Contents

	Editors Bio Section xiii Preface xv Acknowledgments xvii		
1	Thermoelectric Power Generators and Their Applications 1		
	Jianxu Shi and Ke Wang		
1.1	Introduction 1		
1.2	Principles of Thermoelectric Conversion 1		
1.2.1	Seebeck Effect 1		
1.2.2	Peltier Effect 2		
1.2.3	Thomson Effect 3		
1.2.4	Evaluation Indicators for Thermoelectric Materials and Devices		
1.3	Thermoelectric Materials 4		
1.3.1	Traditional Thermoelectric Materials 4		
1.3.2	Half-Heusler Alloys 6		
1.3.3	2D Thermoelectric Materials 7		
1.3.4	Thermoelectric Liquid Materials 9		
1.4	Preparation of Thermoelectric Materials 10		
1.5	Thermoelectric Devices and Their Applications 15		
1.5.1	Conventional Devices 15		
1.5.2	Miniature Devices 16		
1.5.3	Flexible Devices 18		
1.6	Conclusions and Outlook 20		
	Acknowledgment 20		
	References 20		
2	Application of Nanomaterials in Organic Solar Cells 27 Tongsiliu Wu		
2.1	Introduction 27		
2.1.1	Background 27		
2.1.2	Mechanisms and Structure of OSCs 28		
2.1.3	Advantages of Adding Nanomaterials 30		
2.2	Application of Carbon Materials in OSCs 33		

viii	Contents	
	2.2.1	Allotropes of Carbon Materials 33
	2.2.2	Carbon Nanotubes 34
	2.2.3	Graphene 36
	2.2.4	Fullerene Receptors and Non-fullerene Receptors 38
	2.3	Application of Silver Nanowire-based Nanoarrays in OSCs 43
	2.3.1	Influence of Nanomicrostructure 43
	2.3.2	Silver Nanowires 45
	2.4	Emerging Trends and Future Outlook 47 Conclusions 48
	2.3	References 48
	3	Advances in Low-temperature Na-ion Battery Energy
		Storage 55
		Meng Li, Kuan Wang, Qihang Jing, Xuan Yang, Chenxiang Li, Zhou Liao,
	2.1	Dongsheng Geng, and Biwei Xiao Introduction 55
	3.1	LT NIB Cathode Materials 56
	3.2.1	Polyanion 57
	3.2.2	Layered TMO 59
	3.2.3	Prussian Blue and Its Analogues 62
	3.3	LT NIB Anode Materials 63
	3.3.1	Interleaved Reaction Storage Na Negative Electrode 64
	3.3.2	Alloyed Na Storage Anode 66
	3.3.3	Transformation-type Na Storage Negative Electrode 68
	3.4	LT Organic Electrolyte Research 70
	3.4.1	LT Solvent Exploration 71
	3.4.2	Selection of Electrolyte Salts 73
	3.4.3	Electrolyte Additives 75
	3.5	Summary and Outlook 77 References 79
	4	Thermochemical Energy Storage for Renewable Solar Energy
	т	Utilization 89
		Ruolan Hu, Lihui Zhang, Wei Deng, Bo Tong, and Yong Zhao
	4.1	Introduction 89
	4.2	Materials/Chemical Reactions and Systems for TCES Technology 91
	4.2.1	Gas-Gas TCES Materials/Reactions and Systems 92
	4.2.1.1	Organics Reforming, Decomposition and Gasification 92
	4.2.1.2	Ammonia Synthesis/Dissociation 95
	4.2.1.3	Sulfur-based Reactions 96
	4.2.2	Solid-Gas TCES Materials/Reactions and Systems 97
	4.2.2.1	Carbonates Calcination/Carbonation 97
	4.2.2.2	Hydroxides Dehydration/Hydration 101
	4.2.2.3	Metal Hydrides Dehydrogenation/Hydrogenation 104
	4.2.2.4	Metal Oxides Oxidation/Reduction 107

 \bigoplus

 \bigoplus

 \bigoplus

Contents	ix
----------	----

4.2.3	Liquid-Gas TCES Materials/Reactions and Systems 111
4.2.3.1	Isopropanol Dehydrogenation/Hydrogenation 111
4.2.3.2	Ammonium Hydrogen Sulfate Synthesis/Dissociation 112
4.3	Solar Receivers/Reactors for TCES Systems 112
4.3.1	Gas-Gas TCES Receivers/Reactors 113
4.3.1.1	Solar Methane Reforming Receivers/Reactors 113
4.3.1.2	Solar Methane Decomposition Receivers/Reactors 118
4.3.1.3	Solar Ammonia Dissociation/Synthesis Receivers/Reactors 120
4.3.1.4	Solar Sulfur-based Cycle Receivers/Reactors 123
4.3.2	Solid-Gas TCES Receivers/Reactors 124
4.3.2.1	Fixed/Packed Bed Receivers/Reactors 124
4.3.2.2	Fluidized Bed Receivers/Reactors 129
4.3.2.3	Moving Bed Receivers/Reactors 131
4.4	Conclusion 135
	Acknowledgment 137
	Conflict of Interest 137
	References 137
5	Recent Progress in Triboelectric Nanogenerators and New
	Challenges 161
	Rong Xue and Xiaojia Wei
5.1	Introduction 161
5.2	Recent Research on Potential Mechanism and Four Working Modes of
	TENG 162
5.2.1	Recent Research on Potential Mechanism 162
5.2.2	CS Mode 163
5.2.3	LS-Mode 165
5.2.4	SE-Mode 168
5.2.5	FT-mode 171
5.3	Conclusion 174
	Conflict of Interest 174
	References 174
6	Wind Turbine Blades in Wind Power Generation:
	Manufacturing, Recovery and Reuse 181
	Zichun Feng, Chunbao Du, Bingjia Wang, Baoli Li, and Gang Zhang
6.1	Introduction 181
6.2	Recycling of Waste WTBs 182
6.2.1	Manufacturing of WTBs 183
6.2.2	Burial and Incineration 183
6.2.3	Physical Recovery Method 184
6.2.4	Chemical Recovery Methods 184
6.2.4.1	Supercritical Fluid Degradation Method 184
6.2.4.2	Solvent Dissolution Method 186
6.2.5	Thermal Recovery Methods 187

High Temperature Pyrolysis Recovery 187
Fluidized Bed Method 189
Microwave Pyrolysis Method 190
Electrochemical Recovery Treatment Method 191
Energy Recovery Method 193
Application Procedure for WTBs after Recycling 193
Local Post-cut Reuse 193
Reuse after Crushing 194
Future Direction of WTB Improvement 196
Conflict of Interest 198
References 198
Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells 205
Shichao Ding, Zhaoyuan Lyu, Yu Meng, Yuehe Lin, and Jin-Cheng Li
Introduction 205
Classification 207
Proton Exchange Membrane Fuel Cells 208
Alkaline Fuel Cells 210
Solid Oxide Fuel Cells 211
Electrocatalysts 211
Noble Metal-Based Catalysts 212
Low Pt Catalysts 213
Pt-alloy with Carbon Support 214
Non-precious-metal Catalysts 217
Transition Metal Oxide-based Catalysts 217
Metal-N-C-based Catalysts 218
Non-metal-based Catalyst 221
N-doped Carbon-based Catalysts 221
Other Heteroatom-doped Catalysts 223
Future Outlook 224
Conclusion 225
Acknowledgments 225
Conflict of Interest 226
References 226
Carbon Fiber in Renewable Energy Development 233
Guoqing Xu, Tong Li, Feixiang Wang, Zhiqiang Duan, and Yimin Jing
Introduction 233
Carbon Fiber Classification: Pitch-Based, Viscose Based, PAN
Based 234
Application of Carbon Fiber 236
Application of Carbon Fiber in Wind Power 237
Application of Carbon Fiber in the Photovoltaic Industry 239
Heating Field 239

 \bigoplus

x

 \bigoplus

8.5.2	Photovoltaic Cell Carrier Board 241	
8.6	Application of Carbon Fiber in the Hydrogen Production Industry	243
8.6.1	Hydrogen Fuel Cells 243	
8.6.2	Application of Activated Carbon Fiber in Hydrogen Storage	
3.0.2	Technology 245	
8.7	Redox Fluid Flow Batteries 246	
8.8	Phase Change Energy Storage 247	
3.0 8.9	Biofuel Cells 248	
3.9 8.10		
8.11	Emerging Trends and Future Outlook 249 Recycling of Carbon Fiber 250	
	Summary 253	
8.12		
	References 253	
9	Sustainable Carbon Nanofluids of Petroleum Extraction 257	
	Chunbao Du and Yuan Cheng	
9.1	Introduction 257	
9.2	Carbon Nanofluids for EOR 259	
9.2.1	Graphene-based Nanofluid 259	
9.2.2	CNTs-based Nanofluid 262	
9.2.3	GO-based Nanofluid 265	
9.2.4	QDs-based Nanofluid 269	
9.3	Influencing Factors of Carbon Nanofluids on EOR 272	
9.3 9.4	Mechanisms 274	
9. 4 9.4.1	Wettability 274	
9.4.1 9.4.2	Interfacial Tension 274	
9.4.2	Separation Pressure 275	
	Mobility Ratio 275	
9.4.4 9.5	Emerging Trends and Future Outlook 275	
9.5 9.6	Conclusions 277	
9.0		
	Acknowledgment 277 Conflict of Interest 277	
	References 277	
10	Carbon Dioxide Capture and Chemical Conversion into	
-0	Fuels 283	
	Yanan Zhu	
10.1	Introduction 283	
10.1	CO ₂ Capture 284	
10.2.1	Technologies for CO ₂ Capture 284	
10.2.1.1	Pre-combustion Carbon Capture Technology 284	
10.2.1.1		
10.2.1.2	Oxy-fuel Combustion Carbon Capture Technology 285 Post-combustion Carbon Capture Technology 286	
10.2.2	Materials for CO ₂ Capture 286	
10.2.2.1	Porous Organic Polymers 287 Motel organic Frameworks 288	
10.2.2.2	Metal-organic Frameworks 288	

xii | Contents

Index 307