Contents

Preface *xv*

Part I Overview and Background 1

1	Introduction 3
	Dipesh Shikchand Patle and Gade Pandu Rangaiah
1.1	Process Intensification 3
1.2	Need for Control and Safety Analysis of Intensified Chemical
	Processes 5
1.3	Studies on Control and Safety Analysis of Intensified Chemical
	Processes 7
1.4	Scope and Organization of the Book 9
1.5	Conclusions 12
	References 13
2	Applications and Potential of Process Intensification in
	Chemical Process Industries 15
	Chirla C.S. Reddy
2.1	Introduction 15
2.2	Benefits of Process Intensification Techniques 16
2.3	Static Mixers 17
2.4	Process Intensification for Separation Vessels 18
2.5	Process Intensification for Distillation 21
2.6	Process Intensification for Heating 24
2.6.1	Steam Injection Heater 24
2.6.2	Steam/Electric Heaters as a Replacement for Fired Heaters 25
2.6.3	Process Intensification for Flue Gas Heat Recovery 26
2.6.4	Process Heat Exchangers 26
2.6.5	Sonic Horn 27
2.7	Steam Compression 27
2.8	Process Intensification for Carbon Capture 30
2.9	Process Intensification for Vacuum Systems 31

- 2.10 Process Intensification for Water Deaeration 33
- 2.11 Process Intensification for Development of Inherently Safer Design (ISD) 33
- 2.12 Process Intensification for Reducing Pressure Relief and Handling Requirements *35*
- 2.12.1 Non-safety Instrumented Solutions for Pressure Relief Systems 37
- 2.12.2 Safety Instrumented System (SIS) Solutions for Reducing Pressure Relief Requirements 39
- 2.13 Process Intensification for Wastewater Recovery 41
- 2.14 Challenges of Process Intensification Techniques 43
- 2.15 Conclusions 44 References 45

Part II Procedures and Software for Simulation, Control and Safety Analysis 47

- 3 Simulation and Optimization of Intensified Chemical Processes 49 Zemin Feng and Gade Pandu Rangaiah
- 3.1 Introduction 49
- 3.2 Simulation of Chemical Processes 50
- 3.2.1 Usefulness of Process Simulation 50
- 3.2.2 Commercial Process Simulators 52
- 3.2.3 Free Process Simulators 53
- 3.2.4 Computational Methods for Process Simulation 53
- 3.3 Procedure for Simulation of (Intensified) Chemical Processes 56
- 3.3.1 Problem Analysis 56
- 3.3.2 Basic Process Flow Design 57
- 3.3.3 Process Intensification and Integration 57
- 3.3.4 Model Construction 57
- 3.3.5 Simulation and Convergence 59
- 3.3.6 Results Analysis 59
- 3.4 Optimization of (Intensified) Chemical Processes 59
- 3.4.1 Mathematical Optimization Methods 59
- 3.4.2 Optimization of Chemical Processes with a Process Simulator 62
- 3.4.2.1 Optimization Using MATLAB 62
- 3.4.2.2 Optimization Using Python 63
- 3.5 Challenges in the Simulation/Optimization of Intensified Chemical Processes 65
- 3.6 Case Study 66
- 3.6.1 Problem Analysis 66
- 3.6.2 Process Flow Design 67

- 3.6.3 Model Construction 69
- 3.6.4 Simulation and Convergence 70
- 3.6.4.1 Process Simulation 70
- 3.6.4.2 Economic Evaluation Criterion 71
- 3.6.4.3 Process Optimization 73
- 3.6.5 Results and Analysis 75
- 3.7 Conclusions 78 References 79

4 Dynamic Simulation and Control of Intensified Chemical Processes 83

- Zemin Feng and Gade Pandu Rangaiah
- 4.1 Introduction *83*
- 4.2 Dynamic Simulation of Chemical Processes 84
- 4.2.1 Understanding Dynamic Simulation 84
- 4.2.2 Applications of Dynamic Simulation 87
- 4.2.3 Dynamic Simulation Software 88
- 4.3 Dynamic Simulation and Control Procedure 91
- 4.4 Dynamic Simulation and Control of Intensified Chemical Processes 98
- 4.4.1 Challenges Due to Process Intensification 100
- 4.5 Process Control 100
- 4.5.1 Controlled, Manipulated, and Disturbance Variables 101
- 4.5.2 Typical Control Loop 101
- 4.5.3 Control Degrees of Freedom 101
- 4.6 Case Study *102*
- 4.6.1 Steady-state Simulation and Optimization 103
- 4.6.2 Preparation/Initialization for Dynamic Simulation 103
- 4.6.3 Control Structure Design 107
- 4.6.3.1 Composition Control Scheme 108
- 4.6.3.2 Temperature Control Scheme 110
- 4.6.4 Tuning of Controller Parameters 112
- 4.6.5 Analysis of Dynamic Simulation Results 112
- 4.7 Conclusions 120
 - References 121

5 Safety Analysis of Intensified Chemical Processes 125

Masrina Mohd Nadzir, Zainal Ahmad, and Syamsul Rizal Abd Shukor

- 5.1 Introduction 125
- 5.2 Safety Analysis in Chemical Process Industry 126
- 5.2.1 Safety Analysis Tools 128
- 5.2.1.1 Hazard Identification 128
- 5.2.1.2 Risk Assessment 130
- 5.2.1.3 Inherently Safer Design (ISD) 131

x Contents

5.2.1.4	Safety Instrumented Systems 132
5.2.1.5	Human Factors and Safety Culture 132
5.2.1.6	Regulatory Framework and Compliance 134
5.2.1.7	Monitoring and Continuous Improvement 135
5.3	Process Intensification and Safety Analysis 136
5.3.1	Impacts of Process Intensification on Safety 136
5.3.2	Safety Analysis in Intensified Process Design 137
5.3.2.1	Hazard Identification Techniques for Process Intensification
	Technologies 138
5.3.2.2	Risk Assessment for Process Intensification Technologies 140
5.3.3	Inherently Safer Design Principles Intensified Processes 141
5.4	Safety Management Systems for Intensified Processes 144
5.5	Safety Training and Competency for Intensified Processes 146
5.5.1	Importance of Safety Training and Competency 146
5.5.2	Developing Safety Training and Competency Programs 147
5.5.3	Utilizing a Blended Learning Approach 148
5.5.4	Assessing Training Effectiveness and Continual Improvement 148
5.5.5	Benefits of Effective Safety Training and Competency Management
5.6	Case Studies of Safety Analysis in Intensified Processes 149
5.7	Conclusions 151
	References 151

Part III Control and Safety Analysis of Intensified Chemical Processes 155

148

6	Control of Hybrid Reactive – Ex	xtractive Distillation Systems for
	Ternary Azeotropic Mixtures	157
	7	1

Zong Yang Kong and Hao-Yeh Lee

- 6.1 Introduction 157
- 6.2 Steady-state Design of the RED 160
- 6.3 Dynamic Simulation Setup 161
- 6.4 Inventory Control Setup 162
- 6.5 Sensitivity Analysis 163
- 6.6 Quality Control Structures 165
- 6.6.1 Control Structure 1 (CS 1) Simple Temperature Control 165
- 6.6.2 Control Structure 2 (CS 2) Triple Point Temperature Control 168
- 6.6.3 Control Structure 3 (CS 3) Triple Point Temperature Control Using SVD Analysis 170
- 6.6.4 Feedforward Control Structure 3 (FF-CS 3) 172
- 6.7 Control Performance Evaluation 177

6.8 Conclusions 178

Acknowledgements 179 Acronyms 179 Nomenclature 180 References 180

7	Process Design and Control of Reactive Distillation in Recycle	
	Systems	183

Mihai Daniel Moraru, Costin Sorin Bildea, and Anton Alexandru Kiss

7.1 Introduction 183

7.2 Design of Reactive Distillation Processes 184

7.3 Control of Reactive Distillation Processes 188

- 7.4 Case Study: RD Coupled with a Distillation–Reactor System and Recycle 192
- 7.4.1 Basis of Design and Basic Data 192
- 7.4.2 Process Design 198
- 7.4.3 Process Control 201
- 7.4.4 Discussion 204
- 7.5 Conclusions 204 References 205

8	Dynamics and Control	of Middle-vessel Batch Distillation wit	th
	Vapor Recompression	209	

Radhika Gandu, Akash Burolia, Dipesh Shikchand Patle, and Gara Uday Bhaskar Babu

- 8.1 Introduction 209
- 8.2 Conventional Middle-vessel Batch Distillation 211
- 8.2.1 A Systematic Simulation Approach of CMVBD 212
- 8.2.1.1 Model Equations 213
- 8.2.2 Constant Composition Control 216
- 8.3 Single-stage Vapor Recompression in Middle-vessel Batch Distillation *216*
- 8.3.1 A Systematic Simulation Approach of SiVRMVBD 216
- 8.4 Performance Specifications 218
- 8.4.1 Energy Savings 218
- 8.4.2 Total Annual Cost 218
- 8.4.3 Greenhouse Gas Emissions 219
- 8.5 Results and Discussion 219
- 8.5.1 Conventional Middle-vessel Batch Distillation Column 219
- 8.5.1.1 Dynamic Composition Profiles 219
- 8.5.2 Single-stage Vapor Recompression in Middle-vessel Batch Distillation 222
- 8.5.3 Energetic, Economic, and Environmental Performance: CMVBD vs. SiVRMVBD *225*
- 8.5.4 Constant Composition Control 226
- 8.5.4.1 SiVRMVBD-GSPI 229
- 8.5.5 Energetic, Economic, and Environmental Performance: CMVBD vs. Controlled CMVBD and SiVRMVBD 232
- 8.6 Conclusions 234 References 234

xii Contents

9	Safety Analysis of Intensified Distillation Processes Using Existing and Modified Safety Indices 237
	Savyasachi Shrikhande, Gunawant K. Deshpande, Gade Pandu Rangaiah,
	and Dipesh Shikchand Patle
9.1	Introduction 237
9.2	Safety Indices for Process Safety Assessment 239
9.3	Description of Distillation Systems 241
9.3.1	Conventional Sequence of Columns 241
9.3.2	Dividing-Wall Column 241
9.3.3	Dividing-Wall Column with Mechanical Vapor Recompression 243
9.4	Selection of Safety Indices 244
9.5	Results and Discussion 245
9.5.1	Conventional Sequence of Columns 245
9.5.2	Dividing-Wall Column 251
9.5.3	Dividing-Wall Column with Mechanical Vapor Recompression 253
9.5.4	Comparative Analysis 255
9.6	Survey of Engineers and Discussion of their Responses 257
9.7	Improved PRI 262
9.8	Conclusions 263
	Acknowledgments 263
	References 264

10Dynamic Safety Analysis of Intensified Extractive DistillationProcesses with Independent Protection Layers269

Chengtian Cui and Meng Qi

- 10.1 Introduction 269
- 10.2 Preliminary 271
- 10.3 Process Studied 272
- 10.3.1 Process Intensification Measures 272
- 10.3.2 Steady-state Process Design 273
- 10.3.3 Process Intensification Analysis 274
- 10.4 Dynamics and Control 276
- 10.4.1 Control Basis 276
- 10.4.2 BPCS #1 279
- 10.4.3 BPCS #2 279
- 10.4.4 BPCS #3 282
- 10.5 Safety Analysis 284
- 10.5.1 Process #1 Safety Analysis 285
- 10.5.2 Process #2 Safety Analysis 286
- 10.5.3 Process #3 Safety Analysis 288
- 10.5.4 Dynamic Safety Analysis of Process #3 with IPLs 289

10.6 Conclusions 292 Acknowledgments 293 References 293

11 Operability and Safety Considerations in Intensified Structures for Purification of Bioproducts 295

Juan G. Segovia-Hernández, César Ramírez-Márquez, Gabriel Contreras-Zarazúa, Eduardo Sánchez-Ramírez, and Juan J. Quiroz-Ramírez

- 11.1 Introduction 295
- 11.2 Methodology 302
- 11.2.1 Control Behavior Analysis 306
- 11.2.1.1 Singular Value Decomposition *306*
- 11.3 Methyl Ethyl Ketone 307
- 11.3.1 Methyl Ethyl Ketone Production Through a Conventional Process 308
- 11.3.1.1 MEK Production from Non-renewable Sources 308
- 11.3.2 Purification of MEK Through Process-Intensified Schemes 308
- 11.4 Intensification of Alcohol-to-Jet Fuel Process 313
- 11.4.1 Process Modeling and Optimization 314
- 11.4.2 Results 316
- 11.5 New Processes for Furfural and Co-products 318
- 11.5.1 Results 321
- 11.6 Lactic Acid 324
- 11.6.1 Lactic Acid Production by Reactive Distillation 325
- 11.6.2 Design and Synthesis of Intensified Processes 326
- 11.6.3 Optimization 326
- 11.6.4 Results and Discussion 327
- 11.7 Future and Perspectives 329
- 11.8 Conclusions 329 Acknowledgments 330 References 330
- 12 Analysis of Safety and Economic Objectives for Intensified Algal Biodiesel Process 335

Gunavant Deshpande, Ashish N. Sawarkar, and Dipesh Shikchand Patle

- 12.1 Introduction 335
- 12.2 Process Development 337
- 12.2.1 Process Development of Alternative 1 337
- 12.2.2 Process Development of Alternative 2 340
- 12.3 Multi-Objective Optimization 342
- 12.3.1 Objective Functions 344
- 12.3.1.1 Break-Even Cost 344
- 12.3.1.2 Individual Risk (IR) 345

xiv Contents

Simple Additive Weighting (SAW) Method 347 12.3.2 Results and Discussion 347 12.4 12.4.1 Minimization of BEC and IR for Alternative 1 348 12.4.2 Minimization of BEC and IR for Alternative 2 350 Comparative Analysis 352 12.5 12.6 Conclusions 353 References 354

Index 359