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Overview of Electronic Structure Crystallography

1.1 Introduction

Electrons in materials, which are by nature de Broglie (probability) waves, have
distribution both in space (i.e. electron density distribution in position space, or elec-
tron density for short) and in energy (i.e. electron density distribution in momentum
space, or momentum density for short). These two distributions are highly com-
plementary and together determine the properties of the material. The concepts of
orbitals (e.g. s, p, and d orbitals) and chemical bonds (e.g. σ and π bonds), which
describe the spatial properties of electrons, and the concepts of energy levels and
energy bands, which describe the energy properties of electrons, can explain various
physical and chemical phenomena.

In principle, the electronic structure of a material and its properties can be deter-
mined by quantum-mechanics-based first-principles computations, which generally
involve wavefunction and density functional theory (DFT) calculations for molec-
ular and crystalline systems, respectively. The wavefunction approach uses various
approximations to simplify the Schrödinger equation to obtain an equation that can
be easily solved, such as the Hartree–Fock equation, and involves self-consistent
field iteration to obtain the material’s electron wavefunction, with the electron
wavefunction taking the form of a single Slater determinant in the Hartree–Fock
framework. The DFT approach was proposed by Hohenberg and Kohn [1] with
the basic idea that all the ground-state properties of a physical system can be deter-
mined by its electron density alone. Both electron wavefunction and density matrice
are fundamental physical quantities that describe the electronic structure, and a
pure-state electron wavefunction can be equivalently presented as an electron den-
sity matrix. The density matrix obtained by integrating all of the coordinates of N − 1
electrons in the complete N-electron density matrix can be denoted as a one-order
reduced-density matrix (1-RDM) or a single-electron density matrix. Because all the
properties of a single electron of interest can be obtained by the 1-RDM, any density
matrix mentioned in this book actually refers to 1-RDM unless specified otherwise.

Although the electronic structures of materials are mainly obtained by
first-principles computations, it is necessary to involve experimental measure-
ments for determining electronic structures. First-principles computations typically
introduce more approximations, leading to deviations between the theoretical
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computations and experimental results. Moreover, theoretical computations do
not accurately consider the effects of external fields, and usually do not yield the
electronic structure of a material under the working conditions; however, these
limitations can be overcome to some extent by experimental means. Because
electrons scatter X-rays and unpaired electrons scatter neutrons, it is possible to use
X-ray and neutron scattering experiments to probe the electronic state of a material.
In addition, the electron density distribution in a crystal determines the electrostatic
potential and magnetic field inside it, which in turn affects electron scattering,
suggesting that electron diffraction can also be used to study the electronic structure
of a material. Scattering occurs in the form of coherent scattering (diffraction) and
incoherent scattering (Compton scattering), of which X-ray diffraction is the most
commonly used method for the structural characterization of materials and is the
main experimental research tool in modern crystallography (X-ray crystallography).

Modern crystallography is an experimental science that aims to determine the
arrangement of atoms (or ions) in solids, mainly to study the formation, morphol-
ogy, composition, and structure, as well as the physical and chemical properties of
crystals and crystalloids. The main experimental methods used to characterize the
crystal structures of materials are X-ray diffraction, neutron diffraction, and elec-
tron diffraction, among which X-ray diffraction is the most developed and widely
used. Modern crystallographic methods typically provide structural information of
materials only on the atomic scale.

Electronic structure crystallography can be defined as an experimental crystallo-
graphic science that aims to determine the electronic structures (electron density,
electron wavefunction, or density matrix) of ground and excited/distorted states
of solids in real and momentum (or energy) space with combined experimental
techniques in crystallography and other closely relevant disciplines. Electronic
structure crystallography combines the quantum theory of electronic structure and
the experimental methodology of scattering and energy spectroscopy, and is an
interdisciplinary discipline and research hotspot in the current frontier of crystal-
lography for the following main reasons. 1© Electronic structure crystallography
links the experimental observations of a material to its basic physical quantities,
and the obtained electron density and wavefunction, in principle, contain all the
electronic structure information of the material, allowing it to definitively calculate
all of the ground-state properties of a material. 2© For some special material
systems, such as those with numerous atoms or complex electronic structures,
it is difficult to obtain accurate and reliable electronic structure information by
first-principles computations. Instead, electronic structure crystallography can be
used to study their experimental electronic structures, which is of great significance
for investigating the structural nature of material functions and revealing the
material structure-property relationships. 3© The experimental measurements of
electronic structures can be used to verify the results of theoretical computations,
which is beneficial for improving the theoretical methods and computational
models and promoting the further development of first-principles computations.

Reconstructing the experimental electronic structure of a material from scatter-
ing data first requires the construction of a parametric theoretical model of the
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electronic structure, which can be an electron density model, a density matrix
model, or a wavefunction model, such as a pseudo-atom multipole model, a single
Slater determinant wavefunction, an extremely localized molecular orbital (ELMO)
wavefunction, or a 1-RDM model, all of which have currently attracted consider-
able attention. The unknown parameters in these models are associated with the
observed quantities in scattering experiments, such as the X-ray diffraction structure
factor associated with the electron density (diagonal element of the position-space
density matrix) and the X-ray Compton profile associated with the electron momen-
tum density (off-diagonal element of the position-space density matrix or diagonal
element of the momentum-space density matrix). Constructing equations based on
these relations, least-squares refinements using diffraction structure factors and/or
Compton profile data can be performed to obtain an electronic structure model
that best fits the experimental observations. These optimal models can be referred
to as the experimental electronic structures. Because electron density can be fully
determined by the experimental structure factor, and similarly, the 1-RDM can be
fully determined by the structure factor and Compton profile, the electron density
and 1-RDM obtained by refinement of the experimental scattering data can be
referred to as the experimental electron density and experimental density matrix,
respectively. Unlike the electron density and 1-RDM, the electron wavefunction is
generally not considered an experimentally observable physical quantity; therefore,
it is not a rigorous statement to say that the electron wavefunction can be deter-
mined exclusively by experimental methods. Rather, the experimental electron
wavefunctions in this book were derived using refinement techniques with exper-
imental data and contain certain experimental information. Because the number of
refinement parameters in the electron wavefunction model is large, with a limited
number of experimental structure factors, constraints such as energy minimization
must be introduced during the experimental refinement of the wavefunction.

Because the concepts of electron density, density matrix, and wavefunction are
not very intuitive and difficult for scientists in chemistry and materials science to use
directly, after reconstructing the experimental electronic structure of a material from
experimental data, as described above, it is necessary to further perform topological
analysis on an experimental electronic structure to extract its topological indicators
related to canonical concepts, such as topological atomic properties (charge, volume,
and multipole moment) and topological bond properties (electron density, Laplacian
value, and energy density at the critical point of the bond). Quantum theory of atoms
in molecules (QTAIM) is the most widely used theory for the topological analysis of
electronic structures.

In this chapter, we describe some basic concepts, principles, and methods for
electronic structure crystallography and give a brief history of the development of
electronic structure crystallography. To establish a connection between crystallog-
raphy and quantum chemistry, Chapter 2 covers the first-principles computation
methods for physical quantities (electron density functions) relevant to experimen-
tal electronic structures. Chapter 3 covers the theories for the topological analysis of
electronic structures, including the commonly used QTAIM, the more generalized
interacting quantum atoms (IQA) method, and the 𝜔-restricted space partitioning
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method. Chapter 3 also presents an introduction to the computational methods of
intermolecular interaction energies, as well as other analysis methods for chemical
interactions (e.g. source function, electron localization function [ELF], and reduced
density gradient function). Chapter 4 covers the experimental measurement tech-
niques and refinement algorithms of electronic structures, with a special focus on
the treatment of atomic thermal vibrations. The pseudo-atom models of electronic
structures (mainly including the commonly used multipole models, with some
descriptions of the classical X-ray atomic orbital (XAO) model, the X-ray molecular
orbital (XMO) model, and the molecular orbitals with variable population numbers
model, density matrix models, and wavefunction models (mainly including the
X-ray constrained wavefunction (XCW) and ELMO wavefunction models) are
described in detail in Chapters 5–7. Electronic structure crystallography has wide
applications in inorganic and organic materials. Chapter 8 describes the concepts
of functional electronic structure and functional motif of materials and illustrates
the application of electronic structure crystallography in material research by
presenting typical example of studying nonlinear optical functional motifs with
in-situ electronic structure measurements.

1.1.1 History of Electronic Structure Crystallography

Although the concept of electronic structure crystallography was not formally intro-
duced until recently [2], relevant research dates to the beginning of X-ray crystallog-
raphy and quantum mechanics in the late nineteenth and early twentieth centuries.

1.1.2 The Beginnings of X-ray Crystallography and Quantum
Mechanics

Electron structure and X-ray crystallography have been closely linked since the
beginning of the two disciplines. The year 1895 saw the discovery of X-rays by
Roentgen, which started a new era of probing the inner world of matter. In 1912,
Laue discovered the diffraction of X-rays after they penetrated a crystal, and in
the same year, the Bragg father and son team discovered that X-ray diffraction
photographs could be used to determine the positions of atoms in a crystal; thus,
pioneering the X-ray crystallography. During the same period, important break-
throughs were made in the understanding of electrons and the study of quantum
theory, with Thomson’s discovery of the electron in 1897 and Bohr’s proposal of the
atomic structure model in 1913, which introduced the concept of quantization for
the study of electron motion within the atom. Recognizing the scientific revolution
that could be brought about by X-ray crystallography techniques, Debye predicted in
1915 that “It seems that the experimental study of scattered radiation, in particular
from light atoms, should get more attention, since along this way it should be
possible to determine the arrangement of the electrons in the atoms.” [3] This
prediction gave impetus to the establishment and development of a theoretical
atomic model that could be tested by diffraction experiments. Due to the limitations
of the atomic scattering factor in Bohr’s atomic model, the computed diffraction
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intensity was shown to differ significantly from the experimental value; thus, it
has been difficult to use for structure determination. It was not until the quantum
model of electron density in atoms was developed [4] that the determination of the
structure of matter became possible. Subsequent developments in crystallography
and chemical bonding theory enhanced the connection between crystallography
and quantum chemistry, as well as facilitated advances in information technology
for extracting the electronic structures of materials from experimental data.

1.1.3 The Nascent Period of Experimental Electronic Structure
Research

It was not until 1958 that research related to electronic structure crystallography
made new progress. Richard Weiss and his collaborators took the lead in conducting
pioneering work on the experimental charge density, momentum density, and spin
density of single-crystal samples by obtaining the outer electronic configurations
of metal atoms Cu, Ni, Co, Fe, and Cr, determining the atomic scattering factors
using X-ray single-crystal diffraction measurements [5], determining the electron
momentum density of diamond, graphite, and carbon black by Compton scatter-
ing experiments [6], and by calculating the spin density information for Co from
the magnetic form factors measured by polarized-neutron diffraction experiments
[7]. The main purpose of the research efforts made by Richard Weiss was to extract
electron wavefunction information directly from X-ray scattering experiments. In
a book [8], Richard Weiss suggested that the experimentally determined scatter-
ing intensity could be used to correct the Hartree–Fock wavefunction, which itself
can be computed theoretically without considering the correlation between opposite
spin electrons. Richard Weiss’ intuition provided inspiration for other researchers,
whereby integrating crystallographic experimental methods and quantum chemi-
cal theoretical approaches, as well as electron density information in the position
space and Fourier transform space (momentum space), it is feasible to reconstruct
the electron wavefunction from X-ray and neutron scattering experiments.

1.1.4 Developments of Pseudo-atom Models

Beginning in the late 1960s, technology related to electronic structure crystal-
lography branched out into two directions, namely, reconstructing electronic
structures from experimental data based on atomic orbitals versus molecular
orbitals. The atomic orbital-based approach originated from the generalized atomic
scattering factor (GASF), which was developed by Stewart and was a concept first
proposed by Dawson [9]. The atomic scattering factor is also known as the atomic
form factor. Stewart’s basic idea was to first calculate the GASF by projecting
the quantum-mechanically computed electron density of a molecule onto the
atomic orbital basis functions, and then use this GASF as an alternative to the
isolated-atom scattering factor for structural refinement [10, 11]. The isolated-atom
scattering factor can be obtained by quantum mechanical computations on isolated
atoms without considering the interactions between the atoms present in the actual
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crystal, and has been widely used in crystal structure refinement. By contrast, the
GASF takes into account the interactions between atoms, and can be obtained by
projecting molecular electron density. An atomic model obtained by projecting the
electron density of the molecule is referred to as a pseudo-atom model. In contrast
to the almost spherical distribution of the outer electron orbitals of isolated atoms,
where no interatomic interactions are considered, the outer electron orbitals of a
pseudo-atom are stretched to various extents in different directions due to chemical
bonding and can be expressed as multipolar spherical harmonics centered on the
atom of interest. Therefore, a pseudo-atom model is also known as an aspherical
or multipole model. Considering the complexity of theoretical computations of
a molecular orbital wavefunction and its atomic orbital projection, the Stewart
model eventually involved a relatively simple set of atomic orbital parameters to
fit the experimental values of the structure factor [12]. Hence, in the structure
refinement process, the electron density of a crystal unit cell can be projected on
the atomic orbital wavefunction, followed by refining the atomic orbital parameters
to minimize the difference between the theoretical and experimental structure
factors. Similar to Stewart’s idea, Hansen and Coppens [13] designed a modified
multipole model in which the electron density of each atom can be expressed as the
sum of the core electron density, the valence electron density, and the non-spherical
electron density, where the core electron density is set to a constant value, assuming
that the core electron density is less affected by chemical bonds and consequently
not involved in structural refinement. The valence shell can be adjusted by refining
the number of valence electrons and the contraction factor. Non-spherical electron
density has been mainly used to describe the bonding states of atomic orbitals and
can be further expressed as the sum of a series of spherical harmonics, providing
better modeling of the expansion of valence electron orbitals in three dimensions
when atoms form chemical bonds. Thus, by refining the number of electrons
occupying each orbital and the orbital contraction factor, detailed information on
atoms and bonding orbitals can be obtained. Meanwhile, the introduction of a local
atomic coordinate system also confers good portability to the pseudoatom model,
i.e. the atomic orbital parameters of a crystal or molecule obtained from refinement
can be directly applied to another crystal or molecule, as long as the target atoms in
both the crystals and molecules have similar chemical environments.

Among all versions of multipole models, the Hansen and Coppens multipole
model is currently the most widely used pseudo-atom model. This model has under-
gone multiple rounds of development and improvement over the years to adapt it
to different situations. In the 1990s and at the beginning of the twenty-first century,
research in this area mainly focused on improving the quality of the radial part of
the valence electron density and the non-spherical electron density [14]. This has
also led to the development of certain refinement methods for contraction factors
[15], as contraction factors are difficult to determine using experimental diffraction
intensity during the refinement process. Over the past decade or so, efforts focused
on improving multipole models have centered around refining the electron density
distribution and spin density distribution while correcting for the distortion of
the core electron shell. Meanwhile, some databases consisting of multipole model
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parameters have been established, which contain portable parameters of electron
density. These can be used in the construction of electron density models for large
or complex molecules (especially biological macromolecules), for which accurate
electron density analysis is difficult.

These multipole model improvements stem from the flexibility of the Hansen and
Coppens model, specifically due to the fact that the model defines each atom in a
local coordinate system as independent of the crystal orientation matrix, allowing
for the transfer of multipole moment parameters from one atom to another, as long
as the two atoms have sufficiently similar chemical environments. The development
of multipole models was originally intended to make model parameters portable;
however, it was not until many years later that this concept was introduced [16].
The importance of multipole model portability was fully demonstrated only when
the experimentally determined data of atomic multipole moments were sufficiently
large to construct a database for a number of similar molecules [17], especially to
improve the refinement results of some samples with poor diffraction quality and
construct electrostatic potentials and moments. This approach was later adopted for
the theoretical computations of atomic multipole moments with the advantage of
computing the electron density of large molecules, for which experimental electron
density models were generally difficult to construct [18–20]. These methods are now
relatively well established and have found some new applications, such as in model
construction for the electron diffraction-based analysis of crystal structures [21].

The flexibility of multipole models offers the possibility of probing special
electronic structure features, such as studying small distortions in the electron
density of atomic core electron shells in molecules or covalent crystals. For this
reason, an extended Hansen and Coppens model was proposed [22]. In this model,
the non-spherical electron distribution includes not only the valence shell, but also
the core electron shell. The contraction factor of the core electron shell can also be
refined during the refinement process, to not only provide a chemically reasonable
interpretation, but to also correct for the temperature factor. For example, the
carbon atoms in diamonds show a small yet significant contraction of the core
electron shell, which can be interpreted as an indication of chemical bonding with
the involvement of core electrons [22].

As another very important improvement, multipole models can be simultane-
ously used to describe the electron and spin densities, due to the development of
X-ray diffraction and elastic neutron scattering techniques, allowing for the study of
electron and spin densities, respectively. The neutron scattering cross-section is the
superposition of cross-sections of both atomic scattering and magnetic scattering.
In addition, magnetic scattering is affected not only by the atomic spin magnetic
moment, but also by the atomic orbital angular momentum; thus, polarized neutron
diffraction can be used to determine the spin density. Data from both X-ray and neu-
tron diffraction experiments can be jointly refined using the same model, wherein
the electron density can be split into spin-up and spin-down components. The high
number of parameters in the joint refinement model can worsen the parameter cor-
relation problem due to the very limited data generated by polarized neutron diffrac-
tion and their linear dependence on X-ray diffraction parameters. Even though
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current X-ray diffractometers can provide diffraction data at very high angles, only a
small fraction of the low-angle diffraction data contains information on the electron
density of valence shells. As a result, this physical limit cannot be fundamentally
broken, which limits the flexibility of multipole models. However, joint refinement
of charge and spin densities is possible for some paramagnetic metallic compounds
or magnetic inorganics when certain constraints are imposed, with further progress
laying a foundation for the application of multipole models in spintronics [23–25].

Moreover, the flexibility of multipole models allows them to be used for studying
certain substances under unconventional conditions such as laser irradiation,
electric fields, high pressures, or temperatures, and even some powder samples [26].
In these cases, certain typical conditions beneficial for obtaining accurate electron
densities cannot be met. For example, atomic vibrations dramatically intensify at
high temperatures, seriously compromising the feasibility of obtaining electron
densities from thermal motion by inverse convolution. Sometimes, it is the external
field that allows the material to possess interesting properties, as demonstrated
by some studies of crystals under high pressure [27–29]. Unlike high-temperature
conditions, high pressure is not a factor that affects the accurate acquisition of
electronic structures of crystals. However, the diamond anvil cell (DAC) commonly
used in high-pressure studies can severely affect the quality of diffraction data, par-
ticularly by affecting the region of the reciprocal space where diffraction data can be
measured, producing severe background signals. Another disadvantage is that pres-
sure above a certain threshold cannot be uniformly transmitted to the crystal sample
under investigation and can likely result in fracturing of the sample, thus, affecting
the collection of diffraction data. Pressurization reduces atomic vibrations, espe-
cially for molecular crystals without strong supramolecular interactions. Studies
[27, 28, 30] have shown that isostatic pressing under 5–10 GPa is equivalent to expos-
ing a sample to a low temperature of 100 K in terms of decreasing the amplitude of
the temperature factor. Low-temperature measurements under the purging of liquid
nitrogen are a benchmark of experimental electronic structure studies. Though, to
achieve the same effect that helium purging temperature has on the temperature fac-
tor, an isostatic pressure of more than 100 GPa is required, which is almost impossi-
ble for diffraction experiments in practice. Despite some difficulties and drawbacks,
examples of the successful determination of electronic structures of high-pressure
molecular crystals have been reported by means of multipole refinement [28].

In the 1970s, a number of other models were proposed in addition to the most
famous multipole model proposed by Stewart and Coppens, all of which were based
on the same general ideas but lacked the quantum mechanical basis of the Stew-
art model. Among these models, the Hirshfeld atom model is well-established [31].
This model uses the theoretical electron density of an isolated ground-state atom
(spherical) as the basis for projection computations, similar to the atomic electron
density used in traditional crystal structure refinement. In projection computations,
the electron density of the whole molecule or crystal can be expressed as the sum of
spherical atom electron densities and then decomposed onto each atom according to
the projection weights to obtain the scattering factors of Hirshfeld atoms for subse-
quent structural refinement. The Hirshfeld atom refinement (HAR) model provides
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an operationally easy decomposition scheme for different types of electron density
data, such as those originating from multipole model refinement or wavefunction
computations. In electronic structure crystallography, Hirshfeld atoms are mainly
used for three purposes: (i) to perform atomic charge population analysis on experi-
mental or DFT electron densities [32], (ii) to construct molecular Hirshfeld surfaces
[33], and (iii) to perform HAR [34].

In contrast to research on atomic orbital-based electronic structure reconstruc-
tion, research on molecular orbital-based electronic structure reconstruction faces
more obstacles. The main idea of the second method is to obtain molecular orbital
wavefunctions by direct refinement against diffraction or other scattering experi-
mental data. Coppens and his collaborators made attempts in this regard [35], but
found that the implementation of the process, even for medium-sized molecules,
was very complicated, mainly because the computational process required refine-
ment of the coefficients of the product of two atomic-orbital wavefunctions, which
was not possible due to the relatively severe correlation between the wavefunction
parameters.

1.1.5 Developments of Experimental Electron-density Matrix Models

Since 1969, the systematic method proposed by Clinton, Massa, and their collabora-
tors has shown to be a landmark advance in electronic structure crystallography for
extracting the 1-RDM from theoretically computed electron densities or structure
factors [36–43]. This method constructs an iterative computation equation contain-
ing a density matrix and structure factor by introducing the electrostatic theorem,
the virial theorem, and the Hellman–Feynman theorem, indicating the electron den-
sity that best conforms to the structure factor by solving the equation. Because the
density matrix must obey the Pauli exclusion principle, it must be obtainable by inte-
grating an N-electron antisymmetric wavefunction, a type of constraint referred to as
N-representability conditions. A 1-RDM satisfying the N-representability conditions
can be used to fully determine the experimental wavefunction. To make the obtained
density matrix satisfy N-representability conditions, Clinton and Massa imposed cer-
tain constraints on the density matrix, such as using a single-Slater-determinant
wavefunction and requiring the 1-RDM to be at least Hermitian, idempotent (i.e.
the density matrix must be a projection operator), and normalized (the trace of the
density matrix is the number of electrons N) [44], with the normalization condition
ensuring an eigenvalue of the 1-RDM between 0 and 1.

The methods proposed by Clinton and Massa were later improved upon to
some extent. For example, this strategy was extended to single-determinant
wavefunctions for open-shell systems [45], in which Frishberg and Massa used
high-quality theoretical X-ray structure factors to fit wavefunctions for a number
of simple atomic and molecular systems, obtaining more accurate single-electron
properties than the variational approach, despite the inability to obtain two-electron
properties. In addition, Pecora obtained density matrices that not only satisfied
the idempotency condition but also simultaneously provided a better fit of the
experimental observables by introducing the steepest descent algorithm [46]. The
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most important advance in this line of research was made by Massa et al., who
directly obtained the idempotent density matrix of beryllium from the analysis of
X-ray diffraction data for the first time [47].

Howard and his collaborators constructed a variant of Clinton’s scheme and
used a simulated annealing algorithm to fit single-determinant wavefunctions for
large systems, such as methylamine and formamide [48]. Snyder and Stevens used
high-resolution single-crystal X-ray diffraction data to obtain an idempotent density
matrix for azide anion in potassium azide [49]. Notably, the deformation density
fitted using the density matrix showed a negative peak near the nucleus, a feature
that was predicted for theoretical deformation density but not observed in the
deformation density refined by the multipole model, suggesting that density matrix
refinement could provide finer electronic structure features than multipole model
refinement. According to X-ray diffraction structure factors, Tanaka proposed the
XAO method [50, 51] to simulate heavy atomic orbital distortions due to crystal
field effects. Based on this achievement, the XMO method was subsequently
proposed[52].

The Clinton method, as well as similar methods described above, all impose
idempotency constraints on the density matrices (i.e. single-Slater-determinant
wavefunctions). To overcome this drawback, Hibbs, Waller, and their collaborators
designed a novel method using experimental structure factors to optimize the
occupation numbers of a predetermined set of (occupied or empty) molecular
orbitals [53, 54]. This method, known as the molecular orbitals with variable
occupation numbers (MOON) method, has the advantage of linearly increasing the
number of refinement parameters with the scale of the refinement system, making
it easy to perform property computations, even for very large systems.

In some more advanced methods, the idempotency condition can be replaced
by more stringent N-representability conditions. In 1985, researchers noticed that
the chemical bonding information hidden in the inelastic Compton scattering data
could be used to reconstruct the 1-RDM [55, 56]. Subsequently, Weyrich [57], Gillet
[58, 59], and their collaborators systematically proposed a method of reconstructing
the 1-RDM through joint refinement of the diffraction and Compton scattering data,
i.e. determining the diagonal elements of the density matrix by the structure factor
of X-ray diffraction and determining the off-diagonal elements by the Compton
scattering profile. For the spin density matrix, the diagonal matrix elements can be
determined by polarized neutron diffraction and, in principle, by magnetic X-ray
diffraction, while the off-diagonal matrix elements can be determined by magnetic
Compton scattering experiments.

In 2007, Gillet designed a method to extend the Hansen–Coppens multipole
model of charge density distribution to a single-particle density matrix [60].
Although tested only in simple diatomic systems (HF and CO), this approach
allows the main features of chemical bonding to be extracted from complementary
(diffraction and Compton scattering) experimental data. De Bruyne and Gillet used
orthogonal atomic basis functions to describe the single-electron density matrix
and introduced N-representability conditions into the least-squares refinement of
the density matrix by using the semidefinite programming method. This approach
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was subjected to basic testing with dry ice crystals and was found to be in good
agreement with the periodic quantum-mechanical computations [61].

Based on the fundamental research of the spin density of YTiO3 in the coordinate
space and momentum space by polarized neutron diffraction and magnetic X-ray
Compton scattering [62, 63], a more advanced model, called the spin-resolved
1-RDM (1-SRDM) model, was proposed [64]. In this model, the density matrix was
expanded by using atomic Gaussian basis functions, similar to the approach of
De Bruyne and Gillet, in dealing with the closed-shell case [61]. However, unlike
in the De Bruyne and Gillet approach, the exponent of the Gaussian function in
1-SRDM is not fixed and can be adjusted during the refinement process. Once the
optimal exponent of the Gaussian function is obtained, the matrix elements of
1-SRDM can be obtained by minimizing the difference between the computed and
experimental values (magnetic structure factor and magnetic Compton profile).
Similarly, a quantum-mechanically rigorous 1-SRDM can be obtained by satisfying
N-representability conditions. The study observed that the joint refinement indeed
led to more accurate results than those obtained from polarized neutron diffraction
data alone when the model was applied to an artificially modified magnetic crystal
model based on a urea structure. The researchers also observed that the magnetic
Compton profile not only affected the off-diagonal 1-SRDM elements but also
improved the diagonal matrix elements, which was beneficial for obtaining a
generally more accurate estimate of spin density. This technique was later used
to determine the 1-SRDM of YTiO3, and the refinement results could explain the
magnetic properties of the Ti–O–Ti chemical bonds [65].

Cassam-Chenaï pointed out the importance of using a density matrix ensemble
that satisfies N-representability conditions, considering the relatively large number
of parameters to be refined by the density matrix approach and the fact that the
amount of X-ray or neutron diffraction data is limited by the Ewald sphere, where
a density matrix ensemble can be described by a pre-computed wavefunction, using
experimental structure factors to refine a small number of coupling coefficients [66].
These coupling coefficients provide information on the electronic structure in terms
of intra- and intermolecular electronic correlations as well as spin-orbit coupling.
This method was later used to analyze polarized neutron diffraction data to obtain
the magnetic moment density of CoCl4

2− polyanions in Cs3CoCl5 crystal [67].
Of note, for the density matrix model, satisfying N-representability conditions may

still be insufficient. Indeed, according to the theories of Gilbert [68] and Coleman
[69], a given electron density distribution can, in principle, be expressed by an
infinite number of 1-RDMs that satisfy the N-representability conditions. Thus,
fitting the electron density data alone, as in the case of all previous fitting strategies,
is insufficient to ensure that the experimental wavefunction or density matrix
obtained by refinement is physically realistic. To address this problem, Henderson
and Zimmerman suggested that among all the single-Slater-determinant wave-
functions that fit experimental electron densities, the best one would minimize the
Hartree–Fock energy [70]. Inspired by this idea, a new strategy for improving the
Clinton equations was proposed and applied to the analysis of theoretical structure
factor data of LiH. A new alternative scheme was subsequently proposed by
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Levy and Goldstein [71], who argued that if a single-Slater-determinant wavefunc-
tion could not be uniquely determined by the experimental data, the wavefunction
should allow for the minimization of electron kinetic energy. Following this idea,
Parr and his collaborators [72–74] designed methods to extract Kohn–Sham orbitals
from the electron density data obtained from theoretical wavefunctions or quantum
Monte-Carlo computations. These strategies have also been used to generate new
DFT functionals.

1.1.6 Developments of Experimental Electron Wavefunction Models

In recent years, inspired by the Levy-constrained search method [75], Jayatilaka
proposed a technique that is easier to implement than the Henderson and Zimmer-
man idea, called the X-ray constrained wavefunction (XCW) method [76–83], where
an exact wavefunction can reproduce the experimental electron density distribution
while also minimizing the total energy of a given material. By using the Lagrange
multiplier method and minimizing a new summation function, this method can
obtain a single-Slater-determinant wavefunction that minimizes energy while
also fitting the experimental structure factor within the experimental error. This
summation function is the sum of the single-Slater-determinant energy and the
agreement factor between calculated and experimental diffraction data. Lagrange
multipliers can also be used to adjust the weights of experimental diffraction
data in computation minimization, and the iterative computation process can be
performed by gradually increasing the Lagrange multiplier until the theoretical and
experimental structure factors are in best agreement. In practice, the XCW tech-
nique can be usually combined with the HAR technique [84], namely, to alternately
perform HAR and XCW refinement computations until the structure converges.
The HAR technique mainly refines crystal structure parameters (i.e. atomic posi-
tions and temperature factors), while the XCW technique mainly refines electronic
structure parameters (e.g. coefficients of a single-Slater-determinant molecular
orbital wavefunction). Some refinement examples of amino acids and peptides have
demonstrated that this new XCW approach can yield crystal structures and charge
densities that are more consistent with experimental diffraction data than traditional
multipole model refinement. Of note, Jayatilaka’s XCW and other similar methods
use the term “constrained,” referring to minimizing the wavefunction energy under
the constraints of the experimental scattering data (mainly X-ray diffraction data).

Jayatilaka’s XCW method is likely the most promising among all the constrained
methods developed so far. In addition to obtaining the experimental electron den-
sity distributions of practical relevance, the XCW method has certain advantages,
namely, it can successfully obtain the physical and chemical properties of molecular
crystals, such as dipole moments, polarizabilities, and refractive indices [85–87]. By
contrast, because multielectron interactions are not considered, the electron density
distribution obtained by multipole model refinement cannot be used to accurately
determine the polarizability and refractive index of a molecule or crystal. In princi-
ple, XCW does not satisfy the sum-over-state (SOS) requirements for polarizability
computations (involving excited states); however, with reasonable approximation, a
ground-state wavefunction can suffice to estimate the polarizability of a molecule.
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Moreover, XCW considers the chemical environment of a crystal; thus, it can be
regarded as a realistic ground-state wavefunction, with good agreement between
the refractive indices of certain molecular crystals computed using XCW and experi-
mental measurements. Later, Cole et al. further exploited the Jayatilaka method and
applied it to the research of certain nonlinear optical crystals [86, 88]. These stud-
ies showed that when the nature of the two-electron effect contribution had to be
considered, the XCW method outperformed the multipole model refinement tech-
nique in capturing information on solid-state effects from experimental data when
properties depending on two-electron terms were concerned. In addition, the XCW
method was successfully applied to reveal the functional motifs [89] of nonlinear
optical crystals by Jiang and Guo et al. For example, the B–O motif [B3O5]− was
experimentally confirmed as the NLO functional motif of LiB3O5 (LBO) by compar-
ing the in-situ electron density and wavefunction of LBO in the dark versus under
laser irradiation at 360 and 1064 nm, where an NLO functional motif served as the
structural unit with a large micro-polarizability and was the main contributor to the
macroscopic NLO properties of the crystal. This work was the first to experimentally
confirm the functional motif of an NLO material [90].

Macchi et al. investigated the potential of the Jayatilaka method for obtaining
information regarding the crystal field and electron correlation effects [91, 92].
Because the Jayatilaka method can be regarded as a modification of the Hamilto-
nian quantities for both effects, the obtained experimental electron wavefunctions
contain information on both the crystal field and electron correlation effects.
Bučinský et al. developed unrestricted open-shell and relativistic XCW [93–96],
further extending the application system of the XCW method. This unrestricted
open-shell approach can obtain experimental spin densities, corresponding to those
obtained by multipole models and 1-RDM. Still, the relativistic XCW method paves
the way for studies on the experimental electron wavefunctions of compounds
containing heavy atoms, as heavy atoms are strongly affected by relativistic effects.

However, the chemical interpretation of the electron density distribution obtained
by the Jayatilaka method is not sufficiently intuitive, as the molecular orbitals are
completely delocalized. Jayatilaka et al. attempted to overcome this drawback, e.g.
by directly extracting the ELF [97], the electron localization index [98, 99], and
the Roby index [100] from the obtained XCW. The direct introduction of tradi-
tional, chemically intuitive interpretations to XCW methods has been an important
research direction in recent years, with most of the advances in this area based on the
concept of ELMO [101–107], i.e. dividing a molecule into many fragments according
to predetermined rules or chemical intuition, and describing each fragment using
an ELMO localized on the fragment in question. Therefore, by introducing this
fragmentation into the XCW framework of Jayatilaka, X-ray-constrained ELMOs
(XC-ELMOs) strictly correspond to atoms, chemical bonds, lone pairs of electrons,
and functional groups can be obtained [108–111]. Hence, it is possible to obtain
X-ray-constrained molecular orbitals corresponding to the traditional chemical
intuition of chemists. This endows the XCW technique with an ability originally
available only in the multipole model, namely, regarding the total electron density of
a molecule or crystal as the sum of the contributions of the individual fragments. One



14 1 Overview of Electronic Structure Crystallography

could even argue that the ELMO concept is as important to XCW as the pseudo-atom
concept to the multipole model. In fact, XC-ELMOs act as transferable units as mul-
tipole model pseudo-atoms, i.e. the XC-ELMO parameters of a molecular fragment
refined in one molecule or crystal can be directly used to refine the electronic struc-
tures of the same molecular fragments in other molecules or crystals. Theoretical
ELMO libraries have been developed [112–114] and applied to the development
of multiscale quantum chemistry embedding techniques [115, 116], the rapid
detection of noncovalent interactions in large systems [117], and the refinement of
crystal structures of peptides and small proteins in the framework of HAR [118].

ELMOs have also been used to develop the so-called X-ray-constrained ELMO
valence bond method (XR-ELMO-VB) [27, 119], which can be considered the first
prototype of the multideterminant XCW technique. Based on X-ray diffraction data,
this strategy can be used to determine the weights of resonant molecular structures,
i.e. the system wavefunctions can be written in the form of linear combinations of
multiple ELMOs with different resonance structures. This technique has been used
to study the charge density of syn-1,6:8-13-bicarbonyl[14]annulene (BCA) under iso-
static pressure, a compound whose aromaticity has been shown to be partially sup-
pressed with increasing pressure [28]. XR-ELMO-VB computations have confirmed
the trend that, at ambient pressure the two resonance structures of BCA are basically
equivalent, at high pressure, one of the two becomes clearly predominant [27].

To extract useful chemical information from X-ray diffraction data, the more
recent X-ray constrained spin-coupled method (XRSC) has been introduced, result-
ing from the coupling of the Jayatilaka method with the spin-coupled technique
of the valence bond theory [120–124]. This method can be considered a step
forward compared to the previous XR-ELMO-VB strategy. In fact, in this novel
XRSC method, it is possible to extract both the orbitals and resonance structure
weights from the X-ray diffraction data without requiring any localization schemes
or a priori wavefunctions. Several computations have shown that the spin-coupled
orbital and resonance structure weights obtained by the XRSC method present
a non-negligible difference compared to those obtained through conventional
gas-phase spin-coupled computations. This has further demonstrated the intrinsic
capability of the Jayatilaka method in accounting for the crystal field effects on
electronic structures.

1.1.7 Developments in Electron Diffraction-Based Studies of Electronic
Structures

In addition to X-ray and neutron scattering, the use of electron diffraction tech-
niques to explore the experimental electronic structure of materials has long
attracted the attention of researchers. The convergent-beam electron diffraction
method (CBED) [125] converges electron beams with a certain cone angle into
a small, unbent region with a uniform thickness on the sample. In addition to
the usual diffraction spots, diffraction disks are produced, with an integrated
diffraction intensity comparable to the theoretical values computed from the
electron diffraction dynamics. Therefore, diffraction disks can be used to directly
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and accurately determine the low-index structure factor, and this advantage allows
them to be used in reconstructing the electron density of certain simple inorganic
substances, allowing CBED to outperform X-ray diffraction in terms of determining
the crystal systems and space groups of materials [126]. Nakashima showed that
the charge density distribution of metallic Al extracted by the quantitative CBED
method was more reliable than theoretical or X-ray diffraction results, and matched
well with the experimental results of the anisotropic elasticity coefficients of Al
[127]. Zuo et al. studied the electron density information of Cu—Cu bonds in
Cu2O and interpreted the deformation density around Cu as an electron shift from
Cu-3d to Cu-4s orbitals [128]. In addition, Palatinus et al. used precession electron
diffraction tomography to determine the exact position of H atoms in nanocrystals
[129]. These studies demonstrated the potential of the CBED method for studying
the experimental electronic structures of materials.

1.2 Basic Descriptors of Electronic Structure

1.2.1 Electron Density

In quantum chemistry, electron density is a function of the wavefunction. For a
molecular system containing M atoms and N electrons, the ground-state electron
wavefunction 𝜓el is considered a function of the electron spin and spatial coordi-
nates (ti = (si, ri); i = 1, 2, · · ·, N). Under the Born–Oppenheimer approximation,
when the spatial coordinates of nucleuses (Rk; k = 1, 2, · · ·, M) are fixed and the
influence of other electrons is not considered, the probability of finding an electron
in the volume element dr at any location r, 𝜌(r)dr can be written as

𝜌(r)dr = N ∫ |𝜓el|2 dt′dr, (1.1)

where dt′ denotes the integration over the spin and spatial coordinates of all but
one electron, 𝜌(r) is the density of electrons in the position space or electron den-
sity (electron density), and the total charge density is the sum of the charge densi-
ties of electrons and nuclei in the position space. When addressing electron density
distribution, the term “charge density” can be used interchangeably with the term
“electron density,” as is the case in this book.

In crystallography, the electron density is closely related to the structure factor.
X-ray diffraction is a phenomenon of electron–photon interactions, and in princi-
ple, it cannot be understood well without knowledge of quantum mechanics. How-
ever, some reasonable simplifications are often made in practical applications. In
kinematical theory, the amplitude of coherent elastic scattering (diffraction), i.e. the
structure factor F(H), is the Fourier transform of the unit cell electron density 𝜌(r).
Thus, 𝜌(r) can be obtained by the inverse Fourier transformation of F(H):

𝜌(r) = ∫ F(H) exp(−2πiH ⋅ r)dH, (1.2)

where F(H) is the complex structure factor, which has been corrected for anoma-
lous scattering. In addition, the scattering vector H = ha∗

1 + ka∗
2 + la∗

3 corresponds
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to certain discrete lattice points in the reciprocal space, where h, k, l is an integer
and a∗

i,i=1,3

(
aia∗

j = 𝛿ij

)
is the reciprocal lattice basis vector.

Because F(H) can be defined over the discrete H, the integral Eq. (1.2) can be
converted into summation form:

𝜌(r) = V∗
∑

H
F(H) exp(−2πiH ⋅ r), (1.3)

where V * is the unit cell volume of the reciprocal lattice, i.e. 1/V , where V is the unit
cell volume in real space.

Because electron density is a real function, the right-hand side of Eq. (1.3) must
also be real, and F(H) can now be written in complex form:

F(H) = |F(H)| exp i𝜑(H) ≡ A(H) + iB(H), (1.4)

A(H) = |F(H)| cos𝜑;B(H) = |F(H)| sin𝜑, (1.5)

where 𝜑(H) is the phase of the structure factor. After substituting Eq. (1.4) into
Eq. (1.3), the expression can be reorganized to remove the imaginary part. More-
over, the F(H) and F(−H) contributions can be summed up by using relationships
A(H) = A(−H) and B(H) = −B(−H), as suggested in Eq. (1.5). Thus, the unit cell
electron density can be written as

𝜌(r) = 2
V
∑
1∕2

{A(H) cos(2πH ⋅ r) + B(H) sin(2πH ⋅ r)}, (1.6)

or

𝜌(r) = 2
V
∑
1∕2

[|F(H)| cos{2πH ⋅ r − 𝜑(H)}]. (1.7)

Thus, each structure factor contributes a plane wave with wave vector H and phase
angle 𝜑 to the total electron density.

1.2.2 Residual Density

The density difference Δ𝜌(r) between the total electron density 𝜌(r) and reference
density 𝜌ref(r) reflects the degree of adequacy of the reference density to describe the
system. Thus, ΔF can be defined as the difference between the observed value of the
structure factor Fobs(H) and the computed value Fcalc(H), i.e.

ΔF = Fobs(H)∕k − Fcalc(H), (1.8)

where k is a scale factor. Because Fobs(H) and Fcalc(H) are complex numbers, ΔF is
considered a vector in the complex plane. In addition, Δ𝜌(r) can be obtained by the
Fourier transformation of ΔF:

Δ𝜌(r) = 𝜌obs(r) − 𝜌calc(r) =
1
V
∑

H
ΔF exp(−2πiH ⋅ r). (1.9)

Similar to Eq. (1.9), the density difference Δ𝜌(r) can be written as:

Δ𝜌(r) = 2
V

{∑
1∕2

(Aobs − Acalc) cos 2πH ⋅ r +
∑
1∕2

(Bobs − Bcalc) sin 2πH ⋅ r

}
. (1.10)
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If the structure model used to calculate Fcalc is obtained by the least-squares refine-
ment of the observed structural factor, and if the phase angle of Fcalc is specified,
the density map obtained from Eqs. (1.9) and (1.10) can be referred to as the resid-
ual density map (RDM). In structural analysis, residual density is a very useful tool
from which the least-squares refinement process and the soundness of the structure
model can be evaluated.

F(𝜏) can be defined as the Fourier transform of f (t). In the discussion below, Par-
seval’s theorem is given by:

∫
∞

−∞
|f (t)|2 dt = ∫

∞

−∞
|F(𝜏)|2 d𝜏. (1.11)

Because Δ𝜌 is the Fourier transform of ΔF, Eq. (1.11) indicates that minimizing
∫ (𝜌obs − 𝜌calc)2 dr is equivalent to minimizing ∫ (Fobs −Fcalc)2 dH; thus, minimiza-
tion of the structure factor will also lead to the minimization of residual density.
When only some of the values of f (t) are known, Eq. (1.11) still holds. In diffrac-
tion experiments, only structure factors no more than Hmax will be experimentally
available due to the limited structural resolution.

The Patterson function D(u) can be defined as the autocorrelation of Δ𝜌:

D(u) ≡ ∫ Δ𝜌(r)Δ𝜌(r − u)dr = Δ𝜌(r) ∗ Δ𝜌(−r)

= 1
V
∑

H
ΔF(H) ⋅ ΔF(−H) exp(−2πH ⋅ u)

= 2
V
∑
1∕2

(ΔF)2 cos 2πH ⋅ u (1.12)

The first line of the above equation follows the relationship between autocorrela-
tion and convolution (* denotes convolution), while the second line uses the convo-
lution theorem of Fourier transform, i.e. the Fourier transform of the convolution
of two functions is equal to the product of the Fourier transforms of the individual
functions. Moreover, the third line does not contain the imaginary part, because Δ𝜌
is a real number. At u = 0, Eq. (1.12) becomes:

D(0) = 2
V
∑
1∕2

(ΔF)2 = ∫ Δ𝜌(r)2dr. (1.13)

In fact, minimization computation in the position space (or direct space) is not
strictly equivalent to the reciprocal space, because during minimization, additional
weight factors are added to each structure factor in the reciprocal space to participate
in the computation, as is the case for electron density in the position space.

1.2.3 Deformation Density

The deformation density is defined as the difference between the total electron den-
sity and the electron density computed by the reference model. As is the case of
computing the residual density according to Eq. (1.9), the deformation density can
also be obtained through Fourier transformation, except Fcalc is computed from the
reference model and compared to the experimental electron density.
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A commonly used reference density, also known as the promolecule density, is
the superposition of spherically averaged atomic charge densities, which are each
centered on the coordinates of the corresponding nucleus, where a promolecule
represents a collection of independent atoms without the existence of interatomic
interactions in a real crystal, only forming a hypothetical entity. However, electro-
static interactions will occur between the atoms in a promolecule, and a promolecule
will be stable if interatomic interactions other than electrostatic interactions are
absent. The deformation density computed by using the promolecule density as
a reference density is the commonly used (standard) deformation density, i.e. the
difference between the total density 𝜌(r) and total density 𝜌pro(r) of the spherical
ground-state atoms at the Ri position:

Δ𝜌(r) = 𝜌(r) − 𝜌pro(r) = 𝜌(r) −
∑
all
𝜌(Ri). (1.14)

Deformation density can be used to determine whether a covalent bond has
formed. The presence of charge aggregation (bond charge maximum) between two
adjacent atoms is an indicator of two atoms forming a covalent bond, but not vice
versa, i.e. the absence of a bond charge maximum between the two atoms does
not necessarily indicate the absence of bond formation. This is because atoms in
promolecules are neutral and for an element with both half-filled and fully filled
orbitals, the number of electrons in a half-filled orbital (where there is only one
electron) is mistakenly subtracted by more than 1. For example, when subtracting
the electron density of a spherical O atom with electron configuration (1s)2 (2s)2

(2p)4 from an O atom in an actual crystal, each valence orbital will be subjected
to subtraction of 1.333 electrons, resulting in a lack of bonding charge when the
extra 0.333 electrons exceed the bonding charge. This explains why the O—O bond
in hydrogen peroxide has a lack of bond charge. Sometimes some other reference
states, such as an oriented atomic state and a molecular fragment state, must be
used to gain insight into the formation of chemical bonds.

Deformation density can be obtained by different experimental methods. The
first method involves a combination of X-ray diffraction and neutron diffraction
techniques. In this method, the exact atomic coordinates and temperature fac-
tors required to compute the reference-state density can be obtained by neutron
diffraction, followed by difference Fourier transformation to derive the deformation
density. However, this method involves both X-ray diffraction data and neutron
diffraction data, and the experimental conditions are not the same for both sets
of data, thus causing large systematic errors. The second method uses the same
set of X-ray diffraction data. Because valence-electron scattering mainly occurs
in the low-angle region (also known as the low-order region or low-resolution
region) [130] and that high-angle (i.e. high-order or high-resolution) diffraction
data are mainly contributed by core-electron scattering, it is possible to obtain exact
atomic coordinates and temperature factors by refining the high-angle diffraction
data, and then deriving the deformation density by performing difference Fourier
transformation of the full-resolution structure factor:

𝜌deformation(r) =
1
V
∑

H
(Fobs − Fcalc,high order) exp(−2πiH ⋅ r). (1.15)
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The distinction between high- and low-angle scattering is compound-specific, and
it is difficult to obtain the widely accepted criterion. It is generally recommended
that the cut-off scattering angle satisfy the conditions of sin 𝜃/𝜆 = 0.5 Å−1 or
𝜆/2 sin 𝜃 = 1.0 Å.

In electron density analysis, dynamic model deformation density (DMDD) and
static model deformation density (SMDD) are also commonly used, where the term
dynamic means that the effect of atomic thermal vibrations is accounted for, while
the term static means that the effect of atomic thermal vibrations is not considered.

DMDD can be defined as:

Δ𝜌model(r) = 𝜌model(r) − 𝜌reference(r), (1.16)

where the total model density is given by:

𝜌model(r) =
1
V
∑

H
Fcalc,model(H) exp(−2πiH ⋅ r), (1.17)

where the model-calculated structure factor Fcalc,model takes into account the effect
of atomic thermal vibrations.

SMDD generally refers to the deformation density of a multipole model and can
be expressed as:

Δ𝜌model(r) =
all atoms∑

i

{
Pi,c𝜌core(r) + Pi,v𝜅

3𝜌valence(𝜅ir)

+
lmax∑
l=0
𝜅′

3
i Ri,l

(
𝜅′i r

) l∑
m=0

Pi,lm±dlm±(r∕r)

}
− 𝜌reference(r) (1.18)

Please refer to Chapter 5 for additional details regarding the multipole model.
Because the structure model acts as a noise filter during the refinement process, the
bond charge maximum will be higher in the SMDD map than in the DMDD map.

The true phase of a structure factor generally differs from one computed by an
independent-atom model, and the difference will introduce errors into the com-
putation of deformation density. The phase of structure factor is fixed at 0 or π in
centrosymmetric structures, whereas in non-centrosymmetric structures, only the
phases of certain diffraction spots formed by centrosymmetric projection are fixed,
such as the hk0, h0l, and 0kl diffraction spots in the P212121 space group.

1.2.4 Electron Wavefunction and Density Matrix

In the method of linear combination of atomic orbitals (LCAO), a molecular orbital
𝜒 i can be described as a linear combination of atomic basis functions 𝜙𝜇:

𝜒i =
∑
𝜇

Ci𝜇𝜙𝜇. (1.19)

To satisfy the Pauli exclusion principle, the many-electron wavefunction must be
antisymmetric with respect to the permutation of electrons. This wavefunction can
be written in the form of a Slater determinant, i.e. antisymmetric combinations of
occupied molecular orbitals. In the Hartree–Fock method, a wavefunction contains
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only a single-Slater determinant, and each electron is assumed to be influenced by
the average potential field of the other electrons.

For an n-electron system, the single-determinant wavefunction can be written by:

𝜓 = (n!)−1∕2

|||||||
𝜒1(1) · · · 𝜒n(1)
⋮ ⋮

𝜒1(n) · · · 𝜒n(n)

||||||| , (1.20)

where the number i in parenthesis denotes the i-th electron (i = 1, 2 …n), and
the coefficient (n!)−1/2 in front of the determinant is a normalization factor. The
single-determinant wavefunction can often be abbreviated in the following form:

𝜓 = |𝜒1(1)𝜒2(2) · · ·𝜒n(n)⟩. (1.21)

According to the rule of determinant computation, Eq. (1.20) can be expanded:

𝜓 =
∑

i

∑
j⩾i

P̂ij(𝜒1(1)𝜒2(2) · · ·𝜒n(n)), (1.22)

where P̂ij is an electron permutation operator that permutates 𝜒1, 𝜒2, · · ·, 𝜒n, whose
eigenvalues −1 and +1 denote an odd and even number of electron permutations,
respectively. The permutation of the two rows (or columns) in the Slater determinant
changes the sign of the wavefunction, where the determinant value is zero when
any two rows (or columns) are identical. Thus, the Slater determinant wavefunction
obeys the fermionic Pauli exclusion principle.

Because the n-electron wavefunction is a function of 3n spatial coordinates and n
spin variables, the single-electron density 𝜌(r) can be obtained by integrating over
the spatial coordinates and spin variables of all but one of the electrons:

𝜌(r) = ∫ |Ψ|2 (r1, r2,… , rn, s1, s2,… , sn)dr2 · · · drnds1 · · · dsn. (1.23)

Since electrons are indistinguishable and molecular orbitals are orthogonal, the
overlap integral of two molecular orbitals is 0, which allows 𝜌(r) to be simplified:

𝜌(r) =
∑

i
ni𝜒

2
i . (1.24)

If 𝜒 i is a spin-orbital that contains both space and spin components, then ni = 1.
If 𝜒 i is a spatial orbital, spin is not considered; thus, ni = 2.

To obtain the electron density of atomic orbitals, Eq. (1.19) can be substituted into
Eq. (1.24) to obtain:

𝜌(r) =
∑
𝜇

∑
v

P𝜇v𝜙𝜇(r)𝜙v(r), (1.25)

where P is the density matrix, and the matrix element P𝜇𝜈 is the population of the
orbital product 𝜙𝜇(r)𝜙v(r), i.e.

P𝜇v =
∑

i
niCi𝜇Civ. (1.26)

The wavefunction 𝜓 contains all of information regarding the joint probability
density of electrons. For example, the two-electron density can be obtained by inte-
grating all of the other spatial and spin variables, except for the two-electron spatial
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coordinates, to describe the joint probability of simultaneously finding electron 1 at
r1 and electron 2 at r2.

A single-Slater determinant obeys the Pauli exclusion principle by considering
the correlation between parallel-spin electrons, but ignores the correlation between
opposite-spin electrons. Computations based on a single-Slater determinant will
show that the probability of simultaneously finding two opposite-spin electrons at
the same position is not zero, which is practically impossible.

More advanced methods than the Hartree–Fock method include excited-state
determinants in the wavefunctions. If the occupied orbitals are denoted by a, b, c
while denoting the empty orbitals by r, s, t, a single excited configuration generated
by the promotion of an electron from a to r can be expressed by:||𝜓 r

a
⟩
= |𝜒1𝜒2 · · ·𝜒r𝜒b · · ·𝜒n⟩. (1.27)

A multi-configuration wavefunction can be expressed by:

|𝜓 ⟩ = c0|𝜓0 ⟩ +∑
ra

cr
a
||𝜓 r

a
⟩
+
∑
a<b
r<s

crs
ab
|||𝜓 rs

ab

⟩
+ · · · . (1.28)

For a multi-Slater determinant wavefunction, molecular orbitals can be defined
similarly to Eqs. (1.24) and (1.25), and these molecular orbitals are known as natural
spin orbitals, where ni is no longer necessarily an integer, but can be a fractional
number between 0 and 1. Accordingly, Eq. (1.25) contains both one-center and
two-center terms, with the same nucleus position for 𝜙𝜇 and 𝜙v in the one-center
term and different nucleus positions for 𝜙𝜇 and 𝜙v in the two-center term. The
two-center term represents the bond charge density, with observable values only
when 𝜙𝜇 and 𝜙v are in the same spatial region, which can be neglected for distantly
separated atoms.

1.3 Experimental Characterization of Electronic
Structure

Scattering data generated by a variety of instruments or large-scale scientific
facilities can be used for the refinement of experimental electronic structures.
Typical examples of these datasets include X-ray diffraction data, polarized neutron
diffraction data, and X-ray Compton scattering data, which are generated and col-
lected by X-ray single-crystal diffractometers (in a laboratory setting), synchrotron
X-ray single-crystal diffractometers, or neutron single-crystal diffractometers.
Among these instruments, synchrotron and neutron sources are expensive and
time-consuming. The most readily available instruments are small laboratory X-ray
single-crystal diffractometers; however, X-ray single-crystal diffractometers used for
experimental electronic structure measurement have more rigorous requirements
for some technical specifications compared to instruments used for conventional
crystal structure measurements, such as the technical specifications of the intensity
and wavelength of X-ray light sources. Specifically, for in-situ electron structure
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measurements under an external field, the diffractometer host requires some
additional external devices, such as laser and cryogenic systems.

Electron structure refinement requires near-perfect diffraction data, where
changes by a few thousandths of diffraction intensity can have a significant impact
on the shape of the refined electron cloud. To obtain high-precision diffraction data,
it is necessary to strictly control the crystal quality, instrument accuracy (mainly
depending on X-ray source quality, goniometer accuracy, and detector sensitivity),
and data correction.

1.3.1 Experimental Electronic Structure Measurement with X-ray
Single-crystal Diffractometer

1.3.1.1 X-ray Source
The fourth-generation synchrotron radiation source and rotating X-ray anodes are
cutting-edge X-ray light sources used in large-scale scientific facilities and labora-
tories, respectively. Significant advances have been achieved in X-ray free-electron
lasers at synchrotron radiation facilities; however, more in-depth research is needed
to explore whether this technology can benefit experimental electron density stud-
ies. For laboratory X-ray sources, an important advancement is the use of microfocus
X-ray spots, which allows for the generation of X-rays with higher optical density,
but with a lower uniformity of spot intensity distribution compared to conventional
(non-microfocus) sources.

Refinement of high-precision electronic structures requires X-ray single-crystal
diffraction data with high structural resolution (𝜆/2 sin 𝜃 < 0.4 Å). According to
the Bragg law dhkl = 𝜆/2 sin 𝜃, structural resolution can be improved by using a
short-wavelength (𝜆 = 0.71073 Å) Mo-target X-ray source and collecting high-angle
diffraction spots with sufficient intensity. Because X-ray diffraction intensity decays
sharply with increasing diffraction angle, the high-angle diffraction spot intensity
can be increased by increasing the exposure time, using a high-power X-ray
generator and high-performance 2D detector, as well as using X-ray focusing and
enhancing techniques.

Highly-precision diffraction data place high demands on the monochromaticity,
uniformity, and high intensity of the X-ray source. Compared to synchrotron
radiation, the X-rays from the Mo target of a laboratory X-ray single-crystal diffrac-
tometer is a mixture of K𝛼1 (0.7093 Å), K𝛼2 (0.71359 Å), and K𝛽 (0.632288 Å) lines,
which degrades the monochromaticity. When improving the monochromaticity, a
monochromator can be used to filter out the K𝛽 line and even the K𝛼2 line, leaving
only the most intense line –the K𝛼1 line. However, this will greatly reduce the
intensity of the X-ray to be used. Because a Mo-target X-ray source is a multiwave-
length source, a diffraction spot will split into several at different locations, making
it difficult to locate the diffraction spots and integrate the intensity, especially at
high angles. However, this problem can be overcome by improving the integration
algorithm.

Alternatively, a microfocus light source can be used to increase the X-ray inten-
sity, but the intensity of the microfocus light source in the radial direction (i.e.



1.3 Experimental Characterization of Electronic Structure 23

in the cross-section perpendicular to the direction of X-ray incidence) will follow
a Gaussian distribution instead of a constant profile; thus, the uniformity will
not be satisfactory. By nature, using a microfocus light source involves sacrificing
monochromaticity and uniformity in favor of high intensity, which is necessary for
collecting high-angle diffraction data from crystals, because such data are usually
weak. High data intensity due to a microfocus light source can greatly reduce the
diffraction data collection time and allow for the measurement of samples with
relatively weak diffraction ability.

1.3.1.2 Goniometer
Based on the Bragg equation (dhkl = 𝜆/2 sin 𝜃), when using the Mo-target X-ray
with 𝜆 = 0.71073 Å to achieve the structural resolution required for high-precision
electronic structure refinement (𝜆/2 sin 𝜃 < 0.4 = Å), the diffraction angle 2𝜃 should
reach 125∘, which is much higher than the diffraction angle of 50.7∘ required for
conventional measurement of crystal structures (typically requiring a structural
resolution of 0.83 Å). Therefore, the X-ray source, goniometer, detector, beamstop,
and camera components must be mounted in a compact manner to ensure that the
detector can be turned relatively close to this angle without component collisions.

The accuracy of the goniometer is also an important factor to consider, especially
for microfocus X-ray sources. If the goniometer is not sufficiently accurate, the
crystal will be more or less off-center during crystal measurement, resulting in a
negative impact on the intensity and absorption correction of the diffraction data.
Although this effect can be mitigated to some extent through complex absorp-
tion corrections, a high-precision goniometer is still desirable, as it can produce
high-quality diffraction data. In general, the accuracy of goniometers decreases
with use due to mechanical wear.

1.3.1.3 X-ray Detector
It is important to accurately measure the intensity of the Bragg peak, and unlike
earlier point detectors, where only one diffraction spot could be measured at
a time, a 2D digital detector can quickly collect diffraction photographs of the
entire reciprocal space. A significant advantage of 2D detectors is that they can
obtain high-redundancy data, which greatly improves statistical accuracy; however,
this requires more corrections for absorption, attenuation, source instability, and
dispersion.

Two important parameters of 2D detectors are the dynamic range of the readings
and the reading time. The exposure time of a single photograph during diffraction
data collection for electronic structure refinement is generally long, and it may be
very long for generating some particularly strong diffraction spots, suggesting that
the dynamic range of the detector’s individual pixels should be wide. Otherwise, the
intensity of the diffraction spots on these pixels may exceed their thresholds; thus,
accurate measurement will be difficult.

1.3.1.4 Cryogenic Systems
Low temperatures are important for obtaining high-quality electron density distri-
butions for two main reasons: (i) atomic vibrations reduce the scattering intensity,
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whereas low temperatures allow atoms to vibrate as close to the equilibrium
position as possible, and (ii) with large thermal vibration factors, it is difficult to
separate the electron density parameters from the thermal vibration parameters
during refinement. However, exactly how low a temperature is needed for accurate
electron density analysis is difficult to define, depending on the material under
study. In general, the lower the temperature, the better the result. However, even
when collecting data at 0 K, it is still impossible to completely avoid thermal
vibrations of atoms because of the presence of zero-point vibrations. Modern
cryogenic techniques in laboratories are sophisticated, including measurement at
temperatures near the boiling point of liquid nitrogen, which generally generates
stable and reliable data, and measurement at temperatures near the boiling point
of liquid helium, which represents a more advanced technique.

Low temperatures play multiple roles in experimental electron density analysis.
(i) Most importantly, low temperatures allow us to reduce the thermal motion of
atoms, making the pseudo-atom approach a reasonable assumption in structural
refinement, where the smaller the thermal vibrational factor, the smaller the
correlation coefficients between the parameters, and the more reliable the refine-
ment results. (ii) In addition, a smaller thermal vibrational factor makes the simple
harmonic vibrational model of atoms more effective. Of note, although higher-order
models of atomic vibrations, such as the Gram-Charlier expansion, can be used,
this introduces too many parameters. Mallinson et al. showed that peak intensity
distribution of residual map of non-harmonic vibrations was somewhat similar to
that of deformation charges, making it difficult to identify true electron-density
features [131]. Therefore, the physical significance of the Gram-Charlier parameter
must be verified when approximating the refined temperature factor by high-order
nonharmonics. Another advantage of low temperatures is the high accuracy of
the diffraction intensity that can be obtained, especially for high-angle diffraction
spots. Although the refinement of bond-charge density features generally does not
require high-angle data (since high-angle diffraction spots are mainly a result of
the scattering from core electrons), high-angle, high-intensity diffraction data are
important for the refinement accuracy, especially when refining atomic positions
and thermal vibration factors (except for H atoms). Moreover, low temperatures can
significantly reduce the dispersion of high-angle diffraction spots; thus, allowing
for high-precision intensity integration.

1.3.2 Key Aspects of Experimental Electronic Structure Measurement

1.3.2.1 Single-crystal Samples
Nearly defect-free single-crystal samples with high quality are crucial for obtaining
high-quality diffraction data, as high-precision analysis of experimental electronic
structure data is generally difficult when atomic disorder exists in the crystal
structure. In practice, a single-crystal sample to be measured should not be too
large, in most cases (e.g. mean size of less than 0.3 or 0.5 mm), otherwise, the
sample may have strong X-ray absorption, degrading the accuracy of diffraction
data. However, the sample should not be too small, such as mean size of less than
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0.1 mm; otherwise, the diffraction intensity will be significantly reduced, and a
longer exposure time will be required to obtain the diffraction data with a high
signal-to-noise ratio. In general, to increase the intensity noise (S/N) ratio by a
factor of n for the same sample using a single photograph, the exposure time of the
photograph must be increased by a factor of n2. Of note, an infinitely long exposure
time will not lead to an indefinitely large S/N ratio, as there is an inherent limit to
the S/N ratio achieved by the instrument. Meanwhile, an appropriate sample size
will also depend on the diffracting power of the sample, the X-ray spot size, the
light source intensity, and the acceptable duration of data collection.

1.3.2.2 Measurement Process
Diffraction data collection requires that the crystal sample be relatively stable and
not shifted during goniometer rotation. Collecting a set of electron structure diffrac-
tion data by a laboratory light source typically takes a long time, ranging from 3–5
days to 1–2 weeks. Ensuring that the crystal position does not shift during such a
long test time is not easy, especially under low-temperature gas purging, as it usu-
ally requires that the crystal carrier is in good condition and that the glass filament
(or other materials such as metal rods) and glue used to adhere the crystal are strong.

Collecting a large number of diffraction photographs and achieving a
data/parameter ratio above 10 are desirable; however, the data/parameter ratio will
be much lower than 10 in many practical circumstances. Inter-parameter corre-
lations during electronic structure refinement can be well reduced if a sufficient
number of high-angle diffractions are available.

1.3.2.3 Data Correction
Raw diffraction data collected on a single-crystal diffractometer should be carefully
corrected for various errors before subsequent electronic structure refinement. The
main sources of diffraction intensity errors include the intensity instability of the
X-ray source, the non-monochromaticity and non-uniformity of the X-ray source,
the spherical aberration of the goniometer, the X-ray absorption by the crystal sam-
ple, and the irregularities of the crystal shape. Therefore, a suitable error model is
required to correct the raw diffraction data.

The X-ray absorption coefficients are generally large for crystals containing heav-
ier atoms, and the diffraction data usually need to be corrected for absorption before
they can be used for electronic structure refinement. When using a microfocus light
source, the X-ray intensity will have a distorted Gaussian distribution in the radial
direction of the light, causing far greater X-ray absorption near the center of the
crystal than at the crystal edge when the X-rays pass through the crystal; thus, the
distorted Gaussian distribution should be taken into account when correcting for
absorption.

Multiple scattering is less likely to occur in single-crystal diffraction experiments;
however, because the volume of diffraction data required for electronic structure
refinement is generally large, multiple scattering can significantly alter the intensity
of a few diffraction spots. However, it should be mentioned that this effect cannot be
eliminated through scale factor correction and absorption correction. The intensity
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and error of diffraction data should satisfy the requirements for general electronic
structure refinement, which were indicated by a number of statistical metrics such
as consistency factors Rint and Rsigma around 0.03 in the full resolution range, 𝜒2

around 1, I/sig(I)∼log10(I) curves in a sinusoidal pattern [132], and the normalized
scale factors within ±0.3 around 1.

1.3.2.4 Examination of the Quality of Electronic Structure Refinement
Electron structure refinement includes electron density refinement, density matrix
refinement, and wave function refinement. Compared to the conventional crystal
structure model, the number of refinement parameters in the electronic structure
model is generally higher; thus, some statistical indicators have to be examined
after the least-squares refinement to determine whether the refinement results
are reliable. The statistical metrics for the multipole model refinement should
normally have the following features: symmetric DRK plots with their central
parts passing through the origin, mirror-symmetric plots of fractal dimensions of
residual electron density, and errors within ±0.05 for the curve of Fobs/Fcalc versus
the structure resolution.
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