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1.1 Introduction

Nitrogen heterocycles are extensively present in numerous drug molecules which
manifest potent therapeutic activities such as antibacterial, anticancer, antiallergic,
potassium-channel activator, antiplatelet, glucosidase, and HIV-1 reverse transcrip-
tase inhibitory activities (Figure 1.1) [1].

Beside living in the core of biologically active molecules, N-heterocycles can act as
ligands as well as directing groups in various transition metal catalysis. Importantly,
polynitrogen heterocycles can participate in various fruitful transformations that
pave the way to access structurally complex molecules of biological importance
(Figure 1.2). In this context, N-sulfonyl-1,2,3-triazole and its analogs have been
exclusively exploited as safe-to-handle diazo surrogates in various denitrogena-
tive transformations. These methods yield a diverse range of structural motifs
to facilitate structural modification and total synthesis of natural products and
drug molecules [2–4]. Over a period of time, denitrogenative transformations of
some related heterocycles such as 5-iodotriazoles [5], F-containing triazoles [6–8],
tetrazoles [9, 10], pyridotetrazoles [11], and aminoindazoles [12] have also been
explored and established as efficient synthetic tools.

Consequently, easily accessible, atom-economical, and widely compatible
synthetic methodologies to access these diverse N-heterocycles are highly desirable.
This chapter briefly showcases the development of such primitive to advanced
synthetic methodologies to serve the aforementioned purposes.

1.2 Synthesis of 1,2,3-Triazoles

1.2.1 Synthesis of NH-Triazoles

NH-triazole is one of the polynitrogen heterocycles that undergoes denitrogenative
transformation and their recent development emphasized its importance as a
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Figure 1.1 Representative drug molecules containing N-heterocycles.
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Figure 1.2 Representative drug molecules and natural products synthesized through
denitrogenative transformations.

building block and their elegant synthesis. Initially, NH-triazoles were prepared
via the deprotection of various N-protected triazoles. In this context, various
organic azides with removable protecting groups such as benzyl [13], tropylium
[14], trimethylsilyl [15, 16], tosyl [17, 18], (trimethylsilyl)ethoxymethyl (SEM)
[19], and p-methoxybenzyl [20] azides have been explored along with sodium
azide [21, 22]. Later, Sharpless and co-workers [23] introduced three more
organic azides, azidomethyl pivalate, azidomethyl morpholine-4-carboxylate, and
azidomethyl N,N-diethylcarbamate, which deliver a base-labile N-protected triazole
(Scheme 1.1).
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Scheme 1.1 Synthesis of NH-triazoles via N-protected triazoles. Source: Adapted from
Sharpless [23].

In 1989, Banert [24] demonstrated an efficient strategy to synthesize NH-triazoles
from propargyl azides under mild conditions (Scheme 1.2). Mechanistically,
propargyl azide 1.2b is obtained by treatment of propargyl halide 1.2a with
sodium azide, which undergoes a [3, 3]-sigmatropic rearrangement to generate
the reactive allenyl azides 1.2c that readily cyclizes to triazafulvene intermediate
1.2d. Finally, the intermediate 1.2d is trapped by various nucleophiles to afford
corresponding triazole 1.2e.
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Scheme 1.2 Synthesis of NH-triazoles by using Banert cascade. Source: Adapted from
Banert [24].

Despite its high reliability and wide substrate scope, its synthetic utility was hardly
explored. In 2005, Sharpless and co-workers [25] exclusively studied this pathway to
access diverse NH-triazoles and expanded the scope of nucleophiles involved in the
process (Scheme 1.3). Recently, Topczewski and co-workers [26] exploited silver(I)
fluoride as nucleophile, which facilitated access to α-fluorinated NH-1,2,3-triazoles
1.3e in excellent yields.

In 2016, Dehaen and co-workers [27] disclosed the synthesis of various
mono-, di-, and tri-substituted triazoles 1.4c from the reaction of enolizable
ketones 1.4a, NH4OAc, and nitrophenyl azide 1.4b under mild acidic condition
(Scheme 1.4). Simultaneously, a β-cyclodextrin-mediated multicomponent synthesis
of NH-triazoles 1.4e from propynals 1.4d, trimethylsilyl azide, and malononitrile in
water was reported by Medvedeva and co-workers [28]. Besides, the use of amine in
place of malononitrile under microwave irradiation furnished the imine-substituted
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Scheme 1.3 Synthesis of diverse NH-triazoles.

Scheme 1.4 Synthesis of NH-triazoles through three-component reactions.

triazole with a shorter reaction time [29]. Subsequently, Guan and co-workers
[30–33] accomplished the synthesis of various 4-aryl-NH-1,2,3-triazoles 1.4g
through three-component reaction of aldehydes 1.4f, nitromethane, and NaN3.
Later, Negrón-Silva and co-workers [34] developed a heterogeneous catalytic system
consisting of Al-MCM-41 and sulfated zirconia to accomplish the same synthesis.

In 2019, Shu and Wu reported a molecular iodine-mediated cascade [4+ 1] cycliza-
tion of N-tosylhydrazones 1.5a and sodium azide in presence of MsOH to access
4-aryl-NH-1,2,3-triazoles 1.5b (Scheme 1.5) [35]. Subsequently, the group of Gao and
Shu achieved the synthesis of 4-aryl-NH-1,2,3-triazoles 1.5d via an iodine-mediated
condensation-cyclization of α-azido ketones 1.5c with p-toluenesulfonyl hydrazide
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Scheme 1.5 Synthesis of 4-aryl-NH-1,2,3-triazoles.

[36]. Recently, Wu and co-workers demonstrated the synthesis of NH-triazole
under azide-free conditions via an iodine-mediated [2+ 2+ 1] cyclization of methyl
ketones 1.5e, p-toluenesulfonyl hydrazide, and 1-aminopyridinium iodide 1.5f
[37]. Solvent-free synthesis of 4-aryl-NH-1,2,3-triazoles 1.5i has been demonstrated
by Matsugi and co-workers [38] from benzyl ketones 1.5h exploiting diphenyl
phosphorazidate in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).

Catalyst-free synthesis of 4-acyl-NH-1,2,3-triazoles 1.6b was reported by Wen
and Wan, which involves water-mediated cycloaddition reactions of enaminones
1.6a and tosyl azide (Scheme 1.6) [39, 40]. Instead of enaminones, Gribanov
et al. [41] employed alkylnitriles 1.6c and azide 1.6d in the presence of KOtBu

Scheme 1.6 Synthesis of various NH-triazoles.
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for the synthesis of 5-amino-1,2,3-triazoles 1.6e, which on subsequent Dimroth
rearrangement affords 1.6f at elevated temperature under solvent-free conditions
in one pot.

1.2.2 Synthesis of N-Sulfonyl-1,2,3-triazoles

For years, a large number of N-sulfonyl-1,2,3-triazoles have been extensively
exploited as diazo surrogate in numerous denitrogenative transformations. In gen-
eral, sulfonylation of NH-1,2,3-triazoles 1.7a with sulfonyl chlorides could furnish
the corresponding N-sulfonyl-1,2,3-triazoles 1.7b (Scheme 1.7). But the major
drawback of this strategy is the formation of a mixture of regioisomeric products
7.2 and 1.7c, which significantly reduces its efficiency and applicability [42].
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Scheme 1.7 Synthesis of N-sulfonyl-1,2,3-triazoles from NH-triazoles. Source: Adapted
from Beryozkina and Fan [42].

On the other hand, 1,2,3-triazoles 1.8d were readily achieved through the
copper-catalyzed azide-alkyne cycloaddition (CuAAC) as reported by Sharpless
and co-workers in 2002 (Scheme 1.8) [43–45]. This reaction appeared to be the
most effective click reaction over the traditional Huisgen cycloaddition due to its
remarkably high regioselectivity and yields. Various 1,4-disubstituted triazoles 1.8d
could be synthesized from terminal alkynes 1.8a and azides 1.8b (Scheme 1.8).
However, the use of sulfonyl azides led to the formation of various secondary
products 1.8g instead of the desired triazoles 1.8d via the generation of ketenimine
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intermediate 1.8f [46, 47]. The formation of ketenimine was due to the poor stability
of the copper-triazole species 1.8c.

To increase the stability of sulfonyl substituted 1.8c and for the synthesis of
sulfonyltriazoles, in 2007, for the first time, Chang, Fokin and co-workers uti-
lized stoichiometric amount of base, 2,6-dimethylpyridine in the CuI-catalyzed
selective synthesis of 4-substituted N-sulfonyl-1,2,3-triazoles from the correspond-
ing terminal alkynes and sulfonyl azides (Scheme 1.9) [48, 49]. Subsequently,
Fu and co-workers [50] reported an inexpensive catalytic system by exploit-
ing the thioanisole as ligand in combination with CuBr in water medium at
room temperature. It was emphasized that the addition of sulfur-containing
ligands could inhibit cleavage of N1—N2 bond and stabilize the 5-cuprated
triazole species. Two years later, Pérez and co-workers [51] demonstrated
the synthesis of N-sulfonyl-1,2,3-triazoles using well-defined copper complex,
[Tpm*,BrCu(NCCH3)]BF4. On the other hand, Raushel and Fokin [52] employed
Cu(I)-thiophene-2-carboxylate (CuTC) complex, in the absence of external ligand,
under mild conditions for more efficient and general synthesis of N-sulfonyltriazoles
(Scheme 1.9).
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Scheme 1.9 Cu-catalyzed synthesis of N-sulfonyl-1,2,3-triazoles.

In 2011, Hu and co-workers [53] reported 2-aminophenol as a suitable ligand
in copper-catalyzed highly selective synthesis of N-sulfonyltriazoles. Herein, it
was proposed that 2-aminophenol plays a dual role as a reductant and ligand.
Importantly, the first triazole possessing two electron-withdrawing groups was
synthesized successfully by using this strategy. In 2018, Cazin and co-workers
[54] employed Cu(I)-NHC complexes for the selective synthesis of 4-substituted
1,2,3-triazoles through click reaction.

But the limitation of all these above-mentioned methods remains in the selective
synthesis of 1,4-disubstituted triazoles. Croatt and co-workers [55] documented
the synthesis of 5-substituted N-sulfonyl-1,2,3-triazoles 1.10c from corresponding
terminal alkynes 1.10a and sulfonyl azides 1.10b using a strong base, such as



�

� �

�

8 1 Synthesis of Diverse Nitrogen Heterocycles Explored in Denitrogenative Transformations

O

CO2R1

R

CO2R1

R

N

NN
R2O2S

R2SO2N3

L-Proline (20 mol%)

DMSO, rt, 1 h

50–80%

O

R1 Me

O
R2SO2N3

N
N

N

SO2R2
Me

L-Proline (40 mol%)

tBuOH, rt, 24 h

42–87%

R

ArSO2N3 N
N

N

SO2Ar
R

E

1. n-BuLi, –78 °C

2. E
+

R = alkyl, aryl 53–90%

H
+

+

+

Croatt [55]

Ramachary [56]

Anbarasan [57]

1.10a 1.10b 1.10c

1.10d 1.10e 1.10f

1.10g 1.10h 1.10i

O

R1

Scheme 1.10 Synthesis of multisubstituted N-sulfonyl-1,2,3-triazoles.

n-BuLi (Scheme 1.10). Interestingly, the synthesis of various 1,4,5-trisubstituted
triazoles was also achieved by trapping the 4-lithio-1,5-disubstituted triazole in the
reaction mixture with suitable electrophiles. In 2008, Ramachary and co-workers
reported the first proline-catalyzed synthesis of 4,5-disubstituted triazoles 1.10f
from Hagemann’s ester 1.10d and tosyl azides 1.10e [56]. Later, Anbarasan and
co-workers [57] accomplished a general proline-mediated synthesis of a diverse
range of 4,5-disubstituted 1,2,3-triazoles 1.10i with excellent regioselectivity from
substituted 1,3-dicarbonyl compounds 1.10g and sulfonyl azides 1.10h through
enamine-azide cycloaddition.

In 2016, Zhang and co-worker [58] achieved the synthesis of 4-substituted
1,2,3-triazoles 1.11c from (Z)-arylvinyl bromides 1.11a and sulfonyl azides
through the generation of arylacetylene (Scheme 1.11). This strategy involves
KOH-promoted HBr elimination from the vinylbromide 1.11a followed by a
copper-catalyzed [3+ 2] cycloaddition of the resulted alkyne 1.11b with azide.
Subsequently, Ma and co-workers [59] reported a regioselective synthesis of
5-sulfamido-N-sulfonyl-1,2,3-triazoles 1.11f in high yields through a Cu-catalyzed
cycloaddition of terminal alkynes 1.11d and sulfonyl azides 1.11e using 1.2
equivalents of LiOtBu. Most recently, Kim and co-workers [60] reported the first
continuous flow synthesis of N-sulfonyl-1,2,3-triazoles.

1.2.3 Synthesis of N-Trifluoromethyl-1,2,3-triazoles

N-trifluoromethyl-1,2,3-triazoles also have been explored in the denitrogenative
transformations owing to the unique physicochemical properties of F-containing
organic moieties. But, unlike the synthesis of other N-sulfonyl-1,2,3-triazoles, the
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Scheme 1.11 Synthesis of diverse N-sulfonyl-1,2,3-triazoles.

synthesis of N-fluoroalkyl-1,2,3-triazoles was not achieved following conventional
alkyne-azide cycloaddition strategy. In 1977, Holton and co-workers [61] studied
various 1,3-dipolar cycloaddition across the C=N bond of polyfluoroazaolefins with
diazomethane (Scheme 1.12). A mixture of products was obtained in the reaction
of perfluoro-N-(trifluoromethyl)butanimidoyl fluoride 1.12a with excess dia-
zomethane, in which, the l-(trifluoromethyl)-5-(heptafluoropropyl)-1,2,3-triazole
1.12c was present as a major product. Recently, Xu, Guan, and Wang demon-
strated the synthesis of N-trifluoromethyl-1,2,3-triazoles 1.12f via a similar [3+ 2]
cyclization of DMAP-stabilized N-CF3 nitrilium salts 1.12d with diazo compounds
1.12e [62].
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Scheme 1.12 Synthesis of N-trifluoromethyl-1,2,3-triazoles.

In 2017, Beier and co-workers [63] developed an efficient strategy to synthesize
perfluoroalkyl azides (Scheme 1.13). Subsequently, the reactivity of perfluoroalkyl
azide was explored in azide-alkyne cycloaddition reaction to access N-perfluoroalkyl
triazoles.

Additionally, a one-pot synthesis of such triazoles has also been demonstrated
directly starting from trifluoromethylsilane in good yield and regioselectivity.
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1.2.4 Synthesis of 5-Iodo-1,2,3-triazoles

Similar to electron withdrawing group-substituted triazoles, 5-iodo-1,2,3-triazoles
having a tethered nucleophile are shown to undergo denitrogenative trans-
formations. These triazoles were also synthesized through azide-alkyne
cycloaddition. In this context, in 2005, Wu et al. [64] developed a strategy to access
5-iodo-1,2,3-triazoles 1.14c in one-pot via Cu(I)-catalyzed reaction of organo-azides
1.14a with terminal alkynes 1.14b in presence of iodine as an electrophilic trapping
reagent (Scheme 1.14). It was proposed that the reaction involves the formation
of an intermediate of Cu(I) salt of triazole. Interestingly, yield was increased
drastically when ICl was used instead of I2. Subsequently, Zhang and Zhang [65]
reported a CuI-NBS-mediated multicomponent reaction of azides 1.14d and alkynes
1.14e, which also facilitated access to 5-iodo-1,4-disubstituted-1,2,3-triazoles 1.14f
[66, 67]. To improve the reactivity and chemoselectivity, ICl was in situ generated
from the combination of CuI and NCS and used as an effective iodonium source.
Recently, these strategies were further modified to accomplish the synthesis in
aqueous medium [68, 69].
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Scheme 1.14 Synthesis of 5-iodo-1,2,3-triazoles.

In 2009, Hein, Fokin, and co-workers [70] reported the synthesis of 5-iodotriazoles
from the CuI-catalyzed cycloaddition of 1-iodoalkynes 1.15b and organic azides
1.15a (Scheme 1.15). Various ligands such as TBTA or TTTA were screened
to furnish the desired products in good yields with low catalyst loadings and
shorter reaction times. Zhu and co-workers [71] reported an assisting ligand-free
strategy to access various 5-iodo-triazoles 1.15f (Scheme 1.15). Subsequently, the
effect of ligand [72] as well as mechanism [73] involved in the reaction were
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Scheme 1.15 Cu-catalyzed synthesis of 5-iodo-1,2,3-triazoles.

established. Besides, several other groups have also accomplished the synthesis of
5-iodotriazoles [74–80].

1.2.5 Synthesis of Pyridotriazoles

Pyridotriazoles being analogous to triazoles are highly compatible in denitrogenative
transformations, but only selected strategies are known for their synthesis. Tra-
ditionally, pyridotriazoles 1.16b have been synthesized from the corresponding
hydrazones 1.16a of pyridine-2-carbaldehydes or 2-pyridylketones via oxidative
cyclization (Scheme 1.16) [81, 82]. Although some of the hydrazones are just
refluxed in methanol under air to afford the corresponding pyridotriazoles,
suitable oxidizing agents such as nickel peroxide, air and a cupric salt, potassium
ferrocyanide and bicarbonate, manganese dioxide or (diacetoxyiodo)benzene are
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Scheme 1.16 Synthesis of pyridotriazoles. Source: Deady and Devine [83]/with permission
of Elsevier.
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necessary for most of the hydrazones. In the case of sensitive substrates, pyri-
dotriazoles 1.16d could be obtained from the reaction of tosyl hydrazones 1.16c
of pyridine-2-carbaldehydes or 2-pyridylketones with base, usually morpholine
(Scheme 1.16). In 2006, Deady and Devine demonstrated an alternative strategy to
access pyridotriazoles 1.16f from an aminonaphthyridinone 1.16e [83]. Compound
1.16e could form a diazonium salt upon treatment with aqueous sodium nitrate and
fluoroboric acid. Then triazolopyrido aldehyde 1.16f is obtained as a white solid
upon treatment of the salt with sodium hydroxide in water.

1.2.6 Synthesis of Triazoloindoles

Due to the growing interest in the denitrogenative transformation of triazoles, in
2014, Lu and Wang accomplished the synthesis of diverse triazoloindoles 1.17b
from alkynes 1.17a and sulfonylazides via a copper-catalyzed tandem process
(Scheme 1.17), and demonstrated their reactivity [84]. This strategy involves a
sequence of amine group-stabilized CuAAC and C—N coupling reactions. Further
study on the triazoloindoles revealed its predominant existence as open-chain form,
3-diazoindolin-2-imines 1.17c. Subsequently, the same group developed an efficient
catalyst-free synthesis of 3-diazoindolin-2-imines 1.17f from indole and sulfonyl
azide [85]. Indoles bearing alkyl, allyl, and benzyl substituents at N1-position and
electron-donating substituents in the aryl ring underwent the reaction smoothly
and effectively. However, a significant loss in yields was witnessed in the presence
of electron-withdrawing groups in aryl ring.

R2

NHR1 N

N

NN

SO2R3

R2

R1

R3SO2N3

CuCl (10 mol%)

Et3N (2.2 equiv)

CH3CN, rt, 3 h

75–99%

N

N2

N

R1

R2

SO2R3

N

R1

R2

N

N2

N

R1

R2

SO2R3

R3SO2N3

DMSO, air

50 °C, 12 h

25–78%

N

N

NN

SO2R3

R1

R2

Lu and Wang [84]

Lu and Wang [85]

1.17a 1.17b

1.17d 1.17e

1.17c

1.17f

Scheme 1.17 Synthesis of triazoloindoles. Source: Adapted from Lu and Wang [84, 85].

1.2.7 Synthesis of Benzotriazoles

Denitrogenative transformations of benzotriazoles have also witnessed significant
development in past years. Particularly, benzotriazoles containing aryl, aroyl,
alkenyl, and alkyl substituents at N1-position have been explored well. In general,
benzotriazole derivatives are obtained through the selective protection of readily
available benzotriazoles (BtH) as shown in Scheme 1.18 [86].
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Scheme 1.18 Synthesis of benzotriazole derivatives.

1.3 Synthesis of 1,2,3-Thiadiazoles

1,2,3-Thiadiazoles were also demonstrated to undergo denitrogenative transfor-
mation through the generation of thiavinyl carbenes. Their synthesis involves an
interesting cyclization with the introduction of sulfur. In 1955, Hard and Mori
reported an effective synthesis of 1,2,3-thiadiazoles from acylhydrazones and
thionyl chloride (Scheme 1.19) [87]. This method is widely applicable for the
synthesis of a variety of substituted thiadiazoles. Alternatively, thiadiazoles could
be accessed via the reaction of diazo compound with Lawesson’s reagent [88].

N

Me

HOOC

N CO2Et

H S
N

NHOOC
SOCl2

53%

S
N

NEtO2C

Ph

O

EtO

N2

Ph

O
Lawesson′s reagent

61%

Hard and Mori [87]

By using Lawesson′s reagent

1.19a 1.19b

1.19c 1.19d

Scheme 1.19 Synthesis of 1,2,3-thiadiazoles. Source: Hurd and Mori [87]/American
Chemical Society.

1.4 Synthesis of Tetrazoles

1.4.1 Synthesis of 1H-Tetrazoles

1H-tetrazole as a privileged scaffold has received significant attention from
researchers in development of drugs as well as in the denitrogenative trans-
formations. Initially, 1H-tetrazoles have been exclusively synthesized via the
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[3+ 2]-cycloaddition reaction of nitriles with various azides such as alkylsilyl
azides, alkyltin azides, or sodium azide [89–93]. Major drawbacks of these primitive
strategies were use of expensive and toxic metals, water sensitivity, or the possible
generation of volatile and explosive hydrazoic acid [94–101]. Consequently, an
efficient catalytic synthetic route was highly desired. In 2008, Yamamoto and
co-workers [102] developed an efficient Cu(I)-catalyzed synthesis of 5-substituted
1H-tetrazoles 1.20b in good yields via the [3+ 2] cycloaddition of nitriles 1.20a
and trimethylsilyl azide (Scheme 1.20). Recently, Gholizadeh and co-workers [103]
achieved the synthesis of tetrazole from nitrile using ionic liquid as a catalyst.

R
C

N
TMSN3

+
N N

N
N
HR

Cu2O (2.5 mol%)

DMF/MeOH

80 °C, 12–24 h

36–96%

Yamamoto [102]

1.20a 1.20b

Scheme 1.20 Synthesis of 1H-tetrazoles. Source: Yamamoto [102]/with permission of
Elsevier.

In 2015, Abdollahi-Alibeik et al. [104] reported a Cu-MCM-41 nanoparticles-
catalyzed novel three-component reaction of aldehydes 1.21a, hydroxylamine,
and sodium azide for the synthesis of various tetrazoles 1.21b (Scheme 1.21).
Subsequently, polymer-supported palladium nanoparticles were exploited for
the synthesis of tetrazole by Abadi and co-workers [105]. Roy, Islam, and Sen
[106] developed a Ni(OH)2 nanoparticles-catalyzed synthesis of 5-substituted
1H-tetrazoles 1.21f from aldoximes 1.21e and sodium azide in water under mild
reaction conditions. Following this development, a remarkable advancement in the
synthesis of 1H-tetrazole has recently been observed [9, 10, 107–112].

Ar

O

H
NaN3 NH2OH

.
HCl+ +

N N
N

N
HAr

Cu-MCM-41

DMF, 140 °C

5–18 h

75–92%

Abdollahi-Alibeik [104]

X

R
R

NH

NN

N

K4[Fe(CN)6] NaN
3

+ +
[P4VP]-PdNPs

K2CO3, 6–15 h

65–98%

Abadi [105]

Ar

N

H
NaN3

+
N N

N
N
HAr

Roy, Islam and Sen [106]

OH
Ni(OH)2 NPs

K2CO3, H2O

100 °C, 10–18 h

69–98%

1.21a 1.21b

1.21c 1.21d

1.21e 1.21f

Scheme 1.21 Metal nanoparticles-catalyzed synthesis of 1H-tetrazoles.
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1.4.2 Synthesis of Pyridotetrazoles

Pyridotetrazoles analogous to tetrazoles also undergo various denitrogenative
transformations facilitating access to structurally complex molecules. In
1983, Iyengar and co-workers [113] observed the unprecedented formation of
tetrazolo[1,5-a]pyridine [114] upon reaction of pyridine-N-oxide with arenesul-
fonyl azide (Scheme 1.22). Later, Keith [115, 116] optimized the reaction conditions
and explored the substrate scope extensively. Further, the reaction was modified by
Tzschucke and co-workers [117] to achieve the synthesis from pyridine-N-oxides,
p-toluenesulfonyl chloride, and sodium azide.

N

O

N N
N

N
R Reaction

conditions
R

Iyengar [113]: ArSO2N3, ∆
Keith [115]: DPPA, pyridine, 120 °C, 24 h

Tzschucke [117]: TsCl, NaN3, toluene, 120 °C, 48 h

Reaction conditions:

Scheme 1.22 Synthesis of pyridotetrazoles.

In 1997, Noravyan and co-workers [118] synthesized tetrazolo[1,5-a]pyrano[3,4-c]
pyridines 1.23b from chloropyridines 1.23a and sodium azide (Scheme 1.23). Later,
Cuny and co-workers [119] employed trimethylsilyl azide and tetrabutylammo-
nium fluoride hydrate for the synthesis of various pyridotetrazoles 1.23d from
2-halopyridines 1.23c.

NO

Me

Me
Cl

CN

R

NO

Me

Me

CN

R

N
N

NNaN3

Noravyan [118]

N
N N

N
N

Cuny [119]

R

TMSN3

TBAF.H2O

Neat, 85 °C, 24 h

12–91%

R

X

1.23a 1.23b

1.23c 1.23d

Scheme 1.23 Synthesis of pyridotetrazoles from 2-halopyridines.

Recently, Chattopadhyay and co-workers [120, 121] synthesized various pyri-
dotetrazoles 1.24c in two steps starting from corresponding 2-halopyridines 1.24a
(Scheme 1.24), and explored their reactivity in denitrogenative transformations.
Subsequently, Ghasemzadeh and co-workers [122] reported a three-component
reaction of 1H-tetrazole-5-amine 1.24d, benzaldehydes 1.24e, and 3-cyanoacetyl
indole 1.24f in presence of hexamethylenetetramine-based ionic liquid/MIL-101(Cr)
metal-organic framework as a recyclable catalyst, which facilitated access to diverse
tetrazolo[1,5-a]pyrimidine-6-carbonitriles in excellent yields.
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N

N N
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N
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Ar

CN
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Solvent-free, 100 °C, 15 h

88–98%

1.24a 1.24b 1.24c

1.24d 1.24e 1.24f 1.24g

Scheme 1.24 Synthesis of diverse pyridotetrazoles.

1.4.3 Synthesis of Tetrazolo[1,5-a]quinolines

Tetrazolo[1,5-a]quinolines are largely found in natural products exhibiting
biological activities. In 1997, Smalley and co-workers synthesized tetrazolo[1,5-a]
quinolines 1.25c by the reaction of 2-azidocarboxaldehyde 1.25a with ace-
tonitrile in the presence of piperidine or sodium ethoxide as base in ethanol
(Scheme 1.25) [123]. The product formation could be rationalized through
a Knoevenagel condensation of the acetonitrile with aldehyde 1.25a fol-
lowed by an intramolecular 1,3-dipolar cycloaddition reaction of azide with
pendant cyano moiety present in 1.25b intermediate. Later, Bekhit and
co-workers reported the synthesis of tetrazolo[1,5-a]quinoline-4-carboxaldehyde
1.25e from corresponding 2-chloroquinoline-3-carboxaldehyde 1.25d by treat-
ing with sodium azide in DMSO/AcOH. [124–126] Recently, Chakroborty
et al. modified the reaction conditions to attain a green and more efficient
synthesis [127].

N3

CHO

N3

H

R

CN
N N

NN

R

RCH2CN

Piperidine

or NaOEt

in EtOH

27–95%

Smalley [123]

N Cl

CHO

N

CHO

N N

N

NaN3

DMSO/AcOH

5 days

78%

Bekhit [124]

1.25a 1.25b 1.25c

1.25d 1.25e

Scheme 1.25 Synthesis of tetrazolo[1,5-a]quinolines.
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R2

R3

+

Wu [129]

1.26a 1.26b

1.26c 1.26d 1.26e

Scheme 1.26 Synthesis of various tetrazolo[1,5-a]quinolines.

In 2019, Kuhakarn and co-workers [128] accomplished the synthesis of
tetrazolo[1,5-a]quinolines 1.26b from the reaction of o-alkynylisocyanobenzenes
1.26a with sodium azide under metal- and base-free conditions (Scheme 1.26).
This strategy involves nucleophilic addition of azide to isocyanide followed by
6-endo cyclization. On the other hand, Wu and co-workers [129] synthesized
various tetrazolo[1,5-a]quinolines 1.26e through tert-butylnitrite-mediated radical
cyclization of 1H-tetrazol-5-amines 1.26c with alkynes 1.26d.

1.5 Synthesis of 3-Aminoindazoles

Interestingly, 3-aminoindazoles also has emerged as an efficient synthetic tool
compatible with denitrogenative transformations. In 2002, Semple and co-workers
[130–132] synthesized various 3-aminoindazoles from halobenzonitriles to access
important non-covalent thrombin inhibitors. Later, the groups of Ma [133],
Devkate [134], and Zhang and Hu [135] accomplished the synthesis of diverse
3-aminoindazoles 1.27c from reaction of halobenzonitriles 1.27a with hydrazines
1.27b under the modified reaction conditions (Scheme 1.27). In 2010, Fabis and
co-workers [136] reported a two-step synthesis of substituted 3-aminoindazoles
1.27g from 2-bromobenzonitriles 1.27d and hydrazones 1.27e. This strategy
involves N-arylation of hydrazone 1.27e with o-bromobenzonitriles 1.27d followed
by deprotection of the hydrazone intermediate 1.27f in methanol.

In 2011, Callot and co-workers [137] demonstrated a Buchwald–Hartwig C—N
coupling reaction of various 3-haloindazoles 1.28a to access 3-aminoindazoles 1.28b
in good to moderate yields (Scheme 1.28). Subsequently, Charrette and co-workers
[138, 139] prepared 3-aminoindazoles from tertiary amides via the generation of
aminohydrazones 1.28c followed by intramolecular C—H amination.

Recently, Olmos and co-workers [140] reported the synthesis of 3-aminoindazoles
1.28g from 3-(2-bromoaryl)-1,2,4-oxadiazol-5(4H)-ones 1.28e and amines 1.28f
which involves an intramolecular N—N bond formation.
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Ma [133]: CuBr, K2CO3, DMSO, 80 °C [R1 = CO2R2] 

Devkate [134]: CAN, EtOH-H2O, ))))), 50–60 °C, 30–40 min

Zhang, Zhang and Wu [135]: tBuOK, diglyme

Reaction conditions:
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Scheme 1.27 Synthesis of 3-aminoindazoles from 2-halobenzonitriles.
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Scheme 1.28 Synthesis of various substituted 3-aminoindazoles.

1.6 Synthesis of Benzotriazinones

Another unique N-heterocycle, benzotriazinone, has been explored in several
denitrogenative transformations. In 2015, Xu and co-workers [141–146] prepared
several benzotriazinones 1.29b from anthranilamides 1.29a via diazotization, and
cyclization reactions in one-pot (Scheme 1.29). They further derivatized these
benzotriazinones by attaching spirocyclic indoline-2-one moieties, and studied
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Scheme 1.29 Synthesis of benzotriazinones.

their nematicidal activities. Alternatively, the groups of Foroumadi [147], and
Zhang and Li [148] prepared the benzotriazinones 1.29f from isatoic anhydride
1.29c and alkyl amines 1.29d following the reaction sequence shown below. At
first, isatoic anhydride 1.29c and alkyl amines 1.29d were stirred in water at room
temperature to furnish 2-amino-N-(prop-2-yn-1-yl)benzamide 1.29e as a white
solid. Next, exposure of 1.29e to acidic solution of sodium nitrite resulted in the
formation of benzotriazinones 1.29f via intramolecular nitrogen–nitrogen bond
formation.

In 2017, Rocha-Alonzo and co-workers [149] developed a novel strategy to access
1,2,3-benzotriazinones 1.30b from the reaction of 2-(o-aminophenyl)oxazolines
1.30a with isoamyl nitrite in methanol (Scheme 1.30). Recently, Rayes and
co-workers [150] reported the synthesis from anthranilhydrazide as well as methyl
anthranilate.
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>99% yield
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2. NaNO2, H2O, 0 °C, 1 h
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CO2Me
( )n

1.30a 1.30b

1.30c 1.30d

Scheme 1.30 Synthesis of various N-substituted benzotriazinones.

In 2010, Murakami and co-workers reported a Ni-catalyzed annulation of
1,2,3,4-benzothiatriazine-1,1(2H)-dioxides 1.31d with allenes (Scheme 1.31) [151].
Herein, benzothiazinone 1.31d was synthesized from ortho-nitrobenzenesulfonyl
chloride 1.31a. Coupling of 1.31a with methylamine followed by reduction of
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Scheme 1.31 Synthesis of benzothiazinones. Source: Murakami [151]/John Wiley & Sons.

1.31b using Zn gives ortho-amino-N-methylbenzenesulfonamide 1.31c. Finally,
HONO-mediated ring closing of 1.31c provides 1.31d in 82% yield.

1.7 Summary and Outlook

Owing to the remarkable footprints left by various nitrogen heterocycles in the
advancement of drugs, and total synthesis of natural products of biological impor-
tance, the development of methodologies to access such N-heterocycles has caught
significant attention of synthetic chemists in past years. Wherein, atom and cost
economy, green approach, and sustainability of the strategy were utmost priorities
among other parameters. This chapter highlights the important modifications
encountered over the years to accomplish the synthesis of diverse N-heterocycles,
for example, triazoles, tetrazoles, 3-aminoindazoles, benzotriazinones, etc. with
better yields and selectivity, specifically, which undergo various denitrogenative
transformations. Delightfully, many synthetic routes have been developed in a
metal-free manner and using milder conditions, some of which are even sustained
in a water medium. In recent times, various metal nanoparticles have also been
exploited in the advancement of synthesis of these N-heterocycles. Nonetheless, the
synthesis of triazoloindoles, pyridotriazoles, thiadiazoles, and benzotriazinones has
not received much attention. Hence, further development of synthetic methodolo-
gies to attain better accessibility is desirable due to the growing demand for these
heterocycles as synthetic tools.
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