis-
tributed inclusion of various shapes and sizes using smaller number of sensors and 
lesser scan times [123]. In a recent development, a multifrequency HMI system has 
been developed by Wang (2019), who checked the feasibility and effectiveness of the 
proposed algorithm for breast imaging [124]. According to the studies, the multifre-
quency HMI system has the ability to be used as a microwave diagnostic technology.

A significant amount of research and development is yet to be done in harnessing 
the full potential of this technology. The future research should focus on improve-
ment of MWI in medical applications, including better designing of hardware, sig-
nal processing methods as well as algorithms for image reconstruction.

1.4  Biomarkers and Biosensors for Breast 
Cancer Detection

The molecular biotechnology studies are done to analyze specific biomarkers such 
as nucleic acids, proteins, cells, and tissues of patients, and these studies help in 
early detection of BC than abovementioned imaging techniques or procedures [20]. 
However, these cannot replace imaging techniques but can be used as auxiliary 
method to diagnose BC. The examinations help the clinician analyze BC from the 
level of nucleic acids, proteins, and cells using these biomarkers and biosensors. 
First, we will discuss biomarkers and then biosensors.
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1.4.1  Biomarkers

1.4.1.1  Nucleic Acids
There are different nucleic acid tumor markers viz, BRCA1, BRCA2, microRNA, 
circulating tumor DNA (ctDNA), circulating cell‐free DNA (ccfDNA), circulating 
RNA (circRNA), long noncoding RNAs (lncRNAs), etc. [125]. MicroRNA is a single‐
stranded noncoding RNA molecule that has evolved as a significant regulator of BC 
development, prognosis, and therapeutic response  [126]. The study has revealed 
that MicroRNA has been linked to patients’ clinical and biological characteristics 
and that it can target different genes and alter different pathways. LncRNA is a type 
of noncoding RNA with a length greater than 200 nt that is produced by RNA poly-
merase II. The role of lncRNAs in the initiation, development, and metastasis of BC 
is becoming clearer, and they could represent a new diagnostic marker and thera-
peutic target for BC [127]. CircRNA is a type of double‐stranded closed RNA that is 
resistant to RNA exonuclease, exhibits steady expression, and is difficult to disinte-
grate according to the findings, CircRNA expression was linked to tumor cell prolif-
eration, migration, invasion, and treatment resistance  [128, 129]. Thus, it can be 
explored as diagnostic method.

ccfDNA is extracellular DNA found in plasma or serum, and ctDNA is ccfDNA 
released into the bloodstream by tumor cells [130, 131]. The studies have revealed 
that primary tumor cells, circulating tumor cells, and hidden and dominant meta-
static tumor cells all release more DNA than normal cells, and ctDNA contains 
mutations that are exclusive to the parent tumor [132]. As a result, ctDNA has the 
potential to be used as a tumor marker for BC prediction, diagnosis, and progno-
sis [131, 133]. However, further research is needed to apply it to clinical diagnosis 
and treatment [133].

1.4.1.2  Proteins
CD24, CD44, and MUC1 are some types of protein tumor biomarkers. CD24 is a 
glycosylphosphatidylinositol‐binding glycoprotein  [12, 134], which has been dis-
covered to be an anti‐phagocytic signal that protects cancer cells from Siglec‐10‐
expressing macrophage attacks. The expression of CD24 has also been linked to BC 
grading and staging  [135]. As a result, CD24‐blocking therapy can significantly 
improve the therapeutic impact of CD24‐positive cancers [134]. On the other hand, 
CD44 is a complex transmembrane‐binding glycoprotein that has been linked to a 
poor prognosis in patients. It is involved in the regulation of numerous critical sign-
aling pathways, including tumor growth, invasion, metastasis, and treatment 
resistance [135–137].

MUC1 (CA15‐3) is a transmembrane mucin glycoprotein that is found in the 
majority of epithelial tissues [138]. It was shown to have aberrant profile and glyco-
sylation in 90% of BC cases [139]. MUC1 is also a useful marker for tracking the 
progression of metastatic BC [140]. Further, serum tumor markers such as CEA, 
CA19‐9, CA125, CA15‐3, and TPS play a significant role in the diagnosis and treat-
ment of BC [141].
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1.4.1.3  Tumor Cells
The term “circulating tumor cells (CTCs)” refers to BC cells that have broken free 
from the tumor and entered the bloodstream (CTC). CTCs have the ability to regen-
erate tumor tissue. So such types of tumor cells themselves are tumor markers [141]. 
Patients with metastatic BC could be tiered and graded to get tailored treatment by 
measuring the number of CTC cells [142]. CTC cells can also be used to assess BC 
patients’ prognoses and identify whether they are candidates for further radiation 
therapy after surgery [132, 143].

Apart from nucleic acid, proteins, and tumor cells, exosomes (membrane‐enclosed 
phospholipid extracellular vesicles) can also be applied in the diagnosis and treat-
ment of cancer due to their high secretion on the surface of cancer cells [144]. From 
the research findings, it was shown that tumor cells release more exosomes than 
normal cells, and miRNA‐21 and miRNA‐1246  in exosomes are upregulated in 
patients’ plasma [9]. Therefore, exosomes have become a research hotspot in recent 
years because of their great diagnostic potential. In addition to exosomes, estrogen 
receptor (ER) [145], progesterone receptor (PR) [146], and human epidermal growth 
receptor 2 (HER2) [147] are the most widely used tumor markers in the early diag-
nosis and treatment of BC. The diagnosis of BC using tumor markers with high 
specificity and sensitivity requires more research.

1.4.2  Biosensors

A biosensor is a self‐contained, tiny analytical instrument that combines a specific 
biological system with a physiochemical transducer to detect target molecules by 
transforming the recognition signal into a detectable output signal [148–152]. When 
compared to traditional tumor marker detection methods, biosensors offer substan-
tial advantages in terms of specificity, sensitivity, speed, and cost of detection   
[15, 16]. Biosensors can be divided into electrochemical biosensors, optical biosen-
sors, and other types on the basis of detection principles and signals [19, 151–154].

1.4.2.1  Electrochemical Biosensors
Electrochemical biosensors monitor changes in dielectric characteristics, size, 
shape, and charge distribution when antibody–antigen complexes form on the elec-
trode surface. By sensing the electrochemical reaction on the electrode’s surface, it 
quantitatively detects the analyte and the signal of the electrochemical reaction, 
which depends on the concentration of analyte [155–157]. These biosensors have 
been designed to detect a variety of biomolecules, including proteins, antigens, 
DNA, antibodies, and heavy metal ions, among others. Electrochemical sensors 
have previously been shown to have great sensitivity and specificity in buffer and 
serum samples [158]. Figure 1.4 shows the developed electrochemical biosensor for 
MCF‐7 cells detection  [160]. Antibodies against surface proteins of MCF‐7 cells 
were immobilized on nanoparticle‐assembled electrode to capture MCF‐7 cells at 
the electrode surface, which increases the interfacial resistance and hence enlarged 
semicircle in Nyquist plot. Alternatively, cDNA complementary to miRNA can also 
be immobilized to capture target miRNA released from the cell extracts of MCF‐7 
cells [95].
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There are some methods through which the detection of electrochemical reaction 
is done: cyclic voltammetry (CV), differential pulse voltammetry (DPV), square 
wave voltammetry (SWV), linear sweep voltammetry (LSV), electrochemical imped-
ance spectroscopy (EIS), field‐effect transistor (FET), and other methods [19, 148, 
149] as shown in Table 1.4. Recent development of electrochemical nanobiosensors 
has reduced the cost, simplified the technique, increased sensitivity and specificity, 
increased reliability, and provided a quick response in BC detection  [178, 179]. 
Further research in this direction would be helpful in early detection of BC.

1.4.2.2  Optical Sensors
Optical biosensors detect the optical change on the surface of sensing layer of the 
target. Every optical biosensor detects different optical signals such as refractive 
index, resonance, wavelength, and intensity [16, 180, 181]. As shown in Figure 1.5, 
the diagnosis of BC cell (MCF‐7) is done using quantum dot optical biosensor. In 
Figure 1.5, quantum dots are labeled with primary antibodies against MCF‐7 cell 
surface proteins and subjected to sample containing MCF‐7 cells. Addition of sec-
ondary antibody labeled, magnetic beads enables sensors for their magnetic separa-
tion to obtain fluorescence emission spectra  [95]. Different types of optical 
biosensors have been developed that include fiber optics, fluorescence, resonant 
mirror optical, interferometric, and surface plasmon resonance as given in Table 1.5. 
Recently, these sensors have been developed using surface chemistry and 
nanotechnology [194].

In addition to electrochemical and optical biosensors, there are two other types of 
sensors viz, quartz crystal microbalance (QCM) biosensors (which detect mass 
change of the target) and photoelectochemical (PEC) biosensors (which detect the 
effect of the targets on the photoelectric characteristics of materials).

●● QCM biosensor: The effect of the target on the frequencies of the bulk acoustic 
waves generated in the piezoelectric quartz crystal is the basis for QCM’s sensing 
mechanism. To achieve the concentration detection of the target, the frequency 
change of the acoustic wave is connected to the mass change on the chip surface. 
QCM can detect mass changes on the chip surface at the nanogram level [195].

●● PEC biosensors: The photoelectric active material in the PEC sensor is stimu-
lated when light is irradiated, resulting in a photocurrent or photovoltage. The 
target is captured by the recognition sensor on the surface of the photoelectrically 
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miRNA
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Immobilization
of biocomponent 

Figure 1.4  Electrochemical biosensor for detection of MCF-7 cells. Source: Mittal 
et al. [159]/with permission of Elsevier.
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active material, causing the photocurrent or photovoltage to change. When the 
target’s concentration changes, so does the photoelectric signal. Therefore, it sets 
up relationship between the photoelectric signal and concentration. The detec-
tion of tumor markers has been reported using several PEC biosensors [141].

Table 1.4  Developments in electrochemical biosensors.

Electro­
chemical 
biosensor Target Detection limit Linear range References

CV CA15
EGFR

miRNA

30.64 U ml−1

1 pg ml−1

155.2 × 10−20 M

2.0–240 U ml−1

1 pg ml−1 to 100 ng ml−1

2 × 10−20 to 2 × 10−12 M

[161]
[162]
[163]

DPV BRCA1 CA15‐3
BRCA1
miRNA

0.0034 pM
3.34 mU ml−1

3.01 × 10−16 M
3.6 fM

8.2 fM (miRNA‐21)

0.01 pM to 1 nM
0.01–1000 U ml−1

1.0 × 10−15 to 1.0 × 10−7 M
0.01–10 pM

0.02–10 pM (miRNA‐21)

[164]
[165]
[166]
[167]

SWV MUC1
miRNA‐21

miRNA‐155

0.33 pM
18.9 aM (miRNA‐21)

39.6 aM 
(miRNA‐155)

1.0 pM to 10 μM
—

0.1 fM to 10 nM

[168]
—

[169]

LCV HER2‐ECD
HER2
CD44

CD44 positive cell

4.4 ng ml−1

0.16 ng ml−1

2.17 pg ml−1

8 cells ml−1

15–100 ng ml−1

7.5–50 ng ml−1

0.01–100 ng ml−1

10–106 cells ml−1

[170]
[171]

—
[172]

EIS HER2
MCF‐7 cell MUC1

BRCA1

19 fg ml−1

23 cells ml−1

2.7 nM
3 fM

0.001–10 ng ml−1

1 × 102 to 
1 × 105 cells ml−1

5–115 nM
10 fM to 0.1 μM

[173]
—

[174]
[175]

FET miRNA‐155
CEA

0.03 fM
10 pg ml−1

0.1 fM to 10 nM
0.1–100 ng ml−1

[176]
[177]

Source: Adapted from Hong et al. [141].
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Figure 1.5  Quantum dot based optical biosensor for detection of MCF-7 cells. Source: 
Mittal et al. [159]/with permission of Elsevier.
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Both of these are also capable of detecting all types of tumor markers. However, 
they have trouble identifying multiple targets at the same time, but signal amplifica-
tion techniques can be used to enhance their detection limits for detecting a single 
target. The obstacles that biosensors have experienced are mostly due to two factors: 
detection method and detection equipment. These issues can be overcome by the 
combination of molecularly imprinted polymers (MIPs) and microfluidic chips with 
biosensors, and the commercialization of these types of biosensors in the future can 
change the current trend of diagnosis [196, 197].

1.5  Conclusion

This chapter mainly focused on the most frequent approaches for diagnosing BC. As 
researchers delve more into imaging technology, they know that a single imaging 
method is just not enough to meet the requirement of accuracy in BC diagnosis. 
Thus, combining many imaging modalities will be significant for the emerging 
approaches [107, 198, 199]. Moreover, developments of AI‐based models will help 
in improving the positive diagnostic rate for BC and reducing the negative diagnosis 
rate. Additionally, the development of biosensors would lead to the formation of 
various BC biomarkers. The combination of imaging sensors and biosensors can get 
unexpected results. Nevertheless, imaging instruments would still be the routine 
method for screening BC over the next few years as these can be widely applied. 

Table 1.5  Developments in optical biosensors.

Optical 
biosensor Target Detection limit Linear range References

Fluorescence 
biosensor

CEA

 
miRNA‐21

7.9 pg ml−1 (Water)
10.7 pg ml−1 (human 

serum samples)
0.03 fM

0.03–6 ng ml−1 (water)
0.03–6 ng ml−1 (human 

serum samples)
0.1–125 fM

[182]
 
 

[183]

Colorimetric 
biosensor

BRCA1
BRCA1

10−18 M
0.34 fM

10−12 to 10−18 M
1 fM to 100 pM

[184]
[185]

SPRi CEA
HER2‐positive 

EXO
EXO

0.12 ng ml−1

8280 exosomes μl−1

5000 exosomes ml−1

0.40–20 ng ml−1

8280–33 100 exosomes μl−1

—

[186]
[187]
[188]

SERS miR‐K12‐5‐5p
MicroRNA

884 pM
—

—
—

[189]
[190]

ECL BRCA1
EXO

 
miRNA‐21

0.71 fM
7.41 × 104 exosomes

 
3.2 fM

1.0 fM to 0.1 nM
3.4 × 105 to 

1.7 × 108 exosomes ml−1

0.01–10 000 fM

[191]
[192]

 
[193]

Source: Adapted from Hong et al. [141].
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The  new BC markers will enable these technologies to achieve more efficiency, 
speed, sensitivity, and specificity. With the development and application of these 
approaches in the future, the researchers will be able to not only diagnose BC from 
multiple perspectives but also monitor the effectiveness of treating BC.
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