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Mathematical and Control Theory Background

1.1 Introduction

This chapter will review some mathematical and control theory background, some
of which is actually assumed covered by previous control courses. Both the coverage
of topics and their presentation will therefore lack some detail, as the presentation
is aiming

● to provide sufficient background knowledge for readers with little exposure to con-
trol theory,

● to correct what is this author’s impression of what are the most common miscon-
ceptions

● to establish some basic concepts and introduce some notation.

1.2 Models for Dynamical Systems

Many different model representations are used for dynamical systems, and a few of
the more common ones will be introduced here.

1.2.1 Dynamical Systems in Continuous Time

A rather general way of representing a dynamical system in continuous time is via a
set of ordinary differential equations:

ẋ = f (x,u, d) (1.1)

where the variables x are termed as the system states and ẋ = dx
dt

is the time derivative
of the state. The variables u and d are both external variables that affect the system. In
the context of control, it is common to distinguish between the manipulated variables
or (control) inputs u that can be manipulated by a controller, and the disturbances
d that are external variables that affect the system but which cannot be set by the
controller.

The system states x are generally only a set of variables that are used to describe
the system’s behavior over time. Whether the individual components of the state
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vector can be assigned any particular physical interpretation will depend on how
the model is derived. For models derived from fundamental physical and chemical
relationships (often termed as “rigorous models”), the states will often be quanti-
ties like temperatures, concentrations, and velocities. If, in contrast, the model is an
empirical model identified from observed data, it will often not be possible to assign
any particular interpretation to the states.

Along with the state equation (1.1), one typically also needs a measurement
equation such as:

y = g(x,u, d) (1.2)

where the vector y is a vector of system outputs, which often correspond to available
physical measurements from the systems. Control design is usually at its most simple
when all states can be measured, i.e. when y = x.

Disturbances need not be included in all control problems. If no disturbances
are included in the problem formulation, Eqs. (1.1) and (1.2) trivially simplify to
ẋ = f (x,u) and y = g(x,u), respectively.

Since we are dealing with dynamical systems, it is hopefully obvious that the vari-
ables x, y,u, d may all vary with time t. In this section, time is considered as a con-
tinuous variable, in accordance with our usual notion of time.

Together, Eqs. (1.1) and (1.2) define a system model in continuous time. This
type of model is rather general and can deal with any system where it suffices to
consider system properties at specific points in space, or where it is acceptable to
average/lump system properties over space. Such models where properties are aver-
aged over space are often called lumped models.

For some applications, it may be necessary to consider also spatial distribution
of properties. Rigorous modeling of such systems typically result with a set of
partial differential equations (instead of the ordinary differential equations of (1.1)).
In addition to derivatives with respect to time, such models also contain derivatives
with respect to one or more spatial dimensions. Models described by partial differ-
ential equations will not be considered any further here. Although control design
based on partial differential equations is an active research area, the more common
industrial practice is to convert the set of partial differential equations to a (larger)
set of ordinary differential equations through some sort of spatial discretization.

1.2.2 Dynamical Systems in Discrete Time

Although time in the “real world” as we know it is a continuous variable, control sys-
tems are typically implemented in computer systems, which cyclically execute a set
of instructions. Measurements and control actions are therefore executed at discrete
points in time, and to describe system progression from one time instant to subse-
quent instants we will need a discrete-time model. Such models may be represented
as:

xk+1 = f (xk,uk, dk) (1.3)

yk = g(xk,uk, dk) (1.4)
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where xk, yk,uk, and dk are the discrete-time counterparts to the system states,
outputs, inputs, and disturbances introduced above for continuous-time systems,
and the subscript (k) identify the timestep (or sampling instant). Thus, xk is the state
x at timestep k, while xk+1 is the state at the subsequent timestep. Note that although
the same letter f is used to represent the system dynamics for both continuous-
and discrete-time systems, these functions will be different for the two different
model types. The measurement equation, however, will often be identical for the
two model types.

1.2.3 Linear Models and Linearization

Many control design methods are based on linear models. It is therefore necessary
to be able to convert from a nonlinear model to a linear model which is (hopefully) a
close approximation to the nonlinear model. This is called linearization of the non-
linear model.

A systems is linear if the functions f and g (in (1.1) and (1.2) for the case of
continuous-time models, or in (1.3) and (1.4) for the case of discrete-time models)
are linear in all the variables x,u, and d. Thus, a linear continuous-time model may
be expressed as:

ẋ = Ax + Bu + Ed (1.5)

y = Cx + Du + Fd (1.6)

where A,B,C,D,E,F are matrices of appropriate dimensions, and the matrix ele-
ments are independent of the values of x,u, d. Linear models for discrete-time sys-
tems follow similarly.

Linearization is based on the Taylor series expansion of a function. Consider a
function h(a). We want to approximate the value of h(a) in the vicinity of a = a∗.
The Taylor series expansion then provides the approximation:

h(a) = h(a∗ + 𝛿a) ≈ h(a∗) + 𝜕h
𝜕a

||||a∗
𝛿a + 1

2
𝛿aT 𝜕2h

𝜕a2

||||a=a∗
𝛿a + · · · (1.7)

where the notation |a=a∗ indicates that the value a = a∗ is used when evaluating the
derivatives.

1.2.3.1 Linearization at a Given Point
When linearizing a dynamical system model, we terminate the Taylor series expan-
sion after the first-order term. The underlying nonlinear system is therefore natu-
rally assumed to be continuous and have continuous first-order derivatives. Assume
that the linearization is performed at the point:

a =
⎡⎢⎢⎣

x
u
d

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x∗
u∗

d∗

⎤⎥⎥⎦ = a∗ (1.8)

The terminated Taylor series expansion of (1.1) then becomes
dx
dt

= d𝛿x
dt

≈ f (a∗) +
𝜕f
𝜕x

||||a=a∗
𝛿x +

𝜕f
𝜕u

||||a=a∗
𝛿u +

𝜕f
𝜕d

||||a=a∗
𝛿d (1.9)
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Similarly, we get for (1.2)

y = y∗ + 𝛿y ≈ g(a∗) +
𝜕g
𝜕x

||||a=a∗
𝛿x +

𝜕g
𝜕u

||||a=a∗
𝛿u

𝜕g
𝜕d

||||a=a∗
𝛿d (1.10)

where it is understood that y∗ = g(a∗).
Next, define A = 𝜕f

𝜕x
|||a=a∗

, B = 𝜕f
𝜕u
|||a=a∗

, E = 𝜕f
𝜕d
|||a=a∗

, C = 𝜕g
𝜕x
|||a=a∗

, D = 𝜕g
𝜕u
|||a=a∗

,

F = 𝜕d
𝜕x
|||a=a∗

Linearizing at an Equilibrium Point The point a∗ used in the linearization is usually
an equilibrium point. This means that

f (a∗) = 0 (1.11)

g(a∗) = y∗ (1.12)

Thus, we get
dx
dt

= A𝛿x + B𝛿u + E𝛿d (1.13)

𝛿y = C𝛿x + D𝛿u + F𝛿d (1.14)

Linearizing a discrete-time model is done in the same way as for continuous-time
models. The only slight difference to keep in mind is that for a discrete-time model
at steady state xk+1 = xk, and therefore f (a∗) = xk when linearizing at a steady
state.

Deviation Variables It is common to express the system variables (x,u, d, and y) in
terms of their deviation from the linearization point a∗. When doing so the 𝛿’s are
typically suppressed for ease of notation – as will be done in the remainder of this book.
It is, however, important to beware that when converting from deviation variables
to “real” variables, the linearization point has to be accounted for.

To illustrate: A model for a chemical reactor is linearized at steady-state conditions
corresponding to a reactor temperature of 435 K. If the linearized model, expressed
in deviation variables, indicates a temperature of −1, the corresponding “real” tem-
perature would be 434 K.

Linear Controllers Are Not Linear! It appears that many students, even after intro-
ductory control courses, do not appreciate that our so-called “linear” controllers are
only linear when expressed in deviation variables. In “natural” variables, the typi-
cal “linear” controller is in fact affine, i.e. they have a constant term in addition to
the linear term. This can lead to many frustrations, until the misunderstanding has
been clarified – which might actually take some time, because the importance of this
issue will depend on both controller structure and controller type. Consider a simple
feedback loop, with a (linear) controller K controlling a system G, as illustrated in
Figure 1.1.
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Figure 1.1 A simple feedback loop with a one-degree-of-freedom controller and possible
“output bias.”

This type of controller is called a “one-degree-of-freedom controller,” since
it has only one input, the control offset e = r − y. We can make the following
observations:

● Clearly, it does not matter whether the reference r and measurement y are
expressed in “physical” variables or deviation variables, as long as the same scale
is used for both. This is because the controller input is the difference between
these two variables.

● Consider the case when the controller K is a pure proportional controller,
i.e. u = K(r − y) with K constant. It is then necessary to add u∗ as an “output
bias”1 to the controller output, as indicated by the dashed arrow in the figure.

● Consider next the case when the controller K contains integral action. In this
case, the “output bias” is not strictly necessary, since the value of the integrating
state will adjust for this when the system reaches steady state. However, an out-
put bias may improve transient response significantly when putting the controller
into operation.2

Consider next a loop where the controller has separate entry port for the reference
and the measurement, as shown in Figure 1.2. This type of controller is used

K G

r

u

u*

y
+

y* –

–

Figure 1.2 A simple feedback loop with a two-degree-of-freedom controller and possible
“bias” on both controller inputs and controller output.

1 Some system vendors may use different terminology.
2 See also Section 6.4 on Bumpless Transfer.
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when one wants to treat the measurement and reference signals differently in the
controller. We note that

● In this case, we need to subtract the value of the measurement at the linearization
point, y∗, from both the reference and the measurement.

● Whether to add u∗ to the controller output is determined by the same considera-
tions as for the one-degree-of-freedom controller.

1.2.3.2 Linearizing Around a Trajectory
It was noted above that it is most common to linearize around a steady state.
However, in some cases, one may want to linearize around a trajectory, i.e. around
a series of consistent future values of x,u, and d. This most commonly occurs in
nonlinear model predictive control (MPC). Each time an MPC controller executes,
it solves an optimization problem that optimizes system behavior over a “predic-
tion horizon.” However, for some strongly nonlinear problems, using the same
linearized model for the entire prediction horizon may not give sufficient accuracy.
In such cases, one may choose to linearize around a trajectory instead.

Given the present state, a prediction of the future manipulated variables (typically
obtained from the previous execution of the MPC), and predicted values for future
disturbances, the nonlinear model can be used to simulate the system in the future.
This gives predicted future states that are consistent with the present state and the
predicted future manipulated variables and disturbances.

For each timestep in the future, the linearization is performed around the pre-
dicted state, manipulated variable, and disturbance values. This will give different
matrices A,B,CD,E,F for each timestep. In this way, a nonlinear system is approxi-
mated by a linear, time-varying model.

Linearizing around a trajectory clearly complicates the model. In addition to the
added complexity of having to ensure that the right model matrices are used at the
right timestep in the future, one also has to remember that the linearization point
varies from timestep to timestep (resulting from f (a∗) ≠ xk in the discrete-time equiv-
alent of (1.9)). This adds additional complexity when converting between physical
variables and deviation variables.

1.2.4 Converting Between Continuous- and Discrete-Time Models

It will often be necessary to convert from continuous- to discrete-time models (and
less frequently necessary to convert the other way). Process models based on first
principles modeling will typically result in continuous-time models. Often, control
design is performed with a continuous-time model. The continuous-time controller
is thereafter converted to a discrete-time controller for implementation in a com-
puter. There are also controller types that are more conveniently designed using
discrete-time models. The most notable example of such controllers are the so-called
MPC controllers which will be described in some detail later in the book.

To convert from continuous to discrete time, we need to

● choose a numerical integration method for the system dynamics, and
● determine (assume) how the external variables (u and d) change between the time

instants for the discrete-time model.
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It is common to assume so-called “zero-order hold,”3 i.e. that the external variables
are constant at the value of the previous time instant until the next time instant
is reached. This agrees with what is common practice for control inputs in control
systems.

Most control design software will have functions for converting between
continuous- and discrete-time linear models. It is also included in most basic
control textbooks. We will nevertheless give a short introduction here, primarily
in order to discuss the handling of time delay when converting from a continuous
to a discrete-time model. The presentation is inspired by that of Åström and
Wittenmark [1].

Consider a continuous-time linear model:

ẋ = Acx(t) + Bcu(t) (1.15)

Assuming zero-order hold and a timestep of length h, integration over one timestep
(from t = kh to t = kh + h) gives

x(kh + h) = eAchx(kh) + ∫
kh+h

kh
eAc(kh+h−r)Bcu(r)dr (1.16)

This is commonly expressed as the discrete-time model:

xk+1 = Adxk + Bduk (1.17)

where the sampling interval h is assumed known and therefore not explicitly stated.4

The matrices Ad and Bd are given by:

Ad = eAch

Bd = ∫
kh+h

kh
eAc(kh+h−r)Bcu(r)dr = A−1

c
(

eAch − I
)

Bc

1.2.4.1 Time Delay in the Manipulated Variables
Consider next the case when the manipulated variables u do not affect the state
derivative ẋ directly, but only after a time delay 𝜏. The model (1.15) thus becomes

ẋ = Acx(t) + Bcu(t − 𝜏) (1.18)

Note that there is no exact representation of a pure time delay using ordinary differ-
ential equations – this would require an infinite number of states. Therefore, the time
delay is instead introduced explicitly in the argument when representing the manip-
ulated variable u as a function of time. While there is an extensive literature on how
to account for time delays in continuous-time systems, this will not be covered here.
Instead, we note that

3 An nth order hold means that the nth time derivative is held constant between the sample
instants of the discrete-time model.
4 Note also that the subscript d refers to discrete time rather than “disturbance.” Elsewhere in this
note Bd is sometimes used as “the B-matrix for the disturbance.”
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● Time delays in linear continuous-time systems are easily handled in the frequency
domain. For a system such as (1.18) with a measurement model (1.6), the transfer
function from input u to output y is simply given by:

y(s) = G(s)e−𝜏su(s)

where G(s) = C(sI − Ac)−1Bc + D is the transfer function for the delay-free
system.5

● Whenever a state-space model is needed, e.g. for controller synthesis, a low-order
approximation of the time delay is typically used. The most common such approx-
imation is the Padé approximation. The nth order Padé approximation is given by:

e−𝜏s ≈

(
1 − 𝜏

2n
s
)n

(
1 + 𝜏

2n
s
)n

A state-space model for the right-hand side of the approximation above can easily
be found using, e.g. the Control Systems Toolbox in Matlab. Often, the second- or
third-order approximation will suffice.

Multiple Timestep Time Delays If the time delay is an integer number of sampling
intervals, this is easily captured in a discrete-time model. Let uΔ(k) = u(k − n). This
can be expressed as:

xΔ(k + 1) = AΔxΔ(k) + BΔu(k)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I ⋮ 0

0 ⋮ ⋮ ⋮ 0

0 ⋮ ⋮ 0 I

0 … … … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xΔ(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⋮

0

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u(k) (1.19)

uΔ(k) = CΔxΔ(k) =

⎡⎢⎢⎢⎢⎣
I 0 0 · · · 0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

n

⎤⎥⎥⎥⎥⎦
xΔ(k)

The overall model then results from the series interconnection of the delay-free
model and the model for the time delay above.

Fractional Timestep Time Delays If the time delay 𝜏 is only a fraction of the sampling
interval h, we must account for the fact that the value of the manipulated variable
which affects ẋ in (1.15) from time kh to time kh + 𝜏 is actually u(kh − h). Thus, the
integral in (1.16) must be split in two, and we get

5 The reader is expected to have some knowledge of transfer functions and frequency
responses – but for those for which this is unfamiliar, a brief introduction will be given shortly.
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x(kh + h) = eAchx(kh) + ∫
kh+𝜏

kh
eAc(kh+h−r)Bcdru(kh − h)

+∫
kh+h

kh+𝜏
eAc(kh+h−r)Bcdru(kh)

= Adx(kh) + Bd0u(kh) + Bd1u(kh − h) (1.20)

Bd1 = eAc(h−𝜏)A−1
c

[
eAc𝜏 − I

]
Bc = eAc(h−𝜏) ∫

𝜏

0
eAcrdrBc

Bd0 = A−1
c

[
eAc(h−𝜏) − I

]
Bc = ∫

h−𝜏

0
eAcrdrBc

This can be expressed in state-space form as:[
x(kh + h)

u(kh)

]
=
[

Ad Bd1
0 0

] [
x(kh)

u(kh − h)

]
+
[

Bd0
I

]
u(kh) (1.21)

For time delays lasting more than one timestep, but a non-integer number of
timesteps, the overall model is found by the series interconnection of the multiple
timestep delay model in (1.19) and the system dynamics + fractional timestep delay
model in (1.21).

Some modern control techniques like MPC are computationally intensive and may
induce a computational time delay. If the computational time is significant com-
pared to the sampling interval, it may be necessary to include a fractional time delay
in the model even for plants that by themselves have no time delay.

1.2.4.2 Time Delay in the Measurements
Time delays in measurements may occur both due to the characteristics of the sensor
equipment (e.g. delays in analyzers such as online gas chromatographs) or due to
transportation delays (long pipes or conveyor belts from the plant to the sensor).

For linear, time-invariant systems, it does not matter whether the time delay is
modeled at the input or the output of the plant. However, for multivariable systems,
the time delay may be different for different measurements. In such cases, the time
delay must be modeled at the output, since it cannot be moved to the input.

Also, a measurement is often dependent on multiple states. The number of
discrete-time states used to model the time delay can then be reduced by delaying
the measurement in the model instead of delaying the states and calculating the
measurement from the delayed states [2].

Time delays in the measurements can be handled in much the same way as that
explained above for time delay in the manipulated variables. The details are therefore
left to the reader.

1.2.5 Laplace Transform

The Laplace transform should be familiar to all readers from introductory control
courses, and no attempt is made here at providing a complete or self-contained intro-
duction to the topic. It is merely introduced here as a minimal introduction to its use
later in this book.
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Restating first the linear(ized) ordinary differential equation model, we have

ẋ = Ax + Bu + Ed (1.22)

y = Cx + Du + Fd (1.23)

where the 𝛿’s are suppressed for notational simplicity. We should nevertheless
keep in mind that the linear model is expressed in deviation variables. The model
described by (1.22) and (1.23) is called a (linear) state-space model of a system.

Using standard rules for the Laplace transformation (available in standard under-
graduate mathematics textbooks), we have

sx(s) + x(t = 0) = Ax(s) + Bu(s) + Ed(s) (1.24)

y(s) = Cx(s) + Du(s) + Fd(s) (1.25)

where s is a complex-valued scalar. The effect of the initial conditions (the term
x(t = 0) above) is usually ignored, since stability and common measures of perfor-
mance do not depend on initial conditions (for linear systems). Nevertheless, one
should be aware that the initial response will depend on initial conditions. If the
closed-loop system contains modes that are poorly damped, the effects of the initial
conditions may be felt for a significant time.

Ignoring the term involving the initial conditions (or assuming the initial condi-
tions equal to zero in deviation variables), we obtain by simple manipulations:

y(s) =
[
C(sI − A)−1B + D

]
u(s) +

[
C(sI − A)−1E + F

]
d(s) (1.26)

= G(s)u(s) + Gd(s)d(s)

where G(s) and Gd(s) are the (monovariable or multivariable) transfer functions from
the manipulated variable and the disturbance, respectively, to the system output.

1.2.6 The z Transform

Whereas the Laplace transform using the Laplace variable s is used for transfer func-
tions for continuous-time systems, the forward shift operator z is used to define trans-
fer functions for discrete-time systems. The forward shift operator shifts a time series
one step forward in time, i.e.

wk+1 = zwk (1.27)

For the discrete-time linear system:

xk+1 = Axk + Buk + Edk (1.28)

yk = Cxk + Duk + Fdk
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Noting that xk+1 = zxk, we arrive at the discrete-time transfer functions:

y(z) =
[
C(zI − A)−1B + D

]
u(z) +

[
C(zI − A)−1E + F

]
d(z)

= G(z)u(z) + Gd(z)d(z) (1.29)

When writing out discrete-time transfer functions, it is common to use z−1 (known
as the backward shift operator) when expressing how the present value of a variable
depends on previous values of the same variable and/or previous inputs.

1.2.7 Similarity Transformations

Whereas the transfer function is unique for a given input–output behavior, there is
an infinite number of different state-space models that describe the same dynamics.

Given a state-space model such as (1.22) and (1.23) and consider the case where we
instead of the original states x want to use the alternative states x̃. The state vectors
x and x̃ must be related through

x = Tx̃ (1.30)

where T is an invertible matrix. This ensures that when specifying the state in one set
of state variables, we also uniquely specify the states in the other set of state variables.
Trivial manipulations then yield

̇̃x = T−1ATx̃ + T−1Bu + T−1Ed (1.31)

y = CTx̃ + Du + Fd (1.32)

from which the state-space matrices for the transformed state-space model are easily
identifiable. This reveals the fact that the state-space representation of a dynami-
cal system is not unique – via similarity transforms the exact same dynamics can be
represented by “different” state-space models. In addition, a state-space model may
contain “redundant” states, as discussed next. In contrast, the frequency response of
a model in the Laplace domain (such as (1.26)) is unique. Furthermore, the trans-
fer function model G(s) itself is unique, provided any redundant states have been
removed, i.e. provided cancelation of common terms in the numerator and denom-
inator has been performed, or it is obtained from the Laplace transformation of a
minimal model.

1.2.8 Minimal Representation

A state-space model may contain states that either cannot be affected by the inputs
(an uncontrollable state) or cannot affect any of the outputs of the system (an unob-
servable state). Such states do not contribute to the input–output behavior of the
system. The model then contains more states than the minimal number of states
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required to represent the input–output behavior of the system. Therefore, such mod-
els are called non-minimal.

Many control calculations assume that the model supplied is minimal, and numer-
ical problems may occur if this is not the case. It is therefore common practice to
remove uncontrollable or unobservable states, and standard control software have
functions for doing this (such as minreal in Matlab).

However, one should bear in mind that the uncontrollable or unobservable sys-
tem states may represent important quantities for the overall system. Whether it is
advisable to remove uncontrollable or unobservable states can depend on several
factors:

● How was the model obtained? If the model is the result of rigorous modeling
based on physical and chemical principles, the states will typically represent phys-
ical/chemical quantities in the system.

● Empirical models identified from experiments will typically result in models con-
taining only observable and controllable states – although not all states need to be
recognizable as a distinct physical quantity in the system.

● When assembling a system model from models of parts of the system, states rep-
resenting the same physical quantity may be represented in several of the smaller
models. This can easily lead to a non-minimal model when assembling the overall
system model. Such “duplicate states” can safely be removed.

● It is usually considered safe to delete stable uncontrollable and unobservable
modes.
1. If a stable mode is uncontrollable, its effect on the output will die out over

time – unless it is excited by some disturbance. A state may be “controllable”
from a disturbance even if it is uncontrollable from the manipulated variables.
This is the situation in many disturbance attenuation problems. Although
such states may be removed from the plant model (from manipulated to
controlled variables), it cannot be removed from the disturbance model (from
disturbances to controlled variables).

2. A controllable but unobservable mode will be excited by the manipulated
variables, and even if it is stable will not necessarily decay to zero if the
state is continuously excited by the manipulated variables or disturbances. If
the state represents some quantity of little importance, this situation would
appear acceptable. It may, however, be the case that the state represents some
important quantity, and the fact that it is unobservable merely reflects an
inappropriate set of measurements.

When discovering unobservable or uncontrollable states, the engineer should there-
fore reflect on how and why these states are introduced in the model. It may be that
such states can safely be removed from the model. It may also be the case that one
should install new measurements or new actuators to make the states observable
and controllable.
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Mini-tutorial 1.1 Illustrating the importance of minimal models

Consider the simple level control problem as shown in Figure 1.3. The output of the
level controller is the reference for the flow control loop. With the flow control loop
being fast and accurate, a simple model of the level of the tank can be obtained by
simply integrating the flow in minus the flow out, giving the simple model:

ẋ =
[

0 0
0 0

]
x +

[
−ku

0

]
u +

[
0
kd

]
d

y =
[
1 1

]
x

Liquid level control

Flowrate in (disturbance)

FTFC

LT

LC

Flowrate out
(manipulated variable)

Figure 1.3 Simple level control problem.

With appropriate values of the constants ku and kd, this model does capture the
input–output dynamics of the system. However, it is clearly the case that only one state
is controllable from the input – and the uncontrollable state is integrating – meaning
that it will need to be stabilized by feedback. To make matters worse, the individual
states are not observable – only the sum of the states is. At first glance, it might there-
fore appear that this system cannot be stabilized by feedback control.

However, note that there is only one place where mass (in this case liquid) is accu-
mulated in the system – and hence a single state should suffice to model the system.
This leads to the model:

ẋ = 0x +
[
−ku kd

] [u

d

]
y = x

This one-state model describes exactly the same input–output behavior as the
two-state model above! Furthermore, the integrating state is both controllable and

(Continued)
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Mini-tutorial 1.1 (Continued)

observable, making feedback control possible. The (erroneous) conclusion above about
the inability to stabilize by feedback was thus due only to inappropriate modeling.

In practice, to be able to control the system, the range of manipulation for the outlet
flow must be at least as large as the range of variation in the inlet flowrate – but this
is related to the constraints of the system and does not come out in a linear analysis.

For diagonalizable systems, i.e. systems for which the A-matrix has a full rank
eigenvector matrix, it is straightforward to perform a similarity transform to identify
the uncontrollable or unobservable states. Let M be the eigenvector matrix of the
matrix A in (1.22) and Λ be the corresponding (diagonal) eigenvalue matrix. Choos-
ing T = M−1 in (1.30), then yields

̇̃x = Λx̃ + MBu + MEd (1.33)

y = CM−1x̃ + Du + Fd (1.34)

Uncontrollable states (in terms of the states x̃) can then be identified from rows that
are equal to zero in MB, whereas unobservable states are identified from columns in
CM−1 equal to zero.

1.2.9 Scaling

An appropriate scaling of inputs and outputs will greatly simplify the interpretation
of many of the analyses described in this book. For the system

y(s) = G(s)u(s) + Gdd(s)

we will assume throughout the book that:

y(s) is scaled such that the largest acceptable deviation from the reference value is
equal to 1 in the scaled variable. If the largest acceptable deviation from the
reference value is different in the positive and negative direction, the smaller
of the two (in magnitude) is used.

u(s) is scaled such that the value 1 (in the scaled variable) corresponds to the largest
available input value. If the largest available u(s) is different in the positive and
negative direction, the smaller of the two (in magnitude) is used.

d(s) is scaled such that the value of 1 (in the scaled variable) corresponds to the
largest expected disturbance. If the largest available d(s) is different in the pos-
itive and negative direction, the larger of the two (in magnitude) is used.

Note that the description above refers to y(s),u(s), and d(s) as deviation variables.
The scaling is easily performed using diagonal matrices Sy, Su, and Sd with positive
elements along the diagonal. That is,

Sy = diag{syi} (1.35)
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where syi is the largest acceptable deviation from the reference value for output i. The
matrices Su and Sd are defined similarly. Using the subscript s to denote the scaled
variable, we then get

Syys(s) = G(s)Suus(s) + Gd(s)Sdds(s)
⇕

ys(s) = S−1
y G(s)Suus(s) + S−1

y GdSdds(s)

where the scaled G(s) is easily identifiable as S−1
y G(s)Su and the scaled Gd(s) as

S−1
y GdSd. Unless otherwise stated, we will throughout this book assume that the

transfer function matrices G(s) and Gd(s) have been thus scaled, and we will not
use the subscript s on the input and output variables (even though the variables are
assumed to be scaled).

1.3 Analyzing Linear Dynamical Systems

1.3.1 Transfer Functions of Composite Systems

In this section, simple rules for finding transfer functions of composite systems
will be provided, and thereafter some closed-loop transfer functions that will be
defined that are frequently encountered in this book. The presentation in this
section assumes all transfer functions to be multivariable, i.e. described by transfer
function matrices. For monovariable systems, the transfer functions are scalar,
which simplifies their calculation, since scalars do commute.

1.3.1.1 Series Interconnection
Consider the series interconnection of two transfer function matrices, as illustrated
in Figure 1.4. The transfer function L(s) from r(s) to y(s) can be found by starting at
the output y(s) and writing down the transfer function matrices as we trace the path
back to the input r(s). Thus, we find

y(s) = L(s)r(s) = G(s)K(s)r(s)

This technique is readily applied also to more than two transfer function matrices
in series. We emphasize once again that the order of the transfer function matrices
is important, GK ≠ KG.

K(s) G(s)r(s)
u(s)

y(s)

L(s)

Figure 1.4 Series interconnection of two transfer function matrices.
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G(s)

G1(s)

G2(s)

y(s)u(s)

Figure 1.5 Two transfer function matrices in parallel.

1.3.1.2 Parallel Systems
For systems in parallel, the overall transfer function from input to output is obtained
by simply adding the transfer functions of the individual paths.

Thus, in Figure 1.5, the transfer function G(s) from u(s) to y(s) is given by:

y(s) = G(s)u(s) = (G1(s) + G2(s))u(s)

1.3.1.3 Feedback Connection
When finding transfer functions involving feedback loops, we start as before at the
output, go toward the input, and apply as appropriate the rules for series and parallel
interconnections above. Then, at the point of leaving the feedback loop, multiply
by (I − L(s))−1, where L(s) is the loop gain at the point of exiting the loop, going
“countercurrent” to the direction of signal transmission around the loop.

Applying this to the system in Figure 1.6, we start at y(s) and have noted G(s)K(s)
when we arrive at the point of exciting the feedback loop (in front of K(s)). The
loop gain as seen from that point, going “countercurrent” around the loop, is
−F(s)G(s)K(s), remembering to account for the negative feedback. The overall
transfer function from r(s) to y(s) is therefore given by:

y(s) = G(s)K(s)(I + F(s)G(s)K(s))−1r(s)

K(s)r(s) y(s)G(s)

F(s)

–

Figure 1.6 Feedback interconnection of systems.
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1.3.1.4 Commonly Used Closed-Loop Transfer Functions
A simple feedback loop excited by disturbances d, reference changes r, and measure-
ment noise n is illustrated in Figure 1.7.

Applying the rules for finding transfer functions above, we get

y = (I + GK)−1Gdd + GK(I + GK)−1r − GK(I + GK)−1n (1.36)

u = −K(I + GK)−1Gdd + K(I + GK)−1r − K(I + GK)−1n (1.37)

Two terms that appear repeatedly above are

(I + GK)−1 = S the sensitivity function

GK(I + GK)−1 = T the complementary sensitivity function

We will frequently refer to S and T, both by symbol and by name, but the origin of
the names will be of little importance for our use of the terms.

1.3.1.5 The Push-Through Rule
The push-through rule says that

(I + M1M2)−1M1 = M1(I + M2M1)−1 (1.38)

The proof is left for the reader as an exercise. Note that the push-through rule holds
also if M1 and M2 do not commute. If M1 and M2 are not square (but of compatible
dimension), the identity matrices on each side of the equality above will have to be
of different dimensions. Note also that the order of occurrence of M1 and M2 is the
same on both sides of the equality sign above (ignoring all other symbols, we have
M1 − M2 − M1 on both sides). The push-through rule is sometimes a useful tool for
simplifying transfer functions. Note that it implies

GK(I + GK)−1 = G(I + KG)−1K = (I + GK)−1GK

The matrix SI = (I + KG)−1 is sometimes called the sensitivity function at the plant
input, and correspondingly TI = KG(I + KG)−1 is sometimes called the complemen-
tary sensitivity function at the plant input. SI and TI will not be used extensively in
this book, but it is worth noting that for multivariable systems, the properties of a
feedback loop depends on the location in the feedback loop.

GK
–

y

n+

Gd

ur

d

Figure 1.7 Basic feedback loop excited by disturbances d, reference changes r, and
measurement noise n.
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1.4 Poles and Zeros of Transfer Functions

Consider a scalar transfer function, that can be factored as:

G(s) = k
(s + z1)(s + z2) · · · (s + zn)e−Ts

(s + p1)(s + p2) · · · (s + pm)
(1.39)

where m ≥ n, as otherwise there would be no state-space model that represent the
transfer function dynamics. The parameters zi are known as the zeros of the transfer
function, whereas the pi are termed poles. The term e−Ts represents a pure time delay
(transportation delay) of T time units. Zeros and poles can be either strictly real- or
complex-valued. However, complex-valued zeros or poles always appear in complex
conjugate pairs, since both the numerator and denominator of the transfer function
have only real-valued coefficients (for transfer functions corresponding to a model
described by ordinary differential equations). Remember that the time delay term
e−Ts cannot be described (exactly) by ordinary differential equations.

For a minimal representation of a system, the poles may also be defined as the
roots of the characteristic polynomial (also called the pole polynomial):

𝜙(s) = det (sI − A) (1.40)

Zeros and poles are often classified according to whether their real parts are pos-
itive or negative. Poles and zeros whose real part are strictly negative are called left
half-plane (LHP) poles and zeros, respectively. Similarly, poles and zeros whose real
parts are positive are called right half-plane (RHP) poles and zeros. RHP poles (for
continuous-time systems) means that the system is unstable. If the open-loop sys-
tem has an RHP pole, it will therefore be necessary to stabilize the system using
feedback control. RHP poles for the closed-loop system is unacceptable. Poles in the
LHP cause no fundamental problem.6 LHP zeros also pose no particular problem
for linear systems – although zeros close to the imaginary axis may indicate that the
effect of the input is weak in the corresponding frequency range, and therefore there
is a risk that the input magnitude required is larger than what is available.7

The problem with RHP zeros is that for high loop gain (corresponding to fast
control), the closed-loop poles approach the open-loop zeros. Consider a simple feed-
back loop, such as Figure 1.10, and let the (open)-loop transfer function be composed
of a controller8 k and the plant transfer function g(s) = n(s)∕d(s). Thus L(s) = k n(s)

d(s)
.

The closed-loop transfer function from r to y is given by:

L(s)∕(1 + L(s)) = n(s)(
d(s)

k
+ n(s)

)
We see that the closed-loop transfer function approaches 1 (the measurement tracks
the reference signal) as k → ∞. The closed-loop poles are given by the roots of the

6 Although they may also need to be moved by feedback, if they result in too slow responses for
the application at hand.
7 Note that this problem does not show up in linear analysis, since magnitude bounds on inputs is
a nonlinear effect.
8 A static controller is used for simplicity of exposition.
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denominator polynomial of the closed-loop transfer function, and as k → ∞ the
denominator polynomial approaches the open-loop numerator polynomial. This
means that the closed-loop poles will approach the open-loop zeros – resulting in
poles in the RHP if the open-loop numerator polynomial has zeros in the RHP. Thus,
open-loop zeros in the RHP are inconsistent with perfect control. The performance
limitations arising from RHP zeros will be further elaborated in Chapter 4.

1.4.1 Poles of Multivariable Systems

For multivariable systems, the pole polynomial can be found from (1.40) just as for
monovariable system. The pole polynomial can also be calculated from the transfer
function matrix. All multivariable poles will appear as a pole of one or more transfer
function elements, the only difficulty arises in knowing how many poles are needed,
i.e. it is easy to find out that the system has a pole at pi, but less obvious how many
poles are at pi (also known as the multiplicity of the pole at pi). That issue is resolved
by the following result from [7]:

Theorem 1.1 The pole polynomial 𝜙(s) for a system with transfer function G(s) is
the least common denominator of all not-identically-zero minors of all orders of G(s).

Recall that a minor of G(s) is the determinant of a submatrix obtained by deleting
rows and columns of G(s). Minors of all orders include the individual elements, as
well as the determinant of the overall matrix (or of the largest possible submatrixes, if
G(s) is not square). When calculating the minors, pole-zero cancelations of common
terms in the numerator and denominator should be carried out whenever possible.

1.4.2 Pole Directions

The input and output pole directions, denoted upi and ypi, respectively, capture the
input direction with infinite gain and the corresponding output direction, for the
system G(s) evaluated at the pole s = pi. That is, with some abuse of notation we
may say that

G(pi)upi = ∞ (1.41)

yH
piG(pi) = ∞ (1.42)

The input and output pole directions could conceptually be found from the input
and output singular vectors corresponding to the infinite singular value of G(pi).
However, this is a numerically ill-conditioned calculation. Instead, the pole direc-
tions can be found starting from the right and left eigenvalue decomposition of the
matrix A:

Ati = piti

qH
i A = piqH

i

upi = BHqi

ypi = Cti
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We will throughout this note assume that the input and output pole directions have
been normalized to have unit length. For single input single output (SISO) transfer
functions, we trivially have upi = ypi = 1.

1.4.3 Zeros of Multivariable Systems

We will first address multivariable zeros by considering a simple 2 × 2 example.
Consider the plant

y(s) = G(s)u(s) = 1
s + 1

[
1 s + 1
2 s + 4

]
u(s) (1.43)

The system is open-loop stable. None of the elements of G(s) have zeros in the
RHP. Controlling output y1 with the controller u1(s) = k1(r1(s) − y1(s)), we get

y1 =
g11k1

1 + g11k1
r1 +

g12

1 + g11k1
u2

y2 =
g21k1

1 + g11k1
r1 +

(
g22 +

g21g12k1

1 + g11k1

)
u2

where the term inside the brackets is the transfer function from u2 to y2 when y1 is
controlled by u1, in the following this is denoted g̃2. Assume that a simple propor-
tional controller is used, i.e. k1(s) = k (constant). Some tedious but straightforward
algebra then results in

g̃2(s) =
1

(s + 1)(s + 1 + k)
[
(s + 4)(s + 1 + k) − 2k(s + 1)

]
We can then easily see that the system is stable provided k > −1 (clearly, a positive
value for k would be used). For small values of k, g̃2 has two real zeros in the LHP.
For k = 9 − 3

√
8, the zeros become a complex conjugate pair, and the zeros move

into the RHP for k > 5. For k = 9 + 3
√

8, both zeros again become real (but posi-
tive), and if k is increased further, one zero approaches +∞ whereas the other zero
approaches +2. Now, a zero of g̃2(s) far into the RHP will not significantly affect the
achievable bandwidth for loop 2, but the zero which at high values of k approaches
+2 certainly will.

Note that it will not be possible to avoid the zero in g̃2(s) by using a more complex
controller in loop 1. The transfer function g̃2(s)will have a zero in the vicinity of s = 2
whenever high bandwidth control is used in loop 1.

If we instead were to close loop 2 first, we would get similar problems with loop 1
as we have just seen with loop 2. That is, if loop 2 were controlled fast, the transfer
function from u1 to y1 would have a zero in the vicinity of s = 2.

We therefore conclude that it is a property of the plant that all directions cannot
be controlled fast, as we saw above that high gain control of a system with an RHP
zero leads to instability.

Looking at the term inside the square bracket in (1.43), we see that the determinant
of G(s) looses rank at s = 2 (its normal rank is 2, but at s = 2 it has rank 1). In terms
of systems theory, the plant G(s) has a multivariable (transmission) zero at s = 2.
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There is no direct relationship between monovariable and multivariable zeros, a
zero in an individual transfer function element may be at the same location as a
multivariable zero, but often that will not be the case. However, as we have seen
above, if a multivariable system with n outputs has a zero, and n − 1 outputs are
perfectly controlled using feedback, the zero will appear in any transfer function
from the remaining manipulated variable to the remaining controlled variable (if
the transfer function takes account of the fact that the other outputs are controlled).

RHP zeros in individual elements of a transfer function matrix need not imply a
control performance limitation (they may become serious limitations, however, if
parts of the control system is taken out of service, leaving only the loop with the
monovariable RHP zero in service).

There are several definitions of zeros in multivariable systems, we will be con-
cerned with the so-called transmission zeros9 of multivariable systems, which occur
when competing transmission paths within the system combine to give zero effect
on the output, even though the inputs and states are nonzero. As for monovariable
zeros, implications on achievable control performance arise mainly when the (trans-
mission) zero is in the RHP.

As alluded to above, zeros of the system G(s) are defined [7] as points zi in the com-
plex plane where the rank of G(s) is lower than its normal rank. The corresponding
zero polynomial is defined as:

Θ(s) =
nz∏

i=1
(s − zi) (1.44)

where nz is the number of zeros.10

Zeros may be calculated from the transfer function matrix G(s) according to
Theorem 1.2. Note that the G(s) will only contain zeros corresponding to a minimal
state-space realization of the system.

Theorem 1.2 [7] Let r be the normal rank of G(s). Calculate all order-r minors of
G(s) and adjust these minors to have the pole polynomial𝜙(s) in the denominator. Then
the zero polynomial Θ(s) is the greatest common divisor of the numerators of all these
order-r minors.

It is worth reflecting a little over the definition of a zero as a point where G(s) loses
rank, and the way zeros are calculated from Theorem 1.2. Consider a non-square
system G(s) of dimension n × m:

● If m < n, zeros are relatively rare, because it is somewhat unlikely that all order-n
minors will share the same zero. The exception is when there is a zero associated
with a specific sensor, in which case all elements of the corresponding row of G(s)
will share the same zero, which will therefore also appear in all order-n minors.

9 The term transmission will frequently be dropped.
10 Disregarding any zeros at infinity, which have no particular implication for control
performance.
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● If n > m, it is also somewhat unlikely that all order-m minors will share the same
zero, unless the zero is associated with a specific input, in which case all elements
of the corresponding column of G(s)will share the same zero. However, if there is a
zero associated with a specific sensor,11 there will still be a limitation to achievable
control performance for the corresponding output – it just will not appear in the
zero polynomial.

More commonly than using Theorem 1.2, multivariable zeros are calculated from
the state-space description, solving the following generalized eigenvalue problem:

(ziIg − M)
[

xzi

uzi

]
= 0

M =
[

A B
C D

]
(1.45)

Ig =
[

I 0
0 0

]
The solution to the above problem will give the zero zi, the initial condition xzi for

the “transmission blocking” property and the input direction uzi for the transmission
blocking.

Multivariable zeros, like monovariable ones, are invariant to feedback and to
input/output scaling.

1.4.4 Zero Directions

Zero input and output directions (denoted uzi and yzi, respectively) corresponding to
a multivariable zero at s = zi contain information on the input and output directions
with zero gain for G(zi). That is,

G(zi)uzi = 0 (1.46)

yH
zi G(zi) = 0 (1.47)

With knowledge of a multivariable zero of G(s) at s = zi may be calculated from a
singular value decomposition of G(z). Alternatively, the input direction uzi is found
from (1.45). Likewise, a zero output direction can be calculated by solving (1.45)
using MT .

Whichever way uzi and yzi are calculated, we will assume that they have been nor-
malized to have unit length. For our uses, the output direction yzi of RHP zeros will be
of most interest, as it provides information about how severely the different outputs
are affected by the zero. Although the zero is invariant to scaling, the zero directions
are not.

11 Or otherwise, it occurs that all order-m minors containing a specific row of G(s) share a zero.
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1.5 Stability

Assuming that we have a minimal representation of a linear system in continuous
time. The system is then stable if

Re(𝜆i(A)) < 0 ∀i (1.48)

where𝜆i(A)denotes an eigenvalue of the matrix A in the state-space model. It follows
from (1.26) that the eigenvalues of the A matrix also appear as poles of the transfer
function. Stable systems thus have their poles strictly in the LHP (as already stated
above).

Control textbooks may differ somewhat on whether systems with poles on the
imaginary axis are considered stable. In some cases (as a result of a strict mathe-
matical definition of stability), systems with single poles on the imaginary axis are
classified as stable or “marginally stable”, whereas systems with two or more poles
in the same place on the imaginary axis are called unstable.

In most practical situations, systems with poles on the imaginary axis will need
to be “stabilized” by feedback, irrespective of whether these poles are “single” or
“multiple” poles. We will therefore classify all systems with poles on the imaginary
axis as unstable.

Note that the eigenvalues of the A matrix correspond to the roots of the character-
istic polynomial, which again (for a minimal representation) correspond to the poles
of the transfer function. Clearly, these poles/roots/eigenvalues can be used equiva-
lently (under the assumption of a minimal representation) to determine stability.

1.5.1 Poles and Zeros of Discrete-Time Transfer Functions

The forward shift operator z enters discrete-time transfer function in the same way
as the Laplace variable s enters continuous-time transfer functions. Poles and zeros
may therefore be calculated for discrete-time transfer functions in the same way as
for continuous-time transfer functions, and also for discrete-time transfer functions
it holds that the poles equal the eigenvalues of the A matrix.

However, the interpretation of the values of the poles and zeros differ for discrete-time
and continuous-time transfer functions.

Whereas continuous-time transfer functions are stable if the poles are in the
(open) LHP, discrete-time transfer functions are stable if the poles are inside the
unit circle. That is, a discrete-time system is stable if|𝜆i| < 1 ∀i (1.49)

Furthermore, a continuous-time pole at s = 0 indicates integrating dynamics. For
discrete-time systems, the corresponding pole for an integrating system will be at
z = 1. For continuous-time systems, complex conjugate poles indicate oscillatory
dynamics. For discrete-time systems, it also holds that any poles away from the real
axis must occur in complex conjugate pairs, but any poles away from the positive real
axis indicate oscillatory dynamics.12

12 That is, poles on the negative real axis are also oscillatory.
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1.5.2 Frequency Analysis

In recent years, frequency analysis has been given less room in process control edu-
cation. This seems to be a particularly prominent trend in chemical engineering
departments in the United States, where control seems to be squeezed by the wish
to include “newer” topics such as materials/nano-/bio. Although many esteemed
colleagues argue that control can be taught just as well entirely with time-domain
concepts, it is this author’s opinion that the same colleagues are making the mistake
of elevating a necessity to a virtue.

Despite this worrisome trend, the presentation of frequency analysis in this book
will be sketchy, assuming that the reader has had a basic introduction to the topic in
other courses.

This author agrees with the arguments expressed by Skogestad and Postlethwaite
[9] on the advantages of frequency analysis. While those arguments will not be
repeated here, but we will note that many control-relevant insights are easily
available with a working understanding of frequency analysis.

In this chapter, the frequency response will be used to describe a systems response
to sinusoidal inputs of varying frequency. Although other interpretations of the fre-
quency response are possible (see, again, [9]), the chosen interpretation has the
advantage of providing a clear physical interpretation and a clear link between the
frequency and time domain.

The frequency response of a system with transfer function G(s) at the frequency
𝜔 is obtained by evaluating G(s) at s = j𝜔. The result is a complex-valued number
(or a complex-valued matrix, for multivariable systems). It should be noted that the
frequency 𝜔 is measured in radians/time,13 and thus the oscillation period corre-
sponding to the frequency 𝜔 is tp = 2𝜋∕𝜔.

The complex-valued frequency response is commonly presented in polar coordi-
nates in the complex plane, with the length being termed the gain (or sometimes the
magnitude) and the angle being termed the phase. Anticlockwise rotation denotes
positive phase.

That is, consider G(j𝜔) = a + jb. The gain is then |G(jw)| = √
a2 + b2, whereas

the phase is given by ∠G(j𝜔) = tan−1(b∕a). Thus, assume that a sinusoidal input is
applied:

u(t) = u0 sin(𝜔t + 𝛼) (1.50)

Once the effect of any initial conditions have died out (or, we might make the “tech-
nical” assumption that the input has been applied “forever,” since t = −∞), the out-
put will also oscillate sinusoidally at the same frequency:

y(t) = y0 sin(𝜔t + 𝛽) (1.51)

We will then observe that |G(j𝜔)| = y0∕u0 and∠G(j𝜔) = 𝛽 − 𝛼. For multivariable sys-
tems, the response of each individual output can be calculated as the sum of the

13 Usually, time is measured in seconds, but minutes are also sometimes used for slow process
units such as large distillation towers.
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responses to each of the individual inputs. This property holds for all linear sys-
tems – both in the time domain and in the frequency domain.

For G(s) in (1.39), we have

|G(j𝜔)| = |k| ⋅ ∏n
i=1|(j𝜔 + zi)|∏m
i=1|(j𝜔 + pi)| ⋅ 1 (1.52)

∠G(j𝜔) = ∠(k) +
n∑

i=1
∠(j𝜔 + zi) −

m∑
i=1

∠(j𝜔 + pi) − 𝜔T (1.53)

The phase and gain of a single term (s + a) is illustrated in Figure 1.8.
Thus, we multiply the gains of k and the numerator terms in the transfer function

and divide by the gains of the denominator terms. For the phase, we add the phases
of the numerator terms and the (negative) phase from the time delay and subtract
the phase contribution from the denominator terms.

In the previous section, we have used Euler’s formula to determine the phase and
gain of the time delay term:

eja = cos a + j sin a (1.54)

from which we find that |e−j𝜔T| = 1 ∀𝜔 and ∠e−j𝜔T = −𝜔T(rad) = −𝜔T
𝜋

⋅ 180∘.

Imaginary

Real
a

|(s + a)|

ω

(s + a)

Figure 1.8 The phase and gain of a simple term (s + a) for a > 0.



26 1 Mathematical and Control Theory Background

Mathematically, k will have a phase of zero if k > 0 and a phase of −𝜋 = −180∘

if k < 0. However, for stability analysis, this term is of no consequence – in prac-
tice, if the plant has a negative gain we simply reverse the sign of the gain in the
controller – see the paragraph on steady-state phase adjustment below. That is, for
stability assessment using the Bode stability criterion (to be described in the follow-
ing section), we set the phase contribution from k to zero.

1.5.2.1 Steady-State Phase Adjustment
The steady-state value of the transfer function is obtained by evaluating the trans-
fer function at s = 0. Provided there are no poles or zeros at the origin (zi ≠ 0 ∀i,
pj ≠ 0 ∀j in (1.39)), at s = 0 the transfer function takes a real value and thus must
have a phase of n × 180∘, where n is some integer.

Clearly, a purely imaginary term (for s = j𝜔) contributes 90∘ to the phase at all
nonzero frequencies. For zeros at the origin the phase contribution is positive, and
for poles the phase contribution is negative (for positive frequencies).

It is customary to adjust or “correct” the phase such that the phase contribution
for the constant k is zero. Similarly, the phase contribution of any RHP zero in (1.39)
is adjusted such that its phase at steady state is zero.

This phase adjustment is necessary to be able to assess closed-loop stability from
the open-loop frequency response. For open-loop stable systems without zeros
or poles at the origin, this corresponds to setting the steady-state phase to zero
or assuming a positive steady-state gain. If the real steady-state gain is negative
(if the output decreases when the input increases), this in corrected for by simply
reversing the sign of the gain of the controller – often this is done by specifying that
the controller should be “direct acting.” See Section 2.4.3.12 for an explanation of
direct and reverse acting controllers.

The phase adjustment described above is done irrespective of whether the system
is stable in open loop. Note, however, that the phase of any unstable (RHP) poles
are not adjusted in this way. This may appear inconsistent but is possibly most eas-
ily understood by noting that one cannot “normalize the steady-state phase” for a
RHP pole. An RHP pole represents an instability in the system, the output will grow
exponentially without bounds as a response to a change in the input, and thus there
is no (stable) steady state for an RHP pole.

After steady-state phase adjustment, the phase of G(j0) should therefore be

∠(G(j0)) = −180∘np − 90∘ni + 90∘nz0 (1.55)

where np is the number of poles in the RHP (unstable poles), ni is the number
of poles at the origin (integrating poles),14 and nz0 is the number of zeros at the
origin.15

14 Strictly speaking, the angle at steady state (s = j0) is not well defined if the plant has poles at
the origin. In this case, the aforementioned equation should be regarded as representing
lim𝜔→0+∠(G(j𝜔)).
15 Note that poles and zeros in the same location should be canceled in the transfer function so
that at least one of ni and nz0 should be zero.
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Mathematical software (such as Matlab) may produce a phase that is off by n ⋅ 180∘

compared with what is explained above. The phase calculated by such software is
mathematically correct – in the sense that a negative real number has a phase of
−180∘ and a rotation of n ⋅ 360∘ describes the same point in the complex plane. Also,
one can expect that any controller tuning tool based on such software correctly indi-
cates closed-loop stability. However, when using frequency analysis for controller
tuning (as addressed in Section 2.4.3.2), ignoring the steady-state phase adjustment
confuses what undesired phase has to be corrected by dynamic compensation and
what is handled by setting the controller to be direct or reverse acting.

1.5.3 Bode Diagrams

The frequency response of a scalar system is often presented in a Bode diagram
(sometimes also called amplitude-phase-frequency diagram). The Bode diagram
consists of two plots, the magnitude plot and the phase plot.

In the magnitude plot, the transfer function magnitude (or gain) is plotted vs. fre-
quency. Both the magnitude and the frequency axes are logarithmic (to the base 10).

Remark: Note that the magnitude scale used for the Bode magnitude plot in this
book is the conventional logarithmic scale (to the base 10). In some books, one can
still see the decibel (dB) scale used in the Bode magnitude plot, where

|G(jw)|(dB) = 20log10|G(j𝜔)| (1.56)

We repeat that the decibel scale is not used in this book.

In the Bode phase plot, the phase is plotted against frequency. The phase is usually
plotted in degrees using a linear scale (radians are seldom used), whereas a loga-
rithmic scale is used for the frequency axis. A Bode diagram of the simple system
g(s) = s+0.1

(s+0.01)(s+1)
is shown in solid lines in Figure 1.9.

Control software that plots Bode diagrams are now easily available, and manual
procedures for drawing Bode diagrams are therefore obsolete. One should, however,
take a little care to ensure that the steady-state phase is correctly adjusted, as out-
lined in Section 1.5.3.1. Otherwise, the steady-state phase can easily be off by some
multiple of 180∘.

1.5.3.1 Bode Diagram Asymptotes
Although procedures for manually drawing Bode diagrams are now obsolete, it is
useful to be able to quickly visualize the phase–gain relationships of the Bode dia-
gram – possibly without drawing any diagram at all. For this purpose, knowledge
about the Bode diagram asymptotes are useful. This is particularly useful when con-
sidering changes to controller parameters for proportional integral (PI)/proportional
integral derivative (PID) controllers, since it can give an intuitive understanding of
the effects of such changes and thereby simplify the search for appropriate con-
troller parameters. These asymptotes are rather inaccurate approximations to the
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Figure 1.9 The Bode diagram for the simple system g(s) = 10 (10s+1)
(100s+1)(s+1)

= s+0.1
(s+0.01)(s+1)

.

exact diagram in the frequency range near a pole or zero, but good approximations
at frequencies removed from poles and zeros.

To obtain the asymptotes for the Bode magnitude plot,

● Start from the steady-state gain of the system, |G(0)|. If the system has “pure inte-
grators” (poles at s = 0), evaluate the transfer function instead at some very low
frequency, several decades below any other pole or zero.

● The gradient of the magnitude asymptote (in the log–log scale used in the magni-
tude plot) at low frequencies is nz0 − ni, where nz0 is the number of zeros at the
origin and ni is the number of poles at the origin.

● Increase frequency 𝜔. Whenever 𝜔 = zi, increase the gradient of the asymptote by
1. Whenever 𝜔 = pi, decrease the gradient of the asymptote by 1.

The asymptotes for the Bode phase plot are obtained as follows:

● If the transfer function contains ni poles at the origin, they contribute a total of
−90∘ ⋅ ni of phase at (very) low frequencies. Similarly, if the transfer function con-
tains nz0 zeros at the origin, these contribute a total of 90∘ ⋅ nz0 of phase at (very)
low frequencies.

● Poles in the LHP (the closed LHP except the origin) do not contribute to the phase
at steady state. The zeros (anywhere except at s = 0) also do not contribute the
phase at steady state.

● Poles in the open RHP each contribute −180∘ to phase at steady state.
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● Add the phase contributions at steady state. This gives the value of the
low-frequency phase asymptote.

● Gradually increase frequency 𝜔. If 𝜔 = zi (a zero in the LHP), increase the asymp-
tote phase by 90∘. If 𝜔 = −zi (a zero in the RHP), decrease the asymptote phase by
90∘. If 𝜔 = pi (a pole in the LHP), decrease the asymptote phase by 90∘. If 𝜔 = −pi
(a pole in the RHP), increase the asymptote phase by 90∘.

The phase asymptote thus changes in steps of (multiples of) 90∘. Note that this way
of finding the phase asymptote does not include the time delay. The phase contribu-
tion of any time delay therefore has to be added separately afterward, as described
earlier. With the logarithmic frequency axis used in the Bode diagram, the time delay
contributes little to the phase at 𝜔 ≪ 1∕T, but adds a lot of negative phase at higher
frequencies.

To use the above description to account for the phase and magnitude contributions
of complex-valued poles or zeros (which have to appear in complex conjugate pairs),
the absolute value of the poles or zeros is used instead of the complex-valued pi or zi.
In this case, the phase and gradient changes must be multiplied by a factor of 2, since
the frequency corresponding to two poles/zeros are passed simultaneously. Note that
if the system has complex conjugate poles close to the imaginary axis, the magnitude
plot may have a large “spike” that is not captured by the asymptote.

Note from the above description that the phase contribution at low frequencies of
a zero in the RHP is essentially the same as that of the zero’s “mirror image” in the
LHP, whereas at high frequencies the phase contribution of the two differ by 180∘.

In contrast, the phase contribution at low frequencies of a pole in the RHP is 180∘
different from that of its “mirror image” in the LHP, but at high frequencies the phase
contribution of the two are essentially the same.

The asymptotes are shown with dashed lines in Figure 1.9. The system
g(s) = s+0.1

(s+0.01)(s+1)
has a steady-state gain of 10, no pure integrators or differentiators.

The magnitude asymptote therefore starts with a gradient of 0, while the phase
asymptote starts with a phase of 0∘. The first pole is at pi = 0.01. At 𝜔 = 0.01, the
gradient of the magnitude asymptote therefore changes to −1, whereas the phase
asymptote goes to −90∘. At 𝜔 = 0.1 we encounter the (LHP) zero, and thus the
gradient of the magnitude asymptote increases to 0, and the phase asymptote goes
to 0∘ again. Finally at 𝜔 = 1, we encounter the second pole, changing the gradient
of the magnitude asymptote to −1 and the phase asymptote to −90∘.

1.5.3.2 Minimum Phase Systems
It should be clear from the above that whether a pole or a zero is in the right or
LHP does not affect the Bode magnitude plot, whereas it does affect the phase plot.
It turns out that for any system with a given magnitude plot,16 there is a minimum
possible (negative) phase that the system can have. This minimum possible phase
can be quantified in terms of the Bode phase–gain relationship, which from which
the minimum possible phase can be calculated from an integral over all frequencies

16 Assuming that this magnitude plot makes physical sense, i.e. that it can correspond to a
state-space model.
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of an expression involving the magnitude. The precise form of this expression is of
little importance in our context, the interested reader may consult [9] or other text-
books on linear systems theory. One can, however, find from the expression that the
local phase depends strongly on the local gradient of the magnitude in the log–log
plot (the Bode magnitude plot). Thus, the minimum possible phase is approximately
given by:

∠G(j𝜔)min ≈ −90∘ ⋅
d log(|G(j𝜔)|)

d log(𝜔)
(1.57)

That is, if the Bode magnitude plot has a gradient of−n, the minimum negative phase
we can expect is around −90n∘. Non-minimum phase systems have additional neg-
ative phase. Whereas this approximation is exact at all frequencies only for a series
of integrators (G(s) = s−n), it can be a reasonable approximation for most minimum
phase systems except at frequencies where complex poles or zeros are close to the
imaginary axis. From the Bode stability criterion in Section 1.5.4, it will become clear
that stability is incompatible with a transfer function magnitude that has a steep
negative gradient in the crossover region.

From the brief introduction to frequency analysis presented above, it should be
clear that a minimum phase system has

● no poles or zeros in the RHP, and
● has no time delay.

Minimum phase systems are often relatively easy to control, as the system dynamics
pose no special limitations or requirements for feedback control. In contrast, as we
will see later in this book, RHP poles imply a minimum bandwidth requirement,
whereas RHP zeros or time delays implies a bandwidth limitation.

1.5.3.3 Frequency Analysis for Discrete-Time Systems
In principle, one may perform frequency analysis for discrete-time systems, using
the identity

z = est

and using s = j𝜔. Here, t denotes the sampling interval of the discrete-time sys-
tem – and one needs to keep in mind that the frequency analysis is only valid up
to the Shannon sampling frequency, i.e. the frequency for which

𝜔t = 𝜋

Alternatively, if one wants to use the Bode stability criterion (see below), one may use
a bilinear transform mapping the unstable region for the discrete-time system (out-
side the unit circle) to the unstable region for continuous-time systems (the RHP).

Techniques for frequency analysis for discrete-time systems will not be further
detailed here – as it is this author’s distinct impression that it is by far more common
to perform frequency analysis using continuous-time models. Nevertheless, it is
worthwhile pointing out that not only discrete-time poles outside the unit circle are
problematic (as they indicate instability), but so are also discrete-time zeros outside
the unit circle (corresponding to non-minimum phase zeros in the continuous-time
case).
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Figure 1.10 A simple feedback loop.

1.5.4 Assessing Closed-Loop Stability Using the Open-Loop Frequency
Response

Let L(s) be the open-loop transfer function matrix of a feedback system, as illustrated
in Figure 1.10. The loop transfer function L(s) may be monovariable or multivari-
able, and a feedback control setting typically results from connecting a controller
K(s) and a plant G(s) in series, i.e. L(s) = G(s)K(s). We will assume that there are no
hidden (unobservable or uncontrollable) unstable modes in L(s) and are interested in
determining closed-loop stability based on open-loop properties of L(s). The Nyquist
stability theorem provides such a method for determining closed-loop stability, using
the so-called Principle of the Argument.

1.5.4.1 The Principle of the Argument and the Nyquist D-Contour
The Principle of the Argument is a result from mathematical complex analysis. Let
t(s) be a transfer function and C be a closed contour in the complex plane. Assume
that the transfer function t(s) has nZ zeros and nP poles inside the closed contour C,
and that there are no poles on C.

The Principle of the Argument Let s follow C once in the clockwise direction. Then,
t(s) will make nZ − nP clockwise encirclements of the origin.

In this context, the term “Argument” refers to the phase of the transfer function.
We are interested in stability of the closed loop, which clearly means that we want

to investigate whether the closed loop has any poles in the RHP. Thus, the con-
tour C will in our case be the “border” of the entire RHP, i.e. the entire imaginary
axis – turned into a closed loop by connecting the two ends with an “infinitely large”
semicircle around the RHP.17 To fulfill the requirement that there should be no poles
on the closed contour, we must make infinitesimal “detours ”into the RHP to go
around any poles on the imaginary axis (most commonly due to pure integrators in
the plant G(s) or controller K(s)). The closed contour described above is commonly
known as the Nyquist D-contour.

17 A brief look at the expression for G(s) in (1.26) – while remembering that the transfer function
t(s) above can be expressed similarly – should suffice to convince the reader that the value of t(s)
will remain constant as s traverses the “infinitely large semicircle” around the RHP. For very large
s, C(sI − A)−1B ≈ 0 regardless of the direction from the origin to s.
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1.5.4.2 The Multivariable Nyquist Theorem
It can be shown (e.g. [8]) that the open and closed-loop characteristic polynomials
are related through

det (I + L(s)) =
𝜙cl(s)
𝜙ol(s)

⋅ c (1.58)

where c is a constant. The number of open-loop poles in the RHP cannot be changed
by feedback. However, for closed-loop stability, we must ensure that there are no
closed-loop poles in the RHP. Using the Principle of the Argument, we thus arrive
at the general or multivariable Nyquist theorem:

Theorem 1.3 Let the number of open-loop unstable poles in L(s) be nol. The
closed-loop system with negative feedback will then be stable if the plot of det (I + L(s))
does not pass through the origin but makes −nol (clockwise) encirclements of the origin
as s traverses the Nyquist D-contour.

Note that in practice we only need to plot det (I + L(s)) for positive frequencies
only, since the plot for negative frequencies can be obtained by mirroring about the
real axis.

1.5.4.3 The Monovariable Nyquist Theorem
Most readers are probably more familiar with the monovariable Nyquist theorem,
which follows from the multivariable version by noting that for a scalar L(s)
it is equivalent to count encirclements of det (I + L(s)) around the origin and
encirclements of L(s) around −1.

1.5.4.4 The Bode Stability Criterion
The Bode stability criterion follows from the monovariable Nyquist theorem and
thus applies only to monovariable systems.

Theorem 1.4 Let 𝜔c denote the “crossover frequency,” i.e. |L(j𝜔c)| = 1, and
assume that |L(j𝜔)| < 1 for 𝜔 > 𝜔c. Then the closed-loop system is stable provided
∠L(j𝜔c) > −180∘.

The Bode stability criterion ensures that the Nyquist plot of L(s)passes between the
origin and the critical point−1 in the complex plane. For open-loop stable systems, it
is then straightforward to see that there can be no encirclements of the critical point.
However, the criterion may also be used for open-loop unstable systems provided the
Bode phase plot starts from the correct phase of −180∘np, where np is the number
of RHP poles, and the crossover frequency 𝜔c is unique (i.e. that there is only one
frequency 𝜔c for which |L(j𝜔c)| = 1).

If the assumption |L(j𝜔)| < 1 for 𝜔 > 𝜔c is violated, the Bode stability criterion is
easily misinterpreted, and the use of the Nyquist criterion is recommended instead.

For open-loop stable systems, the Bode stability criterion may equivalently be
stated in terms of 𝜔180, defined such that ∠L(j𝜔180) = −180∘. The closed-loop
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system is then stable if |L(j𝜔)| < 1 for 𝜔 ≥ 𝜔180. For most systems, the magnitude|L(j𝜔)| will decrease with increasing frequency, and it will thus suffice to check
the criterion only at 𝜔180. However, this version of the criterion cannot be used
for open-loop unstable systems, since 𝜔180 need not be uniquely defined – and the
criterion must indeed be violated for one or more of the 𝜔180’s.

Mini-tutorial 1.2 Bode diagram and feedback stabilization of an unstable system

Consider the unstable system g(s) = 1
10s−1

, that we want to stabilize with the propor-
tional feedback controller k. The closed-loop pole can be found from the closed-loop
characteristic polynomial, by solving the equation 1 + g(s)k = 0. We thereby find that
the closed-loop pole is located at s = 1−k

10
, and the closed loop will be stable for k > 1.

We note that 𝜔180 = 0, and that ∠L(j𝜔) > −180∘ ∀𝜔 > 0. We can easily calculate 𝜔c =√
k2−1
10

. That is, for k < 1, |L(j𝜔)| = |g(j𝜔)k| < 1 ∀𝜔, and there is thus no crossover fre-
quency 𝜔c. Thus, we find also from the Bode stability criterion (in terms of 𝜔c) that we
need k > 1 for stability. The Bode stability criterion in terms of 𝜔180 would fail – but as
noted above this is only valid for stable systems.

In Figure 1.11, the Bode diagram for the system in this example is shown for k = 2.
We find that 𝜔c =

√
3

10
and ∠L(j𝜔c) = −120∘, i.e. the system is stable and we have a phase

margin of 60∘.
Stability of the closed-loop system can also be verified from the monovariable

Nyquist theorem. We find that the image of L(s) under the Nyquist D-contour encircles
the critical point (−1,0) once in the anticlockwise direction, as shown in Figure 1.12.
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Figure 1.11 Bode diagram for the system L(s) = 2
10s−1
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(Continued)
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Mini-tutorial 1.2 (Continued)
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Figure 1.12 The monovariable Nyquist theorem applied to the system L(s) = 2
10s−1

. The
curve encircles the critical point (−1,0) once in the anticlockwise direction, and the system
is hence stable.

Mini-tutorial 1.3 Controller adjustment based on Bode diagram asymptotes

When a control loop is oscillating, operators will often “detune” the loop, (i.e. reduce
the gain in the controller), as high gain control usually leads to instability. We shall see
that this approach will not always be successful in removing oscillations.

Consider a liquid level control problem, with the outlet flowrate being used to control
the level. In practice, a valve is used to manipulate the flowrate, and a local flow con-
troller is used in cascade with the level controller. The flow controller receives a flow
measurement, and the setpoint (reference value) for the flow controller is the output of
the level controller (see subsequent section on controllers in cascade). The flow con-
trol loop should be much faster than the outer level control loop, and an approximate
model of the system as seen by the level controller is then

y(s) = g(s)u(s) = h
s

u(s)

This model is good in the frequency range for which the flow control is good, i.e.
inside the bandwidth of the flow controller. At higher frequencies, one must expect
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the flow control to contribute additional negative phase. The level controller is a PI
controller

u(s) = k(s)e(s) = kp
TIs + 1

TIs
e(s)

where e(s) = r(s) − y(s) is the control offset, r(s) is the setpoint, and y(s) is the measure-
ment. The level control loop is observed to be oscillating – should the controller gain
kp be decreased?

To answer this question, one should first consider the frequency of the oscillation.
This can be estimated from 𝜔c = tp∕2𝜋, with tp being the time between subsequent
peaks in the oscillating response. The oscillations indicate that the loop transfer
function L(s) = g(s)k(s) has a phase of approximately −180∘ at 𝜔c. Observe that
the phase asymptote for the controller k(s) is −90∘ for frequencies 𝜔 < 1∕TI , and
0∘ for frequencies 𝜔 > 1∕TI , while the phase of the plant transfer function g(s)
is −90∘.

We can now distinguish two cases:

1. If 𝜔c < 1∕TI , the crossover frequency 𝜔c is in the region where the loop
transfer function phase asymptote is −180∘, and the oscillations are to be
expected. Furthermore, decreasing the controller gain kp will not increase
the phase at the crossover frequency – so the oscillations would persist, but
at a lower frequency. Instead, the controller gain kp should be increased to
move the crossover frequency beyond 1∕TI . This will result in a positive gain
margin at 𝜔c, and the oscillations will be removed.

2. If 𝜔c > 1∕TI , the loop transfer function phase asymptote should be −90∘

at 𝜔c, while the observed oscillations indicate that the actual phase of the
loop transfer function is close to −180∘. The additional negative phase
probably comes from unmodeled dynamics in the flow control loop. The
phase contribution of this neglected dynamics must generally be expected
to increase with increasing frequency. Thus, decreasing the controller gain
kp will improve the phase margin and reduce the oscillations.

Simple considerations involving the asymptotes of the Bode plot, thus, suffice to under-
stand how to modify the controller tuning in this case.

1.5.4.5 Some Remarks on Stability Analysis Using the Frequency Response
Frequency analysis can indeed be very useful. However, some remarks seem to be
needed to warn against misuse of frequency analysis for analyzing stability:

● The Nyquist stability theorems and the Bode stability criterion are tools to assess
closed-loop stability based on open-loop frequency response data.

● Knowledge of the number of open-loop unstable poles is crucial when using
Nyquist or Bode.

● Nyquist or Bode should never be used to assess open-loop stability!
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● It is utterly absurd to apply the Bode stability criterion to the individual elements
of a multivariable system, and the Bode stability criterion applies to monovariable
systems only. The multivariable Nyquist theorem is used to assess closed-loop sta-
bility of multivariable systems based on the open-loop frequency response.

1.5.4.6 The Small Gain Theorem
In the multivariable Nyquist theorem, we count the number of encirclements of
det (I + L(s)) around the origin as s traverses the Nyquist D-contour. It is therefore
intuitively obvious that if the loop gain L(s) is “smaller than 1” (in some sense), we
cannot have any encirclements of the origin, and any open-loop stable system will
remain stable in closed loop. For a scalar L(s), we may of course use the ordinary
transfer function magnitude to measure the size of L(s).

For multivariable systems, we will require a system norm to measure magnitude.
This is denoted ||L||x. There are several different system norms, and the subscript x
will identify the specific norm in question. While we will not use the norm concept
much in this book, it is widely used in robustness analysis. Interested readers may
find an accessible introduction to (vector, signal, and system) norms in [4], and their
use in robustness analysis18 in [9]. However, it is pertinent to point out that eigen-
values are not system norms (when evaluating the transfer function matrix at some
given value of s). The most frequently used norm in robustness analysis is ||L||∞,
which corresponds to the peak value along the imaginary axis of the maximum sin-
gular value of L(s).19

In its basic form, the small gain theorem may not appear very useful. From sin-
gle loop control, we know that we need high gain for good control performance. It
may therefore appear that we can tolerate only very small uncertainty at frequencies
where good performance is required – and hence the loop gain is large. However,
sometimes one can factorize the loop gain in ways which makes the small gain
theorem very useful, especially in robustness analysis. Consider Figure 1.13. The
left part of the figure depicts an ordinary control loop, with uncertainty in the effect

K G

Δ

_

yur

M

Δ

Figure 1.13 Feedback loop with uncertainty converted to M − Δ structure for small gain
analysis.

18 The analysis of whether system stability and/or performance is sensitive to (inevitable) model
errors.
19 Any norm used in robustness analysis must fulfill the multiplicative property ||AB||x ≤||A||x ⋅ ||B||x , which the ∞-norm fulfills, see [9].
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of the inputs modeled by the Δ block. Assume that the loop is nominally stable, i.e.
it is stable when Δ = 0. Inputs and outputs can be ignored with respect to stability
analysis, and hence for stability analysis the left part of the figure can be converted to
the M − Δ feedback structure in the right part, where M = −KG(I + KG)−1 = −TI . At
frequencies within the closed-loop bandwidth, i.e. where the loop gain is large, we
will have ||M(j𝜔)|| ≈ 1 (despite the loop gain ||LI(j𝜔)|| = ||K(j𝜔)G(j𝜔|| being large).20

Thus, substantial error may be tolerated at low frequencies without jeopardizing sta-
bility – since what the small gain theorem tells us is that we require ||MΔ|| < 1 ∀𝜔.
Even larger model errors may be tolerated at frequencies well beyond the closed-loop
bandwidth, where ||M(j𝜔)|| ≪ 1. The system will be most sensitive to uncertainty in
the bandwidth region, where we may have a peak in ||M(j𝜔)||.
1.5.5 Controllability

Definition 1.1 The continuous-time dynamical system ẋ = Ax + Bu (or,
the matrix pair (A,B)) is controllable; if for any initial state x(0) there exists a
(piecewise continuous) input u(t) that brings the state to any x(t1) for any t1 > 0.

There exists a number of different criteria for testing controllability. Zhou et al. [11]
prove that the following are equivalent:

● (A,B) is controllable
● The Gramian matrix

Wc(t) ∶= ∫
t

0
eA𝜏BBTeAT𝜏d𝜏 (1.59)

is positive definite for any t > 0.
● The controllability matrix

 ∶=
[

B AB A2B · · · An−1B
]

(1.60)

has full row rank, where n is the number of states (i.e. A is of dimension n × n).
● The matrix [A − 𝜆I B] has full row rank for all values of the complex-valued

scalar 𝜆.
● For any eigenvalue 𝜆 and corresponding left eigenvector m of A (i.e. m∗A = m∗𝜆),

m∗B ≠ 0.
● The eigenvalues of A + BF can be freely assigned – with the only restriction that

complex eigenvalues must appear in conjugate pairs – by a suitable choice of F.

Using the Gramian Wc(t) in (1.59), an explicit expression can be found for the
input that brings the system from x(0) to x(t1)21 :

u(t) = −BTeAT (t1−t)Wc(t1)−1(eAt1 x0 − x1) (1.61)

20 Here, the notation ||M(j𝜔)|| indicates that we are evaluating the norm of M on a frequency-
by-frequency basis, and hence we are applying a matrix norm instead of a system norm.
21 This input is not unique, and there are in general infinitely many input trajectories that bring
the system from x(0) to x(t1); see [3]. The particular input trajectory in (1.61) minimizes the cost
< u,u >= ∫ t1

t0
uT(t)u(t)dt.
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For discrete-time dynamical systems xk+1 = Axk + Buk, criteria for controllability
are very similar to those for continuous time. However, one will in general not be able
to bring the system to an arbitrary new state over an arbitrary short time period – one
must allow for n timesteps to pass before an arbitrary x(t1) can be achieved. Similarly,
the discrete-time version of the Gramian matrix is calculated using summing rather
than the integration in (1.59).

1.5.6 Observability

Definition 1.2 The continuous-time dynamical system ẋ = Ax + Bu, y = Cx + Du
(or the matrix pair (C,A)) is termed observable if, for any t1 > 0, the initial state x(0)
can be determined from the time history of the input u(t) and the output y(t) over
the time interval t ∈ [0, t1].

Zhou et al. [11] prove that the following are equivalent:

● (C,A) is observable
● The Gramian matrix

Wo(t) ∶= ∫
t

0
eAT𝜏CTCeA𝜏d𝜏 (1.62)

is positive definite for any t > 0.
● The observability matrix

 ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1.63)

has full column rank, where n is the number of states.

● The matrix
[

A − 𝜆I
C

]
has full column rank for all values of the complex-valued

scalar 𝜆.
● For any eigenvalue 𝜆 and corresponding left eigenvector q of A (i.e. Aq = 𝜆q),

Cq ≠ 0.
● The eigenvalues of A + LC can be freely assigned – with the only restriction that

complex eigenvalues must appear in conjugate pairs – by a suitable choice of L.

For discrete-time dynamical systems xk+1 = Axk + Buk, yk = Cxk + Duk, criteria
for observability are very similar to those for continuous time. However, one will
in general not be able to determine the state at t = 0 by observing inputs and outputs
over an arbitrary short time – one must in general allow for n timesteps to pass
before x(0) can be determined. Similarly, the discrete-time version of the Gramian
matrix is calculated using summing rather than the integration in (1.62).



1.5 Stability 39

1.5.7 Some Comments on Controllability and Observability

Although controllability and observability in general are desirable properties,
their relationship with achievable control performance is easily exaggerated. For
instance,

● An uncontrollable state may cause no problem in achieving acceptable control, if
that state is unrelated or only weakly related to the control objective.

● If an uncontrollable state is asymptotically stable, its effect on the measured
variables will die out over time – since it is not excited by the manipulated
variables. Note that this observation does not hold if the state is “controllable”
from (and hence can be excited by) the disturbances.

● If a state is unobservable, it does not affect the measured variables. Hence, if the
measurements reflect the control objective – and the state is stable – it is of little
relevance for control quality.

The aforementioned points illustrate that good control can be achievable even
though some states are not controllable and/or observable. In addition, there is no
guarantee that good control can be achieved even if all states are controllable and
observable:

● Controllability guarantees that any state x1 can be reached at time t1 > t0.
However, what happens before or after time t1 is not specified.
1. Large excursions in the state values may happen before or after time t1.
2. It may not be possible to maintain the state at x1 at steady state.
3. Bringing the state to x1 at t1 may require excessively large inputs.

● The ability to freely assign the eigenvalues of (A + BK) does not necessarily mean
fast control is achievable
1. The state may not be known with high precision, in which case the appropriate

feedback will be uncertain.
2. Fast control generally implies use of large manipulated variables, which may

not be possible if the manipulated variables are constrained (which, in practice,
they always are).

● If state estimation becomes very fast, the estimator essentially approaches high-
order differentiation of the measured variables. This will amplify measurement
noise. Only if all states are directly measurable does it make much sense with very
fast state estimation. This might be the case for some motion control problems, but
essentially never happens in process control. In practice, very fast state estimation
is therefore often not desirable.

● There may be bandwidth limitations that cannot be found by studying the matrix
pairs (C,A) and (A,B) in isolation. For instance, in order to find RHP zeros, the
entire state-space model (or transfer function matrix) is required, and analyzing
the whether constraints are likely to cause problems requires information about
expected or allowable range of variation of different variables.

In [9], a simple example with four water tanks in series is presented, where the con-
trol objective is to control the temperature in all tanks by changing the temperature
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of the water flowing into the first tank. The system is controllable but displays many
of the problems indicated above. Indeed, the systems theory concept controllability
should be used with some care when discussing with operators and control practi-
tioners in industry – due to the weak link between the controllability property and
the achievable quality of control. In industrial parlance, a statement like “this plant is
not controllable” will typically mean that it is not possible to achieve acceptable con-
trol performance for the plant – or at least that the staff at the plant has been unable
to achieve this. Skogestad and Postlethwaite therefore use the terms state controlla-
bility and state observability when referring to the system theoretic concepts and use
the term controllability (alone) when referring to the ability to achieve acceptable
control performance. This use of the term controllability actually has a long history;
see, e.g. Ziegler and Nichols [12]. In this book, the term controllability may be used
in both meanings, but it is hopefully clear from context what is meant.

Assuming we have a minimal model of the plant, the properties of stabilizability
and detectability are (in contrast to controllability and observability) necessary cri-
teria for stabilizing an unstable plant – and hence necessary for acceptable control
performance (however lax the performance criteria applied). These two properties
will be addressed next.

1.5.8 Stabilizability

Definition 1.3 The continuous-time dynamical system ẋ = Ax + Bu (or,
the matrix pair (A,B)) is stabilizable if there exists a state feedback u = Fx
such that the resulting closed-loop system is stable.

The following are equivalent criteria for stabilizability:

● There exists a feedback u = Fx such that A + BF is stable.
● The matrix [A − 𝜆I B] has full row rank for all values of the complex-valued

scalar 𝜆 such that Re(𝜆) > 0.
● For any eigenvalue 𝜆 such that Re(𝜆) > 0 and corresponding left eigenvector m

of A, m∗B ≠ 0.

For discrete-time systems, the only difference is that we have to consider
abs(𝜆) > 1 instead of Re(𝜆) > 0.

Zhou et al. [11] argue that a more appropriate name for this property would be
state feedback stabilizability, since (state feedback) stabilizability is not sufficient
to guarantee that it is possible to stabilize the system using feedback from the out-
puts. However, if the system is both (state feedback) stabilizable and detectable (see
below), the system can indeed be stabilized by output feedback.

1.5.9 Detectability

Definition 1.4 The continuous-time dynamical system ẋ = Ax + Bu, y = Cx + Du
(or the matrix pair (C,A)) is termed detectable if there exists a matrix L such that
A + LC is stable.
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The following are equivalent criteria for detectability:

● There exists a matrix L such that A + LC is stable.
● The matrix

[
A − 𝜆I

C

]
has full column rank for all values of the complex-valued

scalar 𝜆 such that Re(𝜆) > 0.
● For any eigenvalue 𝜆 such that Re(𝜆) > 0 and corresponding left eigenvector q of A

(i.e. Aq = 𝜆q), Cq ≠ 0.

For discrete-time systems, the only difference is that we have to consider
abs(𝜆) > 1 instead of Re(𝜆) > 0.

1.5.10 Hidden Modes

When calculating the transfer function from a state-space model, any unobservable
or uncontrollable modes will cancel and will not be reflected in the transfer func-
tion. The canceled modes are called hidden modes, as these modes do not affect the
dynamic relationship between inputs and outputs. It follows that in order to be able
to stabilize a system with feedback, any hidden modes must be stable, which cor-
responds to the requirement that all unstable states must be both stabilizable and
detectable.

1.5.11 Internal Stability

A system is internally stable if the injection of bounded signals anywhere in the sys-
tem leads to bounded responses everywhere. For analyzing internal stability of a
simple feedback loop such as the one in Figure 1.14, it suffices to consider injection
(addition) of a signal d1 to the signal going from K to G, and a signal d2 to the signal
going from G to K. The transfer function from d2 to y is S = (I + GK)−1, whereas the
transfer function from r (not shown in the figure) to y is T = I − S, and verifying
stability from d2 to y also verifies stability from r to y.

When verifying internal stability, it is necessary to assume that none of the indi-
vidual blocks in the system (in this case K and G) contain any hidden unstable
modes – and this must be separately verified. We are here concerned with verifying
that the feedback interconnection does not result in any hidden unstable modes.

K G
_

u y++

d1 d2

Figure 1.14 A simple feedback loop with input and output disturbances.
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Example 1.1 Consider a case with G(s) = 10(10s+1)
(5s−1)

and K(s) = k(5s−1)
s(10s+1)

. The loop
gain G(s)K(s) = 10k

s
, and it would appear that we have 90∘ phase margin irrespective

of the value of k, and k can thus be adjusted to give any desired bandwidth. The
transfer function from d2 to y is S(s) = s

s+10k
, which is clearly stable. However, we

observe that whereas G and K together has three modes, S can be described with
only one mode – two modes have been canceled. The transfer function from d1 to y
is GSI = SG = 10s(10s+1)

(s+10k)(5s−1)
, which is unstable (for any k)! In practice, we must allow

for disturbances entering anywhere in the system, and this closed-loop system is
unacceptable since it is not internally stable even though it is stable from d2 (or r)
to y.

We note that the problems arise from canceling a pole in the RHP, and cancelation
of the pole in the LHP does not lead to any particular problem.

Assigning the following state-space representations to G(s) and K(s):

G(s) =
[

A B
C D

]
; K(s) =

[
AK BK
CK DK

]
and with negative feedback as in Figure 1.14, tedious but straightforward manipu-
lations lead to

[
ẋG
ẋK

]
=

Ã
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

A − B(I + DK D)−1DK C B(I + DK D)−1DK
−BK(I + DDK)−1 AK − BK(I + DDK)−1DCK

] [
xG
xK

]
+
[

B(I + DK D)−1 −B(I + DK D)−1DK
−BK(I + DDK)−1D −BK(I + DDK)−1

] [
d1
d2

]
(1.64)

where xG are the states in G(s) and xK are the states in K(s). The stability of the overall
system depends on the matrix Ã, which may be expressed as:

Ã =
[

A 0
0 AK

]
+
[

B
BK

] [
−D −I

I −DK

]−1 [
C CK

]
(1.65)

The internal stability of the closed-loop system may thus be determined from the
eigenvalues of Ã. We note that a prerequisite for internal stability is that the matrix
Ã is well defined, i.e. that the matrix[

−D −I
I −DK

]
is invertible (full rank). This is often stated as the requirement that the closed-loop
feedback system should be well posed. Note that the closed loop is always well posed
if G(s) is strictly proper, i.e. if D = 0.

Alternatively, internal stability may be checked by checking all four closed-loop
transfer functions in Figure 1.14:[

u
y

]
=
[

(I + KG)−1 −K(I + GK)−1

G(I + KG)−1 (I + GK)−1

] [
d1
d2

]
(1.66)

Only if there is no pole-zero cancelation between G and K in the RHP does it suffice
to check the stability of only one of these transfer functions.
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1.5.12 Coprime Factorizations

Coprime factorizations may at first seem a little daunting. However, the formulas
for coprime factorizations are straightforward, and an important use is in the
parametrization of all stabilizing controllers that are presented the next section.

A right coprime factorization of G(s) is given by G = NM−1, if there exist stable Xr
and Yr such that M and N are both stable and fulfill

[
Xr Yr

] [ M
N

]
= I

Similarly, a left coprime factorization of G(s) is given by G = M̃−1Ñ, if there exist
stable Xl and Yl such that M̃ and Ñ are both stable and fulfill

[
M̃ Ñ

] [ Xl
Yl

]
= I

A coprime factorization may be found from any stabilizing state feedback gain F
and stabilizing observer gain L (such that both A + BF and A + LC are stable), using
the formulas [11]:

⎡⎢⎢⎣
M −Yl

N Xl

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

A + BF B −L

F I 0

C + DF D I

⎤⎥⎥⎥⎥⎦
(1.67)

⎡⎢⎢⎣
Xr Yr

−Ñ M̃

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

A + LC −(B + LD) L

F I 0

C −D I

⎤⎥⎥⎥⎥⎦
(1.68)

We observe that M∕M̃ must have as RHP zeros all RHP poles of G, whereas N∕Ñ
contain all RHP zeros of G.

Clearly, the coprime factorizations are nonunique, since the stabilizing gains F
and L are not unique. Any coprime factorization (with corresponding Xl,Yl,Xr ,Yl)
can be used for the parametrization of all stabilizing controllers. However, there
are particular choices of coprime factorizations that have special uses. Before these
particular coprime factorizations are presented, we will need the definition of a con-
jugate system.

Definition 1.5 Conjugate system The conjugate system of G(s) is defined as:

conj(G(s)) = G∗(s) = GT(−s) = BT(−sI − AT)−1CT + DT

The conjugate system of G(s) is sometimes also termed the para-hermitian conju-
gate of G(s).



44 1 Mathematical and Control Theory Background

1.5.12.1 Inner–Outer Factorization
Definition 1.6 Inner function A transfer function matrix WI(s) is called inner
if WI(s) is stable and W∗

I WI = I, and co-inner if WIW∗
I = I.

Note that WI does not need to be square, and that WI is inner if W T
I is co-inner

and vice versa.

Definition 1.7 Outer function A transfer function matrix WO(s) is called outer
if WO(s) is stable and has full row rank in the open RHP.

Clearly, a transfer function matrix cannot be outer if it has more rows than
columns, and in order to be an outer function it cannot have any zeros in the
open RHP.

Inner–outer factorizations of stable transfer function matrices may be found
by factoring out RHP zeros using Blaschke products, as explained in Appendix D.

We will use the inner–outer factorization when assessing possible reduction
in input usage obtainable by using feedforward from disturbances.

1.5.12.2 Normalized Coprime Factorization
A right coprime factorization G = NM−1 is normalized if

M∗M + N∗N = I

i.e. if [
M
N

]
is an inner function. Similarly, a left coprime factorization is normalized if[

M̃ Ñ
]

is co-inner. Note that Xy ≠ M∗, Yr ≠ N∗, etc. Normalized coprime factorizations
are unique up to the multiplication by a (constant) unitary matrix U. Normalized
coprime factorizations are found from particular choices of the stabilizing gains F
and L, see [11].

Normalized coprime factorizations allow a relatively simple and yet general uncer-
tainty description in terms of uncertainty in the coprime factors. This uncertainty
description is the starting point for H∞ robust loopshaping design, a relatively simple
robust controller design method. Readers are referred to [5, 6, 9] for details.

1.5.13 Parametrization of All Stabilizing Controllers

This section will present a parametrization of all stabilizing controller for a
system G(s). For open-loop stable systems this parametrization is commonly known
as the Youla parametrization [10]. Naturally, we require not only input–output
stability, but also internal stability of the closed-loop system.
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1.5.13.1 Stable Plants
Consider an open-loop asymptotically stable plant, with plant model Gm(s), which
is assumed to be a perfect model of the true plant. Then, all feedback controllers K
resulting in a stable closed-loop system can be parameterized as:

K = Q(I − GmQ)−1 (1.69)

where Q is any asymptotically stable system. This result holds also for nonlinear
plants Gm. We see from Figure 2.21 that the model Gm in the nominal case (no model
error) perfectly cancels the feedback signal, leading to the series interconnection
of the two stable systems Q and G. This technique is used directly in the so-called
internal model control (IMC), as addressed in Section 2.4.3.6.

1.5.13.2 Unstable Plants
For a stabilizable and detectable plant G with state-space realization

G =
[

A B
C D

]
all stabilizing controllers can be represented as in Figure 1.15 [11] where Q is stable
and I + DQ(j∞) is invertible. The dynamic interconnection J is given by:

J =
⎡⎢⎢⎣

A + BF + LC + LDF −L B + LD
F 0 I

−(C + DF) I −D

⎤⎥⎥⎦ (1.70)

Figure 1.15 Representation
of all stabilizing controllers.

G

J

Q

u y

K
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where F is a stabilizing state feedback (A + BF stable) and L is a stabilizing observer
(A + LC stable). Such stabilizing gains F and L can always be found for stabilizable
and detectable systems, as explained above. Noting that stabilizing F and L also can
be used to define a coprime factorization for G, the parametrization of all stabilizing
controllers may equivalently be presented using coprime factors, such as in [9].

It can be verified that (1.70) results in the controller (1.69) if one chooses F = 0 and
L = 0 – which is obviously possible for open-loop stable plants. Thus, as one should
expect, the parametrization of all stabilizing controllers for stable plants is a special
case of the parametrization for unstable plants.

Zhou et al. [11] show that the closed-loop transfer function from an external input
w to an output z, for any internally stabilizing, proper controller, is an affine func-
tion of the free parameter Q, i.e. that Twz = T11 + T12QT21 (where Tij can be found by
straightforward but tedious algebra). Controller design methods have been proposed
that instead of searching directly for the controller, one searches only over stabiliz-
ing controllers, due to the simple affine relationship. The main drawback with such
an approach is the difficulty of specifying a sufficiently flexible parametrization for
Q – often an FIR description is used. One should also bear in mind that although
nominal stability is guaranteed by choosing a stable Q, there is no inherent robust-
ness guarantee.

1.5.14 Hankel Norm and Hankel Singular Values

For open-loop stable systems, the infinite time controllability Gramian (or just “con-
trollability Gramian,” for short) in (1.59) can be obtained by setting the upper limit
of the integration to infinity. A simpler way of finding it is to solve the Lyapunov
equation:

AWc + WcAT + BBT = 0 (1.71)

Similarly, the infinite time observability Gramian is found from

ATWo + WoA + CTC = 0 (1.72)

For discrete-time models, the corresponding equations are

AWcAT − Wc + BBT = 0 (1.73)

and

ATWoA − Wo + CTC = 0 (1.74)

It is hopefully clear that the continuous-time state-space model is used in (1.71)
and (1.72), while the discrete-time state-space model is used in (1.73) and (1.74).
Note that since the controllability and observability Gramians correspond to solu-
tions to infinite-horizon integrals22 (from (1.59) and (1.62), respectively), they are
only defined for asymptotically stable systems.

22 Or infinite sums in the case of discrete-time Gramians.
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In somewhat imprecise terms, it may be stated that the controllability Gramian
measures how strongly the inputs affect the states, whereas the observability
Gramian measures how strongly the outputs are affected by the states. The Grami-
ans are affected by similarity transformations, but their product H = WcWo is not
affected by similarity transforms. For minimal models, there is a particular state
representation for which Wc = Wo, and the corresponding state-space model is
termed a balanced realization of the model. For many numerical calculations it may
be an advantage to use the balanced realization of the model, as often the results
will be less sensitive to numerical error when this realization is used.

However, although H is independent of similarity transforms, it is affected by scal-
ing of inputs and outputs, and for the uses we will have for H it is therefore advisable
to scale the model as described in Section 1.2.9. The square roots of the eigenvalues
of H are known as the Hankel singular values, and the largest Hankel singular value
is the same as the Hankel norm. The Hankel norm can be seen as a measure of how
strongly past inputs affect future outputs [9]. The most common use of the Hankel
norm is in model reduction. However, we will be using it for selection and pairing
of inputs and outputs.

Problems

1.1 Consider the system

ẋ =
[
−1.4 −3.5
−3.5 −1.5

]
x +

[
0.5
0.5

]
u

y =
[
−1 3

]
x

(a) Find the poles and (transmission) zeros of the system?
(b) Is the system controllable and observable?
(c) Find a minimal realization for the system.
(d) What considerations to we have to take before we decide to remove hidden

modes from a system model?

1.2 Figure 1.16 shows the Bode plot for the open-loop transfer function of some
control loop (as given by Matlab23). It is known that the open-loop system is
asymptotically stable and has no zeros or poles at the origin.
(a) What is the correct phase in the Bode diagram at low frequencies for this

system?
(b) Will this system be stable in closed loop?

23 One of the consequences of using the standard Matlab function is that the decibel scale is used
for magnitude, not the log10 scale used throughout the book. A gain (magnitude) of 1 corresponds
to 0 dB.
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Figure 1.16 Bode diagram for a system – as given by Matlab.

1.3 Consider the system

y(s) = 1∕(s + 0.1)(s − 2)
[

s + 2 s
s + 4 s + 1

]
u(s)

(a) What is meant by the multiplicity of a pole of a dynamical system?
(b) What are the poles of this system?
(c) Calculate the transmission zero(s) of the system.
(d) Calculate the corresponding zero direction(s) at the output of the plant.

1.4 A system has transfer function g(s) = 10(s+1)
(s+20)(s−0.1)

. It is proposed to control this
system with a controller given by k(s) = 0.1(s−0.1)

s
.

(a) Find the closed-loop transfer function from reference to measurement
with the proposed controller. Is the system stable from r to y?

(b) Is the system internally stable?

1.5 Consider again a level control problem such as that shown in Figure 1.3.
The flow controller is fast and accurate, but the liquid level is found to be
oscillating – also when the inlet flowrate is steady. The level controller can be
described by:

Δu = k
p
Δy
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where Δu = uk − uk−1 (i.e. the change in controller output between two sam-
pling intervals), and Δy = yref − y, where yref denotes the reference (desired
level). Explain why the level control is oscillating.
Hint: What is the continuous-time equivalent of the controller dynamics?
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