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1.1 Introduction

Piezoelectricity is the ability of some crystals to convert mechanical and electrical
energy into each other. The direct piezoelectric effect describes the linear depen-
dence of electric polarization in a crystal on applied external mechanical stress. The
converse piezoelectric effect then describes the linear dependence of the mechanical
deformation in a crystal on an applied external electric field. Piezoelectricity pos-
sesses many useful applications, such as pressure sensors/actuators [1], transducers
[2], piezoelectric motors [3], sonars, and microelectromechanical systems (MEMs)
[4]. The market for piezoelectric devices is projected to reach US$41.0 billion by
2027. Over the last few decades, piezoelectricity has been the subject of consider-
able academic research, review papers, and monographs [5, 6]. In this chapter, we
introduce the anisotropy of piezoelectric coefficients and their relationship with the
crystallographic symmetry of materials.

1.2 On the Anisotropy of Piezoelectricity and Its Role
in the Understanding of Structures of Crystalline
Materials

Incidentally, the discovery of piezoelectricity played a key role in the evolution of
ideas concerning the periodic atomic structures of crystals. Notably, such periodic-
ity was only a hypothesis at that time and was experimentally proven later in 1912
by Max von Laue [7]. Piezoelectricity presented one of those first physical prop-
erties that highlighted the anisotropy (directional dependence) of single crystals.
Indeed, an isotropic material cannot be piezoelectric: the development of polariza-
tion under applied stress means that at least the opposite ends of the polarization
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Figure 1.1 Schematic illustration of the anisotropy of piezoelectric effect in 𝛼-quartz:
(a) typical natural shape of quartz crystal with three non-coplanar directions along the basis
vectors of the reciprocal lattice a∗

1, a
∗
2, a

∗
3, (b) the directional dependence of the magnitude

of longitudinal piezoelectric coefficient (see the definition in the next paragraph).
Remarkably, 𝛼-quartz develops no polarization under uniaxial strain along a3∕a∗

3 axis
(parallel to the threefold symmetry axis) and does not deform under electric field parallel to
a3∕a∗

3 axis. Source: Semën Gorfman.

vector are different; hence, a crystal must be anisotropic in order to be piezoelectric.
The performance of a piezoelectric device strongly depends on its orientation rel-
ative to the lattice basis vectors. Figure 1.1 presents one particular example of the
anisotropic longitudinal piezoelectricity in α-quartz.

In homogeneous single crystals, the anisotropy of properties must originate from
the intrinsic asymmetry of atomic structures maintained over macroscopically long
distances. This can only be possible if the structure is long-range-ordered. This is
why anisotropy of crystals in general and piezoelectricity of crystals in particular are
the key ingredients for the idea of periodicity/long-range order of crystals.

1.3 Simplified Definitions of Piezoelectric Coefficients

As for any anisotropic physical property, the description of piezoelectricity requires
handling several property coefficients. There are very few classes of piezoelectric
crystals where only one independent coefficient is sufficient (e.g. Bi12SiO20 [8]).
However, prior to introducing the proper tensor description of the piezoelectricity,
we will inspect the simplified didactical definitions and understand the physical
meaning of piezoelectric coefficients. Specifically, we will assume that a piezoelec-
tric device has been prepared as a parallel plate capacitor, whereas mechanical
stress, electric field, polarization, and deformation appear along the plate normally
only (Figure 1.2).
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Figure 1.2 Simplified definitions of direct and converse piezoelectric effect: (a) the
uniaxial stress 𝜎 is applied normally to the piezoelectric plate and causes polarization
ΔP = d ⋅ 𝜎 with the positive and negative charges emerging outside the plate face,
(b) electric field is applied normally to the piezoelectric plate with the change of the plate
thickness so that x = d ⋅ E. Here, x = Δl/l. The shape of the deformed plate is shown by the
dashed rectangle. Source: Semën Gorfman.

1.3.1 Direct Piezoelectric Effect

The simplified definition of direct piezoelectric effect is:

ΔP = d ⋅ 𝜎 (1.1)

here, ΔP is the projection of the change in the polarization vector to the plate nor-
mal and 𝜎 is the pressure of the uniaxial forces normally applied to the plate. 𝜎 is
positive/negative for extending/compressing forces. d is the direct piezoelectric coef-
ficient. The units of polarization and stress are [P] = C

m2 and [𝜎] = N
m2 ; therefore, the

units of the piezoelectric coefficient are [d] = C
N

or (practically used) pC
N

= 10−12 C
N

.
This magnitude becomes more intuitive if we rewrite (1.1) as:

Q = d ⋅ F (1.2)

Here, F = 𝜎 ⋅ S is the magnitude of the force applied to the plate, Q = ΔP ⋅ S is the
electric charge outside the plate due to the increment of the polarization. S is the
area of each face. According to (1.2), direct piezoelectric coefficient is the amount of
electric charges accumulated outside the crystal plate per force applied to the plate.
Thus, 1 N applied to a 1 pC/N piezoelectric plate will release 1 pC on the plate faces
(positive on one side and negative on the opposite side).

1.3.2 Converse Piezoelectric Effect

Similarly, the simplified definition of the converse piezoelectric effect is:

x = d ⋅ E (1.3)

Here, E is the projection of the electric field vector to the plate normal, x = Δl/l is
the relative expansion of the plate. x is positive/negative for expansion/contraction.
l is the thickness of the crystal plate. d is the converse piezoelectric coefficient.
The units of converse piezoelectric coefficient are [d] = m

V
or, in practical terms,

pm
V

= 10−12 m
V

. To get an impression about this unit, we can reformulate (1.3) as:

Δl = d ⋅ U (1.4)

Here, U = E ⋅ l is the voltage falling between the faces of the plate. Thus, con-
verse piezoelectric coefficient is the elongation of the plate per applied voltage. For
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example, the application of 1000 V to a 1 pm/V piezoelectric crystal plate expands or
shrinks by 1 nm.

1.3.3 On the Equivalence of Direct and Converse Piezoelectric
Coefficients

It can be easily shown that the units of C
N

are equivalent to m
V

. This equivalence
raises the question of whether there exists any relationship between the direct and
converse piezoelectric coefficients. Indeed, these coefficients are not just related; if
defined exactly as in Eqs. (1.1) and (1.3), they are numerically equal to each other.
This is the reason why the same symbol d for the direct and converse piezoelectric
coefficients can be retained. However, only for this paragraph, we will temporarily
introduce the notations d(d) and d(c) for the direct and converse piezoelectric coeffi-
cients, correspondingly.

Here, we will look back at Lippmann’s original theory [9] for the longitudinal
direct Eq. (1.1) and converse Eq. (1.3) effects only. The interested reader may refer
to Nye’s book [10] for a comprehensive description of the matter. We assume that a
small variation of external mechanical stress, d𝜎, and electric field, dE, results in the
increments of mechanical strain, dx, and polarization, dP. The first law of thermo-
dynamics expresses the conservation of energy during the electric polarization and
mechanical deformation of the material as:

dU = 𝛿A + 𝛿Q (1.5)

Here, dU is the change in the internal energy of the crystal, 𝛿Q is the amount
of energy received by the crystal in the form of heat, 𝛿A is the amount of energy
received by the crystal in the form of work by the external electric (𝛿AE = E ⋅ dP)
and mechanical (𝛿AM = 𝜎 ⋅ dx) forces [10]. All the quantities are expressed per unit
volume of the material. Assuming no heat exchange with the environment (𝛿Q = 0
otherwise, further caloric physical properties would be involved), we can rewrite
(1.5) as:

dU = E ⋅ dP + 𝜎 ⋅ dx (1.6)

Introducing 𝛷 = U −E ⋅P− 𝜎 ⋅ x, we can rewrite (1.6)

d𝛷 = −P ⋅ dE − x ⋅ d𝜎 (1.7)

Because 𝛷 is a full differential, the polarization and strain can be expressed as
partial derivatives:

P = −𝜕𝛷

𝜕E
, x = −𝜕𝛷

𝜕𝜎
(1.8)

On the other hand, equations (1.1) and (1.3) can also be rewritten in the form
of partial derivatives, where d(d) = 𝜕P

𝜕𝜎
represents the direct piezoelectric effect and

d(c) = 𝜕x
𝜕E

represents the converse piezoelectric effect. The equivalence between d(d)

and d(c) follows immediately as:

d(d) = − 𝜕2𝛷

𝜕𝜎𝜕E
and d(c) = − 𝜕2𝛷

𝜕E𝜕𝜎
(1.9)
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Table 1.1 Typical orders of magnitude of piezoelectric coefficients.

Material d (pC/N) Refs. Material d (pC/N) References

𝛼-quartz (SiO2) 2 [11] BaTiO3 150 [12]
PVDF 20 [13] PbZr0.52Ti0.48O3

(PZT ceramics)
200–400 [14]

Al0.67Sc0.33N 26 [15] PMN–PT single
crystals

2000 [16]

Bi12SiO20 40 [8] Sm-doped PMN–PT
single crystals

3400–4100 [17]

This is because the second derivative does not depend on the order of variables.
This remarkable feature, appearing in the form of “conjugated” pairs, also holds

for many other properties. For example, pyroelectricity is conjugated with the elec-
trocaloric effect and thermal expansion is conjugated with the piezocaloric effect.

1.3.4 Typical Values of Piezoelectric Coefficients

Following our understanding of the piezoelectric coefficient units, it is worth observ-
ing their typical values. Table 1.1 lists the piezoelectric coefficients of a few selected
materials. Notably, the table here is merely for the purpose of obtaining an impres-
sion regarding the typical magnitude of piezoelectric coefficients. As will be dis-
cussed in the following chapters, piezoelectric coefficients are described by tensors,
and each material may have few coefficients that may differ from one another by an
order of magnitude. Still, it is clear from the table that piezoelectric coefficients of
most known materials are below 2000 pC/N. Only in so-called relaxor ferroelectric
single crystals of PbMg1/3Nb2/3O3–PbTiO3 (PMN–PT) [16, 18] and their derivatives
[17], piezoelectric coefficients may exceed such high values.

1.4 Description of Piezoelectricity by Third-rank Tensor

1.4.1 Tensor of Piezoelectric Coefficients

Piezoelectricity of single crystals must be described by tensors. For the direct piezo-
electric effect:

ΔPk = dkij𝜎ij (1.10)

Here, ΔPk represents the components of the change in the polarization vector, 𝜎ij
represents the components of the second-rank stress tensor, and dkij represents the
components of the third-rank tensor of direct piezoelectric coefficients. More infor-
mation about the meaning of the stress and strain tensors can be found in [10, 19, 20].
The indices i, j, k run between 1 and 3, and the Einstein summation rule applies to
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every repeated index (i and j in this case). The vector and tensor components are
expressed as relative to a Cartesian coordinate system e1, e2, e3. Later, we will elab-
orate on the crucial role of this Cartesian system.

According to Eq. (1.10), dkij describes the polarization increment along the Carte-
sian ek axis due to the force applied along the ei to the surface, which is normal to
ej. For example, if the piezoelectric coefficient d233 is nonzero, then the polarization
along the e2 axis will develop in response to the tensile mechanical stress on the face,
normal to e3. If, for example, the piezoelectric coefficient d123 is nonzero, then the
polarization along the e1 will develop due to the shearing stress on the face normal
to the e3 but in the direction of e2.

For the converse piezoelectric effect:

xij = dkijEk (1.11)

Here, xij represents the components of the second-rank strain tensor and Ek repre-
sents the components of the electric field vector. In this case, the Einstein summation
applies over the repeated index k. According to (1.11), the converse piezoelectric
coefficient, dkij , describes the strain component, xij , in response to the electric field
along the Cartesian ek axis. For example, the converse piezoelectric coefficient d233
stands for the elongation along the e3 in response to an electric field applied along
e2. The converse piezoelectric coefficient d123 describes the shear strain in the e2e3
plane due to electric field along e1.

The thermodynamics of the piezoelectric effect remains similar to the simplified
case considered earlier in this chapter. Specifically, if expressed in the same Cartesian
coordinate system, all the components of the direct piezoelectric tensor are numer-
ically equal to those for the converse piezoelectric tensor. However, it is crucial that
the tensor components are defined exactly as in (1.10) and (1.11), i.e. the first index
is “electric,” while the second and the third indices are “mechanical.”

1.4.2 Voigt/Matrix Notation for Piezoelectric Coefficient

Any third-rank tensor has a maximum of 27 = 33 independent components. How-
ever, their real number is smaller because of the symmetry. There are two types of
symmetries: the first is physical and appears as a consequence of energy, charge,
and momentum conservation laws. The second is crystallographic, which is inher-
ited from the geometrical symmetry of crystal structures and expressed in the form
of the Neumann principle. For piezoelectricity, the physical symmetry results in the
invariance with respect to the interchange of “mechanical” indices:

dkij = dkji (1.12)

Equation (1.12) is valid for any piezoelectric material, regardless of which atomic
structure it contains. This property is intuitively related to similar symmetry proper-
ties of the strain and stress tensors xij = xji , 𝜎ij = 𝜎ji. This symmetry means that the
pair ij may cover six different variants: 11, 22, 33, 23≡ 32, 13≡ 31, 12≡ 21. For writing
compactness reasons, a special indexing scheme is commonly used (first introduced
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Table 1.2 The substitution of “mechanical” indices using Voigt notation.

ij (tensor) 11 22 33 23≡32 13≡31 12≡21

m (Voigt) 1 2 3 4 5 6
Strain, xm= x11 x22 x33 2x23 2x13 2x12

Stress, 𝜎m= 𝜎11 𝜎22 𝜎33 𝜎23 𝜎13 𝜎12

Piezo, dkm= dk11 dk22 dk33 2dk23 2dk13 2dk12

The first row of the table shows six different pairs of indices ij. The second row shows the Voigt
index m, corresponding to each pair. The third, fourth, and fifth rows show the relationship
between the components of the strain, stress, and piezoelectric tensors in Voigt and index
notations.

by Voigt [21]). The pair ij can be replaced by a single index m = 1…6, according to
Table 1.2.

Such substitution is used for strain and stress tensors too xm ← xij and 𝜎m ← 𝜎ij,
and is shown in the next two rows of Table 1.2. The Voigt substitution of indices for
the piezoelectric coefficients follows as dkm ← dkij, where ij = 1…3 and m = 1…6,
and is shown in the last row of the same table. Then, equations (1.10) and (1.11) can
be rewritten in a shorter form:

Pk = dkm𝜎m (1.13)

xm = dkmEk (1.14)

The piezoelectric coefficients are written in the form of 3× 6 matrix:

⎛⎜⎜⎝

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36

⎞⎟⎟⎠
=
⎛⎜⎜⎝

d111 d122 d133 2d123 2d113 2d112
d211 d222 d233 2d223 2d213 2d212
d311 d322 d333 2d323 2d313 2d312

⎞⎟⎟⎠
(1.15)

The maximum number of independent piezoelectric coefficients is 18. This
number can be reduced if we consider the geometrical symmetry of the crystal or
medium.

1.5 Symmetry Considerations

1.5.1 Neumann Principle for the Piezoelectric Effect

As for any physical property, the Neumann principle [22] holds for the piezoelectric-
ity as well. This principle states that: “if a crystal is invariant with respect to certain
symmetry operations any of its physical properties must also be invariant with respect
to the same symmetry operations.” In other words, the components of the piezo-
electric tensor should be invariant with respect to the transformation between two
symmetry-equivalent Cartesian coordinate systems:

d′
ijk = dijk (1.16)
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Here, d′
ijk represents the components of the piezoelectric coefficient tensor relative to

the new Cartesian coordinate system e′1, e′2, e′3, which is symmetry-equivalent to the
original Cartesian coordinate system e1, e2, e3. Allow us to introduce the matrix [T],
which enables the transformation between these coordinate systems using the fol-
lowing formal matrix equation:

(e1 e2 e3) =
(

e′1 e′2 e′3
) ⎡⎢⎢⎣

T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎥⎥⎦
, or ei = e′kTki (1.17)

Here, the columns of the transformation matrix represent the vectors’ coordinates
of the old coordinate system ei relative to the new coordinate system e′i . It can be
shown [10, 20] that the transformation of the tensor components from the coordinate
system ei to the coordinate system e′i is:

d′
ijk = Tii1

Tjj1
Tkk1

di1j1k1
(1.18)

If [T] describes the symmetry operation, then

dijk = Tii1
Tjj1

Tkk1
di1j1k1

(1.19)

It is important to note that equations (1.18) and (1.19) can be applied only to the
full tensor form. Obviously, the Voigt 3× 6 matrix cannot be directly used here. In the
following, we will consider how the presence of one or another symmetry operation
in the structure of a crystal reduces the number of piezoelectric coefficients.

Example 1.1 Center of Inversion
Let us assume that a crystal structure is centrosymmetric. The following transfor-
mation matrix relates two symmetry-equivalent Cartesian coordinate systems:

[T] =
⎛⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠
or Tij = −𝛿ij (1.20)

Substituting (1.20) into (1.19) and using the property of the Kronecker symbol,
𝛿ijxj = xi, we obtain

dijk = (−1)3dijkor equivalently dijk = 0 (1.21)

In other words, all piezoelectric coefficients are zero, so that centrosymmetric
material cannot be piezoelectric. This property instantly removes the crystals of
11 centrosymmetric (Laue) classes from the list of potential piezoelectric materi-
als. Conversely, observing piezoelectricity in a given material indicates that it is
non-centrosymmetric. This ability to identify the absence of the inversion center is
useful in X-ray structure analysis [23, 24].

Example 1.2 Mirror Plane
Let us assume that the structure of a crystal has a mirror plane perpendicular to
e3. Thus, the following transformation matrix relates two symmetry-equivalent
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Cartesian coordinate systems:

[T] =
⎛⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠
(1.22)

Substituting (1.22) in (1.19), we can rewrite (1.19) as:

dijk = (−1)ndijk (1.23)

Here, n≤ 3 is the number of cases where any of the three indices is equal 3 (e.g.
n = 0 for d122, n = 1 for d123, or n = 2 for d323). Accordingly, the tensor of piezoelectric
coefficients in the matrix (Voigt notation) will take the form:

[d] =
⎛⎜⎜⎝

d11 d12 d13 0 0 d16
d21 d22 d23 0 0 d26
0 0 0 d34 d35 0

⎞⎟⎟⎠
(1.24)

with 10 independent piezoelectric coefficients.

1.5.2 The Choice of the Cartesian Coordinate System

According to (1.18), the values of piezoelectric coefficients depend on the choice
of the coordinate system. Therefore, every time when piezoelectric coefficients of a
material are reported or retrieved from a literature, it is crucial to know how the coor-
dinate system is chosen. All physical properties are described in Cartesian coordinate
systems and are commonly referred to as the crystal physical coordinate system. It
is imperative to understand that this system is not related to the experimental setup
but rather to the basis vectors of the crystal itself.

For single crystals, it is convenient to relate the axes of the crystal’s physical
coordinate system e1, e2, e3 to the axes of the crystallographic, a1, a2, a3 and the
reciprocal crystallographic coordinate systems a∗

1,a∗
2,a∗

3. The basis vectors of the
reciprocal coordinate system are related to that of the crystallographic coordinate
system by the scalar products aia∗

j = 𝛿ij. Table 1.3 summarizes these three types
of coordinate systems, including their metric (the lengths and the angles between
the basis vectors), their usage, and their conventional choice. The standard rela-
tionships between the crystal physical and crystallographic coordinate systems are
given, e.g. in [35]. Nowadays, it is common to define the crystal physical coordinate
system as in Figure 1.3a, so that e2//a2, e1∕∕a∗

1 , and e3 = [e1 × e2]. Nonetheless,
for the hexagonal cell setting case, it is more common to define the crystal physical
coordinate system as e3//a3, e1//a1, and e1 = [e2 × e3]. In any case, we discourage
the reader from making a blind assumption of one or another convention used
and recommend a critical inspection of every individual case. The cases of trigonal
crystals are particularly difficult since the crystallographic coordinate system a1,
a2, a3 itself has two “standard” cell settings: primitive (a1 +a2 +a3 is parallel to the
threefold axis) or R-centered (a3 is parallel to the threefold axis).
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Table 1.3 Coordinate systems used for the description of crystal structures and properties.

Coordinate system Crystallographic
Reciprocal
crystallographic Crystal physical

Designation for
the basis vectors

a,b,c
or
a1,a2,a3

a*,b*,c*

or
a∗
𝟏,a∗

𝟐,a∗
𝟑

x, y, z
or
e1, e2, e3

Metric Depends on the
crystal system

Depends on the
crystal system

Cartesian eiej = 𝛿ij

Used for Description of
periodic structures
of crystals

Description of
diffraction pattern
and natural shapes
of crystalline
polyhedrons

Physical properties

The conventional
choice, orientation
of basis vectors

Aligned to certain
symmetry elements
of the crystal lattice

Related to the
crystallographic
coordinate system

Attached to the
crystallographic
coordinate system

(a) General convention (a) Used for hexagonal cell setting

a1*
a1

a1

a3

a3

a2

a2

e2

e2

e1
e1

e3

e3

Figure 1.3 Two conventional choices of crystal physical Cartesian coordinate system e1, e2,
e3 relative to the crystallographic a1, a2, a3: (a) general three-dimensional case where
e2 ∥ a2 and e1 ∥ a∗

1, (b) special convention, which is frequently used for hexagonal lattice
setting (in hexagonal and trigonal crystal classes), where e1 ∥ a1 and e3 ∥ a3. Note that
special attention should be paid to the trigonal crystal classes 32 and 3m (where the two
standard orientations of the crystallographic coordinate system itself are possible).
Source: Semën Gorfman.

1.5.3 How to Use the Space Symmetry Group Information to Find
the List of Independent Piezoelectric Coefficients

The transformation of the coordinate systems, keeping the crystal structure invari-
ant, is contained in the information regarding the type of a space symmetry group.
There are 230 types of space symmetry groups describing three-dimensional periodic
crystal structures, all of which are listed in the International Tables for Crystallogra-
phy, Volume A [25]. Each symmetry operation includes the “rotation” and “transla-
tion” parts. The translation part is irrelevant for macroscopic physical properties: for
example, a “screw” axis or “glide” plane acts as a simple rotation axis and a mirror
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Table 1.4 The shapes of piezoelectric tensors for 20 piezoelectric crystal classes.

Crystal
system

Crystal
class

Piezoelectric tensor
(Number of independent
coefficients)

Conventional
choice of Cartesian
coordinate system

Triclinic 1
⎛⎜⎜⎜⎝

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎞⎟⎟⎟⎠
(18)

a3

a2

a1

e3

e2

e1

a1*

Monoclinic 2
⎛⎜⎜⎜⎝

0 0 0 d14 0 d16

d21 d22 d23 0 d25 0
0 0 0 d34 0 d36

⎞⎟⎟⎟⎠
(8)

a3

a2 a1

e3

e2

e1

m
⎛⎜⎜⎜⎝

d11 d12 d13 0 d15 0
0 0 0 d24 0 d26

d31 d32 d33 0 d35 0

⎞⎟⎟⎟⎠
(10)

a3

a2 a1

me3

e2

e1

Orthorhombic 222
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3 e2

e1

mm2
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎞⎟⎟⎟⎠
(5)

a3

a2

a1

e3 e2

e1

Tetragonal 4mm
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3 e2

e1

(Continued)
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Table 1.4 (Continued)

Crystal
system

Crystal
class

Piezoelectric tensor
(Number of independent
coefficients)

Conventional
choice of Cartesian
coordinate system

422
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 −d14 0
0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3 e2

e1

42m
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d36

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3 e2

e1

4
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 d15 −d14 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3 e2

e1

4
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 −d15 d14 0

d31 −d31 0 0 0 d36

⎞⎟⎟⎟⎠
(4)

a3
a2

a1

e3 e2

e1

Trigonal 3
⎛⎜⎜⎜⎝

d11 −d11 0 d14 d15 −2d22

−d22 d22 0 d15 −d14 −2d11

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(6)

a3 a2

a1

e3

e2e1

32
⎛⎜⎜⎜⎝

d11 −d11 0 d14 0 0
0 0 0 0 −d14 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3

e2e1

(Continued)
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Table 1.4 (Continued)

3m
⎛⎜⎜⎜⎝

0 0 0 0 d15 −2d22

−d22 d22 0 d15 0 0
d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3

e2
e1

Hexagonal 6mm
⎛⎜⎜⎜⎝

0 0 0 0 d15 0
0 0 0 d15 0 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(3)

a3 a2

a1

e3

e2e1

622
⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 −d14 0
0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3

e2e1

6m2
⎛⎜⎜⎜⎝

d11 −d11 0 0 0 0
0 0 0 0 0 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(1)

a3 a2

a1

e3

e2e1

6
⎛⎜⎜⎜⎝

0 0 0 d14 d15 0
0 0 0 d15 −d14 0

d31 d31 d33 0 0 0

⎞⎟⎟⎟⎠
(4)

a3 a2

a1

e3

e2e1

6
⎛⎜⎜⎜⎝

d11 −d11 0 0 0 −2d22

−d22 d22 0 0 0 −2d11

0 0 0 0 0 0

⎞⎟⎟⎟⎠
(2)

a3 a2

a1

e3

e2e1

Cubic 432
23

⎛⎜⎜⎜⎝

0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

⎞⎟⎟⎟⎠
(1) The axes of Cartesian coordinate

system are parallel to a1, a2, a3
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plane for the physical properties. If all the “translation” components of the symmetry
operations are removed, then the 230 types of space symmetry groups are reduced to
32 types of point symmetry groups. These types of groups are called crystal classes.
11 of 32 crystal classes, known as Laue classes, and are centrosymmetric, ruling out
piezoelectricity straight away. For the remaining 21 non-centrosymmetric crystal
classes, the piezoelectricity must be analyzed according to the algorithm outlined
previously. Here, we restrict ourselves to the derivation of the piezoelectric coef-
ficients for all possible non-centrosymmetric crystal classes. The interested reader
may consult Nye’s dedicated book[12].

1.5.4 The Shapes of Piezoelectric Tensors for Different Crystal Classes

Table 1.4 shows the shapes of tensors of piezoelectric coefficients for 20 piezoelectric
crystal classes. The only non-centrosymmetric crystal class where all the piezoelec-
tric coefficients vanish is 432. The first column of Table 1.4 lists the crystal system
(crystal system is the symmetry group of the infinite crystal lattice without the unit
cell). The second column shows the International Hermann–Mauguin symbol for
the crystal classes. The last column adds some information about the assumed ori-
entation of the crystal’s physical coordinate system relative to the crystallographic
axes. It involves the drawing of the symmetry diagram so that the orientation of the
crystallographic and crystal physical coordinate axes can be related to the symmetry
elements of the crystal.

Some additional comments are in place here regarding the choice of the crystal
physical Cartesian coordinate system. The following transformation of the Cartesian
coordinate system does affect the numerical values of the “independent” piezoelec-
tric coefficients without changing the shape of the piezoelectric tensor itself.

● For the crystal class 1: any change of the coordinate system.
● For the crystal classes 2,3, 4, 4, 6, 6, 4mm, 6mm∶ rotation around the symmetry axis

by an arbitrary angle.
● For the crystal class m: rotation around the normal to the mirror plane.
● For all crystal classes: inversion of the coordinate axes will invert all the piezoelec-

tric coefficients.
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