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1.1 General Concepts of Protein–Protein Interactions

Proteins are the fundamental machinery that drive the vast majority of cellular pro-
cesses. These versatile biomolecules rarely perform in isolation; instead, up to 80%
of proteins engage in intricate interactions with one another, forming dynamic net-
works that underpin the functional complexity of living organisms [1]. This chapter
aims to provide a comprehensive overview of protein–protein interactions (PPIs). We
will begin by elucidating the fundamental concepts of PPIs, covering their definition,
structural characteristics, and pivotal roles in both physiological and pathological
processes. Building upon this foundation, we delve into the diverse spectrum of cur-
rent methods employed in PPI studies, showcasing both experimental and compu-
tational approaches, along with their varied applications. The chapter culminates in
a discussion of the profound implications of PPI research, illuminating its potential
in advancing medical understanding, revolutionizing drug discovery, and catalyzing
technological innovations across various fields.

1.1.1 Definition of Protein–Protein Interactions

PPIs refer to physical contacts between two or more proteins that occur within
a defined biological context. First, these interactions are intentional, not arising
from random encounters, but rather precisely orchestrated by specific biomolecular
forces and mechanisms. Second, they should be nongeneric, distinct from basic
cellular processes like protein synthesis or degradation. Also of note, the formation
and regulation of PPIs are highly organized in time and space, governed by a
complex interplay of factors such as cell type, cell cycle phase, developmental stage,
protein modifications, absence or presence of cofactors and binding partners, and
environmental conditions [2, 3].

Targeting Protein–Protein Interactions for Drug Discovery, First Edition. Edited by Jian Zhang.
© 2026 WILEY-VCH GmbH. Published 2026 by WILEY-VCH GmbH.



�

� �

�

2 1 Exploring Protein–Protein Interactions: Concepts, Methods, and Implications

1.1.2 Structural Properties of Protein–Protein Interactions

The intricate architecture of proteins is critical in determining the specificity,
strength, and functional outcomes of their interactions. By unraveling these
structural characteristics, researchers can gain deeper insights into the molecular
mechanisms underlying PPIs and develop strategies to manipulate them for
therapeutic purposes.

Proteins are sophisticated macromolecules comprising an array of structural and
functional units that work in concert to perform diverse biological tasks. Among
these, domains and short linear motifs (SLiMs) serve as two main classes of func-
tional modules that mediate PPIs. Domains, typically spanning 50–200 residues,
are independently folding structural units within proteins that often harbor distinct
biological activities. SLiMs, on the other hand, are compact, recurring functional
peptides consisting of 3–10 residues, primarily found within intrinsically disordered
regions (IDRs) [4]. Indeed, many PPIs can be categorized into domain–domain inter-
actions (DDIs) or domain–motif interactions (DMIs). DDIs usually underpin the
formation of stable and long-lasting complexes, while DMIs are associated with tran-
sient and low-affinity interactions [5].

The surface regions where the direct physical interactions between two or more
proteins occur are termed interfaces. They are highly diverse in terms of size, shape,
and chemical properties, determining the specific recognition and binding between
proteins engaged in different biological processes. According to statistics, one-sided
size of an interface typically ranges from 200 to 2800 Å2, with the majority falling
between 200 and 1200 Å2 [6]. Although considered relatively flat, interfaces possess
a complex topography characterized by cavities, grooves, and protruding regions.
Complementary geometric features ensure that proteins bind to each other in the
correct orientation and with high specificity. Moreover, interfaces encompass a vari-
ety of chemical interactions, including hydrogen bonds, hydrophobic interactions,
electrostatic forces, salt bridges, and disulfide bonds, which collectively account for
the specificity and stability of PPIs [7].

Within the interfaces, there exist clusters of residues known as “hot spots,” which
make disproportionately large contributions to the binding affinity. Single-point
mutations of these residues to alanine may cause a substantial increase in the bind-
ing free energy (ΔΔG≥ 2 kcal/mol), highlighting their critical roles in stabilizing the
PPIs [8]. Hot spots have a distinctive amino acid composition, enriched with trypto-
phan, arginine, and tyrosine, due to the unique physicochemical properties of these
residues like bulky side chains, the propensity to form hydrophobic surfaces, and the
capacity to engage in hydrogen bonding [9]. With regard to spatial organization, hot
spots cluster within tightly packed regions rather than being randomly distributed,
facilitating the removal of water molecules upon binding [10]. Besides, they are
surrounded by moderately conserved and energetically less important residues,
which form an O-ring to further occlude bulk solvent from the hot spots [9].

Proteins are not static, rigid structures; rather, they are dynamic entities capable
of adopting multiple conformations. This inherent flexibility is critical for their
diverse functions, particularly in PPIs. The traditional “lock and key” model, which
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implies a preexisting perfect fit between interacting proteins, fails to capture the
dynamic nature of PPIs [11]. Subsequently, more precise descriptions have been
put forward. The “induced fit” model suggests that upon initial contact, proteins
undergo conformational changes to achieve an optimal fit with their binding
partners [12]. Meanwhile, the “conformational selection” model proposes that
proteins exist in an equilibrium of various conformations, with binding events
selecting and stabilizing the most favorable conformation [13].

1.1.3 Diverse Types of Protein–Protein Interactions

PPIs manifest in a striking diversity of forms, each tailored to perform a specific
biological role. In the following sections, we will explore several prominent types
of PPIs, varying in structural properties, molecular recognition mechanisms, and
functional outcomes.

1.1.3.1 Enzyme–Substrate Interactions
Enzymes are biological catalysts that bind to specific substrates through their active
sites and facilitate the conversion of substrates into product molecules. Key examples
that illustrate the diverse roles of enzyme–substrate interactions include: (i) protein
phosphorylation and dephosphorylation, where kinases and phosphatases add and
remove phosphate groups to substrates, respectively, act as molecular switches in
signal transduction [14]; (ii) proteolytic cleavage, an irreversible process mediated
by proteases that catalyze the hydrolysis of peptide bonds in target proteins, pre-
cisely governs protein maturation, activation, stability, and localization [15]; (iii) his-
tone modifications, such as acetylation and methylation, are carried out by enzymes
like histone acetyltransferases (HATs) and histone methyltransferases (HMTs), con-
tributing to epigenetic regulation of gene expression [16].

1.1.3.2 Receptor–Ligand Interactions
Cells possess an intricate communication network to sense and respond to environ-
ment cues and stimuli. This network is built upon cell surface receptors that bind
external signaling molecules termed ligands, initiating downstream signaling cas-
cades within the cell and manipulating various physiological processes like growth,
development, immune response, and metabolism [17]. G protein-coupled receptors
(GPCRs) constitute the largest family of these receptors, characterized by a unique
architecture comprising seven transmembrane helices joined by intracellular and
extracellular loops [18]. Chemokines, a class of small secreted proteins, exemplify
protein ligands that bind to a specific subfamily of GPCRs called chemokine recep-
tors. By sequentially binding to the N-terminal region and extracellular loops of their
receptors, chemokines induce receptor conformational rearrangement and activa-
tion that direct immune cell migration and positioning during inflammation [19].

1.1.3.3 Antigen–Antibody Interactions
Antibodies are glycoproteins produced by B lymphocytes to recognize and bind
to foreign substances known as antigens, which can be present on the surface of
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invading pathogens like viruses and bacteria. This interaction launches an immune
response to neutralize and eliminate pathogens, thus protecting the body from
infection and disease [20]. An antibody is composed of two identical heavy chains
and two identical light chains connected by disulfide bonds. Antigen recognition
is achieved by the complementarity-determining regions (CDRs) located at the
N-terminus of both heavy and light chains that precisely match antigen’s epitope
[21]. Beyond their pivotal role in the immune system, the exquisite specificity of
antigen–antibody interactions has also been exploited for diagnostic and therapeutic
applications.

1.1.3.4 Chaperone–Client Interactions
Chaperones function as protein quality control machinery, engaging with client
proteins to assist in their de novo folding, subcellular translocation, and recovery
from stress-induced misfolding and aggregation. Many chaperones belong to the
heat shock protein (HSP) families, including HSP60, HSP70, HSP90, and HSP100
[22]. Chaperones from different families exhibit structural and functional diversity,
reflected in their distinct binding patterns to clients. Some utilize ATP binding
to allosterically regulate their conformation, facilitating efficient client binding
and release. Others assemble into oligomeric complexes, creating an enclosed
environment for client encapsulation [23]. Structural biology studies have revealed
that, in some cases, chaperones bind their clients in interconverting conformational
ensembles that are locally highly dynamic. This binding behavior allows clients
to undergo folding while bound to chaperones and enables chaperones to accom-
modate a broad range of clients with varying folding properties and limited shape
complementarity [24, 25].

1.1.3.5 Scaffold Interactions
Scaffold proteins are molecular organizers that bring together two or more signaling
molecules like kinases and receptors into higher-order complexes to modulate
their activities, thereby enabling the efficient spatial–temporal coordination of
cellular signaling events [26]. This remarkable organizational capability of scaffolds
is attributed to their unique modular architecture. Typically, they encompass
discrete interaction domains capable of recognizing and binding to SLiMs (e.g.
phosphotyrosine- and proline-containing sequences) on target proteins, along
with IDRs that confer flexibility and functional versatility [27]. In addition to
simply tethering targets in proximity, scaffolds can exert allosteric regulation on
the targets as well. In this way, they can handle both the linear input–output signal
transmission and complicated feedback loops within distinct pathways and even
promote signal integration and crosstalk among various pathways [28, 29].

1.2 Functional Significance of Protein–Protein
Interactions

Far from being static or isolated events, PPIs are dynamically woven into complex
networks that enable proteins to communicate, coordinate, and cooperate in
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carrying out the essential functions of life. Meanwhile, disruptions or aberrations
in PPIs can lead to a cascade of dysfunction, contributing to the development of
various diseases.

1.2.1 Cellular Signal Transduction

Signal transduction is the process by which extracellular signals are converted into
cellular responses. It is organized into three distinct stages: reception, transduc-
tion, and response, each involving PPIs to ensure high fidelity of signal transmission
(Figure 1.1).

The reception stage commences with receptor–ligand interactions. To be exact,
a variety of extracellular signaling molecules, ranging from neurotransmitters
and hormones to proteins like chemokines, thrombin, and growth factors, are
recognized by their corresponding receptors embedded in the membrane, such as

Figure 1.1 A graphic representation of the signal transduction process. Extracellular
signals, upon binding to their receptors, are transmitted through intracellular signaling
pathways, culminating in a series of cellular responses. (Source: Mi Zhou and Renxiao
Wang.)
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GPCRs and receptor tyrosine kinases (RTKs) [17]. Upon ligand binding, receptors
generally undergo conformational changes, activating associated proteins or
triggering homodimerization and autophosphorylation to initiate downstream
signaling pathways [30, 31].

During the transduction stage, the signal is propagated from the cell surface to
the intracellular targets through an elaborate network of signaling cascades. These
cascades are characterized by a series of posttranslational modifications, predom-
inantly phosphorylation events driven by kinase–substrate interactions. A classic
example is the mitogen-activated protein kinase (MAPK) pathway, where a cascade
of three kinases, namely MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK),
and MAPK, phosphorylate and activate each other in a sequential manner [32]. A
similar phosphorylation-dependent activation mechanism is also observed in other
crucial pathways, including nuclear factor kappa B (NF-κB) pathway, phospho-
inositide 3-kinase (PI3K)/protein kinase B (AKT) pathway [33], and Janus kinase
(JAK)/signal transducer and activator of transcription (STAT) pathway [34]. While
some interactions serve to relay and amplify the signal, others involving phos-
phatases and inhibitory proteins lead to signal decay and termination [35]. Moreover,
adaptor, scaffold, and docking proteins further fine-tune signal transduction by
manipulating the assembly, function, and localization of relevant proteins [36].

Finally, the signal cascades converge on the regulation of their target proteins (e.g.
transcription factors, enzymes, cytoskeletal proteins, and apoptotic proteins), elicit-
ing the desired cellular responses such as changes in gene expression, cell growth,
differentiation, and apoptosis.

1.2.2 Regulation of Gene Expression

Gene expression in eukaryotes encompasses the processes of transcription, RNA
processing, and translation, wherein PPIs play a critical regulatory role, contribut-
ing to the accurate transfer of genetic information from DNA to messenger RNA
(mRNA) to protein.

At the onset of transcription activation, transcriptional activators bind to specific
DNA sequences and then recruit coactivators to improve transcription efficiency.
Some coactivators like HMTs and HATs perform histone modifications and
chromatin remodeling, rendering the DNA more accessible to the transcriptional
machinery [37]. Others, such as the mediator complex, bridge RNA polymerase
II (Pol II) and general transcription factors onto core promoters, resulting in the
assembly of a pre-initiation complex (PIC) that directs the initiation of transcrip-
tion [38] (Figure 1.2a). On the other hand, the interplay between transcriptional
repressors, co-repressors, and histone-modifying enzymes, like histone deacetylases
(HDACs), can suppress the transcription process [39].

Once transcribed, the precursor mRNA (pre-mRNA) undergoes several process-
ing steps to become the mature mRNA. These include 5′-end capping, splicing, and
3′-end cleavage and polyadenylation, each orchestrated by specialized molecular
machinery (Figure 1.2b). Capping involves the sequential recruitment of capping
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enzymes onto the Pol II, where they catalyze modifications to the 5′ end of the
nascent pre-mRNA [40]. Next, splicing is executed by a highly dynamic and massive
ribonucleoprotein complex termed the spliceosome, which is assembled by ordered
binding and release of small nuclear ribonucleoproteins (snRNPs) and numerous
other splicing factors [41]. Finally, 3′-end processing is performed by the cleavage
and poly-adenylation specificity factor (CPSF), a large multi-subunit complex that
utilizes endonuclease, poly(A) polymerase, and accessory proteins to cleave the
pre-mRNA and add a poly(A) tail [42].

During translation initiation, a suite of eukaryotic translation initiation factors
(eIFs) mediate the assembly of the 40S and 60S ribosomal subunits at the mRNA
start codon, culminating in the formation of the 80S ribosome ready for protein syn-
thesis [43]. Elongation ensues, with eukaryotic elongation factors (eEFs) assisting
the ribosome in moving along the mRNA and adding amino acids to the growing
polypeptide chain [44]. At last, upon encountering a stop codon, the ribosome trig-
gers the recruitment of eukaryotic release factors (eRFs), promoting the release of
the nascent peptide and marking the termination of translation [45] (Figure 1.2c).

1.2.3 Immune Response

The immune response is built upon a foundation of intricate cell–cell commu-
nication, with PPIs serving as the key messengers. These interactions, occurring
between and within immune and nonimmune cells, are indispensable for recog-
nizing pathogens, activating signal cascades, and mounting an effective defense
against invading threats.

1.2.3.1 Immune Cell Migration
Migration is crucial for immune cells to patrol for foreign antigens and traffic
to inflammation or infection sites. This process often involves transmigration
across epithelial barriers, relying on adhesion factors-governed PPIs. The initial
capture and rolling of immune cells along the endothelial surface are mediated
by interactions between selectins (e.g. P-selectin) on endothelial cells and their
ligands (e.g. P-selectin glycoprotein ligand-1 [PSGL-1]) on immune cells. Film
adhesion is subsequently established through interactions between integrins (e.g.
lymphocyte function-associated antigen-1 [LFA-1]) on immune cells and their
ligands (e.g. intercellular adhesion molecule-1 [ICAM-1]) on endothelial cells [46].
Finally, platelet endothelial cell adhesion molecule-1 (PECAM-1) molecules on
both endothelial and immune cells engage in homophilic interactions, promoting
transendothelial migration [47].

1.2.3.2 T-Cell Antigen Recognition and Activation
When a foreign antigen invades the body, the T-cell receptor (TCR) on the T-cell
surface specifically recognizes and binds to an antigen peptide presented by major
histocompatibility complex (MHC) molecules on the surface of antigen-presenting
cells (APCs). In parallel, co-receptors, such as cluster of differentiation 4 (CD4)
and CD8, on the T-cell surface also engage with the MHC molecules, reinforcing
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(a) (b)

Figure 1.3 Illustration of TCR signaling (a) and BCR signaling (b) during antigen
recognition. (Source: Mi Zhou and Renxiao Wang.)

the stability of the TCR-peptide-MHC complex. Co-receptor engagement brings the
lymphocyte-specific protein tyrosine kinase (Lck) into proximity with the TCR-CD3
complex. Lck then induces the phosphorylation of CD3 molecules, initiating down-
stream signaling cascades that ultimately lead to T-cell activation, proliferation,
and differentiation. Additionally, PPIs between co-stimulatory molecules, such as
CD28 on T cells and CD80/86 on APCs, enhance TCR-induced signals and prevent
T-cell anergy [48] (Figure 1.3a).

1.2.3.3 B-Cell Antigen Recognition and Activation
Upon engagement with its cognate antigen, the B-cell receptor (BCR) undergoes
clustering on the plasma membrane. This event triggers the phosphorylation of
CD79A and CD79B signaling subunits on BCR by Src family tyrosine kinases,
primarily Lck/Yes-related novel protein tyrosine kinase (Lyn). Phosphorylated
CD79A and CD79B then serve as docking sites for the recruitment and activation of
spleen tyrosine kinase (Syk). Once activated, Syk propagates signals to downstream
signaling cascades [49, 50] (Figure 1.3b). Similarly, PPIs involving co-receptors and
co-stimulatory molecules can augment BCR-induced signals [51]. Ultimately, these
signaling events can drive B-cell differentiation into plasma cells, specialized in
secreting antibodies that target specific antigens and neutralize or clear them from
the body.

1.2.4 Protein Degradation Pathway

To maintain protein homeostasis, cells employ sophisticated quality control mech-
anisms that promptly identify and eliminate aberrant or unwanted proteins. Two
major protein degradation systems, the ubiquitin-proteasome system (UPS) and the
autophagy-lysosomal pathway, are essential for this vital task.

UPS selectively targets substrate proteins, tagging them with poly-ubiquitin
chains for degradation by the proteasome. The ubiquitination process is carried out
by the sequential action of three key enzymes: E1 ubiquitin-activating enzymes,
E2-ubiquitin-conjugating enzymes, and E3 ubiquitin ligases. E1 initiates the process
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by activating ubiquitin, forming a thioester bond between ubiquitin’s C-terminus
and its own catalytic cysteine. After that, E1 recruits E2 and transfers ubiquitin to
E2’s catalytic cysteine. Finally, E3 recognizes and binds to the substrate along with
the E2-ubiquitin complex, facilitating the transfer of ubiquitin from E2 onto the
substrate [52]. The degradation process is executed by the 26S proteasome, a large
multi-subunit protease complex consisting of two main components: 20S core parti-
cle (CP) and 19S regulatory particles (RPs). Each component is made up of multiple
distinct subunits, with dedicated chaperones assisting in stabilizing intermediate
structures and ensuring the proper incorporation of individual subunits. Once
assembled, the 20S CP and 19S RPs unite to form the functional 26S proteasome,
poised for the degradation of poly-ubiquitylated substrates [53].

The autophagy-lysosomal pathway focuses on the sequestration of cargo (e.g.
damaged organelles and protein aggregates) within autophagosomes, which then
fuse with lysosomes for cargo degradation and recycling. This process is mainly
driven by a set of autophagy-related (ATG) proteins and their interactions. The
unc-51-like kinase 1 (ULK1) complex initiates phagophore nucleation, followed
by the recruitment of the class III phosphatidylinositol 3-kinase (PI3K) complex
that promotes autophagosome formation and elongation. Two ubiquitin-like
conjugation systems, namely the ATG12 and microtubule-associated protein 1 light
chain 3 (LC3)/GABA type A receptor-associated protein (GABARAP) systems,
further contribute to autophagosome maturation [54]. Cargo recognition and
delivery are mediated by cargo receptors like sequestosome 1 (p62/SQSTM1), which
interact with LC3 on the autophagosome membrane, thereby guiding the cargo for
degradation within autophagolysosomal compartment [55].

1.2.5 Disease Mechanisms

PPIs are fundamental for maintaining cellular homeostasis. However, their dysregu-
lation, whether caused by genetic anomalies or the introduction of foreign proteins,
plays a significant role in the development and progression of various diseases.

1.2.5.1 Cancer
Neoplastic progression entails the acquisition of a panel of functional capabilities
that enable tumor growth and metastasis, termed “hallmarks of cancer” [56]. These
hallmarks are inextricably linked to dysregulated PPIs. For instance, aberrant
activation of oncoproteins, such as rat sarcoma virus (RAS), induces sustained pro-
liferative signaling by engaging downstream effectors [57]. Negative regulation of
the tumor suppressor p53 by mouse double minute 2 homolog (MDM2) is one mech-
anism whereby cancer cells evade growth suppression [58]. Abnormal expression
of anti-apoptotic B-cell lymphoma-2 (BCL-2) family proteins, through sequestering
pro-apoptotic counterparts, often contributes to cell death resistance [59]. Hypoxic
tumor microenvironment stimulates the production of pro-angiogenic factors
like vascular endothelial growth factor (VEGF), which activate their receptors
on endothelial cells to induce angiogenesis [60]. Various cancer cells overexpress



�

� �

�

1.2 Functional Significance of Protein–Protein Interactions 11

programmed cell death ligand 1 (PD-L1) and exploit the PD-L1/programmed cell
death protein 1 (PD-1) pathway to escape immune destruction [61].

1.2.5.2 Neurodegenerative Diseases
Alzheimer’s disease (AD) is characterized by two hallmark pathologies, amyloid-β
(Aβ) plaques and neurofibrillary tangles. The former arises from the sequential
proteolytic cleavage of amyloid precursor protein (APP) by secretases, generating
Aβ peptides that accumulate and deposit into amyloid plaques [62]. The latter com-
prises insoluble aggregates of hyperphosphorylated tau protein, a consequence of
an imbalanced phosphorylation and dephosphorylation [63]. Parkinson’s disease
(PD) is marked by the pathological aggregation of α-synuclein (α-syn) into insoluble
fibrillar structures called Lewy bodies. While genetic and environmental factors
contribute to α-syn aggregation, its engagements with various other proteins,
including those implicated in neurodegenerative diseases (e.g. tau) and regulators
of actin cytoskeleton and neurotransmission, can accelerate this process [64].
Likewise, Huntington’s disease (HD) is driven by the self-aggregation of mutant
huntingtin (mHTT) protein. Abnormal PPIs between mHTT and other proteins
disrupt crucial cellular processes such as axonal transport, mitochondrial fission,
and gene transcription, resulting in neuronal and mitochondrial dysfunction [65].

1.2.5.3 Infectious Disease
The pathogenesis of infections caused by viruses, bacteria, fungi, or parasites hinges
critically on a complex interplay between pathogen proteins and host proteins. These
PPIs underpin every stage of infections, including:

(i) Invasion: Viruses gain entry into the host by utilizing their surface proteins to
recognize specific host cell receptors. A notable example is the binding of the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) pro-
tein to the human angiotensin-converting enzyme 2 (ACE2) receptor, which
mediates the viral attachment and entry into the respiratory epithelial cells [66].
Bacteria and fungi, on the other hand, rely on surface-exposed adhesins that
interact with corresponding host cell receptors or extracellular matrix proteins,
enabling their attachment and colonization [67, 68].

(ii) Immune Evasion: Pathogens employ various strategies to escape or suppress
host’s immune defenses. Some, like human cytomegalovirus (HCMV), encode
specific proteins that target and interfere with MHC molecules, disrupting
antigen presentation [69]. Others, such as Streptococcus pyogenes, secrete
immunoglobulin-degrading enzymes to cleave antibodies, rendering them
ineffective [70].

(iii) Replication: Pathogens often hijack host cellular machinery for their replica-
tion needs. For example, expression of the human immunodeficiency virus
(HIV) genome is regulated by its trans-activator of transcription (TAT) protein,
which assembles with host’s positive transcription elongation factor b (P-TEFb)
onto the viral promoter, thus enhancing the production of viral transcripts [71].
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1.3 Methods for Analyzing Protein–Protein Interactions

The field of PPI research has undergone a transformative evolution with the advent
of diverse and sophisticated methodologies, ranging from traditional biochemical
techniques to high-throughput technologies and advanced computational algo-
rithms. Together, these complementary strategies form a powerful toolkit for
researches to uncover insights into PPIs, from atomic-level details to intricate
systemic networks.

1.3.1 Experimental Methods

A diverse array of experimental methods, grounded in either biophysical, biochem-
ical, or genetic principles, have been established to identify and characterize PPIs
across various biological contexts and scales. These methods offer multifaceted capa-
bilities, including:

1.3.1.1 Structure Determination
Elucidating the 3D structure of PPIs may provide valuable insights into the geom-
etry and physicochemical characteristics of the binding interfaces and even shed
light on potential therapeutic interventions [72]. The primary techniques currently
employed for high-resolution protein structure determination are X-ray crystallog-
raphy, nuclear magnetic resonance (NMR) spectroscopy, and cryogenic electron
microscopy (cryo-EM). X-ray crystallography offers detailed information on atom
positions and chemical bonds by analyzing X-ray diffraction patterns generated
from protein crystals [73]. As the workhorse of structural biology, it accounts for
over 80% of experimental structures deposited in the Protein Data Bank (PDB),
with the median resolution plateauing at ∼2 Å as of 1990 [74]. Inherent limitations
of crystallography are the requirement to obtain well-diffracting crystals and the
occurrence of crystal packing artifacts. NMR spectroscopy, eliminating the crystal-
lization process, enables structural studies of proteins in solution with the aid of
structural restraints acquired from different NMR experiments. Given its strength
in uncovering protein dynamics and flexibility over a range of timescales, this
technique is well-suited for investigating intrinsically disordered proteins, proteins
in transient states, and weak interactions [75, 76]. Whereas drawbacks, such as the
necessity of isotope labeling and size limit (typically <50 kDa), should be taken into
account. Driven by technological breakthroughs over the past decade, cryo-EM has
experienced a “resolution revolution” and is gaining widespread popularity [77]. It
relies on direct visualization of proteins embedded in a thin layer of vitreous ice,
thus unraveling protein structures in close-to-physiological state with a routine
resolution of 2.5–4.5 Å [78]. Compared with other techniques, it is more tolerant to
sample quantity and purity. Although high-resolution reconstruction of small-size
proteins (<100 kDa) remains challenging for cryo-EM, novel strategies have been
applied to break through the barrier [79]. In conclusion, each technique has its own
pros and cons, rendering them complementary tools to decipher the intricate 3D
structures of proteins and protein complexes [80, 81].
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1.3.1.2 Affinity, Kinetics, and Thermodynamics Measurement
Quantitative in vitro analysis of PPIs in terms of affinity, kinetics, and thermodynam-
ics is essential for exploring the underlying mechanisms of molecular recognition.
Binding affinity, defined as the strength of the interaction between biomolecules that
bind reversibly, is typically quantified through the equilibrium dissociation constant
(Kd) [82]. A variety of experimental methods have been established to obtain the Kd
values, including fluorescence polarization (FP), surface plasmon resonance (SPR),
biolayer interferometry (BLI), isothermal titration calorimetry (ITC), differential
scanning calorimetry (DSC), microscale thermophoresis (MST), fluorescence and
bioluminescence resonance energy transfer (FRET and BRET), AlphaScreen,
protein-fragment complementation assay (PCA), enzyme-linked immunosorbent
assays (ELISA), and so forth [83, 84]. Of the methods mentioned earlier, SPR and
BLI can also yield kinetic parameters, specifically the association rate constant (kon)
and dissociation rate constant (koff) [85]. Both technology platforms enable real-time
and label-free monitoring of binding events and have a wide range of applications,
such as investigating the assembly and activation of signaling complexes [86], anti-
body evaluation and selection [87], and protein engineering [88]. On the other hand,
calorimetric methods like ITC and DSC can furnish extra thermodynamic insight.
In the case of ITC, a comprehensive thermodynamic profile, including Gibbs free
energy change (ΔG), enthalpy change (ΔH), entropy change (ΔS), and heat capacity
change (ΔCp), can be acquired from a single experiment [89]. Combining these
data with structural information can further interpret the driving forces for the
binding [90]. As a final note, prior to choosing the appropriate methods, factors
such as the need for immobilization or labeling, affinity range, sample and time
consumption, throughput performance, and the potential risks of false positives and
false negatives should be carefully considered. Besides, integrating and validating
results from multiple methods is crucial to ensure data accuracy and reliability.

1.3.1.3 Large-Scale PPI Network Mapping
Systematic mapping of PPI network within a cell or an organism, termed the “inter-
actome,” is an ongoing endeavor aimed at deciphering previously uncharacterized
proteins, global proteome organization and function, and genotype–phenotype rela-
tionships. For nearly three decades, proteome-wide interactomes of yeast, human,
and other model organisms have been delineated and progressively expanded using
diverse high-throughput experimental techniques [91, 92]. One powerful method
to identify binary PPIs is yeast two-hybrid (Y2H) screening. In the original Y2H,
PPIs are detected inside the yeast nucleus based on the functional reconstitution
of a transcription factor. Thereafter alternative versions have broadened its appli-
cability to membrane proteins, proteins with posttranslational modifications, and
PPIs in mammalian cells [93]. In 2020, an ORFeome resource covering 17,408
protein-coding genes was established, and over 150 million protein pairs were
screened using Y2H, generating the largest human binary protein interactome
consisting of ∼53,000 high-quality PPIs [94]. In contrast, co-complex mapping
is typically carried out via affinity purification coupled to mass spectrometry
(AP-MS). In AP-MS, a bait protein and its binding partners are isolated from
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cell lysate using bait-specific antibody and then subjected to mass spectrometric
analysis for identification of the purified components. AP-MS excels at detecting
PPIs under near physiological conditions but falls short in capturing weak or
transient interactions [95]. It was recently employed in the BioPlex project for the
identification of dual human interactomes that encompass 118,162 and 70,966
PPIs in 293T and HCT116 cells, respectively [92]. Despite significant experimental
efforts, current human interactomes remain incomplete and present high levels
of noise [96]. Methodological advances, integration of various data sources, and
incorporation of context-specific (e.g. cell-, tissue-, and disease-specific) information
may enhance both interactome coverage and quality, providing researchers with a
more comprehensive and dynamic perspective.

1.3.2 Computational Methods

Despite remarkable efforts made by experimental techniques, they often struggle to
capture transient and weak interactions or those involving intrinsically disordered
proteins. Besides, they are time-consuming and labor-intensive in general. Compu-
tational methods offer a complementary and efficient alternative, harnessing vast
datasets and predictive models to infer and analyze PPIs.

1.3.2.1 Sequence-Based Methods
The abundance of protein sequence data in public databases has propelled the
development of strategies for PPI prediction solely based on sequence informa-
tion. Herein are some widely adopted approaches: (i) Ortholog-based methods
are premised on the evolutionary conservation of PPIs across species, utilizing
known PPIs in one species to identify orthologous interactions (“interologs”) in
another species [97]. (ii) Domain-based methods are built on the concept that PPIs
are primarily mediated by domains. By integrating experimentally determined
PPI datasets with domain information sourced from databases (e.g. Pfam [98]),
DDIs can be inferred and serve as the basis for predicting novel PPIs [99]. (iii)
Co-evolution analysis assumes that amino acid substitutions in one protein are
often accompanied by compensatory substitutions in its interacting partner to
maintain functional integrity. Multiple sequence alignments are employed to
quantify the co-evolutionary relationships between residue pairs within proteins
of interact, with highly co-evolving pairs presumed to be in physical or functional
contact, suggesting a potential PPI [100]. (iv) Machine learning-based methods
have gained considerable prominence, progressing from traditional algorithms
like support vector machines (SVMs) and random forests (RFs) to advanced deep
learning models such as deep neural networks (DNNs) and recurrent neural
networks (RNNs). These models extract sequence-based features (e.g. amino acid
composition, physicochemical properties, and evolutionary information) from
large data sets, capture the underlying patterns, and make accurate predictions for
novel protein pairs [101, 102]. To date, protein sequence data remain the primary
source for computational PPI prediction. Ongoing improvements are driven by the
growing availability of high-quality PPI data sets, the introduction of innovative
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sequence encoding schemes, as well as the integration with diverse biological data
such as structure information [103].

1.3.2.2 Structure-Based Methods
Structural characterization of PPIs remains a challenge due to their inherent com-
plexity and technological limitations. In fact, fewer than 5% of human PPIs have
been structurally resolved through experimental techniques or homology modeling
[104]. Molecular docking has emerged as a rapid and cost-effective alternative
to bridge this gap by predicting 3D structures of protein complexes. During the
docking process, unbound protein structures or structural models are used as input,
generating numerous putative binding modes through sampling. The most plau-
sible ones are then selected by means of scoring and ranking [105]. A wide variety
of sophisticated docking programs have been developed, each employing different
sampling algorithms and scoring functions, including ZDOCK [106], HADDOCK
[107], ClusPro [108], and RossettaDock [109]. Continuous efforts have been made
to improve prediction accuracy and reliability, such as accounting for backbone
and side-chain flexibility, incorporating experimental data like interface details and
distance restraints, and integrating deep learning techniques [110, 111]. Molecular
dynamics (MD) simulation is another powerful computational technique widely
employed to investigate the structural properties of proteins and their complexes. It
applies Newtonian mechanics to study the motion of atoms and molecules within a
system at nanosecond to microsecond timescales. Analysis of the output trajectories
may provide atomic-level insights into the dynamic behavior of protein molecules
[112]. In the realm of PPI studies, MD simulation is utilized to assess complex stabil-
ity, analyze residue flexibility, estimate interaction strengths, and explore the impact
of various conditions (e.g. environmental factors, solvents, and mutations) on PPIs
[113]. Popular tools for MD simulation include AMBER [114], GROMACS [115],
CHARMM [116], and NAMD [117]. Future developments are focused on extending
the simulation timescales, improving the accuracy of force fields, and integrating
artificial intelligence techniques for enhanced prediction and analysis capabilities.

1.3.2.3 Network-Based Methods
The identification of unmapped interactions within a PPI network can be regarded
as the task of predicting missing links between nodes in a graph representation,
where nodes denote proteins and links represent interactions between them.
Such network-based prediction approaches can be broadly categorized as follows
[118]: (i) Similarity-based methods leverage local properties of nodes to establish
a similarity score function for link prediction. A classic example is the common
neighbor method, which assumes that two proteins sharing a greater number of
common neighbors exhibit higher similarity and are thus more likely to interact
[119]. (ii) Probabilistic methods aim to identify model parameters that best explain
the inherent structure of a network, such as community structure. Taking the
stochastic block model as an example, each protein is assigned to multiple com-
munities, reflecting its participation in various biological processes. This model
operates on the principle that proteins within the same community are more
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prone to interact with each other compared to proteins from different communities
[120]. (iii) Factorization-based methods constitute a class of graph embedding
techniques that factorize the network’s adjacency matrix to build low-dimensional
representations for each node. Geometric Laplacian Eigenmap Embedding (GLEE)
is one such method that exploits the simplex geometry of the Laplacian matrix to
capture the most basic structural property of the graph, demonstrating strong com-
petence in predicting unobserved interactions in PPI networks [121]. (iv) Machine
learning-based methods make predictions by learning patterns from training data.
As a case in point, a conditional generative adversarial network (cGAN) can be
conditioned on the raw topological features of the network, enabling the generator
to produce new probable links [122].

1.4 Implications of the Basic Research
on Protein–Protein Interactions

Given their essential role in biological functions, deciphering the intricate PPI net-
work not only holds paramount significance in the realm of molecular biology but
also has far-reaching implications in medical advances, drug discovery, and biotech-
nology innovations.

1.4.1 Advancing Disease Understanding and Diagnosis

PPIs play pivotal roles in cellular functions, from normal physiological processes to
the development and progression of various diseases. In cancer, genomic alterations
give rise to oncogenic PPIs, driving uncontrolled cell proliferation and metastasis
[123]. Neurodegenerative diseases often involve mutations, posttranslational modi-
fications, or misfolding of aggregation-prone proteins, resulting in aberrant PPIs that
exacerbate cytotoxicity [124]. Infectious diseases heavily rely on host–pathogen PPIs
to facilitate pathogen entry, replication, and dissemination within the host organism
[125]. Consequently, identifying and characterizing these interactions is essential
for unraveling the molecular basis of diseases. The COVID-19 pandemic serves as a
compelling case in point. Investigation of the interaction between the SARS-CoV-2
spike protein and the human ACE2 receptor advanced our knowledge of the virus’s
entry mechanism into host cells [126]. Further affinity measurement of different
SARS-CoV-2 variants toward ACE2 helped to assess the virus’s infectivity, trans-
missibility, and potential threat to public health, offering invaluable information for
epidemiological studies [127].

Current molecular diagnostics mainly focus on identifying genetic alterations and
individual protein biomarkers. However, emerging evidence suggests that altered
PPI patterns are strongly linked to disease progression and clinical outcomes,
holding significant potential as novel diagnostic and prognostic biomarkers [128].
One notable example lies in the application of proximity ligation assay (PLA) to
detect protein complexes formed between epidermal growth factor receptor (EGFR)
and growth factor receptor-bound protein 2 (GRB2) in non-small cell lung cancer
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(NSCLC) patient specimens. This approach allows for in situ assessment of EGFR
signaling activity and has proven to be a superior predictor of clinical response to
targeted therapies compared to conventional strategies based on EGFR mutations
or protein abundance [129]. As our understanding of disease-related PPIs deepens
and advanced methods for PPI profiling in clinical specimens emerge, PPI-based
diagnostics, alongside genomic and proteomic analyses, will become increasingly
powerful tools for precision and personalized medicine.

1.4.2 Driving Target-Based Drug Discovery

Given their central role in numerous disease pathways, PPIs have emerged as attrac-
tive targets for therapeutic intervention. However, modulating these interactions
presents challenges due to the complex and dynamic nature of PPI interfaces, which
are often characterized by extensive, shallow surfaces with limited deep cavities.
PPIs lack endogenous small-molecule ligands that act as a starting point for drug dis-
covery [130]. Despite these obstacles, substantial efforts have been made to overcome
these barriers. Structural biology techniques can pinpoint hot spots at PPI interfaces,
serving as a basis for the structure-based design of PPI modulators. Computational
methods, such as virtual screening and molecular docking, can predict the bind-
ing affinity and mode of molecules at binding sites, accelerating lead discovery. By
integrating these approaches, researchers can efficiently identify and optimize PPI
modulators, opening a new avenue for drug discovery.

Over the past decade, the field of PPI modulators has witnessed remarkable
progress, with quite a few candidates being approved for medical use or entering
clinical trials for the treatment of various diseases, particularly solid tumors [131].
Small molecules constitute the most abundant class of PPI modulators, offering
advantages such as oral bioavailability and membrane permeability. Classic PPI
targets include interactions between antiapoptotic BCL-2 family proteins and their
proapoptotic counterparts, X-linked inhibitor of apoptosis (XIAP) and caspase-9,
and MDM2-p53 [132]. A significant milestone was achieved in 2016 with the
approval of venetoclax, a BCL-2 inhibitor, for the treatment of chronic lymphocytic
leukemia (CLL), making a breakthrough in the development of PPI-modulating
therapies [133]. The second category comprises antibodies, which are well-suited for
covering large PPI interfaces but typically restricted to extracellular targets. Their
primary focus lies in manipulating PPIs involving immune checkpoint molecules,
such as PD-1/PD-L1 or CD40/CD40 ligand (CD40L) interaction, thereby exerting
profound influences on immune responses [134, 135]. Peptides represent the third
category of PPI modulators, exhibiting high selectivity but hampered by a short
half-life. To address this, chemical modifications like cyclization are frequently
employed to improve their pharmacokinetic properties [136].

1.4.3 Fostering Innovations in Biotechnology

Biotechnology often harnesses the power of protein interactions to develop inno-
vative solutions and products. This is vividly illustrated in synthetic biology, where
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naturally sourced or computationally designed PPIs serve as building blocks for
constructing sophisticated genetic and protein circuits, endowing living cells with
novel functionalities [137]. Generally, PPIs can be engineered to function as toggle
switches and logic gates within synthetic genetic circuits, offering precise control
over gene expression [138, 139]. Furthermore, by incorporating PPIs that govern
posttranscriptional modifications like phosphorylation, synthetic protein circuits
can rapidly respond to environmental changes, enabling dynamic modulation of
protein interactions, localization, and degradation [140]. These programmable cir-
cuits hold immense potential for numerous applications. For instance, researchers
created a chemically disruptable heterodimer based on the interaction between
BCL-XL (B-cell lymphoma-extra large) and BH3 (BCL-2 homology 3)-mimic pep-
tide. Incorporating this PPI into the design of chimeric antigen receptor (CAR) led
to a controllable CAR-T cell therapy, whose activity could be modulated by timed
administration of a small-molecule BCL-XL inhibitor [141].

Protein assemblies found in nature, such as actin fibers, microtubules, and viral
capsids, showcase the remarkable role of PPIs in organizing complex architectures.
Inspired by this, scientists have employed rational design to fabricate protein
assemblies with diverse superstructures like nanowires, nanotubes, 2D and 3D
lattices, and cage structures [142]. This nanotechnology paves the way for the
development of advanced biomaterials with tailored properties and functionalities.
As an example, coiled-coils are ubiquitous protein oligomerization motifs that have
the inherent ability to wrap each other into supercoiled helices. These structures can
be engineered to undergo higher-order assembly into fibrous network-based hydro-
gels [143]. Compared to inorganic and polymeric hydrogels, such protein-based
hydrogels exhibit higher biocompatibility and better flexibility, rendering them
ideal candidates for tissue engineering scaffolds and drug delivery carriers. Another
example comes from virus-like particles (VLPs), which are self-assembled nanos-
tructures made up of viral structural proteins, mimicking the architecture and
symmetry of native viruses but lacking viral genetic material. Demonstrating high
immunogenicity alongside an excellent safety profile, VLPs are gaining popularity
in vaccine development [144].

Immunosensors are analytical devices that leverage the specificity of antigen–
antibody interactions to detect and quantify target molecules in complex samples,
with the resulting immunoreaction converted into an electrochemical, optical,
or other detectable signal [145]. Enabled by artificially produced polyclonal or
monoclonal antibody, these biosensors offer detection of a wide array of analytes,
encompassing tumor biomarkers (cancer antigen 15-3, carcinoembryonic anti-
gen, and α-fetoprotein) [146], pathogens responsible for infectious diseases (e.g.
SARS-CoV-2, Streptococcus pneumoniae, and Legionella pneumophila) [147], food-
borne pathogenic microorganisms (e.g. Salmonella, Escherichia coli, and Listeria
monocytogenes) [148], food allergens (e.g. ovalbumin in eggs, β-lactoglobulin in
milk, and Ara h 1 in peanuts) [149], and pathogens in crops and water resources
[145]. The simplicity, rapidity, and sensitivity of immunosensors have led to
their widespread adoption across human health, food and agricultural safety,
environmental monitoring, and other fields.
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1.5 Conclusions and Perspectives

In the post-genomic era, where the focus has shifted from studying individual genes
to exploring the complex interplay of biomolecules, the investigation of PPIs stands
as a critical frontier. At the heart of virtually every biological function, from cellular
signaling and gene expression to immune response and metabolic pathways, lies an
intricate network of PPIs. By elucidating these interactions, researchers can gain
valuable insights into how cells respond to environmental stimuli, communicate
with one another, and maintain homeostasis. The significance of PPI research
is further underscored by the increasing number of studies that have identified
disease-associated PPIs. This knowledge has opened new avenues for therapeutic
intervention, leading to the development of novel drugs that target specific PPIs
involved in disease progression.

Technological advancements have dramatically accelerated the exploration
of PPIs, with the number of human binary PPIs identified through large-scale
screens increasing from approximately 2700 in 2005 to 14,000 in 2014 and reaching
53,000 in 2020 [94]. Even so, the available PPI data represent only a fraction of the
estimated human interactome, which is believed to contain 650,000 PPIs [150].
While experimental techniques have made significant strides, challenges remain
in terms of throughput, sensitivity, and the ability to capture transient or weak
interactions. Leveraging advanced computational techniques, such as molecular
docking, machine learning algorithms, and network analysis, can complement
experimental findings and expand relevant data resources. Moreover, the emergence
of cutting-edge technologies, like single-cell analysis, holds promise for elucidating
cell-to-cell variability and the spatiotemporal heterogeneity of PPIs [151]. As
the field of PPI research continues to evolve, our understanding of PPIs will be
profoundly enhanced, leading to groundbreaking discoveries and advancements
that benefit humanity.
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