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Field Elements of Classic Control Systems

After reading this chapter, you should be able to understand that:

• The chapter mainly compares different classical theories regarding process
control.

• We will focus on systems described in terms of ordinary differential equations
for linear and nonlinear processes.

• In addition, it must be emphasized that most ideas, methods, and results pre-
sented here do extend to this more general setting, which leads to very impor-
tant technical developments.

1.1 The Principles of Control (Industry 5.0)

Industry 5.0 is a continuation of Industry 4.0 with the objective of introduc-
ing humans (human intelligence) as the main axis of industrial production pro-
cesses. Furthermore, innovation in production processes is human-oriented and
highly customizable based on technological advances and high productivity of
systems. However, the concept of Industry 5.0 is not accepted so far by cor-
porations and industries but is promoted by researchers because, today, the
industrial situation challenges are still congenital to Industry 4.0 and the era of dig-
italization. Industry 4.0 encourages high manufacturing efficiency and quality, and
focuses on near novelty, techno-economic development, and industrial technology
progress [1, 2]. Thus, Industry 5.0 is a prolongation and chronological extension
of Industry 4.0 [3]. Industry 4.0 has restrictions with regard to industrial sustain-
ability security, as it emphasizes on the productivity and flexibility of manufactur-
ing through digitalization and technologies and integration of data from operations
and business activity. The present manufacturing toward evolution of Industry 4.0
operations allows for better-quality productivity through information-driven
automation, not only by infrastructure, but also by introducingmore advancedmon-
itoring, modeling, sensors, measurements, and control strategies in real time [4, 5].
One of the main advantages of Industry 4.0 is big data, which relates to large sets
of processes and manufacturing data collected by sensors and greater visibility of
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4 1 Field Elements of Classic Control Systems

process analytical technologies in themanufacturing operations. The improvements
obtained from such a proactive, predictive feed-forward control approach can exceed
the incremental yield progresses that corporations seek [6–9]. Furthermore, these
data can be used for optimization purposes by applying innovative big data analyt-
ics. Machine learning (ML), a branch of artificial intelligence, is one of the ways to
accomplish this [10] (see Figure 1.1).
Technological processes consist of handling, working, refining, combining, and

manipulatingmaterials and fluids to produce cost-effective end products. These pro-
cesses can be precise, demanding, and potentially hazardous. Small changes in a
process can have a large impact on the end result [14, 15]. Variations in proportions,
temperature, flow, turbulence, and many other parameters are to be carefully and
consistently controlled to consistently produce the end product of the desired qual-
ity with a minimum of raw materials and energy. Instrumentation provides various
indications used to operate a technological process [16–18]. In some cases, the oper-
ator records these indications for use in the operation of the process. The informa-
tion recorded helps the operator evaluate the current condition of the process and
take action if the conditions are not as expected. Requiring the operator to take all of
the necessary corrective actions is impractical, or sometimes impossible, especially
if a large number of indications are to be monitored. For this reason, most techno-
logical processes are controlled automatically once they are operating under normal
conditions [19, 20]. Themain role of process control was to contribute to safety, min-
imize external perturbation influence, and optimize processes by preserving pro-
cess variables near the desired values. As the processes become larger in scale-up
or behavior complex, the role of process automation has become more important.
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Figure 1.1 The concept of Industry 5.0. Adapted from Borchardt et al. [11].
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Figure 1.2 The timeline of industrial revolutions. Adapted from Madsen and Berg [12] &
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Figure 1.3 The timeline of industrial revolution’s pyramid of automation. Adapted from
López- Pérez et al. [7], Lucizano et al. [23], Wollschlaeger et al. [24], Martinez et al. [25].
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Today automation has taken over process control purposes, which means that oper-
atives are assisted by a distributed control system, which communicates with the
instruments in the real process. Process control is a combination of the statistics and
engineering areas that deal with the sensors, designs, and algorithms for controlling
a process. The aim of process control is to have it behave in a desired value. This
includes the processes that are appealing, more accurate, more reliable, ormore eco-
nomical [21, 22] (see Figure 1.2).
In different manufacturing industries, advanced process control systems (APC)

have become a nonnegotiable necessity for any manufacturing operation, which
allows progress in the automation, understanding, and use of complex systems.
APC incorporates a variety of model-based software system technologies, as well
as stochastic and metaheuristic systems (see Figure 1.3). Currently, APCs provide
supervisory control, bridging the gap between basic controls and overall process
improvement, allowing the process to be cost-effective and of sustainable quality and
operational safety aligned with Industry 4.0 and 5.0 [26–28].

1.2 Field Elements of Classic and Modern Control Systems

Modern advanced control techniques are model-based in data and look to apply
mathematical optimization tools to optimize the performance based on future pre-
dictions and conditions. The necessary components and fields for this background
are as follows:

i. A dynamic model.
ii. Estimator that convertsmeasured process variables into estimates of unmea-

sured states and/or parameters.
iii. An algorithm that computes the optimal control action based on model pre-

dictions (multi-objective optimization function or Pareto and constraint set).
iv. Methods that restrict the model to be linear.
v. Methods that require a very large amount of data to provide any statistical

guarantees.
vi. Methods for uncertainty descriptions are not necessarily accurate or related

to physical quantities.
vii. Improving system performance in terms of functionality, security, energy

efficiency, environmental impacts, and costs.
viii. Virtual sensors in the industry manages to optimize the operational perfor-

mance, safety, functionality, and reliability of the bioprocess.
ix. Monitoring, diagnosis, and control could be provided more reliably and

robustly using physical sensors.
x. Embedded system is any device that ismade up of a programmable computer

(microprocessor or microcontroller).
xi. Computer hardware.
xii. Operating system in real time.
xiii. Efficiency and quality in manufacturing.
xiv. Hyper-competitive manufacturing sector.
xv. Internet of Things (IoT).
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xvi. Human–machine interface and supervisory control and data acquisition
(SCADA).

xvii. Basic regulatory control, advanced regulatory control, multivariable, model-
based control, constrained economic optimization, multi-unit constrained
economic optimization, first principle economic optimization (RTO), steady-
state process model, and economic information (e.g., prices and costs) per-
formance Index to be maximized (e.g., profit) or minimized (e.g., cost)
[29, 30].

1.2.1 Advantages

• Reducing operational costs to secure tribal knowledge.
• Easy maintenance as it is not a compact system. In the case of breakdowns, the
affected component is easily replaced without completely replacing the entire
system.

• They have small size, so they easily adapt to any industrial application without
requiring a large workspace.

• It is adaptable. Any necessary module can be integrated.
• They consume minimum energy, which causes the battery life to be extended.
• They give high performance in processing data at high speed and in real time.

1.2.2 Disadvantages

• They are specific operating systems.
• The software of an embedded system presents some restrictions such as small
amounts of memory (generally, in the order of kB).

• Limited processing capabilities (generally, the speed of the processors does not
exceed the order of MHz).

• Limits the consumption of instant energy whether in execution state or not.
• They may present cybersecurity risks because they feature weak encryption.
• Data shared between two devices can be easily intercepted and decrypted.

For example: data acquisition systems and systemmonitor parameters such as O2,
CO2, temperature, flow, humidity, and pH based on the sensors that will collect data
and the controllers to correspond to the set points of the variables. The measured
data have the potential to practice another improved software tool for the estimation
of variables and parameters from process data [31–33].

1.2.3 Why Control and Monitor?

The measurement of variables in processes is a necessary requirement to overcome
following concerns:

i. To know internal behaviors.
ii. Fault diagnosis.
iii. Monitoring.
iv. Visualization of critical variables.
v. Processing is subject to disturbances.
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vi. Nonlinear systems.
vii. Unstability.
viii. Maintain productivity.
ix. Quality standards.

In addition:

i. Absence of trusted devices.
ii. Time delays.
iii. Errors in the measurement system.
iv. High device costs.
v. Measurement conditions.
vi. Unavailability of sensors.

Nowadays, process and system control theory can be divided into two areas:
classical methods and modern control theory methods. The main differences
between these groups focus on the representation, design, and operation of dynamic
systems or data management in real time, at-line, offline, online, and in-line.
Figure 1.4 briefly summarizes the differences between classical and modern control
theory methods [7].
General characteristics of classical control methods: Classical control methods

are not able to incorporate constraints logically ascending from industrial control
problems and have optimizationmissing complete performance. Themost common
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Figure 1.4 Properties’ comparison of classical and modern control methods. Adapted from
Jha et al. [34], Drgoˇna et al. [35], Holaza et al. [36].
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example of classical control methods is the proportional integral derivative (PID)
controller, which accounts for more than 95% of the control and automation appli-
cations today, mainly thanks to its simple implementation with relative efficiency
[37]. Main advantage of state–space representation is the preservation of the time-
domain attractiveness, where the response of a dynamical system is a function of
many inputs, previous system states, and time, presently

y = f (x,u, t). (1.1)

Industrial processes often experience nonlinear behaviors thatmay include output
multiplicity, bifurcations, chaos, unstable dynamic response to disturbances, and
changes in system parameters; all these phenomena can lead to instability and, ulti-
mately, affect the yield of production. For this reason, the application of traditional
linear controllers is limited since they are not able to cope with the high nonlinear
behavior of industrial processes. Aside from this, incidental external and internal
disturbances in a manufacturing process lead to disappointment and can be a costly
and annoying problem for any engineer. Regulatory control is the main strategy for
attaining the basic operational requirements in manufacturing processes. The regu-
latory control has been performed through classical PID feedback controllers by con-
sidering the easiness of its practical implementation and satisfactory performance
within common industrial practice [38]. Controllers employed range from simple
on–off type to proportional (P), integral (I), derivative (D), and PID controls and
expert systems. A scheme of typical control is shown in Eq. (1.2).

u (t) = Kpe (t)⏟⎵⏟⎵⏟
Proportional

+ Ki∫ e (t) dt
⏟⎵⎵⏟⎵⎵⏟

Integral

+ Kd
d
dt e (t)⏟⎵⏟⎵⏟

Derivative

(1.2)

TheKP,Kd, andKi are the tuning parameters of the controller that can be adjusted
by varying the dynamics of the control loop. Feed rates can also be adjusted based
on an optimal objective function derived online or offline. The objective function
targets to increase productivity or maximize operating profits [39].
In relation, other feedback controllers have been proposed for improving the

dynamic performance of the manufacturing processes: among them, the adaptive
controllers can modify some parameters in the control’s structure to maintain a sat-
isfactory process operation [40]. Controllers designed to combat input disturbances
and noisy measurements have been presented in the literature for several years
within the following frameworks: sliding-mode theory, observer-based I/O lineariz-
ing controllers, and optimal controllers [41]. On the other hand, most of the con-
trollers designed for the aforementioned existing outputs are complicated; therefore,
they are difficult to perform in real applications. In fact, how to design a simple and
physical controller to perform the control problems of complex chaotic systems is
also important both in theory and in application. One of the most important draw-
backs of the advanced control designs is their complexity for practical applications
and the complete understanding by the plant engineers. Thus, alternative control
structures must be simple enough to avoid the abovementioned drawback. Alterna-
tively, most of the controllers designed in the aforementioned existing outputs are
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complicated; therefore, they are difficult to perform in real applications. Therefore,
the alternative control structures must be simple enough to avoid the abovemen-
tioned drawback [42, 43].
Once the information is in the supervision and monitoring equipment, not only

is interaction with the user achieved through graphics, alarm signals, report gener-
ation, and global analysis of the plant, but it can also directly influence the dynamic
behavior of the system variables through programming of observers, filters, virtual
sensors, among other components that are incorporated into the plant [44]. Supervi-
sion achieves the reconfiguration of system parameters through the controller, exe-
cuting a set of actions to bring the process to its normal operation usingmodel-based
self-tuningmethods or withoutmathematical knowledge of the process, among oth-
ers. This constitutes a crucial difference in relation to monitoring that only covers
detection and diagnosis and sometimes those systems that undertake only surveil-
lance tasks and have been mistakenly called supervision systems. Finally, the last
n levels of the pyramid, manufacturing execution system planning, and enterprise
resource planning are manufacturing execution systems that organize the resources
necessary to execute the plant’s production plan that covers raw materials, order
of priorities, change of production instructions, the controllers, and measurement
interval of the sensors, among others. Therefore, there is a strong financial inspi-
ration to develop the finest control scheme that would facilitate rapid startup and
stabilization of manufacturing processes subject to redundant disturbances. In the
control literature, regardless of the considerable progress in APC proposals such
as sliding-mode control, model predictive control, and internal model control, PID
controllers are still widely employed in industrial control systems because of their
structural simplicity, reputation, robust behavior, and easy implementation (see,
Figure 1.5). Along with the system’s stability, it also satisfies chief performance such
as smooth reference tracking, efficient disturbance rejection, and measurement of
noise attenuation criteria [45–47].
For a process which is operating satisfactorily, the variation of product quality

falls within acceptable limits. These limits normally correspond to the minimum
and maximum values of a specified property. Normal operating data can be used to
compute the mean deviation and the standard deviations of a given process variable
from a series of observations. The standard deviation is a measure for how the val-
ues of the variable spread around the mean. A large value indicates wide variations
in the variable. Assuming the process variable follows a normal probability distribu-
tion, then 99.7% of all observations is to lie within an upper limit and a lower limit.
This can be used to determine the quality of the control. If all data from a process
lie within the limits, then it can be concluded that nothing unusual has happened
during the recorded period, the process environment is relatively unchanged, and
the product quality lies within specifications. On the other hand, if repeated
violations of the limits occur, then the conclusion can be drawn that the pro-
cess is out of control and that the process environment has changed. Once this
has been determined, the process operator can take action to adjust operating
conditions to counteract undesired changes that have occurred in the process
conditions [48–51].
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Figure 1.5 Classical and modern control theory.

1.3 Process Modeling in Control Systems Design

Mathematical model of a dynamic System is a set of equations that represent with
a certain degree of accuracy the dynamics of the physical system. The model is gen-
erally described as an operator between the inputs and outputs of the system, or as
a set of differentials (continuous case) and/or difference (discrete case) equations.
Generally, when working with dynamic systems that are modeled by a finite num-
ber of coupled first-order ordinary differential equations, the state variables repre-
sent the “memory” that the dynamic systemhas of its past. Vector notation is usually
used to write these equations compactly; the n first-order differential equations can
be defined and rewritten as a vector differential equation of dimension n [52–55].
A thorough understanding of the time-dependent behavior of the technological pro-
cesses is required to instrument and control the process. This, in turn, requires an
appreciation of howmathematical tools can be employed in the analysis and design
of process control systems. There are several mathematical principles that are uti-
lized for automatic control. These are as follows:

• Physical, chemical, biological models, and empirical models.
• Simulation of dynamic models.
• Laplace transforms.
• Fitting dynamic models to experimental data [56–58].

Dynamic system: it is the one that generates data that change with the passage
of time, that is, they possess certain dynamics. Dynamic systems are systems whose
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Figure 1.6 Dynamic system modules. Adapted from López- Pérez et al. [59, 60], Jongeneel
and Moulay [61].

internal variables (state variables) follow a series of temporal rules (see Figure 1.6).
They are called systems because they are described by a set of equations that are
time-dependent, either implicitly or explicitly. Dynamic system classes:

• Isolated: they do not interact with their environment.
• Not insulated: interact with your environment.
• Natural: unaffected by human intervention.
• Artificial: created by man.
• Physics: they involve matter and energy.
• Not physical: thoughts.

Black Box: Black box is a system in terms of inputs and outputs. These models
allow a global characterization of the model by disturbing its input to observe the
variation or effect of said input on the states and parameters of the system at the out-
put, that is to say: an identification, parametric sensitivity, and confidence interval
of operation and parameters. Examples of some tools for the development of black-
box models are as follows:

• Support vector machines.
• Partial least squares.
• Artificial neural networks.
• Fuzzy inference system.
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White Boxes:
Detailed mechanistic models (white box) require:

• Large sets of well-identified parameters.
• Large uncertainty in parameters.
• Internals being completely exposed to the user.
• Complexity of the implementation.

Gray Boxes:

• Thesemodels do not study the source code and can lean on the results obtained
by testing the user interface (possibly gathered purely by experimentation).

• Knowing the internal structure of the program can create more varied and
smarter scenario.

• Tests cannot hope to provide a complete coverage of the program.
• View allows only partial exposure of the system behavior [14].

1.4 Ordinary Differential Equations and Laplace

A general form of an ordinary differential equation (ODE) containing one inde-
pendent and one dependent variable is f (x, y, y′, y′′,… , yn) = 0, where is an arbi-
trary function of x, y, y′, y′′,… , yn, here x is the independent variable, while y is the
dependent variable, and yn = d′′y

d′′x
. The order of an ODE is the order n of the highest

derivative appearing in it.
A common class of mathematical models for dynamical systems is ODEs

written as.

dx
dt = f (x) (1.3)

Here x = (x1, x2, … , xn) ∈ Rn is a vector of real numbers that describes the
current state of the system, and Eq. (1.3) describes the rate of change of the state as
a function of the state itself. Note that we do not bother to write the vector x any
differently than a scalar variable. It will generally be clear from the context whether
a variable is a vector or scalar quantity.
The state of a system is the minimal set of numbers {xi (t), ∀ i = 1, 2, 3,… , n}

needed together with the input u (t) with t in the interval [t0, ti) to uniquely deter-
mine the behavior of the system in the interval. The number n is known as the order
of the system. As t increases, the state of the system evolves and each of the numbers
xi (t) becomes a time variable. These variables are known as state variables. In vector
notation, the set of state variables form the state vector.
The differential equation (1.3) is called an autonomous system because there are

no external influences. Inmany examples, it is useful tomodel the effects of external
disturbances or controlled forces on the system. One way to capture this is to replace
Eq. (1.3) by

dx
dt = f (x, u), (1.4)
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where u represents the effect of external influences. Themodel (1.4) is called a forced
or controlled differential equation. The model implies that the rate of change of the
state can be influenced by the input u (t).
A description of systems that are linear and time-invariant (LTI) is observed in

Eqs. (1.5) and (1.6), that is, systems described by linear differential equations with
constant coefficients [8]. If a system is LTI and described by n state variables, r input
variables, and m output variables, Eq. (1.4), then the state equation will have the
form:

x1 = a11x1 + a12x2 + … + a1nxn + b11u1 + b12u2 + … + b1rur

x2 = a21x1 + a22x2 + … + a2nxn + b21u1 + b22u2 + … + b2rur

⋮
xm = an1x1 + an2x2 + … + annxn + bn1u1 + bn2u2 + … + bnrur

(1.5)

An important property of the linear state equation description is that all system
variables may be represented by a linear combination of the state variables and the
system inputs, and the output equation will have the form:

y1 = c11x1 + c12x2 + … + c1nxn + d11u1 + d12u2 + … + d1rur,

y2 = c21x1 + c22x2 + … + c2nxn + d21u1 + d22u2 + … + d2rur,

⋮
ym = cm1x1 + cm2x2 + … + cmnxn + dm1u1 + dm2u2 + … + dmrur,

(1.6)

where the coefficients aij, bij, cij, and dij are constants. If we use vector–matrix
expressions, these equations can be written as follows:
State equation

x = Ax + Bu (1.7)

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮

xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 … a1n

a21 a22 … a2n

⋮ ⋮ ⋮ ⋮

an1 an2 … ann

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b11 b12 … b1r

b21 b22 … b2r

⋮ ⋮ ⋮ ⋮

bn1 bn2 … bnr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, u =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

⋮

ur

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(1.8)

Dynamical relation, output equation

y = Cx + Du (1.9)
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y =

⎡
⎢
⎢
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y1

y2

⋮
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⎤
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⎥
⎦

, C =
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 c12 … c1n

c21 c22 … c2n

⋮ ⋮ ⋮ ⋮

cm1 cm2 … cmn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d11 d12 … d1r

d21 d22 … d2r

⋮ ⋮ ⋮ ⋮

dm1 dm2 … dmr

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.10)

Remarks
i. MatricesA, B,C, andD are called the statematrix, inputmatrix, outputmatrix,
and direct transmission matrix, respectively.

ii. Vectors x, u, and y are the state vector, input vector, and output vector, respec-
tively.

iii. The elements of the state vector are the state variables.

When the dynamical system does not have any control input, i.e., it runs
autonomously, then we refer to it as an autonomous system. Mathematically, this is
written as follows:

̇x = f (x, t) . (1.11)

An important concept in dynamical systems is equilibrium. Roughly, the equilib-
rium of a dynamical system is the point in the state–space where the states remain
constant, i.e., steady state. It is defined mathematically as follows (equilibrium):

f (x eq, t) = 0, x eq : State equilibrium (continuous systems at steady state)
(1.12)

Remarks
i. Systematic analysis and synthesis of higher-order systems without truncation
of system dynamics.

ii. Convenient tool for Multiple Input, Multiple Output (MIMO) systems.
iii. Uniform platform for representing time-invariant systems, time-varying

systems, linear systems, as well as nonlinear systems.
iv. Can describe the dynamics in almost all systems (mechanical systems, electri-

cal systems, biological systems, economic systems, social systems, etc.)

Laplace Transforms
The Laplace transform is a linear operator that switched a function f (t) to F (s).

• The technique of Laplace transform (and its inverse) facilitates the solution of
ODE.

• Transformation is from the time domain to the frequency domain.
• Functions are complex, often described in terms of magnitude and phase.
Laplace Transform for ODEs:
– Equation with initial conditions.
– Laplace transform is linear.
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– Apply derivative formula.
– Rearrange.
– Take the inverse.

Case Study Research 1
The most important mathematical tools used in this chapter are shown in the
following text. We study dynamical systems modeled by a finite number of ODE
coupled together in the following compact form:

̇x = f (x) + g (x)u + 𝜉p (t),

y = h (x),
(1.13)

where x = x(t), y = y(t), x(t0) = x0∀t ≥ t0.

f ∶ Rn → Rn, g ∶ Rn → Rn×m, h ∶ Rn → Rp,

and x ∈ 𝒟 ⊂ Rn is the state vector, u ∈ 𝒰 ⊂ Rm is the vector of control inputs,
and 𝜉p (t) ⊂ Rn is the term of external disturbances to the system. Also, it is con-
sidered that y is the output of the system, e.g., physically measurable variables, and
stabilization of the output at a desired value is sought.

Case Study Research 2
The following is an example of using the Laplace transform for a convergence test.
In this study, the following equations represent the core of such modeling:

dx1
dt = rX (x1) x1 = k1 (1 − ( x1k2

)
k3
) x1,

dx2
dt = rcl (x2)

1
Y1
x1 =

1
Y1
k4 (1 − ( x2k5

)
k8
) x1,

dx3
dt = rS(x3) ·

1
Y2
x1 =

1
Y2
k6 (1 − ( x3k7

)
k9
) x1.

(1.14)

These equations are fundamental in capturing the dynamics ofmicroalgae growth
in photobioreactors, as they describe the rate of change of biomass, chlorophyll, and
substrate concentrations over time. The parameters within these equations, such as
𝜓, 𝛿, 𝛽, 𝜆, 𝜂, 𝛼, and the 𝛾 exponents, are crucial in defining the specific growth con-
ditions and responses of the microalgae. In the sophisticated domain of microalgae
growthmodeling, particularly in state–space nonlinear systems, the concept of state
variables becomes integral. These variables, denoted as CX, CCl, and CS, represent
the concentrations of biomass, chlorophyll, and substrate, respectively. To stream-
line themathematical representation, these variables are aggregated into a state vec-
tor, xt, defined as follows:

xt =
⎡
⎢
⎢
⎢
⎢
⎣

xt,1

xt,2

xt,3

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

CX

CCl

CS

⎤
⎥
⎥
⎥
⎥
⎦

, (1.15)

where xt,1, xt,2, and xt,3 correspond to the concentrations of biomass, chlorophyll,
and substrate at any given time t. This vector notation allows for amore compact and
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efficient description of the system dynamics. The evolution of these state variables
over time is governed by a set of differential equations, collectively forming a state–
space nonlinear system. This system can be succinctly expressed as follows:

̇xt = f (xt,ut), (1.16)

y = g (xt,ut) . (1.17)

Here, ̇xt represents the derivative of the state vector with respect to time, indi-
cating the rate of change of the state variables. The function f (·) ∶ Rn+q → Rn

is a nonlinear, smooth vector function that is Lipschitz continuous in xt and uni-
formly bounded in ut, the control input vector. The term ∆f signifies the additive
modeling error inherent in the system. The output vector yt ∈ Rm comprises the
measured states, providing a link between the model and empirical observations.
This framework of state–spacemodeling is pivotal in capturing the complex dynam-
ics of microalgae growth, enabling the prediction and control of the system under
varying conditions. It is determined that the system is observable since the rank of
O is 3.

Case Study Research 3
In the proposed observer design, the system represented by Eq. (1.17) and system
(1.16) is expressed as follows:

̇xt = f (xt), xt=0 = 0, y = g (xt) = Cxt. (1.18)

An auxiliary system, serving as an observer for system (1.14), is defined as follows:

d
dt ̂xt = f ( ̂x) − l1 (et +∫ etdt +∫(∫ etdt) dt + l2),

̂yt = h (xt) = Cxt.
(1.19)

The following conditions are established:

• The initial condition ̂xt=0 = xt=0 = 0 implies ̂xt = xt. 2. The norm ‖ f ( ̂xt) −
f (xt) ‖ is bounded by L.

• The term l1 (et + ∫ etdt + ∫ (∫ etdt) dt + l2) in (1.19) aims to achieve asymptotic
estimation error. By selecting l1 and l2 adequately

• l1l2 ≈ L < ∞, with l1 > 0 and l2 > 0.
• Considering the error et = xt − ̂xt (see Figure 1.7).
• ‖et‖ = ‖xt‖ − ‖ ̂xt‖ → 0 as t→∞.

Therefore:
d
dt‖et‖ ≤ −l1 (‖et‖ +∫‖et‖dt +∫(∫‖et‖dt) dt) (1.20)

Applying the Laplace transformation to inequality (1.20) results in:

s‖xs‖ − ‖xs (0) ‖ − {s‖ ̂xs‖ − ‖ ̂xs (0) ‖}

≤ −l1 (‖xs‖ − ‖ ̂xs‖ + s−1 (‖xs‖ − ‖ ̂xs‖) + s−2 (‖xs‖ − ‖ ̂xs‖)) .
(1.21)
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Process

Observer

yt
xt

ℓ1

ℓ2

yt – yt = etˆ

ytˆxtˆ

State Output

+

–

Observation

C

C

∑

Figure 1.7 Block diagram for the proposed observer.

Assuming homogeneous initial conditions for inequality (1.21), i.e., xs (0) = 0 and
̂xs (0) = 0, and rearranging algebraically, we obtain:

‖xs‖ (s + l1 + l1s−1 + l1s−2) ≤ ‖ ̂xs‖ (s + l1 + l1s−1 + l1s−2) (1.22)

or equivalently:

‖xs‖
‖ ̂xs‖

≤
(s + l1 + l1s−1 + l1s−2)
(s + l1 + l1s−1 + l1s−2)

. (1.23)

Applying the final value theorem to inequality (1.23) for asymptotic behavior:

lim
s→0

‖xs‖
‖ ̂xs‖

≤ lim
s→0

(s + l1 + l1s−1 + l1s−2)
(s + l1 + l1s−1 + l1s−2)

, (1.24)

which implies:

lim
s→0

(s + l1 + l1s−1 + l1s−2)
(s + l1 + l1s−1 + l1s−2)

= l1
l1
= 1 (1.25)

and

lim
s→0

‖xs‖
‖ ̂xs‖

≤ 1 (1.26)

or in the time domain:

lim
t→∞

‖xt‖
‖ ̂xt‖

≤ 1. (1.27)

1.5 Linear Systems

Linear systems: A system is called linear if the superposition principle is applied.
This principle states that the response produced by the simultaneous application of
two functions of different inputs is the sumof the two individual responses. Thus, for
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the linear system, the response to several inputs is calculated by treating one input
at a time and adding the results. To map a model to frequency space,

• system must be linear – output proportional to input.
• Given system P – input signals: x1 and x2 – output signals (response): y1 and y2.

Theorem 1.1 Existence and uniqueness
Let f be continuous in sections in t satisfying the Lipschitz condition

‖ f (x) − f ( y) ‖ ≤ L ‖x − y‖, ∀ x, y ∈ B = {x ∈ Rn|‖x − y‖ ≤ r} ∀ t ≥ t0.

Then there exists a 𝛿 > 0 such that

̇x = f(x), x(t0) = x0

has only one solution [62].

Definition 1.1 Lie or directional derivative [63]
Let V ∶ D → R, f ∶ D → Rn. The Lie derivative of V with respect to f along f, is

given by LfV and is defined by

LfV (x) =
𝜕V
𝜕x f (x) .

This is the familiar notion of the derivative of V along the trajectory of the
autonomous system of the form ̇x = f (x).

Definition 1.2 Equilibrium point [62]
A point x = x∗ in state–space is an equilibrium point of the system ̇x = f(x)+

g(x)u, with u = u∗, if it has the property that the initial condition of the state x∗,
remains at x∗ for all time t, i.e., x∗ is the equilibrium point of the system ̇x = f (x∗) +
g (x∗)u∗.

Lemma 1.1 Gronwall–Bellman inequality [62]
Let λ ∶ [a, b] → R be continuous nonnegative. If a function y ∶ [a, b] → R satisfies

y(t) ≤ λ(t) +∫
t

a
𝜇(s)y(s)ds,

with a ≤ t ≤ b within the same interval

y(t) ≤ λ(t) +∫
t

a
λ(s)𝜇(s)e∫ts 𝜇(𝜏)d𝜏ds,

in particular, if λ(t) = λ is a constant, then

y(t) ≤ λe∫ta 𝜇(𝜏)d𝜏 ,

if, in addition 𝜇 (t) = 𝜇 ≥ 0 is a constant, then

y(t) ≤ λe𝜇(t−a).
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Lemma 1.2 Lemma of Barbalat [62]
If f (t) is uniformly continuous, such that limt→∞ ∫t

0 ‖ f (𝜏) ‖d𝜏 exists and is
finite. So

f (t) → 0 when t→∞.

Corollary: If G, Ġ ∈ L∞, in addition G (t) ∈ LP, for p = [1,∞), so limt→∞ G (t) = 0.

Lemma 1.3 Lemma of comparison [62]
Consider the scalar differential equation

u̇ = L (u), u = u(t), u(t0) = u0,

whereL (u) is continuous at t and locally Lipschitz atu, for all t ≥ 0 and allu ∈ J ⊂ R.
Let [t0,T) (T can be infinite) the maximum interval of the existence of the solu-
tion u, and assume u ∈ J for all t ∈ [t0,T). Let v = v (t) a continuously differen-
tiable function whose derivative on the right-hand side D+v satisfies the differential
inequality

D+v ≤ L(v, t), v(t0) ≤ u0,

with v ∈ J for all t ∈ [t0,T). So v < u for all t ∈ [t0,T).

1.6 Nonlinear Dynamical Systems

Nonlinear systems: A system is nonlinear if the superposition principle is not
applied. Therefore, for a nonlinear system, the response to two inputs cannot be cal-
culated by treating each one at a time and summing the results, represented by the
system of nonlinear differential equations

̇x (t) = f (x (t), u (t)), x (t0) = x0. (1.28)

Consider an input–output system whose state trajectory, x ∶ R → Rn, system
output y ∶ R → Rm, and control input u ∶ R → Rp satisfy the following set of
equations,

̇x(t) = f (x, u),

y = h (x, u),

u = k (x) .

(1.29)

We assume that the functions f ∶ Rn × Rp → Rn and h ∶ Rn × Rp → Rm are
known.
Given a desired output signal, y∗ ∶ R → Rm, the objective is to find the state

feedback controller k ∶ Rn → Rp such that the output signal y (t) → y∗ (t)
as t→∞.
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Case Study Research 4
Consider the following nonlinear dynamic system with control affine input and
linear measurements:

Σ = {
̇x = f (x) + g (x)u

y = Cx
. (1.30)

Here x ∈ Rn represents the state vector, using values in X as a connected mani-
fold of dimension n, and u ∈ Rq denotes the vector of known external inputs, taking
values in some open subset U. Furthermore, ∈ Rm denotes the vector of measured
outputs, taking values in some open subset Y. Function f will generally be assumed
to be C∞ of their arguments and input functions u (∘) assumed to be locally essen-
tially bounded and measurable functions in a set U.
Now let us assume the following.
A1. f (0) = 0 and f is globally Lipschitz bounded: ‖ f (x) − f (xsp) ‖ ≤ ℒ‖e‖; ∀x ∈

Rn, e (t) = x (t) − xsp (t) is the named regulation error, where xsp is the required set
point and ̇e (t) = ̇x (t) − ̇xsp (t) and

ℒ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕f1
𝜕x1

…
𝜕f1
𝜕xn

⋮ ⋱ ⋮
𝜕fn
𝜕x1

…
𝜕fn
𝜕xn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (1.31)

A2. The vector field g (x) is bounded: for ∀x ∈ Rn, ‖g (x)−g (xsp) ‖ ≤ ℘ < ∞. Both
assumptions A1 and A2 can be physically performed for whatever process.
The following control input u can regulate the nonlinear system:
For example,

u = (k1 (e) − 𝜄1) e + k2sign (e)
1
n . (1.32)

1.7 Stability Theory

Definition 1.3 Stability [62]
The equilibrium point x∗ = 0 of the system (1.13) is stable, if for every 𝜀 > 0, there

exists a 𝛿 = 𝛿 (𝜀, t0) > 0, such that

‖x (t0)‖ < 𝛿 ⇒ ‖x (t)‖ < 𝜀, ∀ t ≥ t0 ≥ 0.

Definition 1.4 Uniformly stable [62]
The equilibrium point x∗ = 0 of the system (1.13) is uniformly stable, if for every

𝜀 > 0, ∃𝛿 = 𝛿 (𝜀) > 0, independent of t0 such that

‖x (t0)‖ < 𝛿 ⇒ ‖x (t)‖ < 𝜀, ∀ t ≥ t0 ≥ 0.
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Definition 1.5 Asymptotically stable [62]
The equilibrium point x∗ = 0 is asymptotically stable, if it is stable; moreover, if it

exists c = c (t0) > 0 such that x (t) → 0 in t →∞, for all ‖x (t0)‖ < c.

Definition 1.6 Exponentially stable [62]
The equilibrium point x∗ is exponentially stable, if there exists a 𝛼 > 0, 𝛽 ∈ R such

that

x0 ∈ Br ⇒ ‖x(t)‖ < 𝛽e−𝛼(t−t0)x0.

Definition 1.7 Stability Uniformly Lately Bounded, Stability UUA [62]
The solution of the system (1.13) is said to be uniformly ultimately bounded sta-

ble, if it is uniformly stable and there exists a c > 0 with ultimate boundary b > 0
independent of t0, i.e., for a ∈ (0, c) exists T = T (a, b) > 0, such that

‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T.

Theorem 1.2 Lyapunov’s Theorem [62]
Let x∗ be an equilibrium point of the autonomous system, D ∈ Rn the domain

containing the origin. x = 0. Let V ∶ D → R a continuously differentiable function
such that

V (0) = 0,V (x) > 0, on D − {0}.

̇V (x) ≤ 0 en D.

So, x∗ is stable. In addition, if

̇V (x) < 0 en D − {0},

then x∗ is asymptotically stable.1

Definition 1.8 Attractive set [62]
Let x∗ be an equilibrium point of the system (1.13) and V (x) be an energy

function. The attractive set RA is defined by

RA = {x ∈ D| ̇V (x) < c1}. (1.33)

Theorem 1.3 [64] Let V ∶ Rn → R be a real function such that

d
dtV (x) ≤ −𝛼V (x) + 𝛽 (1.34)

is satisfied, with 𝛼, 𝛽 positive scalars. Then, V (x) is an attractive set; moreover, the
property

lim sup
t→∞

V (x) ≤ 𝛽
𝛼 , (1.35)

is fulfilled.

1 In Lie derivative notation, dV
dt
= 𝜕V

𝜕x
dx
dt
= 𝜕V

𝜕x
̇x = 𝜕V

𝜕x
{ f (x) + g (x)u} = LfV (x) + LgV (x) .
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Theorem 1.4 Taylor’s theorem [65]
Let r ≥ 1 be a positive integer and the function f ∶ R → R differentiable r times at

the point a ∈ R. Then there is a function hr ∶ R → R such that

f (x) = f (a) + ̇f (a)(x − a) +
̈f (a)
2! (x − a)2 +⋯+ f (r)(a)

r (x − a)r + hr(x)(x − a)r,
(1.36)

where limx→a hr (x) = 0. These are the so-called higher order terms. For the case
x ∈ Rn, the derivatives of the function f are obtained bymeans of the Jacobianmatrix
defined by J

̇f (a) = 𝜕fi (x)
𝜕xj

|x=a = 𝑱 (a)ij .

1.8 Systems’ Identification

Identification is the experimental determination of the temporal behavior of a pro-
cess or system using measured signals and determining the temporal behavior
within a class ofmodels [66]. The identification algorithm used in the thermal plant,
in the coupled tanks, and the tomato dehydrator plant is presented in the following
text. It should be noted that this identification provides an approximate model used
for the design of different controls.

1.8.1 Recursive Least Squares Method (Applied to Chapter 8)

The identification algorithm by the least squares method is based on the
minimization of a quadratic form. For processes, in general, of (1.13), we
note that

̇x1 = f1(x) + g11(x)u1 + g12(x)u2⋯ g1m(x)um,

̇x2 = f2(x) + g21(x)u1 + g22(x)u2⋯ g2m(x)um,

⋮ ⋮

̇xn = fn(x) + gn1(x)u1 + gn2(x)u2⋯ gnm(x)um.

(1.37)

A requirement for applying the recursive least squares method is that the linear
or nonlinear functions f1 (x)⋯ fn (x), g11 (x)⋯ gnm (x) contain constant parameters
and also the system (1.37) is linear with respect to its parameters. Then the system
can be parameterized as follows:

̇x = 𝜑⊺𝜃, 𝜑 ∈ Rk×n, 𝜃 ∈ Rk,

where 𝜑 = 𝜑 (x1, x2,… xn,u1,u2…um) contains the dynamics, so there are k
unknown parameters 𝜃.
The least squares method leads to a minimization in the quadratic error as a per-

formance index. See, for example [67], where the estimation error is defined by

e = Z (𝜏) − 𝜑⊺ (𝜏) ̂𝜃 (t), Z = ̇x. (1.38)
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The performance index to be minimized is defined by

J (𝜃) = 1
2∫

t

t0

||Z (𝜏) − 𝜑⊺ (𝜏) ̂𝜃 (t)||
2
d𝜏.

The performance index penalizes all past errors by 𝜏 = 0 at t due to 𝜃 (t) =
̂𝜃 (t). Since J (𝜃) is a convex function on R at each time instant t, its minimum
satisfies

∇J (𝜃) = ∫
t

t0
Z (𝜏) 𝜑 (𝜏) d𝜏 + ̂𝜃 (t)∫

t

t0
𝜑2 (𝜏) d𝜏 = 0.

Obtaining the estimate of the form

̂𝜃 (t) = (∫
t

t0
𝜑2 (𝜏) d𝜏)

−1

∫
t

t0
Z (𝜏) 𝜑 (𝜏) d𝜏,

or in vector form, i.e., when more than one parameter needs to be estimated, is
described by

̂𝜃 = [∫
t

t0
𝜑(x,u)𝜑⊺(x,u)d𝜏]

−1

∫
t

t0
𝜑(x,u)Zd𝜏 = P∫

t

t0
𝜑(x,u)Zd𝜏.

Defining P−1 as

P−1 = ∫
t

t0
𝜑 (x,u) 𝜑⊺ (x,u) d𝜏, P ∈ Rk×k,

where P may not exist. Therefore, it is established that PP−1 = Ik is satisfied
d
dt
(PP−1) = 0k×k. Then it is evident that the following property is satisfied

Ṗ−1 = 𝜑 (x,u) 𝜑⊺ (x,u),

d
dt (PP

−1) = ṖP−1 + PṖ−1,

where

Ṗ = −P𝜑 (x,u) 𝜑⊺ (x,u)P.

Accordingly,

̇̂𝜃 = P d
dt∫

t

t0
𝜑 (x,u)Zd𝜏 + d

dtP∫
t

t0
𝜑 (x,u)Zd𝜏,

̇̂𝜃 = P𝜑 (x,u)Z + Ṗ∫
t

t0
𝜑 (x,u)Zd𝜏,

̇̂𝜃 = P𝜑 (x,u)Z − (P𝜑 (x,u) 𝜑⊺ (x,u)P)∫
t

t0
𝜑 (x,u)Zd𝜏.
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Grouping terms by left-hand side and substituting ̂𝜃

̇̂𝜃 = P𝜑 (x,u) (Z − 𝜑⊺ (x,u)P∫
t

t0
𝜑 (x,u)Zd𝜏),

̇̂𝜃 = P𝜑 (x,u) (Z − 𝜑⊺ (x,u) ̂𝜃) .

Note that the estimation error term appears (1.38), so that

̇̂𝜃 = P𝜑 (x,u) e. (1.39)

1.8.2 Parameter Identification

The foundations of the least squares algorithm (LSA) were laid in 1974 by the
Germanmathematician JohannFriedrichGauss (1777–1855). This problem consists
of finding the parameters of the mathematical model that represents the behavior of
a physical plant through measurable or estimated input and output values.

1.8.3 Ordinary Least Squares

In [68], a detailed explanation of the LSA is presented, which is taken up in a sim-
plified form, in the following text. Consider that the model

Ay(t) = Bu(t − 1) + Cv(t), (1.40)

which represents a plant with input u (t) and output y (t) and which is subject to
known disturbances v (t). The coefficients of Eq. (1.40) are defined, by using the
backward shift interpretation z−1, as follows:

A = 1 + a1z−1 +⋯+ anaz
−na ,

B = b0 + b1z−1 +⋯+ bnbz
−nb ,

C = c0 + c1z−1 +⋯+ cncz
−nc .

(1.41)

In order to estimate these parameters, it is convenient that the system Eq. (1.40)
is presented with the available information and that which is to be estimated in a
factored form as follows:

y(t) = 𝜒T(t)𝜃 + e(t), (1.42)

where 𝜃 is the vector with unknown parameters, defined as

𝜃T = [−a1,… , −ana , b0,… , bnb , c0,… , cnc], (1.43)

𝜒 (t) is the regression vector (or data vector), formed by the measured input and
output variables in a previous instant, defined as

𝜒T (t) = [y (t − 1),… , y (t − na),u (t − 1),… ,u (t − nb − 1), v (t),… , v (t − nd)],
(1.44)
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and e (t) is a random disturbance (usually white noise). Finally, in order to estimate
the real parameter vector 𝜃 from the available information, it is necessary to consider
the system with the structure

y (t) = 𝜒T (t) ̂𝜃 + ̂e (t), (1.45)

where ̂𝜃 is the adjustable parameter vector, ̂e (t) is the corresponding adjustment
error in time t, and ̂𝜃 is selected as the vector that minimizes the performance
index

J =
N

∑
t=1

̂e2 (t) = ̂eT (t) ̂e (t) . (1.46)

From (1.45)

̂e (t) = y (t) − 𝜒T (t) ̂𝜃 = Y − X ̂𝜃, (1.47)

and (1.46) is expressed as

J = (Y − X ̂𝜃)
T
(Y − X ̂𝜃) = YTY − ̂𝜃TXTY − YTX ̂𝜃 + ̂𝜃TXTX ̂𝜃. (1.48)

Computing the first partial derivative of J with respect to ̂𝜃 and matching zero, it
yields to

𝜕J
𝜕 ̂𝜃

= −2XTY + 2XTX ̂𝜃 = 0, (1.49)

then XTX ̂𝜃 = XTY. The second partial derivative is positively defined as

𝜕J2
𝜕 ̂𝜃2

= 2 (XTX) > 0, (1.50)

i.e., J has aminimum. Therefore, the system parameter vector, from the least squares
estimator is

̂𝜃 = [XT X]−1 [XTY]. (1.51)

1.8.4 Recursive Least Squares (Applied to Chapter 6)

One of the disadvantages of the OLS method is the need to work with a set of past
values, which implies that it must be executed offline. To address this, the recur-
sive version of this method allows the estimation of the model parameters at each
sample interval when new data are available. It is outlined slightly below, according
to [68]. In the recursive schema, input/output data are available at each sampling
interval. From the model based on past information (summarized in ̂𝜃 (t − 1)), an
estimate ̂y (t) of the current output is obtained. This is compared to the measured
output y (t) to generate an error 𝜖 (t) and update the model that corrects ̂𝜃 (t − 1) to
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the new value ̂𝜃 (t). It is effective to simply store the calculation of the previous esti-
mate at time t, indicated by ̂𝜃 (t), and get the new estimates ̂𝜃 (t + 1) by an update
step involving only the new measurement. The estimate in step t+ 1 is given by the
expression

̂𝜃 (t + 1) = [𝜒T (t + 1) 𝜒 (t + 1)]−1 𝜒T (t + 1) y (t + 1), (1.52)

where

𝜒 (t + 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜒T (1)

𝜒T (2)

⋮

𝜒T (t)

...

𝜒T (t + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

𝜒 (t)

...

𝜒T (t + 1)

⎤
⎥
⎥
⎥
⎥
⎦

(1.53)

and

y (k + 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y (1)

y (2)

⋮

y (k)

...

y (k + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

y (k)

...

y (k + 1)

⎤
⎥
⎥
⎥
⎥
⎦

. (1.54)

We observe that

𝜒T (t + 1) 𝜒 (t + 1) = 𝜒T (t) 𝜒 (t) + 𝜒 (t + 1) 𝜒T (t + 1), (1.55)

𝜒T (t + 1) y (t + 1) = 𝜒T (t) y (t) + 𝜒 (t + 1) y (k + 1), (1.56)

and defining

P (t) = [𝜒T (t) 𝜒 (t)]−1

B (t) = 𝜒T (t) y (t),
, (1.57)

the new estimate is given by

̂𝜃(t + 1) = P (t + 1)B (t + 1),
̂𝜃 (t) = P (t)B (t) .

(1.58)
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The update from B (t) to B (t + 1) is given by

B (t + 1) = B (t) + 𝜒 (t + 1) y (t + 1) (1.59)

and the update fromP (t) toP (t + 1) is obtained by using thematrix inversion lemma
(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. For

P−1 (t + 1) = P−1 (t) + 𝜒 (t + 1) 𝜒T (t + 1), (1.60)

it yields to

P (t + 1) = P (t) [Im − 𝜒 (t + 1) (1 + 𝜒T (t + 1)P (t) 𝜒 (t + 1))−1 𝜒T (t + 1)P (t)].
(1.61)

The error variable is

𝜖 (t + 1) = y (t + 1) − 𝜒T (t + 1) ̂𝜃 (t) (1.62)

and replacing y (t + 1) into Eq. (1.59)

B (t + 1) = B (t) + 𝜒 (t + 1) 𝜒T (t + 1) ̂𝜃 (t) + 𝜒 (t + 1) 𝜖 (t + 1) . (1.63)

The new estimates are obtained by substituting B (t), B (t + 1) into Eq. (1.58):
̂𝜃 (t + 1) = ̂𝜃 (t) + P (t + 1) 𝜒 (t + 1) 𝜖 (t + 1) . (1.64)

1.9 General Methodology Based on Recursive Least Squares
for Nonlinear Systems

Consider the generalized system (see [69])

Ay (t) = Bu (t − 1) + Du (t) + 𝒟 (t) + Ce (t), (1.65)

where

A = 1 + a1z−1 +⋯+ anaz
na ,

B = b0 + b1z−1 +⋯+ bnbz
nb ,

D = d0 + d1z−1 +⋯+ dndz
nd ,

𝒟 = d0 + dt +⋯+ dnd t
nd ,

C = 1 + c1z−1 +⋯+ cncz
nc .

When these coefficients are unknown, then they are taken as parameters to be
determined, either through measurements or estimates. The system is represented
in Figure 1.8, where u (t) is the control input, v (t) is the measurable disturbance,
d (t) = d (t) is the nonmeasurable disturbance, and e (t) is the random disturbance.
For estimation purposes, this model can be rewritten as follows:

Y (t) = 𝒳T (t) 𝜃 + e (t), (1.66)
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B/A

D/A

C/Ae(t)

v(t)

u(t)

y(t)

+

+

+

+

d(t)

Figure 1.8 Simulink system’s representation.

where 𝜃T = [−a1,⋯ ,−ana , b0, b1,⋯ , bnb , d0, d1,⋯ , dnd ,d0,d1,⋯ ,dnd , c1,⋯ ,
cnc] and 𝒳T (t) is known as the regression vector and is constructed from
the measurements of the input and output variables, defined by 𝒳T(t) =
[ y (t − 1),⋯, y (t − na),u (t − 1),⋯, u (t − nb − 1), v (t),⋯, v (t − nd), 1, t,⋯, tnd e(t),
⋯ , e(t− nc)]. This vector contains the past noise measurements, which are difficult
to obtain, therefore they are assumed to be zero, so

𝜃T = [−a1,⋯ ,−ana , b0, b1,⋯ , bnb , d0, d1,⋯ , dnd ,d0,d1,⋯ ,dnd ]

and

𝒳T(t) = [ y (t − 1),⋯ , y (t − na),u (t − 1),⋯ ,u (t − nb − 1), v (t),⋯ ,

v (t − nd), 1, t,⋯ , tnd ].

It is assumed that

Y (t) = 𝒳T (t) 𝜃 (1.67)

is an exact description of the system and we want to determine 𝜃, that is, the vector
of true parameters of the system, then the model

Y (t) = 𝒳T (t) ̂𝜃 + ̂e (t) (1.68)

also gets the system output, where ̂𝜃 is an adjustable parameter vector and ̂e (t) the
measurement error at time t. We wish to select ̂𝜃 such that the modulation error is
minimized in some sense. Note that

(Y (t) = 𝒳T (t) 𝜃 − (Y (t) = 𝒳T (t) ̂𝜃 + ̂e (t))

⇒ 0 = 𝒳T (t) 𝜃 − 𝒳T (t) ̂𝜃 + ̂e (t),

so

̂e (t) = 𝒳T (t) (𝜃 − ̂𝜃) ; (1.69)
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so the modeling error depends on ̂𝜃 values and in some cases on the measurement
noise of 𝒳T (t), modifying (1.69) to

̂e (t) = 𝒳T (t) (𝜃 − ̂𝜃) + e (t) . (1.70)

Assuming that the system (1.67) has been active for some time and N data have
been taken, using the model (1.68) the measured data are expressed as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y (1)

Y (2)

⋮

Y (N)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒳T (1)

𝒳T (2)

⋮

𝒳T (N)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

̂𝜃 +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̂e (1)

̂e (2)

⋮

̂e (N)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.71)

To be able to estimate the parameters unequivocally, the number ofmeasurements
Nmust not be less than the number of unknownparameters in the vector 𝜃,m. In the
noise-free case, e (t) = 0, this equation can be solved as a system of linear equations
with N = m unknowns; however, in practice, N >> m.
We represent Eq. (1.71) as

̄Y = ̄X ̂𝜃 + ̄e, (1.72)

in the same way, ̄e = ̄Y − ̄X ̂𝜃. We select the parameter vector ̂𝜃 such that it
minimizes

J =
N

∑
t=1

̄e2 (t) = ̄eT ̄e = ̄YT ̄Y − ̂𝜃T ̄XT ̄Y − ̄YT ̄X ̂𝜃 + ̂𝜃 ̄XT ̄X ̂𝜃. (1.73)

According to the fundamental theorem of the calculus of variations, [70], the first
variation, the partial derivative of J with respect to ̂𝜃, is equal to zero, that is

0 = −2 ̄XT ̄Y + 2 ̄XT ̄X ̂𝜃,

and from the second variation, we have

𝜕2J
𝜕 ̂𝜃2

= 2 ( ̄XT ̄X ),

which, being positive definite, allows us to obtain the solution for ̂𝜃 of the form

̂𝜃 = ( ̄XT ̄X )
−1 ̄XT ̄Y. (1.74)

The dimension of ( ̄XT ̄X ) depends on the number of parameters, not the number of
measurements. In general, form parameters, the matrix will be of dimensionm×m.
If the matrix is singular, then this term cannot be obtained; however, this is easily
solved bynot settingu (t) a constant, thus avoiding that the determinant of thematrix
is 0.
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Update

mechanism

E(t)

Y(t)

+

–

Systemθ

θ Modelˆ

Figure 1.9 Recursion scheme.

If the system is contaminated with noise, then this feedback may be suffi-
cient excitation. Another way to get enough excitation is to vary the reference
signal.
We consider the scheme shown in Figure 1.9.
At time t, we have

̂𝜃(t) = ( ̄XT (t) ̄X (t))−1 ̄XT (t) ̄Y (t), (1.75)

where t indicates the number of the measurement in discrete time t, that is

̄X (t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒳T (1)

𝒳T (2)

⋮

𝒳T (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ̄Y (t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y (1)

Y (2)

⋮

Y (t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

So, in time (t + 1), we have

̄X (t + 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝒳T (1)

𝒳T (2)

⋮

𝒳T (t + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
̄XT (t)

𝒳T (t + 1)
], ̄Y (t + 1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y (1)

Y (2)

⋮

Y (t + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [
̄Y (t)

Y (t + 1)
],

(1.76)

and the estimated parameters vector in time (t + 1) is

̂𝜃 (t + 1) = ( ̄XT (t + 1) ̄X (t + 1))
−1 ̄XT (t + 1) ̄Y (t + 1) . (1.77)
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Therefore, we have

̄XT(t + 1) ̄X(t + 1) = [ ̄XT(t) 𝒳(t + 1)] [
̄X(t)

𝒳T(t + 1)
]

= ̄XT(t) ̄X(t) + 𝒳(t + 1)𝒳T(t + 1)

and

̄XT (t + 1) ̄Y (t + 1) = [ ̄XT (t) 𝒳 (t + 1)] [
̄Y (t)

̄Y (t + 1)
]

= ̄XT (t) ̄Y (t) + 𝒳 (t + 1) ̄Y (t + 1) .

Considering the following definitions

P (t) = ( ̄XT ̄X )
−1
and (1.78)

B (t) = ̄X ̄Y, (1.79)

we can rewrite (1.77) as

̂𝜃(t + 1) = P (t + 1)B (t + 1) and (1.80)

̂𝜃(t) = P (t)B (t) . (1.81)

This implies

P−1(t + 1) = P−1(t) + 𝒳(t + 1)𝒳T(t + 1) and (1.82)

B(t + 1) = B(t) + 𝒳(t + 1) ̄Y(t + 1). (1.83)

Applying the matrix inversion lemma to P−1 (t + 1), we have

P (t + 1) = P (t) − P (t)𝒳 (t + 1)(1 +𝒳T (t + 1)P (t)𝒳 (t + 1))−1𝒳T (t + 1)P (t) .

Since the reverse term is actually a scalar, then without any problem it can be
rewritten as follows:

P (t + 1) = P (t) [Im −𝒳 (t + 1) 𝒳T (t + 1)P (t)
1 +𝒳T (t + 1)P (t)𝒳 (t + 1) ]. (1.84)

We define the estimation error as follows:

E (t + 1) = ̄Y (t + 1) − 𝒳T (t + 1) ̂𝜃. (1.85)

Then (1.83) is rewritten as

B (t + 1) = B (t) + 𝒳 (t + 1)E (t + 1) + 𝒳 (t + 1)𝒳T (t + 1) ̂𝜃, (1.86)
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and the Eq. (1.80) is possible to perform the pertinent operations and substitutions
as follows:

̂𝜃(t + 1) = P (t + 1) [B (t) + 𝒳 (t + 1)E (t + 1) + 𝒳 (t + 1)𝒳T (t + 1) ̂𝜃 (t)],

= P (t + 1) [B (t) + 𝒳 (t + 1)𝒳T (t + 1) ̂𝜃 (t)]

+P (t + 1)𝒳 (t + 1)E (t + 1),

= P (t + 1) [P−1 (t) ̂𝜃 (t) + 𝒳 (t + 1)𝒳T (t + 1) ̂𝜃 (t)]

+P (t + 1)𝒳 (t + 1)E (t + 1),

= P (t + 1) [P−1 (t) + 𝒳 (t + 1)𝒳T (t + 1)] ̂𝜃 (t)

+P (t + 1)𝒳 (t + 1)E (t + 1),

= P (t + 1)P−1 (t + 1) ̂𝜃 (t) + P (t + 1)𝒳 (t + 1)E (t + 1) .

Finally,

̂𝜃 (t + 1) = ̂𝜃 (t) + P (t + 1)𝒳 (t + 1)E (t + 1) . (1.87)

Therefore, the recursive least squares algorithm is performed as follows:

i. Using new data taken from the system measurement form 𝒳(t + 1).
ii. Create E (t + 1) using (1.85).
iii. With (1.84) create P (t + 1) the first iteration starts the vector with initial con-

ditions of P big enough, a diagonal matrix of 100000 works fine.
iv. Calculate ̂𝜃 (t + 1) from (1.87).
v. Wait for the next time and go back to step 1.

1.10 Optimal Controllers

1.10.1 Linear Quadratic Regulator

The linear quadratic controller (LQR) is defined as a dynamic programming algo-
rithm that is conducive to finding optimal controllers [70–72].
The nonlinear control system is represented as follows:

̇x (t) = f (x (t),u (t)), x (t0) = x0, (1.88)

where x (t) ∈ Rn, u (t) ∈ Rm y f (., .) ∈ Rn satisfies the Lipschitz condition and the
control u (.) ∈ U ⊂ Rm.
The control u ∈ U once set, the system (1.88) determines the trajectory with initial

condition x0 at the instant t0.

1.10.1.1 The Infinite Horizon Optimal Control Problem
To find a control u ∈ U, such that in a closed loop of the system (1.88), there is a
trajectory that converges to the origin in a minimum time or properly with the min-
imum of energy and its convergence is as fast as possible. Having said earlier, the
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problem of optimal control is posed as the problem of optimal control, so it estab-
lishes a performance index, which penalizes the state of the system and control, also
called cost functional [70–72].

Ju(·) (t0, x0) = ∫
∞

t0
L (x (t),u (t)) dt, (1.89)

whereL is a positive definite scalar function. L penalizes the state x (.) and the energy
u (.).We consider the case of onlyminimizing the energyL (x,u) = uTu. If the control
u∗ minimizes the cost functional Ju(·) (t0, x0), it is as follows:

Ju∗ (.) (t0, x0) ≤ Ju(·) (t0, x0), ∀ u (.) ∈ U,

where u∗ is called optimal control. In 1975, Richard Bellman proposed dynamic
programming to solve optimization problems for differential equations with con-
straints. Optimal control with constraints is interpreted as the equation of state. The
method consists of replacing Eqs. (1.88) and (1.89) and contains a minimization in
the spaceU, by thematrix differential equation in partial derivatives, which is called
the Hamilton–Jacobi–Bellman equation:

0 = min
u∈U

{L (x,u) + ∇xV (x) · f (x,u)}, t [t0,∞] , x ∈ Rn, (1.90)

where dV(x)
dt

= ∇xV (x) · f (x,u). The Hamilton–Jacobi–Bellman equation satisfies the
Bellman function V (x), defined as follows:

V (x0) = min
u∈U

Ju (·)(t0, x0) . (1.91)

Bellman’s function (1.91) must satisfy Eq. (1.90) and it is necessary that the func-
tion of V (.) be continuously differentiable along the trajectories of (1.88).
The following is a brief explanation of the application of the aforementioned

equations to solve the infinite horizon optimal control problem in the case of linear
systems LQR problem.
Consider the linear system in the form of state–space representation:

̇x (t) = A (t) x (t) + B (t)u (t) (1.92)

such that A ∈ Rn×n y x (t) ∈ Rn, u(t) ∈ Rm and define a quadratic performance
index

J = ∫
tf

t0
{xT (t)Qx (t) + uT (t)Ru (t)} dt, (1.93)

whereQ ∈ Rn×n yR ∈ Rm×m are positive semidefinite and positive definitematrices,
respectively. The set of admissible controlsU and the system (1.92) is set closed loop
with u.
Thus u ∈ U, such that it is the linear function of the state x (t), that said, u (t) =

u (x (t)). It is assumed that there are admissible controls for the system (1.92) and
that the performance index (1.93) reaches a minimum for:

u (x (t)) = u∗ (x (t)) . (1.94)
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Now, a positive definite function V (x (t)) is sought so that its derivative on all tra-
jectories of the system (1.92) is as follows:

dV (x (t))
dt = −L∗ (x (t), u∗ (t)), (1.95)

where

L∗ (x (t), u∗ (t)) = xT (t)Qx (t) + u∗T (x (t))Ru∗ (x (t))

is integrated from 0 to∞ on both sides of (1.94) and is obtained as follows:

lim
t→∞

V(x)(t) − V(x0) = −∫
∞

0
L∗(x(t, x0),u∗(t))dt.

So, the system is stable (u∗) and is an admissible control; we have the following
equation:

V(x0) = ∫
∞

0
L∗(x(t, x0),u∗(t))dt.

It is nowknown that x (t, x0)denotes the solution to the system (1.92) in closed loop
with (1.94). Although L∗ (x (t, x0),u∗ (t)) is positive definite, for obviousness V (x (t))
is a Lyapunov function for the system (1.92). The expression (1.95) can be seen as
follows:

dV (x (t))
dt + L∗ (x (t), u∗ (t)) = 0 (1.96)

Rewriting is as follows:

min
u∈U

(dV (x (t))dt
|||1.92

+ xT (t)Qx (t) + uT (t)Ru (t)) = 0. (1.97)

So, Eq. (1.97) is known as the Hamilton–Jacobi–Bellman equation for linear sys-
tems, and the function satisfying this equation is called the Bellman function for
systems (1.92). When the Bellman function V (x (t)) is known, its solution is (1.97)
with respect to u, since it gives the optimal control of u∗ (t). The function of V (x (t))
can be considered as a Lyapunov function for the system (1.92) in a closed loop with
u∗ (t). Of course, for a linear system and u∗ (t) = u∗ (x (t)), a closed-loop Lyapunov
function can be proposed as follows:

V (x (t)) = xT (t)Px (t), (1.98)

where P ∈ Rn×n is defined as positive and the derivative of V (x (t)) is calculated for
all system trajectories (1.92),

dV (x (t))
dt

|||(1.92)
= 2xT (t)P (Ax (t) + Bu (t)) . (1.99)

The derivative (1.99) is substituted into (1.97) to have the form:

min
u∈U

(AxTPAx (t) + 2xT (t)PBu (t) + (xT (t)Qx (t) + uT (t)Ru (t))) . (1.100)

From Eq. (1.100), it is desired to find the optimal control law u∗. It can be seen
that in (1.100), a strongly convex quadratic function is present with respect to u.
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Given the following, the existence of a global minimum for (1.100) is guaranteed.
Consequently, in the results of the calculus of variations, the first variation of the
function to be optimized with respect to u should be zero.

𝜕
𝜕u (2Ax

TPAx (t) + 2xT (t)PBu (t) + (xT (t)Qx (t) + uT (t)Ru (t))) = 0.

Therefore,

2BTPx (t) + 2Ru (t) = 0. (1.101)

Therefore, the optimum control law for the system (1.92) is

u∗ (t) = −R−1BTPx (t) . (1.102)

The expression (1.102) is said to be optimal given that,

𝜕2
𝜕u2 (2Ax

TPAx (t) + 2xT (t)PBu (t) + (xT (t)Qx (t) + uT (t)Ru (t))) = 2R > 0.

It is assumed that the matrix R is strictly positive definite and according to the
sufficient optimality condition u∗ (t) given (1.92) is optimal.
Now, we proceed to formulate the matrix P of the Bellman function V (x (t)). To

know it, it is necessary to calculate the time derivative of (1.99) and then evaluate the
trajectories of the system (1.92) in a closed loop with the optimal control law (1.102):

dV (x (t))
dt = x (t)T (ATP + PA) x (t) + u∗T (t)BTPx (t) + x (t)T PBu∗ (t) .

(1.103)

Substituting Eqs. (1.102) and (1.103) into (1.99), we obtain that for every state x (t)

x (t)T (ATP + PA + Q − PBR−1BTP) x (t) = 0.

The procedure is terminated as follows:

ATP + PA + Q − PBR−1BTP = 0. (1.104)

Equation (1.104) is called the algebraic Riccati equation. Given the matrices Q
positive semidefinite and R strictly positive, this equation can be solved numerically
with respect to P, which defines the optimal control u∗.

1.10.2 Optimal PI

Next, the process to tune a Proportional Integral (PI) controller optimally by design-
ing the optimal quadratic regulator (LQR) will be described, detailing the [73] pro-
cedure for a first-order process (see Figure 1.10). A large number of processes are
modeled as first order as well, as controlled by a proportional–integral–derivative
(PID) control; regularly, this model is of the form:

G (s) = be−hs
s + a . (1.105)

Although this model is not the exact one, it is used for design purposes.
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Figure 1.10 PI control diagram in Simulink.

Now consider a PI control:

u (t) = Kp [e (t) + 1
Ti
∫

t

0
e (𝜏) d𝜏] , (1.106)

which is a control law that is sufficient to control a first-order plant.
Since the system is linear, it is possible to set r = 0, which would imply e = −y;

therefore, we have (s + a) e = be−hsu, and in the time domain

̇e = −ae (t) − bu (t − h), (1.107)

if r ≠ 0, the result is unmodified.
By defining

x1 = ∫
t

0
e (𝜏) d𝜏, x2 = e (t),

we can determine the extended state as

x (t) = [x1 x2]
T .

We derivate the state as

d
dt∫

t

0
e (𝜏) d𝜏 = e (t),

obtaining

̇x = [
̇x1
̇x2
] = [

x2

̇e (t)
]

Now in state–space, we have

[
̇x1
̇x2
] = [

0 1

0 −a
][

x1

x2
] + [

0

−b
]u(t − h). (1.108)

In this system, all the state variables are available and it is completely controllable,

C = [B AB] = [
0 −b

−b ab
],
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since the controllability matrix rank is 2 or full rank. Therefore, the state feedback
control is

u (t) = [ki k2] [
x1

x2
] = k1∫

t

0
e (𝜏) d𝜏 + k2e (t), (1.109)

a PI control. The parameters of this PI will be obtained using the optimal quadratic
regulator methodology.
Therefore, we proceed to find k1 and k2; substituting in the Riccati algebraic

equation,

ATP + PA − PBR−1BTP + Q = 0, (1.110)

the known values are

A = [
0 1

0 −a
] and B = [

0

−b
]

as well as

Q = [
q1 0

0 q2
] and P = [

P11 P12

P21 P22
]

and

[
0 1

0 −a
]

T

[
P11 P12

P21 P22
] + [

P11 P12

P21 P22
][

0 1

0 −a
]

−[
P11 P12

P21 P22
][

0

−b
]R−1[0 −b] [

P11 P12

P21 P22
]

= [
−q1 0

0 −q2
]

which, performing the procedure, is

[
0 P11 − aP12

P11 − aP21 P12 + P21 − 2aP22
] −

⎡
⎢
⎢
⎢
⎣

1
Rb

2P12P21
1
Rb

2P12P22

1
Rb

2P21P22
1
Rb

2P222

⎤
⎥
⎥
⎥
⎦

= [
−q1 0

0 −q2
]

⎡
⎢
⎢
⎢
⎣

− 1
Rb

2P12P21 P11 − aP12 −
1
Rb

2P12P22

P11 − aP21 −
1
Rb

2P21P22 P12 + P21 − 2aP22 −
1
Rb

2P222

⎤
⎥
⎥
⎥
⎦

= [
−q1 0

0 −q2
].
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If we consider that P is symmetric, then P12 = P21, which simplifies

⎡
⎢
⎢
⎢
⎣

− 1
Rb

2P212 P11 − P12(a +
1
Rb

2P22)

P11 − P12(a +
1
Rb

2P22) 2P12 − 2aP22 −
1
Rb

2P222

⎤
⎥
⎥
⎥
⎦

= [
−q1 0

0 −q2
].

This brings us to the equation system

−q1 = − 1
Rb

2P212, (1.111)

0 = P11 − P12 (a +
1
Rb

2P22), (1.112)

−q2 = 2P12 − 2aP22 −
1
Rb

2P222 (1.113)

From (1.111), we directly obtain

P12 =
√Rq1
b . (1.114)

Using the general formula for second-order equations in (1.113) and having the ana-
lytical positive value,

P22 =
2a −√4a2 − 4 (− 1

R
b2) ( 2√Rq1

b
+ q2)

2(−1
R
b2)

=
a −√a2 − (− 1

R
b2) (2P12 + q2)

−1
R
b2

=
−Ra + R√a2 − (− 1

R
b2) (2P12 + q2)

b2 ,

we have

P22 =
−Ra +√R2a2 + Rb2 (2P12 + q2)

b2 . (1.115)

Now, for Eq. (1.112), we obtain

P11 = aP12 + R−1b2P22P12. (1.116)

If

F = R−1BTP = R−1 [0 −b] [
P11 P12

P12 P22
] = −R−1b [P12 P22] ,

then in the closed-loop matrix
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Ac = A − BF = [
0 1

0 −a
] + [

0

−b
]R−1b [P12 P22]

= [
0 1

−R−1b2P12 −√a2 + R−1b2(2P12 + q2)
]

. (1.117)

So, we have a linear system of the form

̇x (t) = Ax (t) + Bu (t − h). (1.118)

The performance index of this control is given by

J = ∫
∞

0
(xT (t)Qx (t) + uT (t)Ru (t)) dt (1.119)

using Ricatti’s Eq. (1.110) and factoring Q into Q = HTH the LQR solution, [74], in
the following theorem.

Theorem 1.5 [73] For the linear process with time delay (1.118), if the pair (A,B)
is controllable and the pair (H,A) is observable, then the optimal control that mini-
mizes the performance index (1.119) is given by

u (t) = −R−1BTPe(A−BR−1BTP)teA(h−t)x (t), 0 ≤ t < h

and

u (t) = −R−1BTPe(A−BR−1BTP)tx (t), t ≥ h,

where P is the positive definite solution of (1.110). The resulting system also is stable,

which is reduced as

u(t) = {
−FeActeA(t−h)x(t) , 0 ≤ t < h

−FeActx(t) , t ≥ h
. (1.120)

If the general form is replaced in Q, that is,

Q = [
q11 q12

q12 q22,
] ,

then

−q11 = − 1
Rb

2P212,

−q12 = P11 − P12 (a +
1
Rb

2P22),

−q22 = 2P12 − 2aP22 −
1
Rb

2P222,
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which, in turn, implies a slight change in the form of P11, but P12 and P22 remain the
same; the change occurs from (1.116) to

P11 = aP12 + R−1b2P22P12 − q12; (1.121)

because of this, it is possible to consider Q with its diagonal shape.
To obtain eA(h−t) and eAct, an inverse Laplace transform needs to be done: starting

with eA(h−t),
we have

eA(h−t) = ℒ−1 {(sI − A)−1} ∣t=h−t .

Recalling the equality (sI − A)−1, we have

(sI − A)−1 = [
s −1

0 s + a
]

−1

=
⎡
⎢
⎢
⎢
⎣

1
s

1
s2 + as

0 1
s + a

⎤
⎥
⎥
⎥
⎦

.

Applying the inverse Laplace transform, we have

ℒ−1
⎧⎪
⎨⎪
⎩

⎡
⎢
⎢
⎢
⎣

1
s

1
s2 + as

0 1
s + a

⎤
⎥
⎥
⎥
⎦

⎫⎪
⎬⎪
⎭

|
|
|
|
|
|
t=h−t

= [
1 1 − e−at

a
0 e−at

]
|||||
t=h−t

= [
1 1 − e−a(h−t)

a
0 e−a(h−t)

].

Following the same procedure for eAct,

eAct = ℒ−1{(sI − Ac)−1},

we have

(sI − Ac)−1 = [
s −1

R−1b2P12 s +√a2 + R−1b2(2P12 + q2)
]

−1

.

Defining ̂a1 = √a2 + R−1b2 (2P12 + q2) and ̂a2 = R−1b2P12, then we have

(sI − Ac)
−1 = 1

s2 + ̂a1s + ̂a2
[
s + ̂a1 1

− ̂a2 s
]. (1.122)

Assuming that the denominator roots are:

𝛼1 =
− ̂a1 +√ ̂a21 − 4 ̂a2

2

𝛼2 =
− ̂a1 −√ ̂a21 − 4 ̂a2

2 ,
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we can rewrite (1.122) as

(sI − Ac)
−1 = 1

(s − 𝛼1) (s − 𝛼2)
[
s + ̂a1 1

− ̂a2 s
].

Applying the inverse Laplace transform, we obtain

ℒ−1{(sI − Ac)−1} =
1

𝛼1 − 𝛼2
[
et𝛼1( ̂a1 + 𝛼1) − et𝛼2( ̂a1 + 𝛼2) et𝛼1 − et𝛼2

− ̂a2(et𝛼1 − et𝛼2) 𝛼1et𝛼1 − 𝛼2et𝛼2
]

= [
f11(t) f12(t)

f21(t) f22(t)
]

.

(1.123)

According to the control form (1.120), from 0 ≤ t < h

u(t) = −R−1b [P12 P22] [
f11(t) f12(t)

f21(t) f22(t)
] [

1 1 − e−a(h−t)
a

0 e−a(h−t)
][

x1

x2
]

= −R−1b

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f11(t)P12 + f21(t)P22

e−ah−t[ f12(t)P12 + f22(t)P22

−1a ( f11(t)P12 + f21(t)P22)]

+1a ( f11(t)P12 + f21(t)P22)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
x1

x2
]

,

and also for t ≥ h

u(t) = −R−1b [P12 P22] [
f11(t) f12(t)

f21(t) f22(t)
] [

x1

x2
]

= −R−1b [f11(h)P12 + f21(h)P22 f12(h)P12 + f22(h)P22] [
x1

x2
]

.

We have the following theorem.

Theorem 1.6 [73] The optimal LQR control for the process (1.105) and state
(1.108) is given in the form of a PI controller (1.106) or (1.109), where, for
0 ≤ t < h,

Ki (t) = R−1b ( f11 (t)P12 + f21 (t)P22),

Kp (t) = R−1b {e−ah−t [f12 (t)P12 + f22 (t)P22 −
1
a ( f11 (t)P12 + f21 (t)P22)]

+1a ( f11 (t)P12 + f21 (t)P22)}

,
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and in the same way for t ≥ h,

Ki (t) = R−1b ( f11 (h)P12 + f21 (h)P22),

Kp (t) = R−1b ( f12 (h)P12 + f22 (h)P22) ;
q1, q2, and R are the tuning parameters.

In the case where t ≥ h, the optimal controller 𝜁, the damping coefficient, and 𝜔n,
the undamped natural frequency, can be obtained from the characteristic equation
of Ac, (1.117):

∆ = s2 +√(a2 + R−1b (√q1R + q2b))s + R−1b√q1R. (1.124)

When it is compared to the general form of a second-order system:

∆g = s2 + 2𝜁𝜔ns + 𝜔2
n,

then the following is obtained

𝜔2
n = R−1b√q1R

2𝜁𝜔n =√(a2 + R−1b(√q1R + q2b)),

which implies

𝜔n =√R−1b√q1R, (1.125)

𝜁 = √(a2 + R−1b(√q1R + q2b))

2√R−1b√q1R
, (1.126)

or, in the same way, obtaining the desired values of 𝜁 and 𝜔n, the q1 and q2 values
are given as

q1 =
𝜔4
nR
b2

, (1.127)

q2 =
[(4𝜁4 − 2)𝜔2

n − a2]R
b2

. (1.128)

Thus, the performance index is

J =∫
∞

0

⎧⎪
⎨⎪
⎩

[∫
t

0
e(𝜏)d𝜏 e(t)]

⎡
⎢
⎢
⎢
⎣

𝜔4
nR
b2 0

0
[(4𝜁4 − 2)𝜔2

n − a2]R
b2

⎤
⎥
⎥
⎥
⎦

⎡⎢⎢⎢
⎣

∫
t

0
e(𝜏)d𝜏

e(t)

⎤⎥⎥⎥
⎦
+ Ru2(t)

⎫
⎬
⎭

= R {∫
∞

0
[𝜔

4
n
b2 (∫

t

0
e(𝜏)d𝜏)

2

+ (4𝜁2 − 2)𝜔2
n − a2

b2 e2(t) + u2(t)] dt} .

,
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This indicates that the performance index J is proportional to R, so it is possible to
choose R = 1; this implies that energy consumption and convergence are affected
by R.
To conclude, the direct identities of a second-order system are exposed [75]; the

maximum overshootMp and the establishment time ts, for 𝜁 < 1, are as follows:

Mp = e
− 𝜁𝜋

√1−𝜁2,

ts =
4
𝜁𝜔n

.

1.10.3 Pontryagin Maximum Principle

The idea of exploiting optimization at process is not novel; the novelty here is how
the optimization is formulated and solved together with the experimental proof-
of-concept. Pontryagin maximum principle and current with comparatively new
developments, such as methods of inverse dynamic problems, decomposition, and
embedded systems, are used. In addition, Pontryaginmaximum principle is used for
establishing positive properties of optimal controls with a minimum of mathemati-
cal operation. Pontryagin maximum principle is applied for solving the variational
problem of optimal open-loop control. Pontryagin maximum principle was used for
solving applied problems of control and other problems of dynamic optimization.
That is, commonly, the optimal control actions are saturation-limited, which means
that the optimal control consists generally of both singular and bang-bang arcs;
moreover, the optimized feeding command relies on accurate model knowledge and
high-quality measurement of the main state variables for its real-time implemen-
tation, which could be a serious drawback for realistic processes implementations
[76]. Other fact is that the structure of the corresponding objective function to be
optimized might include nonlinear terms of the state variables and, therefore, the
cost of the optimization rises, as the planning of the feeding, based on those control
law, is large [77]. The Pontryagin’s maximum principle is a relevant mathematical
formalism and is widely employed to search for possible optimal conditions for con-
trolled processes [78]. However, such optimization approaches might not have the
necessary ability to ensure either feasibility or optimization or even, in many cases,
to point out how near optimization a specific feasible solution is [79].

Case Study Research 4
First, in search of a compact notation, let us consider the following generic repre-
sentation of any batch reactor modeled from the mass balance:

̇x ∶= dx
dt = f (x) + g (x)u, (1.129)

where x ∈ Rn is the state variable vector that represents the concentration variables
within the reactor. The term f (x), f ∶ Rn → Rn is a nonlinear vector field, whose
components can be derived from the right side of each differential equation of the
mass balance, where f (x) ⊂ Σ ∈ C∞ and Σ is a compact set; g (x) ∈ Rn×m is an
invertible boundedmatrix, whose entries are also derived from right side of themass
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balance, but taking into account the termsmultiplying a variable defined by the feed-
ing rate u = Fin, where u ∈ Rm, with m ≤ n is known as the control input, which
is computed by the instrumentation on the experimental real-time implementation.
Now, let us consider a function given by:

Ψ (𝜚) = ∫
T

0
𝜚 (x, ̇x, u) dt. (1.130)

Then, if such a function has an extreme (maximum or minimum), the extreme
can be computed from the derivative:

𝜉Ψ (𝜚) = ∫
T

0
𝜉𝜚 (x, ̇x, u) dt. (1.131)

Now, from the general form of the model ̇x = f (x) + g (x)u, we have:

f (x) = ̇x − g (x)u. (1.132)

The aforementioned computation suggests that functions Ψ (𝜚) and 𝜚 (x, ̇x, u) can
be respectively taken as follows:

Ψ (𝜚) ≡ f (x) and 𝜚 (x, ̇x, u) ≡ ̇x − g (x)u. (1.133)

Henceforth, since by definition Ψ (𝜚) = ∫T
0 𝜚 (x, ̇x, u) dt, we have

Ψ (𝜚) = ∫
T

0
( ̇x − g (x)u) dt = 0. (1.134)

The equation for computing the feeding rate can be obtained through the calcula-
tion of u, which stabilizes the model around an extreme point as follows.

1.11 Observer-based Controllers

In order to use full-state feedback, it is necessary that all states of a given system are
measured. In practice, this is not always possible. In some cases, sensors are simply
not available or cannot bemade for the states that onewould desire tomeasure. If the
process to be controlled is observable and a reasonably accurate model is available
for it, then it is possible to use a modified model to estimate the states of the process
that are not measured. The main model modification is to add a term that corrects
model errors and internal disturbances. Under proper conditions, the state estima-
tor can be used instead of direct measurements of full system states. Such amodified
model used in a feedback system is called a State Observer. In the case of full-order
observers, all the states of the control object are estimated whether or not this is nec-
essary. In some cases, control objects have states that can be effectively measured
without noise, while other states have large noise components. Such model reduc-
tions may be advantageous because they make it possible to simplify the control
system and thus reduce system costs. An observer-based control structure could be
useful in the case of anti-windup bump-less transfer, e.g., switching between man-
ual (open loop) and automatic (closed loop) control modes. Amore complex control
system often uses several control modes, e.g., failsafe or limp home mode. The con-
trol strategies and variables may vary, while the observer is the same [80–82].
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1.12 Examples of Modeling, Simulation, and Practical
Platforms for Industrial Processes

An embedded system is said to be a system that monitors processes and in some
cases controls them. One of the main characteristics of a real-time system is to cor-
rect calculations that depend not only on the accuracy of the result but also on the
time at which it is produced, avoiding delays if this is the case. A real-time system
must respond to changes in the configurations that were established at the begin-
ning within the established time to be performed, otherwise, this can jeopardize the
system that is being monitored at that time [83].
According to [84], an embedded system is an engineering-developed artifact that

is directly related to computation and is subject to physical constraints that arise
through the two ways in which computational processes interact with the physical
world [85]:

i. Reaction to a physical environment.
ii. Execution on a physical platform.

The main common reaction constraints specify deadlines, performance, and jit-
ter, originating from behavioral requirements. The common execution constraints
are limited by the available processor speeds, processor power, and hardware failure
rates, giving way to the different implementation options. It is important to empha-
size that control theory is concerned, in this case, with constraining system reac-
tions, while computer engineering is in charge of execution.
Some of themain characteristics that an embedded system should possess, accord-

ing to [84], are the following:

• Multiple operations can be performed by the same chip (processor).
• Within the period of the process to be monitored or controlled, it must be fully
automatic.

• It is considered that it must be compact, as well as have a quick response regard-
ing the process in which it is operating.

Some possible configurations that can be found in an embedded system are as
follows:

• Real-time system: One of the main characteristics is that it produces a result
within a defined timeframe; working outside these timeframes results in sys-
tem failure. They are capable of preserving as much of the system’s data and
capabilities as possible in the face of disturbances. [86].

• Online system: They are characterized by being semi-permanently connected
to a computer, terminal, cash register, or other device with a certain processing
capacity. They are capable of encoding and decoding information immediately
(see Figure 1.11).

Considering this section, we present the proposed embedded system for the devel-
opment applied to a bioreactor:
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Figure 1.11 Embedded bioreactor system.

1.12.1 LabVIEW

LabVIEW is the acronymof LaboratoryVirtual InstrumentEngineeringWorkbench.
It is a graphical programming environment that engineers use to develop automated
testing systems for research, validation, and production. In LabVIEW, it is possible
to acquire data and process signals, create automated test bench and validation sys-
tems, and control industrial environments, as well as prototypes.
It is a high-level language programming environment in which virtual instru-

ments can be created. These are software modules that simulate the front panel of a
physical instrument with buttons, Light-Emitting Diodes (LEDs), controls, and dis-
play screens.
The hybrid programming allows us to combine textual and graphical program-

ming to increase the efficiency. Text-basedmathematical formulas can directly enter
on the LabVIEW block diagram with theMathScript node. MATLAB [87] functions
are available, for example, for signal and data processing, vector and matrix opera-
tions, among others.
The foundations of graphical programming can be found directly in the website

of National Instruments, which is the developer and its owner [88, 89]. A real-time
data acquisition and control system based on virtual instrumentation should allow:

i. Define a test procedure.
ii. Selection of the instruments.
iii. Provide initial values.
iv. Analyze results using a user interface.

The components of a program in LabVIEW consist of:

i. The front panel, which is the user interface.
ii. Block diagram containing the graphical source code that defines the function-

ality.
iii. Icon and connectors that identify each virtual instrument and allow us to

use it.
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In this book, we will only mention the basic elements and functions to create vir-
tual instruments for implementing the parameter identification algorithms and for
developing advanced control techniques, creating a user interface to monitor the
process variables.
The used LabVIEW blocks and structures are listed as follows:

• Timed loop: It is an iterative structure, widely used in real-time operations, that
executes one or more sub-diagrams, or frames, sequentially each iteration of
the loop at a specific period. It is possible to configure the clock source, the
execution period, and the phase.

• Sequence structure: Statements are executed in the order of appearance when
all data are available.

• MathScript node: It is a structure in the LabVIEW block diagram that provides
the ability to put text-based MathScript code in line with graphical LabVIEW
code.

• Shift register: It is a local variable that allows us to transfer the values from the
end of an iteration to the beginning of the next. After the loop code executes,
data enter the right shift register and are passed to the left shift register on the
next iteration of the loop.

• Sample Compression Express VI: It acquires a large number of data points and
compresses those data points into a smaller number of points.

• Build Array Function: It concatenates multiple arrays or appends elements to
an n-dimensional array.

• Index Array Function: It returns the element or subarray of an n-dimension
array at index.

• XYGraph: It expects a cluster input that contains thewaveforms’ X andY arrays
formed using a Bundle Function.

• Write to Measurement File Express VI: It can write data to a text-based measure-
ment file (.lvm), a binary measurement file with headers (.tdm), a binary mea-
surement file without headers (.tdms), or a Microsoft Excel file (.xlsx).

One of the commonly used devices that provide the computer with the ability to
acquire general signals is the data acquisition card, which can be used with the Data
Acquisition (DAQ)Assistant. It is a graphical interface for configuringmeasurement
tasks, channels, and scales.

1.13 Sensors

1.13.1 ESP32

The ESP32 (datasheet) card is designed for the IoT and improves the integration of
wireless technology, such as Wi-Fi and Bluetooth, into a chip. It manages to make
the boardmore practical due to added advantage of small-size chip (equivalent to an
Arduino nano), which makes it a more practical option for the implementation of
projects that require a small and aesthetic space.
The ESP32 is a development board containing a System-on-Chip (SoC) that con-

sists of all or most of the elements of a computer or any other electronic system on a
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single integrated circuit or chip, such as Random-Access Memory (RAM) memory,
analog and digital inputs, and outputs. These systems have the advantage of low-
power consumption. The specifications of the board are shown in Section 1.13.2.
In the specific case of this work, the digital to analog converter (DAC) inputs will

be used since they are in charge of receiving the analog signal from the Methane
and Natural Gas Concentration (MQ-4) sensor module. As can be seen in the list of
specifications, the resolution of this module is 12 (bits), in addition to the 32 (bits)
architecture. One of the most attractive features of the aforementioned board is the
fact that the board has a Bluetooth module and an integrated Wi-Fi module, which
improves the transmission of data to other devices, such as a computer or a smart-
phone.

1.13.2 Specifications

The technical specifications of the ESP32 board are as follows:

• Dual-core XtensaTM processor LX6 of 32 bits
• Clock speed: between 160 and 240 MHz
• 520 kB of RAMmemory
• Wi-Fi integrated
• Bluetooth 4.2–2.4 GHz
• 36 GPIO pins
• 16 × Analog to Digital Converters with 12-bit resolution and can be pro-
grammed with input limit at 1 V, 2 V, and 4 V

• 2 × digital to analog converter DAC of 8 bits
• Up to 16 pulse width modulation channels can be defined
• 2 × universal asynchronous receiver transmitter or serial ports
• 2 × channels I2C
• 2 × channels I2S
• 4 × channels serial peripheral interface

1.13.3 Sensor Infrastructure

For the construction of the sensor, we will use a prototyping board (Protoboard), the
ESP32 board, and the MQ-4 sensor module (this can be replaced by any module of
the sensor family).
Both the sensor and the board need to be powered by 5 V direct current. The sen-

sor module can send two types of signals: digital and analog. The digital signal indi-
cates the presence or absence of a gas with a certain concentration, and the analog
signal gives us, as a result, a voltage variation depending on how much gas is in the
environment. This is what is required for this case study. Therefore, the analog input
of the board is used to receive the data provided by the sensor module. These varia-
tions are received by the board in a range of 0–3.3 V with a resolution of 12 bit (4096
samples). This indicates how much gas is there with a concentration ranging from
200 to 10 000 parts per million (ppm). A model was created to contain the sensors
and make their implementation easier for the user, so that in case of having more
than one sensor, they can be contained in a single structure.
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It is intended to implement the estimator that responds in the best way to make
a virtual sensor. This leads to using the material that is accessible to students or
researchers. As mentioned earlier, the virtual sensor or state estimator needs to at
least have the physical measurement of the process. This can be, for example, the
methane produced, carbon dioxide, or hydrogen sulfide, so it takes into account
the materials that will be seen in the following subsections. Also mentioned is the
method to calibrate the sensor, which depends on the effectiveness of the state esti-
mator.

1.14 Module MQ

The MQ-4 module has an alumina ceramic microtube (AL2O3) and a tin dioxide
sensitive layer (SnO2). In othermodels of theMQ family, thematerial of the sensitive
layer changes to give sensitivity to other types of gases. Themeasuring electrode and
heater provide the necessary conditions for the sensitive components to work on.
Themeasurement occurs when the gas is trapped inside the grid and reacts with the
ceramic tube, which causes the resistance of the circuit to increase, thus giving the
value of the gas concentration. These sensors have the particularity of being very
economical with a fast response time.

1.15 Sensor Operation

In order to create the sensor assembly, the ESP32 board and the MQ modules are
used as gas sensors. The methane concentration measurement is adjusted by means
of a load resistor Rl. The heater has a 5 V connection so that it can operate. It is
powered separately to have the best possible measurement.
For the connection, the analog pins A0 GPIO 33 are used to measure the poten-

tial difference on the output pins of the sensor module and the programming has
been done in the software (LabVIEW). For the creation of the user interface, the
Arduino Integrated Development Environment (IDE) for data processing is used
on the board, which along with Bluetooth module facilitates the communication
between the PC and the board.
To obtain the methane concentration measurement, the following steps are fol-

lowed in the programming.

• The analog values of pin A0 are converted to a voltage measurement.
• The resistance Rs is calculated, which indicates the resistance at the sensor in
the presence of methane gas.

• The ratio of Rs
Rs of the air

(resistance at the sensor in the presence of methane gas/
resistance at the sensor in the presence of air).

• The ppm value is obtained on a linear scale according to the relationship calcu-
lated in the previous point.

• The value (ppm) is converted to a logarithmic scale.
• The value (ppm) is converted to the percentage of CH4 in air.
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For all this, we used as a guide the Arduino programming for the MQ-4 sensor
obtained from examples in the Arduino community.
With these measurements performed by our sensor, we intend to perform the esti-

mation of parameters for which a sensor is not available, using a nonlinear estimator
observer that will be fed with the input of the low-cost sensor.

1.15.1 Sensor Calibration

For the calibration process, different samples taken by a CO2 probe were used and
related to themeasurements displayed by theMQmodule with the LSA. The process
is described in the following text.
The least squares method is used for sensor parameterization resulting in a poly-

nomial describing the sensor behavior and is defined as follows for a Single-Input
Single-Output (SISO) system:
Let there be a SISO measurement system of the form:

yi = Mxi + N. (1.135)

For i = 1, 2,… ,n samples, the estimation of the coefficientsM andN is defined by:
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where y is the output and x is the input. This is the simplest case that approximates
a straight line. If we want to improve the parameterization, then we can use the
higher degree algorithm given for n measurements and defined by a polynomial
approximation:
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with S−1 nonsingular for n = 2mminimum number of measurements.
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Table 1.1 Test data.

Feature Value

Concentration (ppm) Resistance Rs/R0
200 1.8

300 1.6

500 1.4

800 1.1

1000 1

2000 0.79

3000 0.68

5000 0.59

7000 0.5

10 000 0.35

Table 1.2 Parameters obtained from LSA.

Feature Value

a0 8.863152555487748 e+03

a1 4.696522688472391 e+04

a2 –1.944975271307188 e+05

a3 2.414530821540368 e+05

a4 –1.256669450302607 e+05

a5 2.371184194478921 e+04

As a first calibration, we used the data provided by the sensor datasheet. These
data give us an idea of how the sensor should behave. The data are shown in
Table 1.1 as follows:
With these data, the LSA is applied to characterize the sensor. In this case, the

first-degree and fifth-degree algorithms were used to select the one that best fits the
values provided (Table 1.2).
These data result in the following polynomial:

Y = 23711.8419x5 + −125666.9450x4 + 241453.0821x3

+ 46965.2268x2 + x1 + 8863.1525

1.15.2 Methane Sensor Programming Codes

For the sensor, we took advantage of the compatibility of the ESP32 board with
the Arduino IDE to be able to program it in this development environment, which
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provides us with some in-built libraries for Arduino such as BluetoothSerial.h. This
allows us to take advantage of the integrated Bluetooth module on the board. The
code used for receiving data on the board is as follows:

//Sensor MQ–4 Methane
\#include ”BluetoothSerial.h” //bookstore Bluetooth
int gas_sensor = 34; //Sensor pin
float m = –0.368; //pending
float b = 1.104; //Y–interception
float R0 = 11.820; //sensor resistance in pure air
BluetoothSerial SerialBT;
void setup() {
Serial.begin(115200); //Baud rate
SerialBT.begin(”Sensor CH4”);
pinMode(gas_sensor, INPUT); // pin as input
}
void loop() {
float sensor_volt;
float RS_gas;
float ratio;
float sensorValue = analogRead(gas_sensor);
sensor_volt = 0;
ratio = 0;
RS_gas = 0;
sensor_volt = sensorValue*(3.3/4096);
RS_gas = ((3.3*10.0)/sensor_volt)–1.14;
ratio = RS_gas/R0; // Gets the relationship RS_gas/RS_air
double ppm_log = (log10(ratio)–b)/m;
double ppm = pow(10, ppm_log);
double porcentaje = ppm/10000; //converts to percentage
Serial.print(”ppm = ”); //shows the data
Serial.println(ppm);
SerialBT.print(ppm);
SerialBT.print(” ppm”);
SerialBT.print(” ; ”);
SerialBT.print(percentage);
SerialBT.print(” % ”);
SerialBT.print(”; ”);
SerialBT.print(sensorValue);
SerialBT.println(” mV ”);
delay(1000);
}

For this, we first declare the libraries and variables to be used, followed by
configuring the input pins and the serial port that allows us to send the data obtained
to a Bluetooth device. In the main part of the code, the value read to a voltage scale
is converted to a maximum of 3.3 V, which is what the board can get. This value is
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divided by 4096 corresponding to 12 bits of resolution in the analog inputs of the
board. Once we have this value, a relationship is calculated between the values of
the internal resistance of the sensor in the presence of gas and pure air. The sensor
does not have a linear behavior, so a linear approximation is made using the calibra-
tion table provided in the datasheet of the device. For that reason, the calculation
is made in a logarithmic scale, which is then returned to a linear scale to display
the value in ppm. In the end, all the final data are displayed in the serial port that
will be responsible for sending them through Bluetooth to any device that can read
serial Bluetooth. The ppm value is used as the input for the extended Luenberger
observer. Therefore, the calibration and validation of the sensor is a very important
step because if the sensor sends erroneous measurements, the observer will not be
able to estimate the desired variables correctly.

1.15.3 Carbon Dioxide Sensor Programming

#define        MG_PIN                      (36)
#define        BOOL_PIN                    (39)
#define        DC_GAIN                     (8.5)
  
  
  
#define        READ_SAMPLE_INTERVAL        (50)
#define        READ_SAMPLE_TIMES           (5)
  
  
  
#define        ZERO_POINT_VOLTAGE         (0.322)
#define        REACTION_VOLTGAE            (0.263)
  
  

float CO2Curve[3]={2.602,ZERO_POINT_VOLTAGE,
(REACTION_VOLTGAE/(2.602–4))};

  
void setup()
{
   Serial.begin(115200);
   pinMode(BOOL_PIN, INPUT);
   digitalWrite(BOOL_PIN, HIGH);
  
   Serial.print(”MG–811 Demostration\n”);
}
  
void loop()
{
   int percentage;
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   float volts;
  
   volts = MGRead(MG_PIN);
   Serial.print( ”SEN–00007:” );
   Serial.print(volts);
   Serial.print( ”V ” );
  
   percentage = MGGetPercentage(volts,CO2Curve);
   Serial.print(”CO2:”);
   if (percentage == –1) {
       Serial.print( ”<400” );
   } else {
       Serial.print(percentage);
   }
  
   Serial.print( ”ppm” );
   Serial.print(”\n”);
  
   if (digitalRead(BOOL_PIN) ){
    Serial.print( ”=====BOOL is HIGH======” );
  
   } else {
       Serial.print( ”=====BOOL is LOW======” );
  
   }
       Serial.print(”\n”);
  
       delay(200);
}
  
  
  
float MGRead(int mg_pin)
{
   int i;
   float v=0;
  
   for (i=0;i<READ_SAMPLE_TIMES;i++) {
       v += analogRead(mg_pin);
       delay(READ_SAMPLE_INTERVAL);
   }
   v = (v/READ_SAMPLE_TIMES) *3.3/4095 ;
   return v;
}
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int MGGetPercentage(float volts, float *pcurve)
{
   if ((volts/DC_GAIN )>=ZERO_POINT_VOLTAGE) {
      return –1;
   } else {
      return pow(10, ((volts/DC_GAIN)–pcurve[1])

/ pcurve[2]+pcurve[0]);
   }
}

1.15.4 Carbon Dioxide Vernier Probe Programming

#include ”VernierLib.h”
VernierLib Vernier;
  
float sensorReading;
  
void setup() {
 Serial.begin(9600);
 Serial.println(”CLEARSHEET”);
 Serial.println(”LABEL,Date,Time,CO2”);
 Serial.println(”RESETTIMER”);
 Vernier.autoID();
}
  
void loop() {
 sensorReading = Vernier.readSensor(); /
 Serial.print(”DATA,DATE,TIME,”);
 Serial.print(sensorReading);
 Serial.print(” ”);
 Serial.println(Vernier.sensorUnits());
 delay(1000);
}

1.15.5 MATLAB Function

function dy = bio4(t,y)
dy=zeros(4,1);
  
   
Ks = 150; %251;
Ki = 50; %3506;
Kmax = 2.9; %4355;
Umax = (Kmax*(y(1)/(Ks+y(1)+Ki))*y(2))^1.9
Fd = 0.0009;
S0 = 30;



“c01FieldElementsOfClassicControlSystems_PrintPDF” — 2025/2/24 — 19:24 — page 57 — #55

References 57

Yxs = 3;
Ysx = 0.426;
D = 0.001;
alpha = 0.29;
beta = 0.20;
Yxco2 = 0.67;
Yxch4 = 0.73; %performance
% plant
dy(1) = –(Umax/Ysx) + D*(S0–y(1));
dy(2) = (Umax/Yxs) – Fd*y(2)–y(2)*D;
dy(3) = Umax*Yxco2*(y(3)^alpha)–D*(y(3));
dy(4) = Umax*Yxch4*(y(4)^beta)*y(2)– D*(y(4));
end
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