
�

� �

�

1

1

AI for Property Modeling, Solvent Tailoring, and Process
Design
Yuqiu Chen

University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street,
Newark, DE 19716, USA

1.1 AI-Assisted Property Modeling

The accurate prediction of physical properties is critical for the successful applica-
tion of both chemicals and materials across various industries. Property modeling
using artificial intelligence (AI) has emerged as a powerful and efficient approach
in various scientific and engineering disciplines [1]. This methodology leverages
advanced algorithms and machine learning (ML) techniques to predict and model
the physical and chemical properties of materials, compounds, or systems [2]. One
of the key advantages of employing AI in property modeling is its ability to handle
complex relationships and patterns within large datasets, leading to more accurate
predictions. ML models, such as neural networks and support vector machines
(SVMs), can be trained on diverse datasets, enabling them to capture intricate
correlations that traditional modeling methods might overlook [3]. In the field of
materials science, AI-driven property modeling has proven valuable for predicting
properties like conductivity, thermal conductivity, and mechanical strength [4].
Similarly, in chemistry, AI has been applied to forecast molecular properties,
solubility, and reaction outcomes [5]. Given the broad scope of AI techniques,
the author has chosen to focus on their application in property modeling, solvent
tailoring, and process design for systems involving ionic liquids (ILs) and aqueous
two-phase systems (ATPSs).

ILs are innovative fluids that have garnered significant attention from both
academia and industries [6]. Over the past few decades, extensive research has been
conducted on the applications of ILs in various fields such as electrochemistry [7],
synthetic materials [2, 8], and pharmaceutical manufacturing [9, 10]. In these areas,
ILs serve different roles, including as extractants/absorbents in separations, media
and/or catalysts in lignocellulosic biomass pretreatment, and functional materials
in batteries. With the growing interest in ILs within industrial settings, it is crucial
to deeply understand their property behaviors for effective product and process
design. For example, viscosity is a crucial transport property that plays a significant
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role in fluid flow analysis, process optimization, and material characterization
[11]. Understanding and controlling viscosity enable engineers, researchers, and
industries to design efficient systems, optimize processes, develop high-quality
products, and ensure the desired performance and functionality of materials and
fluids in a wide range of applications. Another example is that heat capacity is cru-
cial for thermodynamic calculations, energy balance analyses, temperature control
systems, material selection, process optimization, and fundamental research. It
plays a crucial role in various scientific, engineering, and industrial applications,
enabling the efficient and effective design, operation, and optimization of processes
involving heat transfer and energy conversion [12]. Consequently, the characteriza-
tion of IL properties and the establishment of structure–property relationships for
ILs and IL-based mixtures are equally important in investigating their applications.

ATPSs, also known as aqueous biphasic systems (ABSs), are formed when two
or more water-soluble components, such as polymers, salts, ILs, alkaline, and
alcohols, are mixed in water at appropriate concentrations and temperatures [13].
To date, various combinations of phase-forming agents (e.g. polymer–salt/alkaline,
polymer–polymer, ionic liquid–salt, and alcohol–salt) have been proposed for the
creation of ATPSs [14]. Many ATPSs and the combination of these two-phase
systems with other techniques such as microfluidic apparatus [15], have exhibited
great technical and economic advantages in biotechnological applications [16]. Due
to the high water content in both phases, ATPSs can provide a biocompatible and
nondenaturing environment for cells, proteins, and other biomolecules. Meanwhile,
ATPSs generally present less damage to the extracted biomolecules as they allow
rapid phase separation and compound partition, leading to much lower interfacial
stress than that of organic-water solvent systems. In addition, ATPSs can offer high
recovery percentages and high purity of biomolecules in a one-step process. Besides
these, ATPSs show characteristics of high tailored space, and they are also easy to
scale up [17]. A good understanding of the mechanism that can guide the phase
formation of ATPS is obviously of great importance for enhancing the opportunity
for ATPS adoption in the industry. Meanwhile, the ability to provide reliable
predictions on the partition of biomolecules in ATPS is also essential, given the
fact that it would largely reduce the time and cost to find high-performance ATPS
for biomolecules. Therefore, a systematic modeling study on the phase equilibria
behavior of ATPS and the partition of biomolecules in ATPS is highly desirable for
the transition of ATPS separation technique from pure academic focus to industrial
implementation.

Due to the high complexity of ATPS and IL-involved systems, empirical correla-
tions and theory-driven models cannot simultaneously provide reliable physical and
thermodynamic predictions. In this respect, AI techniques such as ML algorithms
are potential alternatives to model thermodynamic and transport properties of
complex systems [18] such as IL-based ATPS and ionic liquid–water mixtures.
The advantages of using AI techniques for modeling complex systems include the
following: (i) AI techniques, particularly ML, can handle complex patterns and
nonlinear relationships in data, making them well-suited for modeling intricate
chemical properties. (ii) AI models can provide accurate predictions for various
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chemical properties. This accuracy is crucial in industries such as pharmaceuticals,
materials science, and environmental research, where precise chemical property
information is essential. (iii) Chemical data often involves a high number of dimen-
sions, with numerous variables influencing the properties of interest. AI algorithms,
especially those used in deep learning, excel at extracting relevant features from
high-dimensional datasets. (iv) AI techniques facilitate the integration of diverse
data types, including experimental results, literature data, and computational
simulations. This comprehensive approach enhances the accuracy and reliability
of chemical property models. (v) The increasing availability of large datasets in
chemistry, including databases of chemical compounds and their properties, aligns
well with AI’s ability to handle big data. AI can uncover meaningful patterns and
correlations within massive datasets. (vi) AI techniques can be applied across a
range of chemical domains from organic chemistry to materials science. Their
adaptability makes them versatile tools for modeling diverse chemical properties.

Recently, ML algorithms, including multiple linear regression (MLR), k-nearest
neighbor (KNN), decision tree (DT), random forest (RF), gradient boosting (GB),
artificial neural network (ANN), multilayer perceptron (MLP), SVM, XGBoost, and
lightweight gradient-boosting machine (LightGBM), have been employed as prop-
erty prediction tools for complex systems. The advantages and disadvantages of these
ML algorithms are described in the following text:

MLR is a supervised ML algorithm used for predicting the numerical value of a
dependent variable based on the values of two or more independent variables. It is
a foundational and widely used technique, especially when dealing with datasets
where the outcome is influenced by multiple factors. MLR serves as the basis for
more advanced regression techniques in ML.

The KNN algorithm is a versatile and intuitive ML algorithm used for both
classification and regression tasks. KNN is a valuable tool in various applications,
including classification problems in image recognition, recommendation systems,
and anomaly detection. KNN is easy to understand and implement, making it a
good choice for initial exploration of a dataset. It does not involve a training phase
in the traditional sense, and the model is trained during the prediction phase. KNN
can be applied to various types of datasets and is effective in capturing complex
patterns. However, KNN may struggle with imbalanced datasets, where one class
significantly outnumbers the others. In addition, calculating distances between
data points for large datasets can be computationally intensive. Nonetheless, its
simplicity and ease of implementation make it a valuable tool, especially in cases
where interpretability and explainability are important.

Decision tree is a versatile and widely used ML algorithm that can be applied to
both classification and regression tasks. It is a supervised learning algorithm that
recursively partitions the data into subsets based on the features, ultimately leading
to a decision or prediction. Decision trees are easy to interpret and visualize. The
decision-making process is transparent, allowing users to understand how predic-
tions are made. Decision trees can be prone to overfitting, especially if the tree is deep
and complex. Regularization techniques like pruning or using a minimum number
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of samples per leaf can help mitigate this. Decision trees serve as the foundation for
more advanced ensemble methods like RF and GB.

RF is an ensemble learning method in ML that operates by constructing a multi-
tude of decision trees during training and outputting the class that is the mode of the
classes (classification) or mean prediction (regression) of the individual trees. RF
often provides higher accuracy compared to individual decision trees, especially for
complex datasets. The ensemble approach and feature randomization help mitigate
overfitting, making RF more robust. RF can be applied to both classification and
regression tasks and can handle missing values in the dataset without the need for
imputation. However, RFs are less interpretable compared to individual decision
trees, as the combined effect of multiple trees can be complex. In addition, RF can be
memory intensive, especially with a large number of trees or features. Nonetheless,
RF is widely used in practice and is considered a powerful and versatile algorithm.
It is effective for a variety of tasks, including classification, regression, and feature
selection. Its robustness and high accuracy make it a popular choice in the ML
community.

GB is a powerful ensemble learning technique used for both classification and
regression tasks. It is a boosting algorithm that combines the predictions of multi-
ple weak learners (typically decision trees) sequentially, with each tree correcting
the errors of the previous ones. GB can capture complex, nonlinear relationships in
the data and often achieves high accuracy, making it one of the state-of-the-art algo-
rithms for many ML tasks. However, GB can be prone to overfitting, especially if the
number of trees is too large, and it can be computationally intensive when training
a large number of trees. Nonetheless, GB is widely used in practice and has proven
effective in various ML tasks. It is particularly popular in Kaggle competitions and
real-world applications where accurate predictions are essential.

ANN is a computational model inspired by the structure and function of the
human brain. It consists of interconnected nodes, called artificial neurons or
“neurons,” organized into layers. Each neuron takes input, performs a computa-
tion, and produces an output that is passed on to other neurons. The advantages
of ANN in modeling studies can be summarized as follows: (i) ANNs can learn
organically, meaning their outputs are not limited solely by inputs, and they have
the ability to generalize from their inputs. (ii) Nonlinear systems can find shortcuts
to reach computationally expensive solutions. (iii) ANNs have high fault tolerance
potential. (iv) ANNs can perform tasks beyond routing around nonoperational
parts of the network. The advantages of ANNs are particularly evident when a large
experimental dataset with a wide range of variables is available. MLP is a type of
ANN and a fundamental ML algorithm. It falls under the category of supervised
learning and is widely used for both classification and regression tasks. Figure 1.1
presents a structure of the three-layer ANN with an input vector size of 46× 1.

SVM is a supervised ML algorithm used for both classification and regression
tasks. The primary goal of SVM is to find a hyperplane that best separates the data
into different classes in a high-dimensional space. For a binary classification task,
SVM aims to find a hyperplane that separates data points of one class from another.
For regression tasks, SVM seeks to find a hyperplane that best fits the data. In a
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Figure 1.1 Structure of a three-layer ANN with an input vector size of n × 1.
Source: [19]/with permission of Elsevier.

two-dimensional space, a hyperplane is a line. In higher dimensions, it becomes
a hyperplane. Support vectors are the data points that are closest to the decision
boundary (hyperplane). SVM can use a kernel function to map the input features into
a higher-dimensional space. Common kernel functions include linear, polynomial,
radial basis function (RBF), and sigmoid. The optimization objective is to maximize
the margin between classes. SVM solves a quadratic optimization problem to find
the optimal hyperplane and support vectors. SVM is effective in high-dimensional
spaces, making it suitable for tasks with many features. It is widely used in various
applications, including image recognition, text classification, and bioinformatics.
Proper tuning of parameters, especially the choice of the kernel and regularization
parameters, is crucial for achieving optimal performance with SVM.

XGBoost is a parallel regression tree model based on the boosting technique,
where boosting refers to obtaining the final classifier by weighting the sum of
existing weak classifiers. The XGBoost model is an improvement over the Gradient
Boosted Decision Tree (GBDT) model. Compared to GBDT, XGBoost significantly
enhances the speed of model training calculations and improves prediction and
classification accuracy, making it an upgraded version of the GBDT algorithm. To
prevent model overfitting and improve generalization ability, XGBoost incorporates
regularization terms into the loss function of the GBDT model. The traditional
GBDT loss function adopts a first-order Taylor expansion and uses the negative
gradient value to replace the residual for fitting. In XGBoost, a second-order
Taylor expansion is added to the loss function, capturing the second derivative to
gather gradient direction information and improve model accuracy. Furthermore,
XGBoost employs block-wise and sorted feature processing, enabling parallelization
for finding the best-split points and thereby enhancing computation speed.

LightGBM is a GBDT algorithm framework renowned for its rapid training,
minimal memory requirements, support for efficient parallel training, enhanced
accuracy, and the ability to process extensive datasets swiftly. While XGBoost is
a widely recognized GBDT tool, it grapples with significant memory usage. To
tackle this challenge, Microsoft developed LightGBM as an optimization of the
conventional GBDT algorithm. LightGBM distinguishes itself from XGBoost by
implementing the histogram algorithm instead of the presorted algorithm. This
choice results in decreased memory consumption and simplifies data separation.
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However, it is worth noting that the histogram algorithm may not be as time efficient
as the presorted algorithm when processing sparse data. LightGBM incorporates
two novel techniques, Exclusive Feature Bundling (EFB) and Gradient-based
One-Side Sampling, into the histogram-based GBDT algorithm. EFB enables the
fusion and bundling of certain features, reducing the feature dimension without
sacrificing accuracy. Additionally, LightGBM employs a leaf-wise strategy with a
capped maximum depth, which serves to prevent overfitting without compromising
computational efficiency.

To date, integrating ML algorithms into property modeling has been widely stud-
ied for different systems, including ATPS and IL-involved systems [20]. Yusuf et al.
(2020) [21] reviewed the application of AI-based predictive methods in IL studies.
Koutsoukos et al. (2021) [22] conducted a critical review of the use of ML algorithms
as property prediction tools for the viscosity, density, melting point, and toxicity of
pure ILs as well as the solubility of acid gases (H2S, CO2) in ILs. Therefore, the dis-
cussion in this work focuses on studies not covered in Yusuf’s and Koutsoukos’s
review.

For pure ILs, Baskin et al. (2022) [20] combined three traditional ML algorithms
and neural networks with seven different architectures with five types of molecular
representations (in the form of either numerical molecular descriptors or simplified
molecular input line entry system (SMILES) text strings) to construct quantitative
structure-property relationship (QSPR) models for predicting six important physi-
cal properties of ILs: density, electrical conductivity, melting point, refractive index,
surface tension, and viscosity. The results showed that (i) nonlinear ML algorithms
perform much better than linear ones, (ii) neural networks perform better than tradi-
tional ML methods, and (iii) transformers that are actively used in natural language
processing (NLP) perform better than other types of neural networks due to the
advanced ability to analyze chemical structures of ILs encoded into SMILES text
strings.

Dhakal and Shah (2021) [23] applied SVM and ANN to correlate ionic conductiv-
ity of imidazolium-based ILs. Both models were shown to successfully capture the
entire range of ionic conductivity spanning 6 orders of magnitude over a temperature
range of 275–475 K with relatively low statistical uncertainty, and the ANN-based
model presented slightly better performance. The performance of the ANN algo-
rithm in the modeling study of the conductivity of ILs was also validated by Datta
et al. (2022) [24]. Dhakal and Shah (2022) [25] further applied three ML algorithms
(MLR, RF, and XGBoost) to conduct models for the conductivity prediction of ILs,
and XGBoost performed the best. Meanwhile, Karakasidis et al. (2022) [26] incorpo-
rated six different numerical ML algorithms, namely MLR, KNN, DT, RF, gradient
boosting regressor (GBR), and MLP for electrical conductivity prediction. Results
showed that all ML algorithms performed well on their predictions, while the best
fit was obtained for the GBR algorithm. Yalcin et al. (2019) [27] employed MLR and
Bayesian regularized ANNs to build semiempirical structure-property models for
predicting the surface tension and liquid nanostructure of solvents containing a pro-
tic ionic liquid (PIL) with water and excess acid or base present. The results showed
that all the models were successful in prediction.
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For IL–H2O mixture systems, Chen et al. (2022) [28] applied an ANN algorithm
to build a group contribution (GC) model for predicting the viscosity of these binary
mixtures at different compositions and temperatures, as demonstrated in Figure 1.2.
The results show that the ANN–GC model with four or five neurons in the hidden
layer is capable of providing reliable predictions on the viscosities of IL–H2O
mixtures. In addition, comparisons showed that the nonlinear ANN–GC model has
much better prediction performance on the viscosity of IL–H2O mixtures than that
of the linear mixed model. The combination of the ANN algorithm and GC method
was introduced by Fu et al. (2023) [30] to model the surface tension of IL–H2O
mixtures. The results show that the model with 4, 5, and 7 neurons in the hidden
layer can provide reliable predictions for the surface tension of the IL–H2O hybrid
system. They also extended the ANN–GC model to the surface tension prediction
of pure ILs, and the results showed that the model with 4 and 5 neurons in the
hidden layer can provide reliable predictions for the surface tension of pure ILs.
For IL–organic solvent mixture systems, Liu et al. (2023) [19] reported using three
ML algorithms (i.e. ANN, XGBoost, and LightGBM) to build predictive models for
the density and heat capacity of these binary mixtures. The results demonstrate
that all three algorithms can provide accurate predictions, with the ANN model
exhibiting the best performance. For using the same ML algorithms, Lei et al. (2023)
[31] studied the surface tension and viscosity of IL–organic solvent mixtures. The
modeling results indicate that all three algorithms can reliably predict the surface
tension and viscosity of these binary mixture systems. Among them, XGBoost
demonstrates the best performance for surface tension predictions, while the ANN
model presents the best predictions for heat capacity. Most recently, Chen et al.
(2024) [29] conducted a comprehensive modeling study on the viscosity, density,
heat capacity, and surface tension of IL–IL binary mixtures. In their work, three
ML algorithms, ANN, XGBoost, and LightGBM, were used. The results indicated
that the ANN-based model exhibits the best prediction performance for viscosity,
density, and heat capacity, while the XGBoost-based model provides the highest
accuracy in surface tension predictions, as shown in Figure 1.2.

Unlike IL-involved systems, the modeling study on ATPS using ML algorithms is
still limited. Mohsen et al. (2020) [32] reported using SVM and ANN to build models
for the prediction of phase equilibria in poly(ethylene glycol) (PEG)+ sodium phos-
phate ATPS. The average absolute error of SVM with the differential evolution (DE)
algorithm for the testing dataset is 6.71%, which, for the considered process, is in an
acceptable interval.

Chen et al. (2022) [33] combined the ANN algorithm with the GC method to con-
duct a comprehensive modeling study on the phase equilibria behavior of IL-based
ATPSs, as illustrated in Figure 1.3. The ANN–GC model was trained and tested by
17 449 experimental binodal data points covering 171 IL-ABS at different tempera-
tures (278.15–343.15 K). The results indicate that this ML-based model is capable
of predicting the phase equilibria behavior of IL-ATPS in a general way. For the
ATPSs involving biomolecules, Pazuki et al. (2010) [35] applied an ANN algorithm to
model the partition coefficients of some well-known biomolecules (e.g. α-amylase,
β-amylase, and albumin) in PEG-dextran ATPSs. The network topology is optimized,
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Figure 1.2 Plots of experimental and predicted values from the GC model using ANN,
XGBoost, and LightGBM in the predictions of (a) viscosity, (b) density, (c) heat capacity, and
(d) surface tension of IL–IL binary mixtures. Source: [29]/with permission of John Wiley &
Sons.
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and the (6-1-1) architecture is found using the optimization of an objective function
with the sequential quadratic programming (SQP) method for 450 experimental data
points. The results obtained from the neural network of the partition coefficients of
biomolecules in polymer–polymer ATPSs were compared with those from the modi-
fied Flory–Huggins model. Comparisons showed that the ANN is 50% more accurate
than the Flory–Huggins model in obtaining partition coefficients of biomolecules in
polymer–polymer ATPSs.

In 2023, Chen et al. [36] conducted an ANN modeling on the polymer-electrolyte
aqueous two-phase systems involving biomolecules. In their work, 11 998 exper-
imental binodal data points covering 276 polymer-electrolyte ATPS at different
temperatures (273.15–399.15 K) and 626 experimental partition data points involv-
ing 22 biomolecules in 42 polymer-electrolyte ATPSs at different temperatures
(283.15–333.15 K) were included. An ANN–GC model (ANN–GC model1) was
built to predict the binodal curve behavior of polymer-electrolyte ATPS, while
another ANN–GC model (ANN–GC model2) was developed to predict the parti-
tion of biomolecules in these biphasic systems. The modeling results show that
ANN-GC model1 can give reliable predictions on the binodal curve behavior
of polymer-electrolyte ATPS and ANN–GC model2, to some extent, is capable
of predicting the partition coefficient of biomolecules in these biphasic systems
in a widespread way. In addition, the obtained results also indicate that the
tie-line length of polymer-electrolyte ATPS calculated from ANN–GC model1 can
be directly used in ANN–GC model2 for predicting the partition coefficient of
biomolecules in these ATPSs.

1.2 AI-assisted Solvent Tailoring

Solvent screening is crucial for optimizing chemical processes. Different solvents
can significantly impact reaction rates, yields, and selectivity. The choice of solvent
has a direct impact on the quality and purity of the final product. The environmental
impact of a process is closely tied to the choice of solvents. Solvent properties influ-
ence safety considerations in a laboratory or industrial setting. Different solvents
have varying costs, and solvent selection can significantly impact the overall cost
of a process. Efficient solvent screening helps in identifying the most suitable
solvent for sustainable and responsible manufacturing practices [37]. However,
the vast number of available solvents with diverse chemical properties makes com-
prehensive screening challenging. Access to accurate and comprehensive solvent
property data is crucial for effective screening [38]. In some cases, data for certain
solvents may be limited, affecting the reliability of the screening process. Solvent
performance can vary under different process conditions. Screening solvents under
various temperature, pressure, and concentration conditions adds complexity to the
screening process. Balancing diverse criteria (e.g. process performance, cost, and
environmental impact) to identify the most suitable solvent can be complex. There
are often trade-offs between different desirable solvent properties. Finding a solvent
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that meets all criteria without compromises can be challenging, requiring careful
consideration of priorities [39].

Effective solvent screening is essential for achieving optimal process outcomes,
but it requires a balance between the complexity of the screening process and the
need for accurate and reliable results. However, traditional experimental solvent
screening is generally time and resource intensive. Exploring a wide range of
solvents through experimentation may not be feasible within practical timeframes
[40]. On the other hand, the optimal design of compounds through manipulating
properties at the molecular level is often the key to considerable scientific advances
and improved process systems performance, as reported in Ref. [41]. Property mod-
els are particularly essential due to their role as the foundation for the development
of computer-aided molecular design (CAMD) methods [42]. The application of AI
techniques to optimize and discover novel solvents for various industrial processes
has gained prominence [43]. This is due to AI algorithms, particularly ML models,
that can analyze vast databases of chemical information, properties, and reactions.
This aids in predicting and identifying solvent candidates with specific desirable
properties. ML models can predict the properties of solvents, such as viscosity, boil-
ing point, density, and environmental impact. This helps researchers select solvents
that meet the requirements of a particular application. AI is often integrated with
computational chemistry methods to predict molecular interactions and behaviors,
aiding in the understanding of how solvents interact with other chemicals [44].

To date, some efforts have been made to integrate AI techniques into solvent
design. Liu et al. (2021) [45] proposed a machine learning-based atom contribution
(MLAC)-CAMD framework for solvent design. In their work, three-dimensional
atomic descriptors are used to develop an MLAC method for fast and accurate
predictions of molecular 𝜌(𝜎) for the COSMO-SAC model. Then, the MLAC method
is integrated with the CAMD problem, which is formulated as a mixed-integer
nonlinear programming (MINLP) model and solved by a decomposition-based
solution algorithm. The proposed framework was successfully used in the solvent
design for the improved crystallization operation. Wang et al. (2022) [46] proposed
a new CAMD approach for solvent design by combining ML algorithms with
deterministic optimization. Variational autoencoder (VAE), a powerful generative
ML method, is used to transfer a molecular structure into a continuous latent vector
with an encoder and to convert the latent vector back to the molecule with a decoder.
Solvent properties of interest are estimated by an FNN using the latent vector as
input. The proposed design method successfully generated superior separation
performance solvent candidates for the separation of 1-butene and butadiene. Sui
et al. (2022) [47] combined eight ML algorithms with CAMD technique to design
high cycle performance IL solvent for absorption heat transformer. The results
showed that the optimum ILs screened by this ML-based CAMD method perform
better than the currently investigated ILs.

Wang et al. (2021) [48] integrated the SVM algorithm into the IL solvent
design for CO2 separation from flue gas. By using this ML-based design method,
1-ethyl-3-methylimidazolium tricyanomethanide ([EMIM][TCM]) was identified as
the most suitable solvent for CO2 separation from flue gas, and the performance of
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this IL solvent was further validated via rigorous process simulation in Aspen Plus.
The results showed that the process using [EMIM][TCM] has a 12.9% savings on total
annualized cost compared to that of a reported IL, 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)amide ([EMIM][Tf2N]). Zhang et al. (2021) [49] pre-
sented an ML-based approach combining multiplayer Monte Carlo tree search and
recurrent neural network for the tailor-made design of ILs. The application of this
ML-based IL solvent design method was demonstrated through cases of CO2 cap-
ture from (i) flue gas (CO2/N2) and (ii) from syngas (CO2/H2). The results showed
that the IL solvent identified through this ML-based design method presents great
efficiency for the studied CO2 capture processes. Zhang et al. (2021) [50] proposed
a computer-aided ionic liquid design (CAILD) approach for the optimal design
of ILs for CO2 capture, where three different ML models were applied to predict
the CO2 solubility. This ML-based IL solvent design problem was formulated as a
MINLP problem with the objective of maximizing the CO2 solubility of ILs under
prespecified conditions. The CO2 capture performance of the designed ILs was
further confirmed using density functional theory calculations. The applicability of
the proposed data-driven IL design method was then demonstrated via a case study
of postcombustion carbon capture.

Most recently, Liu et al. [51] proposed a novel ML-based IL solvent design method
that combines a syntax-directed variational autoencoder (SDVAE), deep factoriza-
tion machine (DeepFM), and gradient-based particle swarm optimization (GBPSO).
The SDVAE converts the molecular structure and chemical space of the ILs, and
then DeepFM predicts the solubility of each coordinate in the chemical space rep-
resenting an IL. Finally, GBPSO identifies the coordinates that represent ILs with
ideal properties. In their work, the main optimization objective was a high solubility
difference for CO2 between its absorption and desorption conditions in commer-
cial plant capture systems, which represents the CO2 capture ability. The best IL
generated has a predicted solubility difference that is 35.3% higher than that of the
best one in the data set. A synthetic novel IL, [EMIM][TOS], from the generated
results, was experimentally evaluated; it has a sufficiently high solubility difference
to be a capture solvent with low energy consumption. This model has proved to be a
high-efficiency molecular design model that can be used for sparse small data sets.

Kuroki et al. (2023) [52] proposed an electronic structure informatics approach
to predict and develop ILs with high CO2 solubility based on geometric and
electronic factors of the constituent cations and anions. With a ML-assisted search
for the best cation/anion combination, targeted organic syntheses, and precision
measurements, the IL trihexyl(tetradecyl)phosphonium perfluorooctanesulfonate
([P66614][PFOS]) was experimentally proven to have a higher CO2 solubil-
ity than trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
([P6,6,6,14][TFSA]). Some more works associated with the ML-based solvent design
of ILs for carbon capture can be found in Sun’s review study Sun et al. (2023).

Chen et al. [29] combined ANN algorithms with the CAMD technique for the
design of an IL–IL binary mixed solvent for recovering H2 from raw coke oven gas.
The optimal solution was achieved in 30 seconds on an Intel(R) Xeon(R) E5-1620
3.70 GHz PC, demonstrating the high computational efficiency and integrability
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Figure 1.4 Molecular structure and some important properties of the binary mixed solvent
combining 57.2 mol% [N4,1,0,0][BF4] and 42.8 mol% [C1Im][Tf2N]. Source: [29]/with
permission of John Wiley & Sons.

of the ANN algorithm in solvent design. Optimization results show that a binary
mixed solvent combining 57.2 mol% butylethylammonium tetrafluoroborate
([N4,1,0,0][BF4]) and 42.8 mol% 1-methylimidazolium bis(trifluoromethanesulfonyl)
amide ([C1Im][Tf2N]) meets all the design constraints and has the maximum H2
absorption capacity (= 0.28 g−1), as presented in Figure 1.4. To the best of our
knowledge, this is the only work using ML algorithms in the design of IL–IL mixed
solvents that have been reported.

For ATPSs, Chen et al. (2021) [34] integrated the ANN algorithm and CAMD
technique to tailor optimal IL-ATPSs for the recovery of hydrophilic ILs from dilute
aqueous solutions. Two case studies were performed to test this ML-based ATPSs
design method by formulating and solving their optimization-based MINLP prob-
lems. In both cases, the salting-out agents, i.e. (NH4)2SO3 and KH2PO4, identified
in this work have better ABS-forming ability than their counterparts K2CO3 and
(NH4)2SO4 reported in the literature. For the recovery of 10 wt% [C4Py][TfO] from
aqueous solutions, the ATPS composed of [C4mIm][Cl]-H2O-(NH4)2SO3 gives an
IL recovery efficiency of 95.0 wt% and a salting-out agent input of 2.36 kg/kg IL
recovery, and for the ATPS of [C4mIm][Cl]-H2O-K2CO3, they are 81.7 and 5.25,
respectively. For the aqueous solutions containing 10 wt% [C4Py][TfO], the ATPS
composed of [C4Py][TfO]-H2O-KH2PO4 gives an IL recovery efficiency of 95.6 wt%
and a salting-out agent input of 1.81 kg/kg IL recovery, and for the ABS composed
of [C4Py][TfO]-H2O-(NH4)2SO4, they are 80.6 and 3.16, respectively. Most recently,
Chen et al. (2023) [53] proposed an ML-based design method of high-performance
ATPS for partitioning biomolecules, as presented in Figure 1.5.

In this design method, two ML models that combine the ANN algorithm
and GC method are, respectively, employed to predict the phase equilibrium
composition of polymer-electrolyte ATPS and the partition of biomolecules
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Figure 1.5 Diagram of the ML-based design of ATPS for the partitioning of biomolecules.
Source: [54]/with permission of American Chemical Society.

in these aqueous systems. By integrating these two ANN–GC models into the
computer-aided design technique, the optimal ATPS is identified by solving
an optimization-based MINLP problem. Results of partitioning cefazolin and
β-amylase were presented to demonstrate the viability of this ML-based ATPS
design method. In the case of cefazolin, the partitioning performance of the
tailored ATPS (PPG600+KNaSO4 +H2O) is nearly seven times greater than that
of the reported ATPS (PEG6000+Na3C6H5O7 +H2O). Meanwhile, the ATPS of
PPG600+KNaSO4 +H2O gives a cefazolin recovery of 95.0 wt% and an agent input
of 0.154 kg/kg aqueous solution, and for the ATPS of PEG6000+Na3C6H5O7 +H2O,
these values are 90.6 and 0.233, respectively. For the second case, the partition
coefficient of β-amylase in ATPS (PPG400+KNaHPO4 +H2O) (identified by
ML-based design method) is about 13.5 times higher than that of the reported ATPS
(PEG10000+KH2PO4 +H2O). In addition, the ATPS of PPG600+KNaSO4 +H2O
gives a β-amylase recovery of 97.3 wt% at a cost of 0.387 kg agent input/kg aqueous
solution, and for the ATPS of PEG6000+Na3C6H5O7 +H2O, they are 66.3 and
0.252, respectively.

1.3 AI-Assisted Process Design

Process design is a critical phase in the lifecycle of any manufacturing or indus-
trial operation. It involves the detailed planning and configuration of systems,
equipment, and processes to convert raw materials into finished products. Efficient
process design ensures the optimal use of resources, including raw materials,
energy, and labor. Well-designed processes are crucial for ensuring the quality and
consistency of the final product. Property models play a crucial role in process
design across various industries, and they are essential for sizing and designing
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process equipment. Parameters like heat capacity, vapor pressure, and phase
equilibrium data are critical for designing reactors, heat exchangers, distillation
columns, and other equipment. Property models also contribute to understanding
thermodynamic behavior and ensuring the safety and environmental compliance
of industrial processes. Accurate property models are indispensable for successful
and efficient process design. However, there are several challenges associated with
acquiring precise property models. Industrial processes often involve complex
mixtures and reactions. Developing accurate property models for complex systems
can be challenging due to the interactions between different components. In
addition, many real-world systems exhibit nonideal behavior, such as deviations
from ideal gas or solution behavior. Modeling such nonidealities accurately can be
challenging. Furthermore, developing and solving complex models computationally
can be resource intensive and time consuming.

ML algorithms have significant potential in addressing these challenges asso-
ciated with process design. This is due to the following factors: They can analyze
vast amounts of process data to identify patterns, correlations, and insights that
may not be apparent through traditional methods. ML algorithms can estimate
properties such as viscosity, density, and thermodynamic parameters, providing
accurate predictions for materials with limited experimental data. ML algorithms,
particularly advanced neural networks, can capture complex relationships within
systems, allowing for more accurate modeling of intricate processes. ML algorithms
trained on existing data can provide estimations for properties of materials not yet
extensively studied, facilitating the incorporation of new materials into process
designs. Besides these, ML algorithms can integrate process models with eco-
nomic considerations, optimizing designs based on both technical and economic
criteria [54].

Recently, efforts have been made to integrate ML algorithms into the process
design, especially for additive manufacturing. In addition to the studies discussed
in Razvi’s review work, Jiang et al. (2022) [55] recently proposed an ML-integrated
design framework to establish process–structure–property (PSP) relationships for
additive manufacturing. With the help of ML, the analysis and design processes
based on PSP no longer need to establish complex surrogate models that are also
unable to establish the relationships of PSP in a reversed direction. The relationships
between process, structure, and property can be established simply through ML in
whichever direction it is desired using the available additive manufacturing data.
DNNs for point data and CNNs for distributions and image data were proposed as
the specific ML techniques for the proposed framework.

Chen et al. (2023) [56] proposed an ML-based hybrid process design method for
efficient recovery of hydrophilic IL from dilute aqueous solutions. The application
of this ML-based hybrid process design method is illustrated through case stud-
ies of recovering two hydrophilic ILs, n-butylpyridinium trifluoromethanesulfonate
([C4Py][TfO]) and 1-butyl-3-methylimidazolium chloride ([C4mIm][Cl]), from their
dilute aqueous solutions. For the recovery of 10 wt% [C4Py][TfO] from the aqueous
solution, the proposed hybrid process could reduce the total annual cost (TAC) and
energy consumption by 57% and 91%, respectively, compared with pure distillation
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processes. In the case of recovering 10 wt% [C4mIm][Cl] from the aqueous solution,
the reduction in TAC and energy savings of the hybrid process could reach 49% and
87%, respectively, compared with the pure distillation process.

Most recently, Chen et al. (2024) [29] integrated ML algorithms into process design
involving IL–IL mixed solvent. In their work, the ANN algorithm was combined with
the GC method to predict properties, including viscosity, density, surface tension,
and heat capacity in the equipment design, as shown in Figure 1.6. The applica-
tion of this ML-based process design method is demonstrated via a case study on
H2 recovery from raw coke oven gas, as shown in Figure 1.7. In that case, the best
solution was found within 27 seconds on an Intel(R) Xeon(R) E5-1620 3.70 GHz PC,
indicating the high computational efficiency and integrability of ML algorithms in
process design.
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Figure 1.6 Framework of the ML-assisted modeling, solvent tailoring, and process design
involving IL–IL mixed solvent. Source: [29]/with permission of John Wiley & Sons.
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1.4 Conclusions

Despite the promising capabilities of AI techniques in property modeling, solvent
tailoring, and process design, it also presents certain challenges as follows:

Property Modeling: (i) Data might be limited, especially for certain rare com-
pounds or newly synthesized substances. This limitation can impact the training
and performance of AI models. (ii) AI models used in chemical property mod-
eling, particularly deep learning models, can be highly complex and difficult
to interpret. Understanding how the model arrives at a specific prediction is
crucial, especially in applications with potential safety implications. (iii) If the
training data used for chemical property models is biased, the AI model may
inherit and perpetuate these biases. This leads to inaccurate predictions and
potentially unsafe recommendations. (iv) AI models developed for specific
chemicals or conditions may not generalize well to different scenarios or sub-
stances. Ensuring the transferability of models across a range of chemicals is a
challenge. Despite these challenges, the field continues to advance, with ongoing
research focused on refining algorithms and expanding applications in diverse
scientific domains. In conclusion, property modeling using AI holds significant
promise for enhancing our understanding and prediction of various material and
chemical properties. Continued research and advancements in AI methodologies
are likely to contribute further to the accuracy and applicability of such models
in scientific and engineering pursuits.

Solvent Tailoring: (i) AI models, especially ML algorithms, require large and
high-quality datasets for training, but obtaining comprehensive and accurate data
on solvent properties and behaviors remains a challenge in many cases. Limited
or noisy data can lead to biased or inaccurate models, impacting the reliability
of AI-driven solvent design. (ii) Solvent design involves complex interactions
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between molecules, and the chemical space is vast. Capturing these complexities
accurately with AI models, especially for novel solvents, poses a significant
challenge. Incomplete understanding of the chemical space may result in AI
models that struggle to generalize well to diverse solvent systems. (iii) Many AI
models, especially deep learning models, are often considered “black boxes” due
to their complex architectures. Understanding how and why a model makes a
particular prediction in solvent design is challenging. Lack of interpretability
can hinder the trust and acceptance of AI-driven results, particularly in critical
applications such as solvent design for pharmaceutical or industrial processes.
(iv) AI models trained on specific datasets may struggle to generalize well to
different conditions or diverse solvent systems not present in the training data.
Generalization issues limit the applicability of AI models to a broader range
of solvent design scenarios. (v) The integration of AI techniques with experi-
mental data is crucial for validating and refining models. However, reconciling
experimental data with computational predictions presents challenges. The
lack of seamless integration may hinder the practical application of AI-driven
solvent design in laboratory or industrial settings. (vi) Solvent systems can exhibit
dynamic behaviors under different conditions. AI models may struggle to adapt
to these dynamic changes effectively. Inaccuracy in capturing dynamic behaviors
may limit the real-time applicability of AI models in dynamic solvent design
scenarios. Addressing these challenges requires a multidisciplinary approach,
combining expertise in chemistry, data science, and AI. Ongoing research aims
to overcome these challenges and enhance the effectiveness of AI techniques in
solvent design.

Process Design: (i) ML algorithms heavily rely on high-quality and abundant data.
In some cases, obtaining sufficient and relevant training data can be challenging,
and the available data may have errors or biases. Poor data quality can lead
to inaccurate models and unreliable predictions. (ii) Many ML algorithms,
especially complex ones like deep neural networks, are often considered “black
boxes,” making it challenging to interpret how they arrive at specific decisions.
Lack of interpretability can hinder the understanding of model outputs, making
it difficult for engineers to trust and act upon the results. (iii) ML models may
overfit the training data capturing noise rather than underlying patterns. Ensur-
ing that models generalize well to unseen data is a challenge. Overfit models
may perform poorly on new data, leading to inaccurate predictions in real-world
scenarios. (iv) ML models may overfit the training data capturing noise rather
than underlying patterns, ensuring that models generalize well to unseen data is
a challenge. (v) Validating ML models for complex processes can be challenging,
and ensuring their reliability in a real-world environment is crucial. (vi) ML
models may struggle to adapt to dynamic processes or changing conditions, as
they may not capture evolving patterns effectively. Inaccurate predictions in
dynamic environments may lead to suboptimal process control and performance.
(vii) Quantifying and managing uncertainties in ML predictions can be challeng-
ing, particularly when dealing with complex and uncertain process conditions.
(viii) Integrating ML approaches with traditional engineering methods may pose
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challenges in terms of compatibility and consistency. Inconsistent integration
may lead to conflicting results and difficulties in adopting ML-based solutions.
Addressing these challenges requires a comprehensive approach, including
data preprocessing, model validation, transparency, continuous monitoring, and
collaboration between domain experts and data scientists. As the field of AI
techniques in process design continues to evolve, overcoming these challenges
will be crucial for realizing its full potential.
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