Contents

Preface xi

Part I Production Control in General 1

٧

1 Production Control – A Logistic Control Function *3*

- 1.1 Logistics 3
- 1.2 Logistics Planning and Control 6
- 1.3 Logistic Concepts in Production 7
- 1.4 Terminology for Production Control 10
- 1.4.1 Concepts Used in Production Control 10
- 1.4.2 Complexity, Uncertainty, and Flexibility *12* References *13*

2 Horizontal and Vertical Decomposition 15

- 2.1 Horizontal Decomposition 16
- 2.2 Vertical Decomposition 22
- 2.3 Types of Release Triggers 25
- 2.3.1 Just-in-Time Versus Just-in-Case 25
- 2.3.2 Push Versus Pull in Logistics 28
- 2.4 An Example of Decomposition 30 References 32

3 Planning and Control in Production Units *33*

- 3.1 Production Control in General 33
- 3.2 Basic Forms of Production 35
- 3.2.1 Process-Wise Production 35
- 3.2.2 Mass Assembly/Flow Production 36
- 3.2.3 (Repetitive) Small Series Production (Also Called Job-Shop) 36
- 3.2.4 (Repetitive) Project-Wise Production 37
- 3.2.5 Throughput Time Production Units *37* References *39*

vi Contents

4	Framework for Logistic Planning and Control in Production		
	Systems 41		
4.1	General Framework 41		

4.2 Position of this Book 45 References 46

Part II Planning and Control of Decoupling Points 47

5	Decoupling	Point Control	49
-			

- 5.1 Decoupling Point Control An Introduction 49
- 5.2 Performance Measures for Decoupling Point Control 53
- 5.3 Demand and Forecasting 58
- 5.3.1 Demand Pattern 59
- 5.3.2 Forecasting Methods 60
- 5.3.2.1 Time Series-Related Forecasting for Stationary Demand 63
- 5.3.2.2 Time Series-Related Forecasting for Demand with a Trend 67
- 5.4 Order Size 71
- 5.4.1 Optimal Batch Size in Case of Fixed Order Size 72
- 5.4.2 Relaxation of Assumptions 75
- 5.4.2.1 Known or Predicted Demand Variation 75
- 5.4.2.2 Quantity Discount 78
- 5.4.2.3 Minimum Order Quantity 79
- 5.4.2.4 No Variable Order-Related Costs 79
- 5.4.2.5 Interdependencies of Order Sizes Not BOM Related 80
- 5.4.2.6 Interdependencies of Order Sizes BOM Related 81
- 5.4.3 Single Period Problem 83
- Appendix 5.A The Wagner-Whitin Algorithm 84
- Appendix 5.B Example Impact Advanced and Optimal Approach for Determining Batch Sizes *87*
- Appendix 5.C Newsvendor Problem 87 References 90

6 Reorder Point Decoupling Point Control Systems 93

- 6.1 General Discussion of Reorder Point Systems 93
- 6.2 When to Order? 96
- 6.2.1 Continuous Review 97
- 6.2.2 Periodic Review 99
- 6.2.3 The Reorder Level Continuous Review 100
- 6.2.4 The Reorder Level Periodic Review 107
- 6.3 How Much to Order? 109
- 6.3.1 Fixed Amount 109
- 6.3.2 Maximum Level 109

- 6.3.2.1 (s, S) 109 6.3.2.2 (R, s, S) 110 Appendix 6.A Table of the One-Sided Standard Normal Distribution 110 Appendix 6.B Table Standard Normal Loss Function 112 Appendix 6.C Reorder Level Determination in Case of a General Distribution 113 Discrete Demand 113 6.C.1 6.C.2 Continuous Demand 115 6.C.3 Determining the Reorder Level 116 References 116 7 MRP Decoupling Point Control Systems 117 71 General Discussion of MRP Systems 117 7.1.1 Material Requirements Planning (MRP-I) 117
- 7.1.2 Manufacturing Resources Planning (MRP-II) 119
- 7.1.2.1 Engine 119
- 7.1.2.2 Front End 120
- 7.1.2.3 Back End 121
- 7.2 When to Order *122*
- 7.3 How Much to Order? 125
- 7.4 Discussion on MRP-Related Issues 128
- 7.4.1 Dealing with Uncertainty 128
- 7.4.2 Bill-of-Materials Versus Bill-of-Distribution 130
- Appendix 7.A MRP Formulas 132
- 7.A.1 Rescheduling Assumption 132 References 133

8 Systems Using Echelon Stock (ESC, LRP) 135

- 8.1 General Discussion of Systems Using Global Norms 135
- 8.1.1 Discussion on ROP and MRP 136
- 8.1.2 Echelon Stock Control Systems 137
- 8.1.3 Line Requirements Planning 138
- 8.2 When and How Much to Order? 139
- 8.2.1 When and How Much to Order in Echelon Stock Systems? 139
- 8.2.2 When and How Much to Order in Line Requirements Planning Systems? *139*
- 8.3 Discussion on Echelon Stock Systems 142 References 143

9 Choosing an Appropriate DPC System 145

- 9.1 General Considerations 145
- 9.2 Advantages/Disadvantages of the Different DPC Systems 146
- 9.2.1 Bullwhip Effect 147
- 9.3 Which Decoupling Point Control System to Use? 150 References 157

Part III Production Unit Control 159

- **10** General Discussion of Production Control Decisions 163
- 10.1 Priority Control 164
- 10.2 Capacity Allocation 165
- 10.3 Work Order Release/Work Order Detail Planning (Scheduling) 166 References 168
- 11 Production Control for Deterministic, Static Production Situations (Scheduling) 169
- 11.1 Sequencing Orders Without Delivery Date (Throughput Time Oriented) 170
- 11.1.1 Work Orders with One Operation and Work Centers with One Machine *171*
- 11.1.1.1 Relation Between Work-in-Process and Throughput Time 171
- 11.1.1.2 Minimization of the Average Throughput Time 171
- 11.1.1.3 Minimization of Weighted Average Throughput Time 171
- 11.1.2 Work Orders with One Operation and Work Centers with Parallel, Identical Machines *172*
- 11.1.2.1 Minimizing the Makespan 172
- 11.1.2.2 Minimizing the Average Throughput Time 172
- 11.1.3 Work Orders with Multiple Operations and Work Centers with One Machine *173*
- 11.1.3.1 Minimizing the Makespan for a Flow Shop with Two Operations 174
- 11.1.3.2 Minimizing the Makespan for a Flow Shop with More Than Two Operations *176*
- 11.2 Sequencing Orders with a Delivery Date (Reliability Oriented) 178
- 11.2.1 Minimizing the Average Lateness 179
- 11.2.2 Minimizing the Maximum Tardiness 179
- 11.2.3 Minimizing the Number of Tardy Orders (N_T) 179
- 11.2.4 Minimizing the Average Tardiness 181
- 11.3 Relaxing Assumptions 183
- 11.3.1 Orders with Sequence-Dependent Set-Up Times 183
- 11.3.2 Sequencing Orders with Different Routings 184 References 185

12 Flow Process Production 187

- 12.1 General Description 187
- 12.2 Main Control Attention Points of Flow Process Production 189
- 12.2.1 General 189
- 12.2.2 Cycle Time Determination 190
- 12.2.2.1 A Stable Level of Demand 191
- 12.2.2.2 Variable Demand 194
- 12.2.2.3 Different Cycles on One Production Line 196

- 12.3 Production Control Decisions for Flow Process Production in MTS Situations 196
- 12.3.1 Sequencing 196
- 12.3.2 Capacity Allocation 197
- 12.3.3 Work Order Release 197
- 12.4 Production Control Decisions for Flow Process Production in MTO Situations 197
- 12.4.1 Sequencing and Work Order Release 198
- 12.4.2 Capacity Allocation 200
- 12.5 Application 200 References 204

13 Mass Assembly Production 205

- 13.1 General Description 205
- 13.2 Main Control Attention Points of Mass Assembly Production 207
- 13.2.1 Pure Flow Production 208
- 13.2.2 Variants of Pure Flow Production 209
- 13.2.2.1 Different Processing Times 209
- 13.2.2.2 Variable Processing Times 211
- 13.2.2.3 Different Products (Needing Different Materials and/or Resources) 211
- 13.2.2.4 Disturbances at the Work Centers 212
- 13.2.2.5 No Availability of Efficient Technology 212
- 13.2.2.6 A Variety of Routings (Some Operations Are Skipped) 213
- 13.2.3 Quantitative Models for Analyzing the Effect of Buffers 214
- 13.2.3.1 Two Stations Without Failures 215
- 13.2.3.2 More Than Two Stations Without Failures 216
- 13.2.3.3 Two Stations with (Time-Dependent) Failures 216
- 13.2.3.4 More Than Two Stations with (Time-Dependent) Failures 218
- 13.2.4 Cross Training 219
- 13.3 Production Control Decisions for Mass Assembly Production 220
- 13.3.1 Sequencing 220
- 13.3.2 Capacity Allocation 220
- 13.3.3 Work Order Release 221
- 13.4 Application 222
 - References 224

14 Small Series Production 227

- 14.1 General Description 227
- 14.2 Main Control Attention Points of Small Series Production 229
- 14.2.1 Fundamental Results from Queueing Theory 230
- 14.2.2 Throughput Time-Related Aspects 236
- 14.2.2.1 Production Layout 236
- 14.2.2.2 Measures Based Upon Insights from Queuing Theory 236
- 14.2.2.3 Customer Differentiation 238
- 14.2.3 Lead Time Reliability Related Aspects 239

- **x** Contents
 - 14.2.3.1 Due Date Determination Rules 240
 - 14.2.3.2 The Effect of the Value of the Slack on the Delivery Reliability 246
 - 14.2.3.3 Internal Versus External Due Date 248
 - 14.3 Production Control Decisions for Small Series Production 248
 - 14.3.1 Throughput Time 249
 - 14.3.1.1 Sequencing 249
 - 14.3.1.2 Capacity Allocation 252
 - 14.3.1.3 Work Order Release/Work Order Detail Planning 256
 - 14.3.2 Lead Time Reliability 259
 - 14.3.2.1 Sequencing 259
 - 14.3.2.2 Capacity Allocation 262
 - 14.3.2.3 Work Order Release 263
 - 14.4 Application 263
 - Appendix 14.A Short-Term Capacity Adjustment 265
 - Appendix 14.B Flexible Batching 267
 - Appendix 14.CThe Effect of Workload Control in Case There Is a Relationship
Between Productivity and Workload 268
 - References 271

15 (Repetitive) Project-Based Production 273

- 15.1 General Description 273
- 15.2 Main Control Attention Points of Project-Based Production 275
- 15.2.1 Construction of a Network 276
- 15.2.1.1 Terminology 276
- 15.2.1.2 Duration of the Activities 279
- 15.2.1.3 Critical Path and Project Duration in Case Activity Times Are Deterministic 279
- 15.2.1.4 Slack 281
- 15.2.1.5 Uncertainty in Project Duration Due to Stochastic Activity Times 282
- 15.2.1.6 Realistic Estimates of the Activity Times 284
- 15.2.1.7 Activity on Node Networks 284
- 15.3 Production Control Decisions for Project-Based Production 286
- 15.3.1 Sequencing 286
- 15.3.2 Capacity Allocation (and Scheduling) 286
- 15.3.2.1 Resource Loading 286
- 15.3.2.2 Resource Leveling 286
- 15.3.2.3 (Constrained Resource) Scheduling 287
- 15.3.3 Work Order Release/Project Scheduling 289
- 15.3.3.1 Work Order Scheduling 289
- 15.3.3.2 Work Order Release 290
- 15.4 Application 291 References 295

Index 297