## **Contents**

## Preface xiii

| 1       | Introduction to Solid Base Catalyst 1                     |
|---------|-----------------------------------------------------------|
|         | Indu Sindhu, Ravi Tomar, and Anshul Singh                 |
| 1.1     | Introduction 1                                            |
| 1.2     | History and Main Facts on Solid Base Catalysts 2          |
| 1.3     | Literary Perspective of Solid Base Catalyst 3             |
| 1.4     | Solid Basic Sites 4                                       |
| 1.5     | Types of Solid Base Catalysts 5                           |
| 1.5.1   | Metal Oxides 5                                            |
| 1.5.1.1 | Alkaline Earth Oxides 5                                   |
| 1.5.1.2 | Zirconium Oxides 6                                        |
| 1.5.1.3 | Rare Earth Oxides 7                                       |
| 1.5.1.4 | Titanium Oxides 9                                         |
| 1.5.1.5 | Zinc Oxide 9                                              |
| 1.5.1.6 | Alumina 10                                                |
| 1.5.1.7 | Mixed Oxides 10                                           |
| 1.5.1.8 | Alkali Metal-Loaded Metal Oxides 10                       |
| 1.5.2   | Zeolites 11                                               |
| 1.5.3   | Mesoporous Materials 13                                   |
| 1.5.4   | Clay Minerals (Hydrotalcite) 13                           |
| 1.5.5   | Oxynitride 14                                             |
| 1.5.6   | Calcined Metal Phosphates 14                              |
| 1.6     | Why Solid Base Catalysts Have Fascinated the Scientific   |
|         | Community? 16                                             |
| 1.7     | Advantages and Disadvantages of Solid Base Catalysts Over |
|         | Inorganic/Organic Bases 17                                |
| 1.8     | Role of Solid Base Catalysts in Green Chemistry 18        |
| 1.9     | Future Prospects for Solid Base Catalysts 20              |
| 1.10    | Conclusion 20                                             |
|         | References 21                                             |

| 2       | Synthesis of Solid Base Catalysts 27                                                                       |
|---------|------------------------------------------------------------------------------------------------------------|
|         | Chetna Kumari, Nishu Dhanda, Nirmala Kumari Jangid, and Sudesh Kumar                                       |
| 2.1     | Introduction 27                                                                                            |
| 2.2     | $K_2O/Al_2O_3$ -CaO 27                                                                                     |
| 2.2.1   | Preparation of K <sub>2</sub> O/Al <sub>2</sub> O <sub>3</sub> -CaO 28                                     |
| 2.2.1.1 | Preparation of Al <sub>2</sub> O <sub>3</sub> –CaO Mixed Oxides Basic Support 28                           |
| 2.2.1.2 | Potassium Nitrate Loading with Calcined Mixed Oxides Basic                                                 |
|         | Support 28                                                                                                 |
| 2.2.2   | Catalytic Activity of K <sub>2</sub> O/Al <sub>2</sub> O <sub>3</sub> -CaO in the Knoevenagel Condensation |
|         | Process for the Preparation of Benzylidene Barbituric and                                                  |
|         | Benzylidenemalononitrile Derivatives 28                                                                    |
| 2.2.3   | Catalytic Activity of K <sub>2</sub> O/Al <sub>2</sub> O <sub>3</sub> –CaO for the Preparation of          |
|         | Pyrano[2,3-d]pyrimidinone Derivatives 29                                                                   |
| 2.3     | Solid Base Fly Ash 30                                                                                      |
| 2.3.1   | Synthesis 30                                                                                               |
| 2.3.2   | Catalytic Activity of SBFA 30                                                                              |
| 2.3.3   | Condensation Between Benzaldehyde and Cyclohexanone 31                                                     |
| 2.3.4   | Catalyst Regeneration 31                                                                                   |
| 2.4     | Calcined Water Sludge 31                                                                                   |
| 2.4.1   | Catalyst Preparation 32                                                                                    |
| 2.5     | Oxides of Rare Earth 32                                                                                    |
| 2.5.1   | Preparation 32                                                                                             |
| 2.6     | Titanium Dioxide 33                                                                                        |
| 2.6.1   | Preparation 33                                                                                             |
| 2.7     | Zinc Oxide 34                                                                                              |
| 2.7.1   | Preparation 34                                                                                             |
| 2.8     | Alkaline Earth Oxides 34                                                                                   |
| 2.8.1   | Preparation 35                                                                                             |
| 2.8.1.1 | Conventional Method for MgO Catalyst 35                                                                    |
| 2.8.1.2 | Effects of Starting Magnesium Salt 35                                                                      |
| 2.8.1.3 | Preparation of MgO by Sol–Gel Method 36                                                                    |
| 2.8.1.4 | Preparation of Mesoporous MgO 36                                                                           |
| 2.8.1.5 | Catalytic Activity for Claisen–Schmidt Reaction 37                                                         |
| 2.9     | Hydrotalcite 38                                                                                            |
| 2.9.1   | Synthesis of Hydrotalcite 38                                                                               |
| 2.9.1.1 | Coprecipitation Method 38                                                                                  |
| 2.9.1.2 | Sol–Gel Method 39                                                                                          |
| 2.9.1.3 | Michael Addition 39                                                                                        |
| 2.10    | Comparison of Different Solid Base Catalysts 39                                                            |
| 2.11    | Conclusion 42                                                                                              |
|         | Conflicts of Interest 42                                                                                   |
|         | Acknowledgment 42                                                                                          |
|         | References 42                                                                                              |

| 3       | Advanced Characterization Techniques for Solid Base                       |
|---------|---------------------------------------------------------------------------|
|         | Catalysts: An Overview 51                                                 |
|         | Neelam Sharma, Suman Swami, Sakshi Pathak, Aruna, and                     |
|         | Rahul Shrivastava                                                         |
| 3.1     | Introduction 51                                                           |
| 3.2     | Traditional Characterization Techniques for Solid Base Catalyst 55        |
| 3.2.1   | Titration Method 55                                                       |
| 3.2.2   | IR Analysis 56                                                            |
| 3.2.3   | Scanning Electron Microscopes 58                                          |
| 3.3     | Advanced Characterization Techniques for Solid Base Catalyst 59           |
| 3.3.1   | Fourier Transform Infrared Spectroscopy (FT-IR) 59                        |
| 3.3.2   | Field Emission Scanning Electron Microscopes (FE-SEM) 62                  |
| 3.3.3   | Transmission Electron Microscope (TEM) 66                                 |
| 3.3.4   | X-ray Diffraction (XRD) Analysis 68                                       |
| 3.3.5   | Thermogravimetric Analysis (TGA) 73                                       |
| 3.3.6   | Brunauer–Emmett–Teller BET Surface Area Pore Diameter Analysis            |
|         | [Gas Interaction and Surface Area Measurement:                            |
|         | (Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH)               |
|         | N <sub>2</sub> Adsorption–Desorption Isotherms)] 78                       |
| 3.3.7   | X-Ray Photoelectron Spectroscopy (XPS) 83                                 |
| 3.3.8   | X-Ray Fluorescence (XRF) 85                                               |
| 3.4     | Protocol for Characterization of Catalyst 87                              |
| 3.4.1   | Sample Preparation 87                                                     |
| 3.4.1.1 | XRD 87                                                                    |
| 3.4.1.2 | FT-IR 88                                                                  |
| 3.4.1.3 | FE-SEM 88                                                                 |
| 3.4.1.4 | TEM 88                                                                    |
| 3.4.1.5 | BET 89                                                                    |
| 3.4.1.6 | TGA 89                                                                    |
| 3.5     | Characterization of Some Basic Sites of Solid Base Catalyst with Suitable |
|         | Example 89                                                                |
| 3.6     | Conclusion 91                                                             |
|         | Acknowledgment 92                                                         |
|         | References 92                                                             |
| 4       | Advanced Solid Catalysis for Biomass Conversion into High                 |
|         | Value-Added Chemicals 97                                                  |
|         | Urja, Amanpreet Kaur Jassal                                               |
| 4.1     | Introduction 97                                                           |
| 4.2     | Advanced Solid Catalysis 99                                               |
| 4.2.1   | Types of Solid Catalysts 100                                              |
| 4.2.2   | Methods for the Synthesis of Solid Catalysts 103                          |
| 4.3     | Biomass, Its Composition, and Properties 105                              |

| viii | Contents     |                                                                               |
|------|--------------|-------------------------------------------------------------------------------|
|      | 4.4          | Biomass Conversion into High Value-Added Chemicals 107                        |
|      | 4.5          | Utilization of Solid Catalysts for Biomass Conversion into High               |
|      | 4.6          | Value-Added Chemicals 111                                                     |
|      | 4.6          | Electrocatalytic Conversion of Biomass into High Value-Added<br>Chemicals 113 |
|      | 4.7          | Challenges in Design of Solid Catalysts for Biomass Conversion into           |
|      | 4.7          | High Value-Added Chemicals 116                                                |
|      | 4.8          | Advantages of High Value-Added Chemicals 118                                  |
|      | 4.9          | Summary and Future Prospectus 119                                             |
|      |              | Acknowledgments 119                                                           |
|      |              | References 119                                                                |
|      | 5            | Applications of Solid Basic Catalysts for Organic                             |
|      |              | Synthesis 129                                                                 |
|      |              | Aditi Tiwari, Anirudh Singh Bhathiwal, and Anjaneyulu Bendi                   |
|      | 5.1          | Introduction 129                                                              |
|      | 5.2<br>5.2.1 | Solid-Based Catalyst for Organic Synthesis 131 Metal Oxides 131               |
|      | 5.2.1        | Zeolites 134                                                                  |
|      | 5.2.3        | Clays 136                                                                     |
|      | 5.2.4        | Solid-Supported Basic Catalysts 137                                           |
|      | 5.3          | Conclusion 144                                                                |
|      |              | List of Abbreviations 144                                                     |
|      |              | Consent for Publication 144                                                   |
|      |              | Conflict of Interest 145                                                      |
|      |              | Acknowledgment 145                                                            |
|      |              | References 145                                                                |
|      | 6            | Multicomponent Reactions for Eco-compatible Heterocyclic                      |
|      |              | Synthesis Over Solid Base Catalysts 153                                       |
|      |              | Amanpreet Singh and Jasdeep Kaur                                              |
|      | 6.1          | Introduction 153                                                              |
|      | 6.2<br>6.2.1 | Multicomponent Reactions (MCRs) 154 The Biginelli Multicomponent Reaction 155 |
|      | 6.2.2        | The Hantzsch Multicomponent Reaction 156                                      |
|      | 6.2.3        | The Mannich Multicomponent Reaction 156                                       |
|      | 6.2.4        | The Passerini Multicomponent Reaction 156                                     |
|      | 6.2.5        | The Ugi Multicomponent Reaction 156                                           |
|      | 6.2.6        | The Gewald Multicomponent Reaction 156                                        |
|      | 6.3          | Solid Base Catalysts for Organic Reactions 156                                |
|      | 6.4          | Characterization Techniques for Solid Base Catalysts 158                      |
|      | 6.5          | Heterocycle Synthesis Using Solid Base-Catalyzed MCRs 159                     |
|      | 6.6          | Conclusion and Future Trends 165                                              |
|      |              | Acknowledgment 165                                                            |
|      |              | References 165                                                                |

| 7       | Industrial Applications of Solid Base Catalysis 169        |
|---------|------------------------------------------------------------|
|         | Navdeep Kaur and Nibedita Banik                            |
| 7.1     | Introduction to Solid Base Catalysis 169                   |
| 7.1.1   | Definition and Characteristics of Solid Base Catalysts 169 |
| 7.1.2   | Importance in Industrial Catalysis 171                     |
| 7.1.3   | Comparison with Solid Acid Catalysts 171                   |
| 7.2     | Biodiesel Production 171                                   |
| 7.2.1   | Transesterification Reactions 174                          |
| 7.2.2   | Catalysts and Mechanisms 175                               |
| 7.2.3   | Industrial-scale Biodiesel Production 176                  |
| 7.3     | Hydrogenation and Dehydrogenation Reactions 178            |
| 7.3.1   | Role of Solid Base Catalysts 178                           |
| 7.3.2   | Case Studies: Hydrogenation of Oils and Dehydrogenation of |
|         | Hydrocarbons 179                                           |
| 7.3.3   | Catalytic Mechanisms 181                                   |
| 7.4     | Bimolecular Reactions 182                                  |
| 7.4.1   | Dialkyl Carbonate Synthesis 183                            |
| 7.4.2   | Catalyst Selection and Reaction Pathways 183               |
| 7.4.3   | Applications and Industrial Scale-Up 184                   |
| 7.5     | Methanol and DME Synthesis 185                             |
| 7.5.1   | Importance of Methanol and DME 185                         |
| 7.5.2   | Catalysts and Reaction Conditions 187                      |
| 7.5.3   | Technological Advancements 187                             |
| 7.6     | Transesterification of Esters 188                          |
| 7.6.1   | Role in Chemical and Petrochemical Industries 188          |
| 7.6.1.1 | Producing Biodiesel 189                                    |
| 7.6.1.2 | Specialized Chemical Production 189                        |
| 7.6.1.3 | Procedures for Polymerization 189                          |
| 7.6.1.4 | Engineering Reactions and Catalysis 189                    |
| 7.6.1.5 | Resource Efficiency and Waste Reduction 190                |
| 7.6.2   | Catalysts for Transesterification 190                      |
| 7.7     | Alkylation and Isomerization Reactions 190                 |
| 7.7.1   | Solid Base Catalysis in Petrochemical Processes 190        |
| 7.7.2   | Environmental and Economic Implications 193                |
| 7.7.2.1 | Economic Implications 194                                  |
| 7.8     | Environmental Applications 195                             |
| 7.8.1   | Sulfur Removal from Flue Gas 195                           |
| 7.8.2   | NO <sub>x</sub> Reduction in Catalytic Converters 196      |
| 7.8.3   | Waste Remediation and Pollution Control 196                |
| 7.9     | Dehydration Reactions 197                                  |
| 7.9.1   | Dehydration of Alcohols to Olefins 197                     |
| 7.9.2   | Dehydration of Alkanes 199                                 |
| 7.9.3   | Industrial Significance and Process Optimization 200       |
| 7.10    | Sulfur Removal in Fuel Refining 200                        |

| 7.10.1  | Hydrodesulfurization (HDS) Catalysts 201                            |
|---------|---------------------------------------------------------------------|
| 7.10.2  | Sulfur Removal Mechanisms 202                                       |
| 7.10.3  | Impact on Clean Fuel Production 202                                 |
| 7.11    | Processing Methods 202                                              |
| 7.11.1  | Impregnation Method 203                                             |
| 7.11.2  | Precipitation and Coprecipitation Method 203                        |
| 7.11.3  | Sol-Gel Method 204                                                  |
| 7.11.4  | Hydrothermal Process 206                                            |
| 7.11.5  | Vapor Phase Deposition Method 207                                   |
| 7.12    | Use of Solid Base Catalyst in Various Industries 208                |
| 7.12.1  | Biodiesel Production (Refer to Section 2) 209                       |
| 7.12.2  | Petrochemical Industries (Refer to Section 6.1) 209                 |
| 7.12.3  | Environmental Applications (Refer to Section 8) 210                 |
| 7.12.4  | Catalytic Cracking in Refining 210                                  |
| 7.12.5  | Biomass Conversion 210                                              |
| 7.12.6  | Water Treatment 210                                                 |
| 7.12.7  | Catalytic Decomposition of Ammonia 212                              |
| 7.12.8  | Aldol Condensation and Knoevenagel Reactions 212                    |
| 7.12.9  | Hydrogenation Reactions (Refer to Section 3) 212                    |
| 7.13    | Socioeconomic Impact of Using Solid Base Catalyst 213               |
| 7.14    | Challenges and Future Prospects 214                                 |
| 7.14.1  | Current Challenges in Solid Base Catalysis 214                      |
| 7.14.2  | Emerging Technologies and Materials 215                             |
| 7.14.3  | Prospects for Sustainable Industrial Catalysis 216                  |
| 7.15    | Conclusion 216                                                      |
| 7.15.1  | Summary of Key Points 216                                           |
| 7.15.2  | Outlook for Continued Research and Development 217                  |
|         | References 218                                                      |
| 8       | Silica-Supported Heterogenous Catalysts: Application in the         |
|         | Synthesis of Tetrazoles 233                                         |
|         | Suman Swami, Neelam Sharma, and Rahul Shrivastava                   |
| 8.1     | Introduction 233                                                    |
| 8.1.1   | General Synthetic Protocol for Tetrazoles 234                       |
| 8.2     | Silica-Supported Heterogenous Catalysts for Tetrazole Synthesis 236 |
| 8.2.1   | Generalized Reaction Mechanism of Silica-Supported                  |
|         | Heterogenous-Catalyzed Tetrazole Synthesis 252                      |
| 8.2.1.1 | Via [3+2] Cycloaddition 253                                         |
| 8.2.1.2 | Via One-Pot Multicomponent Reaction of Amine, Triethyl Orthoformate |
|         | and Azide 254                                                       |
| 8.3     | Future Perspective of Silica-Supported Catalysts in Tetrazole       |
|         | Synthesis 255                                                       |
| 8.4     | Conclusion 256                                                      |
|         | Acknowledgment 256                                                  |
|         | References 257                                                      |

| 9              | Theoretical Insights on Reduction of ${ m CO}_2$ Using Functionalized Ionic Liquid at Gold Surface $259$ |
|----------------|----------------------------------------------------------------------------------------------------------|
|                | Shanmugasundaram Kamalakannan, Muthuramalingam Prakash, and<br>Majdi Hochlaf                             |
| 9.1            | Introduction to Heterogeneous Catalysts for CO <sub>2</sub> RR Applications 259                          |
| 9.2            | Computational Methodology 261                                                                            |
| 9.3            | Characterization of Functionalized Ionic Liquids Interacting with $CO_2$ 262                             |
| 9.3.1          | Studies of CO <sub>2</sub> Interacting with ILs in Gas Phase 262                                         |
| 9.3.2          | Geometries and Energetics of ${\rm CO_2}$ Interacting with Solid–Liquid Interface 264                    |
| 9.4            | CO <sub>2</sub> Catalytic Activation at IL@Au(111) Liquid–Solid Interface<br>Model 265                   |
| 9.4.1          | CO <sub>2</sub> interacting with [EMIm-Z] <sup>+</sup> [DCA] <sup>-</sup> @Au(111) Interface 265         |
| 9.4.2          | CO <sub>2</sub> Interacting with [EMIm-Z] <sup>+</sup> [SCN] <sup>-</sup> @Au(111) Interface 267         |
| 9.5            | Charge Transfer and Charge Density Analyses at the Interface 268                                         |
| 9.5.1          | Charge Redistribution Between CO <sub>2</sub> and Interfacial Medium 268                                 |
| 9.5.2          | Interfacial Charge Transfer Analysis of CO <sub>2</sub> @Interface 268                                   |
| 9.5.3          | Electronic Structure Analysis of CO <sub>2</sub> at the IL@Au(111) Interface 270                         |
| 9.6            | Application: Conversion of CO <sub>2</sub> into HCOOH 272                                                |
| 9.7            | Conclusion 272                                                                                           |
|                | References 274                                                                                           |
| 10             | Mixed Metal Oxides as Solid Base Catalysts: Fundamentals                                                 |
|                | and Their Catalytic Performance 279                                                                      |
| 10.1           | Naveen Kumar, Sauraj, and Naveen Chandra Joshi                                                           |
| 10.1           | Introduction 279                                                                                         |
| 10.2           | Why Mixed Metal Oxides (MMOs)? 280                                                                       |
| 10.3           | Mixed Metal Oxides (MMOs) 281  Synthogic Agnost of MMO Catalynta 282                                     |
| 10.4           | Synthesis Aspect of MMO Catalysts 282<br>Characterization Techniques for MMO Catalysts 285               |
| 10.5           |                                                                                                          |
| 10.6<br>10.6.1 | Catalytic Applications of MMO Catalysts 289 Applications in Industrially Important Reactions 290         |
| 10.6.2         | Applications in Organic Synthesis 297                                                                    |
|                | Applications in Green Chemistry 299                                                                      |
| 10.6.3         |                                                                                                          |
| 10.6.4         | Applications in Environmental Catalysis 303 Challenges and Future Scope of Mixed Metal Oxides 304        |
| 10.7           | Conclusion 305                                                                                           |
| 10.8           |                                                                                                          |
|                | References 306                                                                                           |
| 11             | Recent Advances in Conversion of Carbon Dioxide into                                                     |
|                | Value-Added Product over the Solid Base Catalyst 317                                                     |
|                | Rajan Singh and Kamal K. Pant                                                                            |
| 11.1           | Introduction 317                                                                                         |
| 11.2           | CO <sub>2</sub> Hydrogenation to Methane 319                                                             |

| xii | Contents |
|-----|----------|
|     |          |

| 11.2.1   | Thermodynamics of CO <sub>2</sub> Hydrogenation to Methane 319               |
|----------|------------------------------------------------------------------------------|
| 11.2.2   | Catalyst for Methane Synthesis 320                                           |
| 11.2.3   | Proposed Reaction Pathways for CO <sub>2</sub> Hydrogenation to Methane 321  |
| 11.3     | CO <sub>2</sub> Hydrogenation to Methanol 323                                |
| 11.3.1   | Thermodynamics of CO <sub>2</sub> Hydrogenation to Methanol 323              |
| 11.3.2   | Catalytic System for CO <sub>2</sub> Hydrogenation to Methanol 324           |
| 11.3.3   | Reaction Pathways for Methanol Synthesis 328                                 |
| 11.3.3.1 | HCOO Pathway 329                                                             |
| 11.3.3.2 | COOH Pathways 331                                                            |
| 11.3.3.3 | RWGS+ CO Hydrogenation Pathways 331                                          |
| 11.4     | CO <sub>2</sub> Hydrogenation to Dimethyl Ether 332                          |
| 11.4.1   | Thermodynamics of Single-Step DME Synthesis 332                              |
| 11.4.2   | Catalysts for Single-Step DME Synthesis by CO <sub>2</sub> Hydrogenation 333 |
| 11.4.3   | Mechanism of CO <sub>2</sub> Hydrogenation to DME 337                        |
| 11.5     | CO <sub>2</sub> Hydrogenation to Light Olefins 337                           |
| 11.5.1   | Catalysts for Light Olefin Synthesis by CO <sub>2</sub> Hydrogenation 338    |
| 11.5.1.1 | Reverse Water–Gas Shift (RWGS)-Mediated Pathway 338                          |
| 11.5.1.2 | Methanol-Mediated Pathways 340                                               |
| 11.5.2   | Mechanism of CO <sub>2</sub> Hydrogenation to Olefins 341                    |
| 11.6     | Conclusions and Future Prospects 343                                         |
|          | References 344                                                               |
|          |                                                                              |

Index 351