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Surface Energetic Principles for Moisture Storage
in Porous Materials

1.1 Introduction

Most natural mineral materials, with the exception of crystals, have a pore system
whose pores can range from very fine nanometer (nm)-sized pores to the mil-
limeter (mm) range. A recognized classification of pore sizes has been made by
International Union of Pure and Applied Chemistry (IUPAC). In the 2015 update
of the 1985 report [1]. In this paper, the pores are classified into macropores,
mesopores, and micropores.

Building materials such as natural stone, brick and especially concrete cover the
full pore size range mentioned. Concrete materials usually contain a substantial con-
centration of particularly fine pores, which are classified in the group of nanopores.

These porous materials can therefore store liquids in the pore system, especially
water, which can be carried in vapor form or in liquid form via surface forces.

The capillary absorbed liquid content is measured in [kg/m3] or in [m3∕m3],
the velocity usually with good approximation as W = ww ⋅

√
t in [kg/m2] with the

material coefficient ww in [kg/(m2 ⋅ s0.5)] when constant fluid supply is ensured.
To describe the storage of liquid from vapor uptake, the resulting water content is

presented in the form of sorption isotherms as a function of the external relative
humidity 𝜑 or after converting the relative humidity to the corresponding capillary
pressure in the material.

In a number of (building) materials, such as brick products, a portion of the pores
is so large that it is no longer filled by vapor adsorption, even at about 100% relative
humidity. These pores can then only be filled capillary by external liquid-water sup-
ply. This water fraction is called the superhygroscopic range of total water uptake. In
such cases, the total moisture storage is described by the so-called moisture storage
function.

As indicated in the schematic moisture storage function in Figure 1.1a, many
authors allow the hygroscopic range of the moisture storage function to extend only
to about 98% relative humidity, when in fact it must be defined to about 100% RH.
The reason for this is the difficulty of precisely setting the moisture and measuring it
accurately in this 100%-near range. If the material also contains large pores that can-
not be filled by capillary action – for example, air pores – the associated pore volume,
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Figure 1.1 (a) Model of the water-storage function for cement-bound material.
Source: Adapted from Fagerlund [2] and Eriksson et al. [3]. (b) Sample moisture adsorption
and desorption storage functions for building materials as a function of capillary pressure
pC . Source: Carmeliet and Roels [4]/Sage Publications.

which can usually only be filled under pressure, is assigned to the overhygroscopic
range.

The curve region above 98% RH can be determined using the pressure plate exper-
iment [5, 6], and Espinosa–Franke [7] as a so-called suction stress curve depending
on the applied capillary pressure. The mutual conversion of 𝜑 in pk is done with
Eq. (1.1). In this way, moisture-storage functions can also be represented completely
as a function of pk instead 𝜑 as, for example, by Carmeliet in Figure 1.1b. At 98%
relative humidity, the associated capillary pressure is pk = 2.7 ⋅ 106 [Pa].

This means that in Figure 1.1a,b only the lower section of the curves (in
the hygroscopic region) was determined by sorption measurements. The over-
hygroscopic ranges thus concern additional capillary water absorption as well
as further water absorption under pressure also with (partial) filling of the
processing-related or artificially inserted air pores.

Using the Eq. (1.39) explained in more detail in Section 1.3.2, the vapor pressure
dependence of the adsorption and desorption curves can be converted to the corre-
sponding dependence on the associated capillary pressure in [Pa] as follows:

pk = RD ⋅ T ⋅ 𝜌W ⋅ |ln (𝜑)| (1.1)

Sorption tests on building materials, in particular cement-bound materials, yield
desorption curves that deviate significantly from the adsorption curves or moisture
storage functions during water absorption. The reason for this behavior will be
discussed in more detail in Section 4.6. Measurements by, for example, Feldman
and Serada [8] or Ahlgren [9] have already made this clear in 1968 and 1972,
see Figure 1.2a,b. The measurements also show that a transition between an
absorption and desorption curve, or vice versa, occurs on a “short path,” referred
to as scanning loops or scanning isotherms. The main focus of Chapters 2, 3,
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Figure 1.2 (a) Adsorption and desorption isotherms and scanning loops measured on HCP
of Portland cement WZ = 0.80. Source: Feldman and Sereda [8]/Springer Nature.
(b) Principle course of moisture storage functions including scanning isotherms of building
materials. Source: Ahlgren [9]/Lund Institute of Technology/CC BY 4.0.

and 4 will be to show the effects of this behavior on the moisture transport and the
moisture household of corresponding material bodies.

It will be shown that the individual moisture storage functions may have a funda-
mental importance for the moisture balance of porous materials and the modeling
of moisture transport.

1.2 Surface Energy and Spreading of Liquids
on Solid Surfaces

Since pore water within moist porous bodies is transported by capillary pressure
(and vapor pressure) in the presence of sufficiently fine pores, and therefore capillary
pressure is a crucial quantity with respect to moisture transport, the origin of capil-
lary pressure within the pore system is first addressed. This first requires explana-
tions of the role of the surface energy of the substances involved.

1.2.1 Explanations on Surface Energy and Surface Tension

The molecular arrangement on a water surface surrounded by air is shown schemat-
ically in Figure 1.3. In contrast to the interior of water, where the molecules are
surrounded by similar molecules in all spatial directions and therefore force effects
between the molecules cancel each other out in the summation, the surface lacks
balancing molecular partners on the air side.
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Figure 1.3 Orientation of water molecules and schematic representation of the attractive
forces at the liquid surface, by D. Drummer, Erlangen-Nürnberg, Germany.

Therefore, a molecular arrangement is formed at the surface, which leads to
inwardly directed cohesive forces (hydrogen bonds) and force effects in the surface
plane.

To increase the liquid surface area, work must be done to overcome the cohe-
sive forces of a considered amount of water while the volume remains unchanged.
The work to be done per unit area to increase this surface area A is called the surface
energy 𝛾LV [LV means liquid versus air], here abbreviated as 𝛾L, corresponding to
Eq. (1.2) in differential formulation:

𝛾L =
dWsurface(L)

dA

[Nm
m2 = N

m

]
(1.2)

F = 2 ⋅ b ⋅ 𝛾L [N] ⇒ 𝛾L = F
2 ⋅ b

[N
m

]
(1.3)

Using Figure 1.4, it can be shown how surface energy can be determined by surface
enlargement in a model experiment:

A water membrane (producible by addition of surfactant) of dimension b ⋅ s is
stretched by 𝛿s with force F. The surface (front and back) increases by 2 ⋅ b ⋅ Δs.
The work done to increase the surface ΔWsurface(L) is given in Figure 1.4 using
Eq. (1.2).

The displacement work is 𝛿s ⋅ F (𝛿s and F measured).

The formulations of the work ΔWsurface(L) and ΔWboundary describe the same
change in the sample and therefore must be equal in magnitude. Thus,

F

S

b

ΔS

Figure 1.4 Testing Model : Measuring
the surface energy and surface tension
by the work of displacement Δs and
the boundary force F on a (soap)–
watermembrane.

ΔWsurface(L) = 2 ⋅ (Δs ⋅ b ⋅ 𝛾L) [Nm]
ΔWboundary = Δs ⋅ F [m ⋅ N]
ΔWsurface(L) = ΔWboundary .
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Figure 1.5 Measuring of the surface tension by

the bracket-method 𝜂L =
F
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Eq. (1.3) yields the magnitude of the (specific) surface energy of the surfactant-
added water. It can be seen that the special molecular orientation or the resulting
surface cohesion in surface plane of the water membrane can introduce an edge
force leading to an increase of the surface area, which is called the surface stress.
From Eq. (1.3), it can be derived at the same time that the boundary force F related
to the unit of the boundary length in [m] corresponds to the surface energy 𝛾L of the
liquid.

The true value 𝛾L for non-surfactant water can be determined fairly accu-
rately with the experiment shown in Figure 1.5, in which a wire stretched
in a stirrup structure is lifted out of a water surface via a precision balance.
The water surface around the wire is lifted until it breaks off when the maximum
force F is reached. The surface energy of water is 0.07275 [Nm/m2 =N/m] at
20 ∘C, correspondingly 72.75 [mN/m].

The examples of surface stress measurements shown in Figure 1.6 illustrate the
shapes that water surfaces can attain largely due to surface stress alone. Instead of
the bracket test, the Nou̇y method or the Wilhelmy method are predominantly used;
compare Figure 1.6 and Welcome to DataPhysics-Instruments [10].

Air

Surface shape observed in a bracked-test
or noüy-ring method (schematic)

Liquid-surface at wilhelmy-plate method

Air

Liquid

Liquid

F1

Fmax
Ftens

Θc

Θc

Fll

F
⊥

b

l

Figure 1.6 Measuring surface tension and corresponding liquid surface shapes by two
different methods [10]. Left: Situation during a Wilhelmy-plate test. Right: Three states of
the film surface during a bracket test (compare Figure 1.5) or with a ring-shaped wire
during a Nou̇y test.



6 1 Surface Energetic Principles for Moisture Storage in Porous Materials

In the Nou̇y method, a ring-shaped wire is immersed and then drawn.
A high-speed camera shows that in this process, the water surface takes on
the shapes sketched on the right in Figure 1.6 as the pulling force F increases.
From the maximum tensile force Fmax, the surface energy of the liquid is then
calculated according to Eq. (1.3), corresponding to the Wilhelmy method.

1.2.2 Dependence of Surface Energy of Water on Temperature,
on Relative Humidity of Air, and for Aqueous Salt Solutions

Results on the dependence of the surface energy of water on the relative humidity of
the surrounding air were apparently first reliably determined in 2012 by Pérez-Díaz
et al. [11], supplemented in 2017 by investigation results by Portuguez et al. [12].
Up to now, obviously, no corresponding results could be determined with capillary
suction tests or on drops on flat material surfaces due to the mutual influence of
liquid and solid or the resulting influences by simultaneous water evaporation.

As a new measuring method, Pérez-Díaz et al. and Portuguez et al. developed the
method of hanging drops in climatic chambers combined with precise drop shape
measurements via microscopy and image analysis.

The following Figure 1.7a shows the variation of the surface energy 𝛾L at 100% RH
as a function of temperature in comparison to the already known behavior as a con-
firmation of the measurement methodology used. Figure 1.7b contains the results
for different relative humidities at different temperatures. This shows, for example,
that at 20 ∘C and 20% RH, the value of 𝛾L is about 5% larger than at 100% RH.

The dependence of surface energy on temperature at 100% RH can be
calculated by the following Eq. (1.4). At 60 ∘C, 𝛾w= 0.067 [Nm/m2].

𝛾w(𝜗) = 0.07275 ⋅ (1 − 0.002 ⋅ (T𝜗 − 293)) (1.4)
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Figure 1.7 Measurement results for the surface energy of water as a function of ambient
relative humidity and temperature, basic diagrams from Portuguez et al. [12] with data from
Pérez-Díaz et al. [11] (a) Dependence of the surface energy at 100% RH as a function of
temperature, comparison of the measured values of Potuguez (red circles) and of Pérez-Díaz
(blue circles ) with previous tabulated measured values (black signs). (b) Dependence of
surface energy on relative humidity and temperature.
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Figure 1.8 Surface tension of aqueous sodium chloride solution at 15–35 ∘C. Source: Chen
et al. [13]/with permission of Elsevier.

According to American National Institute of Standards and Technology (NIST), 𝛾w
at 100% RH and 100 ∘C: 𝛾w ≈ 0.059 and at 200 ∘C: 𝛾w ≈ 0.037 [Nm/m2]. The surface
energy becomes zero at the critical point of water at 373 ∘C.

Furthermore, it is necessary to ask to what extent the surface energies
change for aqueous salt solutions or electrolytes. For limited-concentration
solutions, H. Chen et al. [13] presents a “Gibbs phenomenological surface-phase”
method for numerous salts. Figure 1.8 shows results from this publication for
sodium chloride and sodium sulfate solutions. The relatively limited influence up
to salt contents of 1 [mol/kg] can be seen.

1.2.3 Spreading of Liquids on a Solid Surface

The ability of a liquid to wet a solid depends largely on the surface energies of the
substances involved. Therefore, the surface energies of solids are also important.

These surface energies can only be measured indirectly at room temperature using
drops of test liquids whose surface energies are known. Contact angle measurement
is usually used, in which the angle of inclination or the edge angle to the solid sur-
face is determined and the surface energy is derived from this, compare for example
Kinloch [14]. Also, so-called test inks allow an approximate determination of the
energetic surface states.

For the evaluation of the results, the following considerations are important:

Is defined first
𝛾L = specific surface energy of the liquid in the environment air plus vapor.
𝛾SV = specific surface energy of the solid in the environment air plus vapor, as

well as
𝛾SL = specific interfacial energy, which can exert a separating effect in the inter-

face between the liquid in contact and the solid due to the different molecular
nature.
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Air + Vapour V
Surface A

Liquid L

Solid S
dA

θ

dA·cosθ

Water-drop

Figure 1.9 Incremental progress dA of a water droplet (L) on a solid surface (S) shortly
before reaching the energetic balance of the surface energies involved.

For an understanding of the following relationships, we refer to Figure 1.9 of a
partially contacting droplet with total surface area of A and a given volume.

The spreading of the droplet (L) on the solid surface (S) occurs, if the precondi-
tions are met, due to the effect of attractive forces between the liquid and the solid,
which are able to overcome the surface tension of the liquid when the contact area
is increased.

The spreading comes to a stop when a minimum of the total energy of the ongoing
process is reached. Figure 1.9 represents the situation just before this standstill:

The already existing contact area between (L) and (S) still increases by the fraction
dA. On the air side of the contacting droplet, the surface area is thus approximately
increased by the value dA ⋅ cos𝜃. In total, the droplet surface area thus increases
by dA + dA ⋅ cos𝜃. For this, the following work must be done on the drop side:

dWsurface(L) = 𝛾L ⋅ (dA + dA ⋅ cos(𝜃)) (1.5)

At the same time, adhesion energy is released in the area of contact area increas-
ing dA:

dWAdh(SL) = −dA ⋅ (𝛾L + 𝛾SV − 𝛾SL) (1.6)

Here 𝛾SL expresses that there is not a full saturation of the surface energy in contact
but is reduced by the fraction 𝛾SL ⋅ dA. At equilibrium:

dWsurface(L) + dWAdh(SL) = 0 (1.7)

It follows

(1 + cos(𝜃)) ⋅ 𝛾L + 𝛾SL − 𝛾L − 𝛾SV = 0 (1.8)

and for the boundary angle 𝜃 the well-known Young equation follows after the trans-
formation:

cos(𝜃) =
𝛾SV − 𝛾SL

𝛾L
(1.9)

At cos𝜃 = 1 or 𝜃 = 0 complete wetting or dissolution of the drop takes place.
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The surface energies present now allow statements about the dispersion
behavior of different liquids on different surfaces. This also determines
whether a liquid can penetrate a pore system. The measurement of the contact
angle in the drop test provides at least approximate information on this. If the
contact angle is about 90∘, 𝛾SL ≈ 0. This results is a “neutral” behavior of the given
liquid on the given solid surface. No capillary water absorption takes place in
this case. In order that capillary takes place, the angle 𝜃 must be appreciably less
than 90∘.

According to the following equation by van Honschoten et al. [15], spreading
occurs for a solid–liquid combination when the value S is positive:

S = Usubstrate
dry − Usubstrate

wet = 𝛾SV − (𝛾SL + 𝛾LV ) (1.10)

1.2.4 Determining the Surface Energies of Solid Surfaces

For mineral materials used in construction, the contact angle is usually less than
90∘, unless the surface has been modified, for example, by a hydrophobizing mea-
sure. Kaolin has a surface energy of about 500–600 [mN/m]; HPC concretes with
aggregate from granodiorite and from granite with a compressive strength of about
130 [MPa] have, according to Barnat-Hunek 𝛾S = 1000 to 1800 [mN/m] [16] and a
contact angle of about 10∘ to 30∘ when wetted with water at 22 ∘C, resulting in cap-
illary water absorption into a pore system.

Calcium carbonate has a surface energy of only 𝛾S = 75–80 [mN/m], so that largely
standing water droplets can be expected on such surfaces.

Plastics, paints, and waxes have a 𝛾S of 25–40 [mN/m], so that no spreading
of water can take place on these surfaces, which is very well seen, for example, on
waxed car bodies. Teflon exhibits a 𝛾S of about 20 [mN/m].

In contrast, ethanol or isopropanol, for example, with surface energies of 22 or
23 [mN/m] on mineral surfaces always show a contact angle close to 0∘, i.e. complete
spreading and a strong readiness for capillary penetration into capillary pores.

Metal alloys also usually have very high surface energy, 𝛾SV -values of metals can
be taken from Kumikov and Khokonov [17]. Nevertheless, with respect to adhesion,
adequate surface pretreatment is especially important for metals.

If, in the case of “unknown” solid surfaces, their surface energy 𝛾S is
needed, however, it cannot be determined only by determining a boundary angle
with a known liquid. A more accurate determination of the surface energy can be
made by at least two edge angle measurements with two different test liquids with
different, known polar interaction fractions 𝛾L

p (for example, from hydrogen
bonding) and dispersive fractions 𝛾 d

L (from van der Waals forces).
The surface energy 𝛾SV of the solid as well as the interfacial energy 𝛾SL can then be

determined from the results of the boundary angle measurements according to the
accepted OWRK method of Owens, Wendt, Rabel, and Kaelble, compare Yuan and
Lee [18], Lauth and Kowalczyk [19], and Barnat-Smarzewski and Smarzewski [16].

In Literature [20], measurement and calculation results from two institutes are
reported by Cwikel et al., in which the performance of five different computational
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models for determining the surface energy of solids is investigated. For this purpose,
the contact angles of selected test liquids on 42 different solid surfaces are measured
and compared with the predictions of the computational models.

1.3 Basic Equations for Liquid Absorption in Material
Pores

1.3.1 Liquid Absorption in Pores by Effect of Surface Energies

Liquid is also drawn into the inner surface of material pores by the effect of sur-
face tension. The finer the pores, the greater the depth of penetration or rise relative
to gravity. In such pores, the liquid is transported as in a tube. This is traditionally
shown by the liquid rise height in a cylindrical capillary pore.

1.3.1.1 Derivation of the Capillary Rise via the Adhesion Works
and the Potential Energy in Capillaries
The adhesion works in a standing cylindrical capillary are for the rise height h:

Wsurface(h) = +2 ⋅ 𝜋 ⋅ rpore ⋅ 𝛾L ⋅ h + Wsurface(0) (1.11)

WAdh(h) = −(𝛾L + 𝛾SV − 𝛾SL) ⋅ 2𝜋 ⋅ rpore ⋅ h − WAdh(0) (1.12)

The potential energy to be overcome is:

Epot(h) = +rpore
2 ⋅ 𝜋 ⋅ 𝜚L ⋅ g ⋅ h2

2
+ Epot(0) (1.13)

At equilibrium is

dWsurface(h)
dh

+
WAdh(h)

dh
+

Epot(h)
dh

= 0 (1.14)

From this follows, shortened by 2 ⋅ 𝜋 ⋅ rpore :

−(𝛾SV − 𝛾SL) + rpore ⋅ 𝜚L ⋅ g ⋅ h
2
= 0 (1.15)

Using Eq. (1.9), this gives the relationship for the achievable height due to adhesion
work in a cylindrical capillary:

hmax =
2 ⋅ cos(𝜃) ⋅ 𝛾L

rpore ⋅ g ⋅ 𝜚L
(1.16)

If instead slit pores with a constant spacing of the pore surfaces of d = 2 ⋅ rpore
are present, the result for the rise height is

hSlit,max =
2 ⋅ cos(𝜃) ⋅ 𝛾L

d ⋅ g ⋅ 𝜚L
(1.17)

If d = 2 ⋅ rpore gives hslot = 1∕2 ⋅ hcap. At this point, we refer the reader to
Section 1.3.1.3, where a more general derivation of the fluid uptake in pores
due to adhesion work is described.
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1.3.1.2 Capillary Pressure in Cylindrical Pores and in Slit Pores
The transport in capillary pores or slit pores caused by the surface energy creates a
tensile stress below the menisci in the pores, which is called capillary pressure. As a
result of the previous explanations, the resulting capillary pressure can be simply
represented according to Figure 1.10. The water column of the pores resp. pore fill-
ing is further pulled by the effect of the surface energies resp. the corresponding sur-
face tension at the wall of the pores. In dependence of the existing edge angle 𝜃 from
Eq. (1.9), the force component fcap in [N/m] is now generated there in the pore
direction.

fcap = 𝛾L ⋅ cos(𝜃) (1.18)

For a cylindrical capillary pore with a given perimeter, the resulting total force fol-
lows to

Fcap = fcap ⋅ 2𝜋 ⋅ rpore (1.19)

The resulting capillary pressure pcap cannot be exceeded by the surface energy alone
because of the limitation of the surface tension to 𝛾L. The capillary pressure is then
(when the surrounding air pressure is not taken into account)

pcap(r) =
Fcap

𝜋 ⋅ rpore
2 =

2 ⋅ 𝛾L ⋅ cos(𝜃)
rpore

[Pa] (1.20)

In the presence of slit pores with d = surface distance of the pore walls, the following
results instead

pcap(d) =
2 ⋅ 𝛾L ⋅ cos(𝜃)

d
[Pa] (1.21)

When d = 2 ⋅ rpore, pcap(d) is only half as large as for a cylinder pore, according to
Eq. (1.20).

Liquid L

Liquid L

Solid S
(cylindrical tube)

Air V

fcap

Fcap

Fkap

pcap

2r

Capillary pressure
(tensile stress)

θ

γL

Figure 1.10 Formation and definition of capillary pressure in a cylindrical pore during
water absorption.
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The influence of changing temperatures and possible salinity on 𝛾L has been given
previously.

1.3.1.3 Capillary Pressure as a Cause of Fluid Transport and Rise Height
in a Capillary Pore
From Extrand and Moon [21], using simple water absorption experiments on glass
capillaries, it is shown that the derivation of the rise height in capillary pores in
terms of surface work and potential energy presented in Section 1.3.1.1 leads to an
unjustified formal restriction on the applicability of the Eq. (1.16).

According to this equation, varying ratios of surface energies along the capillary
pore and a varying pore cross section, for example, a larger pore radius in the lower
part of the capillary, should also lead to the same riser height (1.16). Extrand and
Moon [21] concludes that the capillary pressure at the head of the water column in
the capillary is responsible for the increase, independent of the other parameters. In
fact, this can be shown and somewhat specified in the following way:

Instead of (1.11) and (1.12), let be written only the local increase of the surface
energy fractions or work fractions of the liquid surfaceΔWsurface and the solid surface
ΔWAdh in the region of the pore radius rpore

ΔWsurface = +2 ⋅ 𝜋 ⋅ rpore ⋅ 𝛾L ⋅ Δh (1.22)

ΔWAdh = −(𝛾L + 𝛾SV − 𝛾SL) ⋅ 2 ⋅ 𝜋 ⋅ rpore ⋅ Δh (1.23)

The resulting energy sum does the work of raising the corresponding liquid
level. The corresponding mechanical work portion force ⋅ displacement results at
the considered radius from the product of the pore cross-sectional area and the
hydraulic stress acting in the cross-section times the displacement Δh. For example,
the surface of the advancing fluid has the shape of a meniscus. The associated
mechanical work is then, with the hydraulic (tensile) stress pcap

ΔWmeniscus = rpore
2 ⋅ 𝜋 ⋅ pcap ⋅ Δh (1.24)

At equilibrium is

ΔWsurface + ΔWAdh + ΔWmeniscus = 0 (1.25)

From this follows, shortened by 𝛿h and 2 ⋅ 𝜋 ⋅ rpore, with 𝛾SV − 𝛾SL = cos(𝜃) ⋅ 𝛾L the
relation

pcap =
2 ⋅ 𝛾L ⋅ cos(𝜃)

rpore
[Pa] (1.26)

With the suction stress pcap, the fluid bulk density 𝜚L, and the acceleration due to
gravity g, the hydraulic potential or the fluid pressure head is given by

h =
pcap

𝜚L ⋅ g
(1.27)

Figure 1.11 shall schematically illustrate the relationship between the effect of
capillary pressure and gravity in different capillaries. h1 is the rise height in capillary 1
with the associated capillary pore radius r1 according to Eq. (1.16) resp. (1.27).
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Figure 1.11 Possible equilibrium suction heights for
three model capillaries with identical inner radius in
the upper region.

1

h1

h2

2 3

If the capillary has a radius extension, for example, in the form of a spherical pore,
the liquid uptake stops when entering the spherical pore according to the associated
radius extension, resp. the lower capillary pressure (capillary 2 in 1.11). If, on the
other hand, the sphere pore is filled with water by some action in the sense of a
continuous pressure connection to the surface, the rise height reaches the suction
height h1 for a capillary radius r3 = r1.

It is to be noted that only the adhesion work in the area of the front menis-
cus and the capillary pressure there (as suction force) lead to the progress of
the water column.

If capillary condensation takes place at the front of the capillary pore due to
the boundary conditions (pore radius and vapor pressure, compare Sections 1.3.2
and 1.4.5), liquid is added there accordingly, but the capillary head h1 is not
increased.

When the capillaries are horizontal or there is no gravity (but water con-
tact at the base), the capillary is completely filled by the adhesion work up to the
head, regardless of its length.

1.3.2 Pore Filling by Capillary Condensation

In an empty pore system of a dried material, if the external vapor pressure is
increased from very small pressures to saturation pressure psat, the vapor diffusing
into the pores leads to sorption layer thicknesses at the pore walls corresponding
to the associated “base isotherm.” For water vapor, this is the Eq. (1.50) resp.
Figure 1.15a. These sorption liquid layers are also called liquid films.

Practical experience confirms that fine-porous materials have moisture contents
that correlate with the moisture content of the surrounding air. In the following, it
will be shown again why this must be so.
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As a reminder, the general gas equation for ideal gases is written first.

p = n
Vges

⋅ R ⋅ T (1.28)

There is p =Gas pressure in [Pa], R = 8.31 [Nm/(K⋅mol)]=General gas constant,
and n = Number of moles of gas in Vges.

If n = 1 follows Vges = V =Molar volume= 24.46 [l/mol] under thermodynamic
standard conditions 25 ∘C and 101.3 [kPa] and 22.414 [l/mol] under standard condi-
tions 0 ∘C and 101.3 [kPa].

Equation (1.28) is also valid for the partial pressures of individual gas components
in gas mixtures, for example also for the water vapor fraction in air.

Let the saturation concentration for water vapor in air be cS. At 20 ∘C, cS =
17.3 [g/m3]. In contrast, air weighs about 1170 [g/m3] under standard conditions.
The partial pressure for water vapor in air is also:

pS = cS ⋅ 0.462 ⋅ T [Pa] (1.29)

Herein, 0.462 is the specific gas constant (independent of boundary conditions) for
water vapor in [Pa⋅m3∕(g ⋅ K)] and cS in [g∕m3]. Let pS be the saturation partial
pressure of water vapor in air. The temperature dependence is 𝛿 ≥ 0 ∘C.

pS(𝛿) = 288.58 ⋅
(

1.098 + 𝛿

100

)8.02
(1.30)

The vapor concentration is cS in equilibrium with a (flat) water surface A0 at a given
temperature T0.

If the water surface is curved concavely, this leads to a higher relative
concentration cS with respect to the curved water surface A1. Expressed as
relative concentration cS∕A is now cS∕A1 > cS∕A0, which is especially clear when
imaging the inner surface of a sphere.

To maintain thermodynamic equilibrium, the liquid surface must absorb vapor
molecules from the air in an effort cS to reduce. In the initial plane state, the equi-
librium between the phases of water and vapor in contact in confined space is as
follows:

dG = 𝜇L ⋅ dnL + 𝜇D ⋅ dnD = 0.

Since dnL = dnD must be, it follows (at unchanged temperature and pressure)
𝜇L = 𝜇D.

When there is a curvature of the fluid surface, there is (due to the relationship
between surface curvature and pressure ) a change in pressure in the system. Here,
first of all, the fluid pressure is meant.

d𝜇 = −S ⋅ dT + V ⋅ dp = V ⋅ dp at T = const.

On the part of the liquid, the change in chemical potential (or free enthalpy) to
be compensated is compared to the initial state at a flat surface and at unchanged
temperature, with V = molar volume of the liquid or water and pS the corre-
sponding saturation pressure is

dGL = V ⋅ dp, respectively ∶ (1.31)
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ΔGL =

pS

∫
p1

V L ⋅ dp = −V L ⋅ (p − pS) (1.32)

The fluid pressure can be p ≤ pS or p > pS. This depends on whether the pressure
generated in the fluid is negative or positive. In the case of a cylindrical pore with
a progressing meniscus of fluid filling in Figure 1.10, the fluid pressure should be
assumed to be negative as a tensile stress.

In Eq. (1.20), rpore is the radius of the cylindrical pore. In a circular– capillary, the
pressure-transmitting meniscus has two main radii of curvature

rmeniscus =
rpore

cos(𝜃)
(1.33)

Inserted into Eq. (1.20), the Young–Laplace relation for a circular–cylindrical pore
follows.

pcap(meniscus) =
2 ⋅ 𝛾L

rmeniscus
[Pa] (1.34)

In the plane initial state, rmeniscus = ∞ and thus pS = 0 in Eq. (1.32). In the present
case, p and hence 𝛿p is negative. From this follows for the fluid in the region of the
meniscus

ΔGL = V L ⋅ Δp = −V L ⋅
2 ⋅ 𝛾L

rmeniscus
= −V L ⋅

2 ⋅ 𝛾L ⋅ cos(𝜃)
rpore

[J∕mol] (1.35)

The enthalpy change of the liquid is followed by the corresponding reaction of the
vapor phase V : From the saturation initial state cS or pS as the saturation pressure
of the plane surface.

ΔGV =

pS

∫
p1

R ⋅ T
p

dp = −R ⋅ T ⋅ ln
(

p1
pS

)
[J∕mol] (1.36)

where p1 is the equilibrium saturation vapor pressure in the concave surface region.
From the requirement ΔGV = ΔGL follows with Eq. (1.35) and V L= mole volume

of condensed liquid (18 [cm3] or 18/106 [m3/mol] for water), the Kelvin equation
given by p1 ≤ pS in the following formulation for concave surfaces:

rpore =
−V L ⋅ 2𝛾L ⋅ cos(𝜃)

R ⋅ T ⋅ ln
(

p1
pS

) =
M𝛾

ln(𝜑)
[m] (1.37)

Therein, p1∕pS = 𝜑ext is the external relative humidity 𝜑. The summary term M𝛾

(constant for given T) corresponds to Eq. (1.68).
Equation (1.37) indicates up to which pore radius, at a given vapor partial pressure

p1 a cylindrical pore is completely filled by condensation from the vapor entering
the pore, denoted capillary condensation. Here, for cylindrical pores with con-
stant cross-section, it is assumed that a meniscus supposed to be stationary is
already present due to an interrupted water supply at the base of the capillaries,
or in the case of an equilibrium situation as indicated in Figure 1.10. When exposed
to an external relative vapor pressure of at least p1, in the curvature region of this



16 1 Surface Energetic Principles for Moisture Storage in Porous Materials

meniscus, the external vapor pressure becomes the saturation vapor pressure, with
the consequence of condensation of the vapor present and pore filling.

If, for a given radius rpore, the critical relative vapor pressure p1 or the external rel-
ative humidity above which capillary condensation takes place is sought, the result
is (Eq. (1.37) transformed):

𝜑ext = e
− VL ⋅2𝛾L ⋅cos(𝜃)

R⋅T⋅rpore (1.38)

For materials with pore size distributions “small to large,” the entire material
is filled only up to the pore size r1 = rpore according to Eq. (1.37) by the vapor diffusing
in from the outside.

The Kelvin Eq. (1.37) or the resulting Eq. (1.38) are generally valid also for curved
concave liquid surfaces characterized by different principal radii of curvature, as well
as for pores with noncircular cross section.

Combining the relations (1.37) and (1.20), we immediately obtain the relation
between pcap and 𝜑 = p1∕pS

pcap = −R ⋅ T
V L

⋅ ln(𝜑) = RD ⋅ T ⋅ 𝜌W ⋅ |ln (𝜑)| [Pa] (1.39)

1.3.2.1 Extent of Validity of the Kelvin Equation
An important question is up to which lower pore radius the Kelvin equation is
valid. The applicability is considerably limited by the charge distribution and the
relation of the pore radius to the molecule size of the fluid under consideration.
Numerous authors have commented on this issue in the past. Matsuoka et al. [22]
perform atomic force microscopy (AFM) studies on liquid films between curved
muscovite-mica surfaces at different relative humidities. They give a lower pore
radius of r = 1.5 [nm] for (the polar) water, e.g. r = 0.5 [nm] for cyclopentanes.

Fifteen years later, Kim et al. [23] remark, based on measurements with more
advanced atomic force microscope (AFM) technology, that a much lower boundary
pore radius r = 0.5 [nm] for water can be assumed. They measure in the AFM appa-
ratus at the curved contact surface of the samples capillary condensation down to the
mentioned radius and evaluate the results based on the accepted Kelvin–Tolman the-
ory, which gives a correction to Laplace’s equation for very small pore radii, compare
also [24].

They emphasize explicitly that this result (also based on AFM studies) refers to
the classical Kelvin equation according to Eq. (1.37).

If one includes the relation of Eq. (1.79) according to the representation in
Figure 1.22 or Section 1.4.5 and Figure 1.15a, then yields the corresponding real
radius rR = 0.7 [nm], which could then be called as the lower physically
detectable pore radius for the applicability of the Kelvin relation.

1.3.3 Saturation Vapor Pressure at the Surface of Convex Shapes

In contrast to concave liquid surfaces, for example, at a meniscus in cylindrical pores,
the saturation vapor pressure at convex external surfaces is increased by p > pS, so
that condensation of vapor occurs only at relative humidities 𝜑1 > 𝜑S.
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It is then valid as liquefaction vapor pressure over an external surface (with the
main curvature radii r). Instead of Eq. (1.38), the corresponding equation with
reversed sign is then valid.

Since the relative vapor pressure is lower on such surfaces, faster evaporation or
drying also takes place there.

In Section 1.4.6.2, the layer thicknesses of water molecules that can form by
adsorption on concave or convex surfaces as a function of relative humidity are
investigated.

1.3.4 Explanations of the Young–Laplace Equation for Stress
on Curved Fluid Surfaces

The relation presented at the same time by Young and Laplace is as follows:

Δp = 𝛾L ⋅
( 1

r1
+ 1

r2

)
(1.40)

Equation (1.40) gives the mechanical relationship between the curvature of a
nonplanar membrane-like surface, given by the two principal radii of curvature r1
and r2, and the stress acting in the membrane plane 𝛾L in [N/m] and the pressure
Δp in [N/m2] acting on the membrane surface (orthogonal).

This pressure can act from a liquid or a gas. Since a “water-membrane” is formed at
the water surface, the surface can be treated with the Young Laplace relation (1.40).
Since the membrane stress 𝛾L acts largely as a constant for water surfaces, Eq. (1.40)
provides the relationship between the sum Δp of inside and possibly outside orthog-
onal pressure components on the surface and the curvature of the surface.

In the area of the concave meniscus in a cylindrical capillary pore the water
pressure acts on the water side as a two-dimensional tensile stress, on the air side
the air pressure (including vapor partial pressure). However, since the air pressure
acts on the entire system, it is also present as a component on the “water side” of the
meniscus and can therefore be disregarded (except in special cases).

This also indicates that for cylindrical capillaries with a constant cross-section, the
vapor partial pressure does not play a role in meniscus formation, unless the sorption
properties of the inner capillary-pore surface are affected by varying vapor pressure,
which would manifest itself, for example in a change in the contact angle. There is
no evidence for this in glass capillaries, for example. In contrast, for capillaries
with increasing pore radius or pore systems with medium pore sizes increasing
from “small to large” there is a clear relationship between the vapor partial pressure
p1 and the pore size or meniscus shape and thus the capillary pressure according to
the Eqs. (1.37) and (1.34).

With reference to the Eqs. (1.33) and (1.34), results analogously to Eq. (1.40)

pcap(meniscus) = 𝛾L ⋅
(

1
rmeniscus

+ 1
rmeniscus

)
=

2 ⋅ 𝛾L

rmeniscus
(1.41)

Due to the limitation of the possible tensile stress in the “meniscus membrane” to 𝛾L,
the possible capillary pressure (tension) is limited accordingly. The principal radii of
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curvature r1 = r2 = rmeniscus to be used for a circular–cylindrical capillary pore differ
from the pore radius rpore for a noncircular cross section according to Eq. (1.33).

Eslami and Elliott [25] have investigated the exact shape of menisci under
gravity and vapor pressure in cylindrical capillaries mathematically in more detail
by integrating Laplace’s equation and taking thermodynamic considerations into
account.

Figure 1.12 shows from this work the results on the meniscus shape for the edge
angle 𝜃 = 0 and for varying edge angles. It can be seen that even the largest capil-
lary pores in cement-bonded materials assumed to have circular cross-sections with
radii on the order of 300 [nm] still exhibit pronounced curvature radii of nearly
hemispherical shape in the presence of a edge angle of 𝜃 ≈ 0.

The edge angles on concrete surfaces were measured to be 10∘–15∘. Even for such
edge angles, the deviations from the hemisphere shape are small.
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Figure 1.12 Meniscus shape in cylindrical pores as a function of pore radius at constant
contact angle of 0o and influence of the contact angle at constant radius 10 [mm] (lower
figure). Source: Eslami and Elliott [25]/Springer Nature/CC BY 4.0.
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1.3.5 Application of Kelvin Equation to Floating Droplets

Spherically assumed individual droplets in a vapor-supersaturated air form dif-
ferent droplet sizes depending on the surrounding relative humidity𝜑ext resp. degree
of supersaturation, which can be determined by means of a fitted Kelvin equation.

In the droplet the internal pressure is positive in contrast to the liquid at a concave
meniscus, furthermore at the “surface-membrane” of the droplets there is no more
contact to a solid surface, so that the contact angle 𝜃 = 0 and cos(𝜃) = 1 is.

The consequence is that in Eq. (1.32) p becomes>p0 and from this follows instead
of Eq. (1.34) for the fluid pressure

pdrop =
2 ⋅ 𝛾L

rdrop
(1.42)

and instead of Eq. (1.35) for the change of the chemical potential of the liquid

ΔGL = +V L ⋅
2 ⋅ 𝛾L

rdrop
[J∕mol] (1.43)

Due to the increase of ΔGL, a positive change of the chemical potential of the
gas phase vapor must also result. However, in the Eq. (1.36), which also applies
here, p1∕pS ≥ 1.0 must be used. From this follows the Kelvin equation adapted for
free drops:

rdrop =
+V L ⋅ 2 ⋅ 𝛾L

R ⋅ T ⋅ ln
(

p1
pS

) [m] (1.44)

In the absence of condensation nuclei or condensation-enabling surfaces
in the vapor-containing air in question, supersaturation 𝜑 > 1.0 can be produced
by supplying additional vapor or by cooling the air. Artificially, obviously, several
times the saturation vapor pressure can be produced; in nature, normally only a few
percent supersaturation is produced in the atmosphere. If the vapor meets conden-
sation nuclei, a spontaneous condensation takes place, which immediately changes
into an evaporation of the droplets if the pressure falls below 𝜑 = 1.0. The respec-
tive droplet sizes can be derived according to Kelvin from the respective local vapor
concentration. Overall, this is an unstable dynamical process that depends,
among other things, on the transport velocity of the vapor molecules in the
air. Extensive research is still ongoing on this topic [see for example B. Waigand,
University of Stuttgart, Germany].

1.3.6 Solubility of Gases in Water

The issue of solubility of gases, especially air in water, plays a role, for example, in the
context of the behavior and influence of air of the filling of original air pores in the
material by water. It is addressed in more detail in Section 4.5.5. Gases dissolve
in water, for example, from the water surface under their present partial pressure.
The relationship is described by Henry’s law. It indicates which dissolved gas con-
centration cWi

of gas i results in water as a function of water temperature and partial
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pressure pi or total pressure. According to this

cWi
= 1

KHi

⋅ pi [g∕(Liter ⋅ bar)] (1.45)

The Henry parameters KH are determined experimentally. Figure 1.13 gives for
the three selected gases O2, N2 and CO2 the values of the factor 1/KHi

as a function
of temperature and a gas pressure of 1 bar. The correct value for CO2 is the diagram
value ×100.

For oxygen, at a water temperature of 20 ∘C, an atmospheric pressure of 1 bar and
the partial pressure of 0.21 bar, the concentration of dissolved O2 is as follows

cWi
= 0.043 ⋅ 0.21 = 0.00903 [g∕liter] = 9.03 [g∕m3]

Assuming partial pressures of 21% for oxygen and 78% for nitrogen, the following
concentration for air cWair

at 20 ∘C is obtained (approximately) using the Henry val-
ues of the diagram:

cWair
= (0.21 ⋅ 0.043 + 0.78 ⋅ 0.019) ⋅ 1000 = 23.9 [g∕m3]

The solubility of gases increases significantly with decreasing temperature, but
especially with increasing total pressure. In 20 [m] water depth, for example, the
solubility of nitrogen due to the pressure increased by 2 bar is instead of 14.8 [g/m3]

cW(N2) = 0.019 ⋅ (0.78 + 2.0) ⋅ 1000 = 52.8 [g∕m3]

In the presence of appreciable amounts of other ions or very saline waters, the sol-
uble gas concentrations may deviate from the Henry values. Thermodynamic equi-
librium calculations are then necessary.
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1.3.7 Cavitation in the System Water/Vapor

In the context with the tensile stress of water in capillary pores, the problem
area of cavitation in the water/vapor system will first be highlighted.

The phenomenon of cohesion loss due to cavitation (i.e. the spontaneous transi-
tion of water into vapor) can occur when a volume of water is subjected to tensile
stress, especially when the water contains small vapor bubbles, for example, on
external contact surfaces or impurities. Cavitation can occur, for example, in
free water at strong underpressure formation≪ patm in the area of fast-rotating
ship propellers and lead there to propulsion loss in the long run to material damage,
compare for example [26].

The danger of cavitation arises when the pressure in the water approaches the
boiling point pressure corresponding to the given temperature. From the phase
diagram of water, it can be seen that when the external pressure drops from
patm = 105 [Pa] to 2340 [Pa], the water already boils at 20 ∘C and thus loses cohesion
without active external tensile stress.

The influence of the negative pressure can also be seen in the so-called
“geodesic suction head” for suction pumps, where water is pumped from depth by
suction at the top. In this case, a maximum suction head is obtained by applying the
Eq. (1.27) with pcap = patm = 1.013 ⋅ 105 [Pa] and 𝜚L ⋅ g = 1000 ⋅ 9.81 = 9810 [Pa] to
h = 10.33 [m], at which the suction tension at the top corresponds to the atmo-
spheric pressure and the cohesion of the water molecules fails there. The suction
heights that can be realized in practice are significantly lower.

As a rule, the occurrence of cavitation is favored by impurities or water vapor
bubbles. In this case, possible cohesion failure is closely related to any vapor
bubbles that may be present and to existing underpressure. According to [27]
or [26], a new formation or enlargement of vapor bubbles requires an amount of
energy, which can be simply expressed with the fraction from the internal surface
enlargement and the fraction of work to increase the volume of the bubble under
the given pressure p − patm as follows:

ΔE = 4 ⋅ 𝜋 ⋅ r2 ⋅ 𝛾L + 4 ⋅ 𝜋
3

⋅ r3 ⋅ (p − patm) (1.46)

Here, p is a tensile stress applied on the water surrounding the air bubble. This
tensile stress is applied in addition to the atmospheric pressure patm (operating on
all sides) and reduces the total pressure acting on the bubble or air pore.

Putting into the derivative the radius r of this equation equal to zero, we get the
critical radius r★ depending on 𝛾L and (p − patm), at which the energy demand for
bubble formation shows the maximum and is considered as “energy barrier.”

r★ =
2 ⋅ 𝛾L

patm − p
[m] (1.47)

This result is also consistent with the following consideration of the equilibrium
between the pressure within the bubble from surface tension and an imposed
negative pressure p [Pa] in the surrounding water:

patm +
2 ⋅ 𝛾L

r★
= p + patm ⇒ p =

2 ⋅ 𝛾L

r★
⇒ r★ =

2 ⋅ 𝛾L

p
(1.48)
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Cohesion is abruptly lost when vapor bubbles larger than r★ in diameter are present.
In fine capillary pores, negative capillary pressures much larger than −patm
exist and are therefore much larger than the “geodesic suction heights” previously
calculated.

If the water has no impurities and no incipient vapor bubbles that cause heteroge-
neous nucleation, it can withstand high tensile forces in the “undisturbed state” in
laboratory experiments up to the magnitude order of several 100 bar until cohesion
failure [26].

1.4 Sorptive Storage on Material Surfaces and on the
Inner Surface of Pore Systems

1.4.1 Preliminaries

The saturation of surface free energy on solid surfaces by gas molecules, especially
water vapor molecules from air, and the sorption of molecules in contact with
liquids, have long been the subject of research. The sorption behavior is usually
described by sorption isotherms based on empirical or thermodynamic methods.
As is well known, a distinction must be made between chemical and physical
sorption.

The following remarks concentrate on the important area of physical sorp-
tion, in particular also for internal surfaces, and on the consequences for the
“water balance” of the material in the case of water vapor sorption.

The sorption isotherms measurable in physical sorption give the relationship
between the ambient gas pressure, for example, the water vapor partial pressure,
and the mass of gas molecules Vads bound to the surface under consideration as a
liquid layer in equilibrium with the external partial pressure p0.

Groups of adsorption forces, which are based on polar effects or on dispersion
forces or Van der Waals forces, are responsible for the physisorption. The recorded
atomic or molecular distances are ≈0.2 to ≈10 [nm]. A large number of researchers
have dealt with this. Reference is made to Israelachvili [28], Rouquerol et al. [29],
and Lauth and Kowalczyk [19].

In Figure 1.14 are shown the names for the processes and the phases as they are
encountered in physisorption of most gases or vapors on nonporous or macro-porous
materials.

For the calculation resp. prediction of the mentioned physical adsorption
mechanisms, there are a number of models resp. approaches that consider inter-
actions between molecules in different ways and model a mono-molecular to
multi-molecular coverage of the surface, compare [19]. These methods allow
the prediction of adsorption on pore-free surfaces and on internal surfaces of
porous solids up to relative gas pressures or relative vapor pressures of
about 0.40. Adolphs and Setzer [30] shows a comparison of the ability of a num-
ber of the models to simulate the sorption measurement results of N2 on SiO2
powder.
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Figure 1.14 Vapor molecule physisorption on solid surfaces. Designations of the phases
and components.

The most common of these methods is the BET method of Brunauer/Emmett/
Teller-1938 [31]. This can be used to reliably determine the monolayer capacity and
total internal surface area. The BET method will be discussed in more detail below.

Another approach to describing sorption isotherms can be based on thermody-
namic derivatives, as shown by Adolphs and Setzer [30] and Badmann et al. [32].
Further discussion of this is also given below.

A new approach to the description of adsorption isotherms has been worked out
by Zandavi and Ward [33] and Zandavi [34]. They assume (actually existing) cluster
formation of vapors of different adsorptive, increasing covering densities as well as
chemical potential of clusters of different sizes. The physical parameters required
for the theory, however, must be determined from sorption measurements, but are
then valid for the entire partial pressure course of the isotherms and can also be led
beyond 𝜑 = 1.0 to a certain extent.

1.4.2 Measured Surface Sorption of Water Vapor on Flat Nonporous
Surfaces

Sorption isotherms measured on porous mineral materials contain increasing
amounts of water from capillary condensation with increasing relative humidity.
For a more detailed analysis of sorption processes and possible thermodynamic
calculations, however, it is necessary to know the condensate layer thicknesses
developing with increasing gas partial pressure on pore-free surfaces, especially
when approaching saturation partial pressure.

Measurement results from different authors are available for this purpose.
The sorption layer thicknesses are determined with the aid of gravimetric fine
measurements, in particular TGA measurements, and are usually presented as a
mathematical function between layer thickness and relative partial pressure or the
relative humidity in the case of water vapor sorption measurements.

Reference is made, for example, to Badmann et al. [32]. This reports on
water vapor sorption measurements on cement phases and samples from hydrated
cements of different compositions and different water–cement ratios. The functional
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Figure 1.15 Sorption isotherms for water vapor with pore-free surface. (a) From Franke,
Eq. (1.50). (b) Source: From Snoeck et al. [37]/with permission of Elsevier.

dependence of the averaged values for water vapor sorption is given as:

t(𝜑) = 0.385 − 0.189 ⋅ ln(−ln(𝜑)) [nm] (1.49)

Funk [35] compares t(𝜑)-curves of different authors and recommends the func-
tion dependence of deBoer et al. [36]. These curves are plotted in Figure 1.15a
together with a curve of [Franke]. The comparative calculations made by Franke
with sorption isotherms lead to a slightly modified dependence of the sorption layer
thicknesses and to the proposal of the following function. Figure 1.15b shows mea-
surement results from Snoeck et al. 2014 [37] with a curve shape very close to the
curve proposal from Franke (Eq. (1.50)):

t(𝜑) = 𝜑0.028 − 1.03 +

⎛⎜⎜⎜⎜⎝
0.09

log
(

1
𝜑

)
+ 0.03

⎞⎟⎟⎟⎟⎠

0.5

[nm] (𝜑 ≥ 0.0115) (1.50)

With this function, the monolayer is obtained with t = 0.30 [nm] at 𝜑(nmono) = 0.23
and t = 1.70 [nm] at the saturation partial pressure.

In Section 1.4.6.1, we investigate to what extent the basic isotherm for nonporous
(hydrophilic) surfaces derived here on the basis of experimental results can also be
approximated theoretically on the basis of thermodynamic approaches. In addition,
Section 1.4.6 considers issues relating to sorption film formation within material
pores as well as on differently curved surfaces.

1.4.3 Use of Water Vapor Sorption Isotherms to Determine the Value
of the Internal Surface Area

Knowledge of the internal surface area of porous material, particularly
cement-bound products, is important for moisture storage and transport considera-
tions. Typically, sorption experiments with nitrogen N2 or helium H2 are performed
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Figure 1.16 (a) Measured points and regression curve of the adsorption isotherm of
material REF (W∕C = 0.45). (b) Isotherm of the material REF, related to the capillary
pressure pcap.

to determine these. It will be shown that the inner surface can be determined
with the known evaluation methods on the basis of existing water vapor
sorption isotherms. This is shown below by means of an example based on
the BET method and the method of Adolphs and Setzer. Figure 1.16a shows the
adsorption isotherm of the reference material REF mainly used in experiments in
the present project. The function of the measured adsorption isotherm is given by
Eq. (1.51). Figure 1.16b shows the adsorption isotherm as a function of capillary
pressure pcap for comparison. This capillary pressure dependent isotherm or
moisture storage function is obtained by converting the output function (1.51) of
Figure 1.16a using the Eq. (1.1).

1.4.3.1 Total Internal Surface Determined Using BET Method
To determine the internal surface area of the Portland cement on reference mortar
REF, the BET method is used.

The derivation of the equations to be used can be taken in detail from Brunauer
et al. [31], Rouquerol e al. [29], and, in particular, Lauth and Kowalczyk [19].
The BET method is capable of simulating coverage with multiple layers of the
respective gas molecules, in this case, water vapor molecules. However, previous
experience shows that if a partial vapor pressure of about 0.40 is exceeded, an
overestimation of the sorbed liquid quantity occurs, so that an application of the
BET method should only be made in the partial pressure range of about
0.05 to 0.4.

In the following example, the starting point of the evaluation is the sorption
isotherm already shown in Figure 1.16a.

The aim of the evaluation is first to determine the so-called monolayer capacity in
order to derive from it the inner surface area using the example of the REF material
mainly used in our experiments.

Equation (1.51) is the equation of the adsorption isotherm or moisture storage
function in [m3/m3] for the REF material. Indicated are the coefficients A, a, b,
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and c to be used. The inverse function 𝜑𝜃(𝜃) is given as Eq. (1.52) with the same
coefficients.

𝜃𝜑(𝜑) = a ⋅
1[(

A
𝜑

)c

− 1
] 1

b

(1.51)

A = 1.065 a = 0.0197 b = 1.70 c = 0.43

𝜑𝜃(𝜃) = A ⋅
[(a

𝜃
+ 1

)b
] −1

c

(1.52)

The Eq. (1.53) is the well-known basic equation of the BET method, derived
or explained in the previously given publications. By varying the parameter C,
the course of the curve can be adapted to given sorption measurement results.
Figure 1.17 shows the resulting curves for parameters 1–100 as a function of the
gas partial pressure. One can see the good adaptability to different measurement
results.

n
nmono

= C ⋅ 𝜑
(1 − 𝜑) ⋅ (1 − 𝜑 + C ⋅ 𝜑)

(1.53)

The basic Eq. (1.53) can be transformed into the well-known linear form y(𝜑) =
a + b ⋅ 𝜑 of the Eq. (1.54) as a function of 𝜑. In the left part of the equation, n
corresponds to the sorbed liquid amount, nmono in the right side of the equation cor-
responds to the monolayer capacity. The left part of the Eq. (1.54) is given as y0(𝜑)
with the measurement results of the moisture storage function (1.51) as Eq. (1.55)

𝜑

n ⋅ (1 − 𝜑)
= 1

C ⋅ nmono
+ (C − 1)

C ⋅ nmono
⋅ 𝜑 (1.54)

y0(𝜑) =
𝜑

𝜃𝜑(𝜑) ⋅ (1 − 𝜑)
(1.55)
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Figure 1.17 BET sorption curves according to Eq. (1.53) as a function of parameter C.
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It is generally assumed that the BET Eq. (1.53) is valid up to a relative partial pres-
sure of about 0.40 for surfaces. At higher partial pressures, the process results in
overemphasized adsorption.

From the measured value curve resp. sorption isotherms 𝜃𝜑(𝜑), now two points
𝜑1∕y0(𝜑1) and𝜑2∕y0(𝜑2) are taken in the mentioned partial pressure range to deter-
mine the axis intercept y00(𝜑1, 𝜑2) of the straight line y0(𝜑). The following values
were used:

𝜑1 = 0.15 y0(𝜑1) = 10.56 𝜑2 = 0.35 y0(𝜑2) = 20.51

y00(𝜑1, 𝜑2) results from

y00(𝜑1, 𝜑2) = y0(𝜑2) −
y0(𝜑2) − y0(𝜑1)

𝜑2 − 𝜑1
⋅ 𝜑2 (1.56)

From Eq. (1.57), the coefficient b is obtained as the slope of the straight line
Eq. (1.54). Using the intercept y00, the curve parameter C is then obtained from
Eq. (1.58).

b =
y0(𝜑2) − y0(𝜑1)

𝜑2 − 𝜑1
(1.57)

C = b
y00(𝜑1, 𝜑2)

+ 1 (1.58)

For the REF material (resp. the curve in Figure 1.16a corresponding to the
black curve in Figure 1.19) the following values are obtained:

y00(𝜑1, 𝜑2) = 3.1 b = 49.74 C = 17.0.

With C known, nmono is obtained from Eq. (1.59):

nmono = 1
C ⋅ y00(𝜑1, 𝜑2)

(1.59)

For the REF material, nmono = 0.019 [m𝟑/m𝟑]. The inner surface area ABET we are
looking for follows from Eq. (1.60):

ABET =
nmono ⋅ NA ⋅ Amolecule

nmol
(1.60)

with the Avogadro number NA = 6.022 ⋅ 1023, the molar volume for water nmol, and
the area occupied by a water molecule (according, for example, to [38]) Amolecule =
11.4 ⋅ 10−20. For the REF material under consideration, the inner surface area of the
REF material we are looking for amounts to:

ABET = 7.24 ⋅ 107 [m2∕m3] = 72.4 [m2∕cm3] 𝜑𝜃(nmono) = 0.20

In Figure 1.18, the resulting curves n∕nmono according to Eq. (1.53) and the REF
sorption isotherm divided by the value nmono (red curve) are compared. Very good
agreement is seen, generally up to a relative partial pressure of about 0.40.

For comparison, the inner surface ABET of the red curve in Figure 1.19 was
also determined according to the steps shown previously. The following values were
obtained, from which one can see the suitability resp. precision of the BET method:

C = 9.1 nmono = 0.020 𝜑mono = 0.25 ABET = 76.4 [m2∕cm3]
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Figure 1.19 Sorption isotherm for the REF material according to Figure 1.16a (black
dotted) and sorption isotherm (red) with slightly lower water absorption up to p∕pS = 0.40
with respect to a computational comparison of the monolayer capacity.

In their 1969 publication [39], Brunauer et al. propose an extension of
their BET method in which the vapor partial pressure is multiplied by a factor
k < 1.0 in the linear basis Eq. (1.54). This can be used to extend the agreement to
measured values beyond the relative partial pressure of about 0.40. Pavlik et al. [40]
apply the modified procedure to comparative modeling of sorption isotherms of
different building materials and find improved agreement. As a criticism, there
is no physical justification for the extended BET method, and thus this extended
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equation is merely an empirical equation for modeling sorption isotherms, see also
Rouquerol/Sing [29]/section 5. In contrast, the classical BET method is sufficient
for determining the internal surface area of materials.

1.4.3.2 Total Internal Surface Determined by the Method of Adolphs and Setzer
The Adolphs/Setzer method for determining the internal surface area of a porous
material is described in Adolphs/Setzer [30, 41], and [42]. It can be applied to differ-
ent gases and different material surfaces.

The following shows what results are obtained with respect to the internal surface
area when water vapor sorption isotherms are used for its determination. This also
results in a comparison to the BET method.

Adolphs/Setzer assume the following equation:

Φ = nads ⋅ Δ𝜇 (1.61)

Φ is used to describe a change in surface free energy upon sorption of gas molecules,
here specifically water vapor. Φ is defined by Adolphs/Setzer as “Excess surface
work.” In Eq. (1.61), nads is the sorbed liquid mass, andΔ𝜇 is the change in chemical
potential corresponding to Eq. (1.62).

Δ𝜇 = RT ⋅ ln
(

p
pS

)
[J∕mol] (1.62)

After introducing the sorbed water of sorption isotherms 𝜃𝜑(𝜑), the corresponding
excess surface work equation follows from Eq. (1.61).

Φ(𝜑) = RT ⋅ ln(𝜑) ⋅ 𝜃𝜑(𝜑) (1.63)

According to the method of Adolphs/Setzer, the low point of the curve 1.63 corre-
sponds to the value nmono resp. 𝜃mono.

Accordingly, if we first evaluate the red curve of Figure 1.20 with respect to the
(red) sorption isotherm of Figure 1.19, we obtain for T = 293.15 the following
values:

𝜃mono = 0.020 𝜑𝜃(𝜃mono) = 0.219

These results agree well with the values determined after BET procedure.
From Eq. (1.62), we get then with 𝜃mono the relation for Δ𝜇0 :

Δ𝜇0 = RT ⋅ |ln(𝜑𝜃(𝜃mono))| (1.64)

The remarks of Adolfs/Setzer show that nn(𝜑𝜃) = nads∕nmono lead to Eq. (1.65).

nn(𝜑𝜃) = 1 − ln
[RT ⋅ |ln(𝜑𝜃)|

Δ𝜇0

]
(1.65)

From (1.65), nn(𝜑𝜃) = 1 can be used to derive the value for Δ𝜇0 resp. Eq. (1.64). Sub-
stituting the previously calculated value 𝜑𝜃(𝜃mono) = 0.219, we obtain the following
values:

nn = nads∕nmono Δ𝜇0 = −3.703 ⋅ 103 nn(𝜑𝜃(𝜃mono)) = 1
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Figure 1.20 Excess surface work curves according to Eq. (1.63) for the adsorption
isotherms according to Figure 1.19. The low points give the values for nmono and 𝜃mono ,
respectively.

If, on the other hand, the same calculation is performed for the (black dotted)
sorption isotherm according to Figure 1.19 with its equation 𝜑𝜃(𝜃) according to
Eq. (1.52), the following values result with the black dotted determination curve
according to Figure 1.20:

𝜃mono = 0.013 𝜑𝜃(𝜃mono) = 0.081.

The corresponding internal surface area for this according to Eq. (1.60) is
AAdolphs = 49.6 [m2/cm3] and is thus significantly lower than the reference value
ABET = 72.2 [m2/cm3] according to BET.

The data of other authors on the internal surface area of mortar products similar
to the material considered here amounts to at least 30 [m2/g] corresponding to at
least approx. 65 [m2/cm3], so that the calculated approx. 50 [m2/cm3] appears too
low. The reason for this would require a more detailed analysis.

Figure 1.21 shows the comparison of the resulting curve nn(𝜑𝜃) and the associ-
ated sorption isotherms related to nmono. Agreement between the curves is obtained
up to a partial pressure of about 0.25.

1.4.4 Calculation of the Pore Size-Dependent Distribution of the Inner
Surface Using the Moisture Storage Function

Although the relationships and results presented below are specific to the reference
REF material, they are applicable to other porous materials with known moisture
storage functions. The explanations show the calculation of the course of the inner
surface as a function of the relative partial pressure or the pore-radius distribution,
which is also calculated, using the moisture storage function resp. the adsorption
isotherm as a starting point.
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Figure 1.21 Comparison of the curve nn(𝜑
𝜃
) calculated according to Adolphs/Setzer with

the sorption isotherms related to nmono.

Furthermore, the distribution of the different moisture fractions surface sorbate
and capillary condensate are also calculated in dependence of the relative partial
pressure.

1.4.4.1 Determination of the Net Sorptive Storage Function
Figure 1.22 schematically shows that the original sorptive isotherm resp. moisture
storage function, for example, of the material REF in Figure 1.16a is not very
suitable for a more accurate determination of the pore size distribution or for the
determination of the course of the inner surface. This is because the function value
𝜃Isoth(𝜑1) associated with a 𝜑1 has not only the content of condensed water at 𝜑1,
but additionally the water adsorbed on the inner surface of the pores in the not yet

θR(φ1)

θ(φ)

θIsoth(φ1)

r(φ1)
rR(φ1)

φR(φ1)
φ1

Figure 1.22 Schematic representation of a cylindrical pore with increasing radius as well
as the meniscus associated with a selected relative partial pressure 𝜑1 and the associated
surface film of thickness t(𝜑1) in the non-water-filled pore region.
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filled region before a meniscus. Therefore, the curve without the sorbed fraction
must be determined first.

The determination of this “net storage function” can be done by first calculating
the pore-size distribution from the original isotherms as shown below, and then
using the sorbed surface fraction to calculate the net storage function we are looking
for. This procedure is described in further detail below in Section 1.4.6.3. First, an
approximate equation is used. Comparison calculations show that the following
Eq. (1.66) gives the net storage function with a very good approximation:

𝜃𝜑N (𝜑) = 𝜃𝜑(𝜑) ⋅ 𝜑0.5 (1.66)

The net storage function is given in Figure 1.23a as a function of 𝜑 = p∕pS as a line
𝜃𝜑N (𝜑). In addition, the “exact” curve [𝜃(𝜑) − ΔWh(𝜑)] is given, resulting from the
calculation of the internal surface area and vapor sorption curve still shown below.
There is very good agreement between these curves of the net storage function.

In Figure 1.23b, the required curves are given as a function of r and the pore
radius rR. The reference curve 𝜃r(r) is calculated with the (here abbreviated) Kelvin
equation (1.67) plus (1.68) from 𝜃𝜑(𝜑(r)).

𝜑(r) = exp
(M𝛾

r

)
(1.67)

M𝛾 = −
V L ⋅ 2 ⋅ 𝛾L ⋅ cos(𝜃)

R ⋅ T
(1.68)

However, in order to determine realistic progressions of the inner surface on the
basis of the net storage function, not a dependence on the mean pore radius r should
be used, but the dependence on the “real” mean pore radius rR = r(𝜑) + t(𝜑) ⋅ 10−9.
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Figure 1.23 Measured sorption isotherm 𝜃𝜑(𝜑) of the sample material REF and its
accurate formulation 𝜃𝜑(𝜑) − ΔWh(𝜑), furthermore the net storage functions 𝜃rR_N(rR)
(= 𝜃r(rR) in figure (b)) calculated from Eq. (1.66). (a) Relative to vapor partial pressure.
(b) Relative to the effective “real” pore radius rR.
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This net storage function, which depends on the effective radius, is plotted in
Figure 1.23b as 𝜃rR_N (rR).

The net storage function calculated on the basis of the internal surface
area via vapor sorption is obtained from Eq. (1.89), also shown in Figures 1.23a
and 1.32.

1.4.4.2 Basic Equation for the Pore Size-Dependent Distribution of the Inner
Surface
For a given radius rR, the net storage function exhibits the volume increase
d𝜃(rR)∕drR. The volume of associated pores with largely unknown pore shapes
can be generally formulated as kV ⋅ r3

R, the associated internal surface area of
these pores as kA ⋅ r2

R.
The associated internal surface area increment is then equal to the theoretical

number of pores of radius rR in the pore area drR, to be calculated from the associated
volume increment divided by the formulated pore volume kV ⋅ r3

R.
The associated surface area increment is then obtained by multiplying the pore

number by its assumed internal surface area kA ⋅ r2
R.

The inner surface area of the pore system between two radii rR1 and rR2 is
then obtained from the net storage function to

A(rR1, rR2) =

rR2

∫
rR1

d𝜃rR_N (rR)
drR

⋅
kA ⋅ r2

R

kV ⋅ r3
R

⋅ drR (1.69)

Of importance now is the question of the pore shape factors to be applied, which can
be combined into a common pore shape factor kp = kA∕kV .

For cylindrical pores, A∕V = 2∕r, i.e. kP = 2, for conical from wide to narrow
pores, A∕V would be ≈ 1.01∕r, for spherical pores A∕V = 3∕r. Ridgway et al. [43], in
modeling pore-size distributions, shows that by incorporating conical pore shapes, a
better fit to “natural” pore progressions is obtained. Hereafter, kp = 2 is used as the
initial value (the applicable value is determined in Section 1.4.4.4). Equation (1.69)
is then the basic equation for the internal surface area curve for the region
between two pore radii rR1 and rR2 assuming a largely matching pore structure
in the volume region between these two pore radii.

A(rR1, rR2) =

rR2

∫
rR1

d𝜃rR_N (rR)
drR

⋅
1
rR

⋅ kp ⋅ drR (1.70)

1.4.4.3 Application of the Basic Equations with Regard to the Material REF
Application of the basic equation for the calculation of the course of the internal
surface specific calculations of the course of the internal surface of a material based
on the net storage function with the integral (1.70) require the specification of the
lower and upper limits for the area calculation. If the calculation of the total internal
surface area is desired, the approximated water molecule diameter should be used
as the lower bound for water as the initial radius, i.e. rR = 0.30 ⋅ 10−9 [m]. As end
radius or upper limit it is convenient to use the upper limit radius of the mercury
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porosimeter MIP, in the present case 1.50 ⋅ 10−4 [m]. Since the area increment in the
region of the upper radius of the pore system is relatively low for materials such as
the REF used here as the sample material, the error is small if, for example, 1.50 ⋅
10−5 [m] is used instead. The area calculation started from the lower boundary
is then with variable upper boundary radius:

A(rR1) =
1

106

rR1

∫
0.30⋅10−9

d𝜃rR_N (rR)
drR

⋅
1
rR

⋅ kp ⋅ drR (1.71)

For the upper limit rR1 = 1.50 ⋅ 10−5 [m], the pore shape factor kP = 2 gives a total
area for the pattern material REF of A(1.50 ⋅ 10−5) = 109.7 [m2/cm3]. The factor
1/106 in front of the integral gives the conversion to [m2/cm3].

Including a bulk density of the REF material of 2.10 [g/cm3], this basic calculation
yields a total internal surface area of Ai = 52.2 [m2/g].

An alternative calculation can be made by entering the boundaries as a
function of relative air humidity 𝜑. The integral for the course of the inner sur-
face from any lower limit rR(𝜑1) to the upper limit for example 𝜑 ≈ 1.0 is then

A(𝜑1) = 1
106 ⋅

rR(0.99999)

∫
rR(𝜑1)

d𝜃rR_N (rR)
drR

⋅
1
rR

⋅ kp ⋅ drR [m2∕cm3] (1.72)

If rR(𝜑1) = 0.30 ⋅ 10−9 [m] is to be used as lower integration limit, as before in
Eq. (1.71), the corresponding 𝜑1 value must be chosen for this start value with
the help of Eq. (1.80) in such a way that 0.30 ⋅ 10−9 [m] results from it. This value
is 𝜑1 = 0.0116, as the result of the following equation (with t(𝜑) from Eq. (1.50))
shows

rR(𝜑1=0.0116) = r(0.0116) + t(0.0116) ⋅ 10−9 = 3.00 ⋅ 10−10

If one chooses instead approximately 𝜑1(r = 0.30 ⋅ 10−9) = 0.031 according to the
standard Kelvin equation and from this the starting radius rR(𝜑1 = 0.031) = 0.42 ⋅
10−9 [m], the Eq. (1.72) now yields the area 102.1 [m2/cm3] instead of the correct
value 109.7 [m2/cm3].

1.4.4.4 Calibration of the Pore Shape Parameter and Calculation of the
Internal Surface Distribution of the Material REF
In the previously commented basic integrals for the calculation of the course of the
inner surface, the pore-shape factor kp = 2 of a cylindrical pore structure was used.
However, the other theoretical pore shape factors given show that for realistic mod-
eling, pore shape factor 2 is unlikely to be suitable for materials such as the REF
material. It therefore suggests itself to look for a calibration possibility. A calibration
based on MIP measurement results would be conceivable, but preferably based on
the total internal surface area determined according to BET, as shown below.

The pore shape parameter kp is adjusted to kN such that the surface
integration yields the total internal surface area ABET of the pore system as
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determined by the BET method :

kN = kp ⋅
ABET

A(rR1, kp = 2)
= 2.0 ⋅

72.4
109.7

= 1.32 (1.73)

With kN = 1.32 and the lower limit rR(𝜑1 = 0.0116), the Eq. (1.72) now gives a total
inner area of 72.4 [m2/cm3]. With kN = 1.32, also the Eq. (1.71) yields this total
internal area related to 1 [g] corresponding to Ai = 34.5 [m2/g].

It was also tested whether a calibration of the pore structure parameter was possi-
ble via the results of mercury intrusion porosimetry (MIP) measurements also leads
to the target. The measuring range of the mercury porosimeter MIP used is 1.8 ⋅ 10−9

to 1.51 ⋅ 10−4. However, the internal surface area calculated by the porosimeter for
this measurement range scatters between 8.5 and 12.5 [m2/g] for the material REF,
for example, in successive manufacturing series despite strict manufacturing quality
control and little scattering of other properties.

The integration with Eq. (1.71) over the pore measurement range of of the
MIP based on a mean MIP measurement result of 10.0 [m2/g] leads after a
kMIP–determination analogously to Eq. (1.73) to the lower lines in Figure 1.24a,b,
which do not satisfactorily represent the surface progression.

It should be noted that the pore shape parameter is used for the
entire inner surface. However, the calculations for sorptive moisture storage
subsequently based on this type of surface calculation yield satisfactory and com-
prehensible results. A further refinement of the modeling of the course of the inner
surface could be achieved by adjusting the pore shape parameter section by section.
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Figure 1.24 Course of the inner surface of the reference material REF above a given “real”
pore radius rR calculated via the net storage function with Eq. (1.71) as well as depending
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For this purpose, an additional evaluation of adsorption isotherms of representative
material compositions would be necessary, for example, for cement paste with a
low W∕C value with regard to the gel-pore structure and the possibly deviating
pore-structure parameter.

1.4.4.5 Distribution of the Volume of the Internal Adsorbed Water Films
The results presented in Sections 1.4.2 to 1.4.4 on the sorption of water vapor or water
molecules, especially on the inner surface of the pores of porous materials, as well as
the knowledge of the course of their inner surface, now allow to obtain quantitative
results on details of moisture storage, i.e. on the proportional extent of sorption and
condensation.

Volume fractions of the moisture storage function from surface sorption
can be determined as a function of relative air humidity 𝜑 or pore radius rR(𝜑)
by multiplying inner surface area by the corresponding adsorption layer thickness.
Note that film thicknesses occupy a smaller volume ΔV(𝜑r) than on the same
planar surface ΔV(𝜑) for a given film thickness t(𝜑), by a factor kh(𝜑), the value of
which can range from 0.5 to 1.0, due to curvature on the inner surfaces. From this
follows the adsorbed volume:

ΔV(𝜑) = ΔA(𝜑) ⋅ t(𝜑) ⋅ kh(𝜑) (1.74)

Depending on the mean net pore radius rR(𝜑) and the corresponding film thickness
t(𝜑) (film thickness in [m] ≤ 0.5 ⋅ rR(𝜑)), kh(𝜑) can be estimated to

kh(𝜑) = 1 − t(𝜑)
2 ⋅ rR(𝜑)

(1.75)

The previously determined pore shape parameter kN states that the mean pore
shape deviates significantly from a cylindrical shape. kh(𝜑) can be additionally
adjusted by considering the pore shape parameter kN .

kh(𝜑) is then more generally given by t(𝜑) in [m]:

k1h(𝜑) =
1

1 + (kN − 1) ⋅ t(𝜑)
rR(𝜑)

(1.76)

When the ratio of the film thickness to the respective pore radius is low or for flat
surfaces k1h(𝜑) takes the value 1, when the film thickness reaches the pore radius,
the value of 1∕kN .

Based on the Eq. (1.72), which calculates a fraction of the internal surface area
between a chosen 𝜑1 and 𝜑 = 1.0, the following Eq. (1.77) is obtained to deter-
mine a stored moisture volume resulting from a condensate film of constant
thickness t(𝜑1) in [m] on the internal surface area captured by the integral,
which is bounded by the two chosen pore radii rR(𝜑1) and rR(𝜑2) (as lower and upper
integration limits).

k1h(𝜑) within the integral accounts for the curvature influence from Eq. (1.76) of
the inner surface. The included radius rR is variable within the integral and must not
be made dependent on 𝜑1 there, while t(𝜑1) is constant here according to the value
before the integral. t(𝜑1) (if necessary from Eq. (1.50) must be entered in [m].
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kN is the pore shape factor calibrated for the considered material via BET.

ΔV(𝜑1) = t(𝜑1) ⋅

rR(𝜑2)

∫
rR(𝜑1)

d𝜃rR_N (rR)
drR

⋅
1
rR

⋅ kN ⋅ k1h(𝜑1) ⋅ drR [m3∕m3] (1.77)

1.4.5 Equations for Capillary Condensation Considering Adsorbed
Liquid Films

In Section 1.3.2, the mechanism of capillary condensation was described, and it was
shown how the famous Kelvin equations (1.37) and (1.38), respectively, can be deter-
mined. If one now determines the associated mean pore radius for a given external
relative air humidity or, conversely, the associated air humidity from a given pore
radius, one commits an error, at least formally, due to the fact that the meniscus
radius is reduced by the liquid layer sorbed on the inner surface, and this results in
a relative air humidity that is smaller than that belonging to the real pore radius, see
Figure 1.25a.

Therefore, the Eqs. (1.37) and (1.38) are to be expanded with the local film thick-
ness to the “real” pore radius rR

rR(𝜑) = r(𝜑) + t(𝜑) (1.78)

with r = Kelvin radius and t(𝜑) = film thickness in [m].
Alternatively, Eq. (1.78) can be expressed by the following equation:

rR(𝜑) =
M𝛾

ln(𝜑)
+ t(𝜑) in [m] (1.79)
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Figure 1.25 (a) Cylindrical capillary pore with meniscus and sorbed layer thicknesses at
the pore walls t(𝜑) in front of and t1(𝜑) behind the meniscus. (b) Functions of vapor
pressure-dependent pore sizes r(𝜑) according to Kelvin equation (1.37) and real size rR(𝜑)
according to Eq. (1.79) considering sorption layer thickness.
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with the constant M𝛾 from (1.68) for constant temperature T.
If for a real radius rR one searches the associated but initially unknown

relative humidity 𝝋(rR), one can proceed iteratively using the following equation:

𝜑(rR) = e
M𝛾

(rR−t(𝜑)) (1.80)

For a radius rR of 1.0 nm, 𝜑(r) = 35% and 𝜑(rR) = 23%, for rR = 2.5 nm follows
𝜑(r) = 66% and 𝜑(rR) = 59% RH, compare Figure 1.25b.

1.4.6 Modeling of Adsorption Film Thicknesses

In the following, it is first investigated to what extent the basic isotherm for
non-porous hydrophilic surfaces worked out in Section 1.4.2 can also be derived or
approximated on the basis of thermodynamic approaches.

Furthermore, it is investigated to what extent the film thicknesses formed depend
on the curvature of the surfaces and which film thicknesses can be formed in the
pores within porous materials.

1.4.6.1 Modeling of Vapor Adsorption on Flat Nonporous Surfaces
The basis function equation t(𝜑) (Eq. (1.50)) indicates to what extent a sorption layer
or film of water molecules can be deposited on flat surfaces of mineral solids. The
surface tension at the surface of the film, which may be several molecule layers thick,
decreases from the surface tension of the solid 𝛾SV to the surface tension of water 𝛾L
as a function of the distance from the surface and of the relative humidity above
the film. Figure 1.26 of Wu/Zandavi/Ward [44] shows this for water vapor and for
heptane when acting on silicon surfaces.

By Adolphs/Setzer [30] and Churaev et al. [45] and others, the energy change
occurring during film formation is described by the already quoted Eq. (1.61) and
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Figure 1.26 Course of surface tension or surface energy in sorption films upon exposure of
a silicon surface to water vapor or heptane as a function of relative partial pressure. Source:
Wu/Zandavi/Ward [44]/Royal Society of Chemistry.



1.4 Sorptive Storage on Material Surfaces and on the Inner Surface of Pore Systems 39

the corresponding vapor pressure-dependent change in chemical potential (1.62),
respectively, as follows:

Δ𝜇 = RT ⋅ ln
(

p
pS

)
[J∕mol] (1.81)

At the same time, it must be possible to express the chemical potential in terms of
the layer thickness itself, compare Adolphs/Setzer [30] and Churaev et al. [45]:

Δ𝜇 = Δ𝜇0 ⋅ exp
(
−

nads

nmono

)
= Δ𝜇0 ⋅ exp

(
− h

hm

)
[J∕mol] (1.82)

Where nads = adsorbed liquid volume of the layer, nmono =mono layer volume,
h and hm = nads∕V L and nmono∕V L, respectively, V L =molar volume of the liquid
(water).

Since the change in chemical potential is also accompanied by a change in pres-
sure (compare Eq. ((1.36)), Eq. (1.82) can also be rewritten as an equation for the
“separating pressure” resp. “disjoining pressure” to (see Churaev et al. [45]) for
flat surfaces:

𝜋(h) = 𝜋0 ⋅ exp
(
− h

hm

)
[Pa] (1.83)

The chemical potential in the sorption film must be in equilibrium with the vapor
pressure according to Eq. (1.81):

Δ𝜇0 ⋅ exp
(
− h

hm

)
= RT ⋅ ln(𝜑) with 𝜑 =

p
pS

(1.84)

The initially unknown Δ𝜇0 must be determined via additional boundary conditions.
We now pretend that Δ𝜇0 is to be determined in such a way that the isotherm
Eq. (1.84) for the relative humidity 𝜑mono = 0.219 takes the value nmono, which
corresponds to the sample sorption isotherm t(𝜑). Resolving Eq. (1.84) to h yields
the layer resp. film thicknesses on flat surfaces as h = hplane:

hplane(𝜑) = hm ⋅
(

ln
(Δ𝜇0

RT

)
− ln(ln(𝜑))

)
= hm ⋅ ln

( Δ𝜇0

RT ⋅ ln(𝜑)

)
[m]

(1.85)

Equation (1.85) is first used to determine Δ𝜇0. With hm =mono layer thickness
= 0.30 [nm] and hplane(𝜑mono)∕hm = 1 it follows:

Δ𝜇0 = RT ⋅ ln(𝜑mono) ⋅ exp(1) = −1.006 ⋅ 104 at T = 293.15 [K] with

exp(1) = e = 2.718.

Calculating now with this the resulting isotherm from Eq. (1.85), we obtain the
curve hplane(𝜑) shown in Figure 1.27 in comparison to the isotherm t(𝜑) from
Eq. (1.50) according to [Franke]. There is surprisingly good agreement between the
two curves.
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Figure 1.27 Comparison of sorption isotherms for plane surfaces of water vapor on
mineral solids: hplane according to Eq. (1.85) as well as the experiment-based basic isotherm
according to Eq. (1.50).

1.4.6.2 Modeling of Sorption Film Thicknesses in Cylindrical Pores
with Influence of Surface Curvature on the Thicknesses of Adsorbed Films
On concave surfaces of the inner wall of cylindrical pores influences not only
the vapor pressure on the adsorbed film thicknesses but also an additional pressure
from the surface tension of the curved sorbed liquid film, shown in Figure 1.28a.
At equilibrium, the additional pressure component is Δp in [Pa] (Figure 1.28b).
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Figure 1.28 (a) Cylindrical capillary pore with meniscus and sorbed layer thicknesses at
pore walls t(𝜑) in front of and t1(𝜑) behind the meniscus (b) functions of vapor pressure-
dependent pore sizes r(𝜑) according to Kelvin equation (1.37) and real size rR(𝜑) according
to Eq. (1.79) considering sorption layer thickness.
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The total pressure in the sorption layer can then be expressed as a change in chem-
ical potential starting from the disjoining pressure for a concave curved surface.

ΔGL = V L ⋅ (𝜋(h) − Δp) = −RT ⋅ ln
(

p
pS

)
(1.86)

In contrast to the explanations of Churaev et al. [45] or Mattia et al. [46], here Δp
has a negative sign, since the pressure reduction in the liquid film must lead to a
reduction in the chemical potential.

Using the relations (1.83) and (1.84), it follows after transformation

Δ𝜇0

RT
⋅ exp

(
− h

hm

)
=

𝛾L

(rR − h(𝜑))
⋅

V L

RT
+ ln(𝜑) (1.87)

After logarithmizing and transforming this equation, we obtain the relation for the
resulting film thickness:

h(𝜑, rR) = hm ⋅

[
ln

(Δ𝜇0

RT

)
− ln

(
+

𝛾L ⋅ V L

(rR − h) ⋅ RT
+ ln(𝜑)

)]
⋅ 109 [nm]

(1.88)

When calculating h(𝜑, rR), note that in the right part of the Eq. (1.87), h is also
included. Therefore, in the 1st step, one calculates h(𝜑, rR)with an initial value h = 0
or h = t(𝜑). One then repeats the calculation at least twice by inserting the result
value h(𝜑, rR) of the equation into its right-hand part and then obtains a sufficiently
high accuracy.

The disjoining-pressure part𝜋(h) in Eq. (1.86) is calculated in a number of pub-
lications using the Hamaker constant AH . This constant describes the interaction
between the involved molecules of solids and liquids and the influence of oppos-
ing material surfaces. The Hamaker constant AH in the size of about 10−20 is in
fact only approximately constant, compare literature Israelachvili [28]. The disjoin-
ing pressure fraction 𝜋(h) in Eq. (1.86) formulated with the help of these constants
can consist of up to three fractions depending on the physical influence taken into
account with several physical parameters also known only approximately, compare
calculations for example in literature Jing Li et al. [47] or the extensive explanations
in Teletzke and Davis de L.E. Scriven [48].

This means that the calculated disjoining pressure values or resulting film thick-
nesses are also approximate values. Therefore, no further comments are made here
with reference to the cited literature. However, the film thicknesses calculated in the
manner described above obviously give a reliable indication of the existing dimen-
sion. Mattia et al. [46] also investigate the stability behavior of water films on the
inside and outside of nano-capillaries made of quartz and carbon material. They use
a Hamaker constant to model the disjoining pressure fraction and neglect the radius
influence of the sorption layer thickness h(𝜑) or t(𝜑) on the growth of the films.
Results on the behavior for convex cylinder surfaces are not reported.

On the convex outer surface of cylindrical material shapes, Eq. (1.86) also
applies, but in this case, Δp must be given a positive sign, since now the surface
tension generates a surface pressure. For the calculation of the corresponding
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h(𝜑, rR), Eq. (1.87) also applies, whereby a minus sign must now be inserted before
the term with 𝛾L. Proceed accordingly in Eq. (1.88). The calculation procedure then
also corresponds to the procedure for concave surfaces.

The results of the film thickness calculations for concave and convex sur-
faces are shown in Figures 1.29a,b and 1.31. In Figure 1.29a,b, the film thickness
profile is shown for cylindrical pores with constant radii of 2, 5, and 20 [nm] (and
open ends) and corresponding external surfaces, respectively, as a function of rela-
tive humidity.

It can be seen that the film thickness at the inner surface of the pores increases
faster with increasing relative humidity than for the reference curve plotted for flat
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Figure 1.29 (a) Influence of surface curvature resp. radial tensile stress on adsorbed film
thickness corresponding to Figure 1.28b in cylindrical pores at increasing RH compared to
the film thickness function hplane ≈ t(𝜑) for water vapor on flat surfaces (constant real pore
radius rR = 2, 5, and 20 [nm]). (b) Influence of increased external vapor pressure on convex
external surface of cylindrical material shapes compared to film thickness function
hplane ≈ t(𝜑) for water vapor on flat surfaces.
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Figure 1.30 (a) Relative air humidities 𝜑 at which filling of cylindrical pores by condensed
water occurs : In pores open at both ends up to radius of about 5 [nm] by collapse of inner
surface film (calculated by Eq. ((1.88)), in pores closed at one end by classical capillary
condensation from rR ≈ 1.5 [nm] for comparison. (b) Experimental results from [49] on the
dependence of capillary condensation pressure and evaporation pressure on the pore radius
in parallel cylindrical siliceous pores of MCM-41, for argon at 77 K.

surfaces for comparison hplane ≈ t(𝜑). Figure 1.29a also shows clearly that, espe-
cially in the smaller pores, film formation changes relatively spontaneously to
pore filling in the sense of capillary condensation.

As the calculation results according to Eq. (1.88) show, this occurs according
to Figure 1.30a for cylindrical pores open on both sides up to a radius rR of approx.
5 [nm] or an associated relative air humidity of up to approx. 85%. The comparison
with cylindrical pores closed on one side, where a meniscus forms early starting from
the closed end of the pore, using the extended Kelvin equation (1.80) in Figure 1.30a
shows that capillary condensation starts earlier in such pores for a given pore radius
rR at lower vapor pressures or 𝜑 values as a function of the pore radius.

According to these results, for example, an initially empty longer cylindrical pore
with a radius of 2 [nm] open at both ends fills completely with condensed water at
about 𝜑 = 62%, whereas the cylindrical pore closed at one end fills already at 𝜑 ≈
50%. If we look at the desorption behavior of the pore open at both ends after filling,
menisci now form at both ends, so that the onset of desorption corresponds to the
blue curve in Figure 1.30a.

This results in a hysteretic adsorption–desorption behavior of such pores,
which becomes more pronounced with increasing pore radius. The extent to which
this mechanism is relevant to porous materials such as cement paste is discussed in
Section 4.4.2.

If one considers the film thicknesses at the outer surface of cylindrical
forms, the calculation yields the opposite result shown in Figure 1.29b. According
to this, the film thicknesses are lower than for the reference curve t(𝜑), especially
at the smaller radii, as expected. There is no instability here up to relative vapor
pressures of 𝜑 = 1.0. For this, vapor supersaturations 𝜑 > 1.0 are necessary, which
can only exist under exceptional boundary conditions. For a surface radius of 2 [nm],



44 1 Surface Energetic Principles for Moisture Storage in Porous Materials

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5
0 5 10 15 20

Pore radius [nm]

R
e
la

ti
v
e
 l
a
y
e
r 

th
ic

k
n
e
s
s
 [
–
]

25 30 35 40

Internal p/ps = 0.40

External p/ps = 0.40

hplane

p/ps = 0.75

p/ps = 0.90

p/ps = 0.75

p/ps = 0.90

45 50

Figure 1.31 Comparison of relative film thicknesses on the inside of cylindrical pores and
the outside of cylinders, taking into account capillary pressure (suction), as relative values
related to the corresponding adhesion film thicknesses from water on a flat mineral surface
(as a function of radius).

instability results at a 𝜑 value of 1.3, and for a radius of 5 [nm], instability results at 𝜑
about 1.1.

It was further investigated the radius dependence of film thicknesses in more
detail for three selected relative vapor pressures, p∕pS = 0.40, 0.75, and 0.90. The
calculation results are plotted relative to the layer thickness of the reference curve
t(𝜑) radius-dependent in Figure 1.31. One can see the strong tendency for increasing
thickness differences at radii below about 10 [nm].

1.4.6.3 Volume of Adsorbed Water in the Not-yet-water-filled Pore Area
In the case of partial water saturation of the material, the Eq. (1.77) can be used
to determine, for example, the amount of water adsorbed in the not-yet-filled
pore region at different degrees of filling at the inner surface as a function of the
relative air humidity 𝜑1.

For a given air humidity 𝜑1, Eq. (1.77) with lower limit rR(𝜑1) and upper limit
rR(𝜑2) = rR(0.9999) gives the adsorbed water volume stored in the unfilled pore
region, denoted here by ΔWh(𝜑1).

The rR-values of the integration limits for chosen 𝜑 are obtained from Eq. (1.79).
The dotted curve (color pink) in Figure 1.32 shows the calculated variation

of sorbed moisture at increasing filling level or lower limit𝜑1. At𝜑 = 1, the sorbed
volume is equal to 0, as expected, and exhibits the maximum at 𝜑 ≈ 20% RH.
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Figure 1.32 The adsorption isotherm of the material REF, the derived net storage
function, and the curve of adsorbed vapor molecules from 𝜑1 to 𝜑2 ≈ 1.0 (pink dotted) in
the non-water-filled pore region.

The net storage function, which is important for all calculations of the internal
surface area and moisture storage fractions, is calculated from the original storage
function or adsorption isotherms by subtracting the fraction of the sorbed volume
in the not yet filled pore region according to the following relation corresponding to
Figure 1.23a:

𝜃N (𝜑) = 𝜃𝜑(𝜑) − ΔWh(𝜑) (1.89)

In Figure 1.32, this yields the blue dotted curve as the net storage function for
the material REF considered as an example, calculated with the inner surface
sorption. The dotted blue curve also included in the figure corresponds to
the approximate curve used in Eq. (1.66) in Section 1.4.4.1.

The curve 𝜃rR_N (rR) in Figure 1.23b is the net storage function Eq. (1.89) after
conversion to rR.

1.4.6.4 Film Thicknesses Due to Adsorption in the Water-filled Pore Region
Behind the Meniscus, Estimation Using a Surface Energy Approach
In the large number of publications dealing with the question of film thicknesses

on the inner surface of porous materials, the film thicknesses in the not yet
water-filled pore region of the pores are always considered. The question of film
thicknesses in the liquid-filled pore region behind a meniscus is not addressed, or
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Figure 1.33 Schematic representation of capillary condensation in two different pore
shapes with the assumption that the sorption film thickness behind the meniscus in the
already water-filled pore region corresponds to the film thickness in front of the meniscus.
(a) From Ahlgren [9]. (b) From Zhang et al. [50].

it is assumed that molecular layers sorbed there correspond to the total thickness
in the nonliquid-filled pore region in front of the meniscus, compare the examples in
Figure 1.33a,b from [9] and [50].

The international investigation results summarized in Section 1.4.7 largely agree
in the statement that due to sorption of water molecules and ions in aqueous
solutions film thicknesses of high toughness at least about 2 monolayers thick are
formed. A consideration of this situation in the water-filled pore region behind
the meniscus is therefore necessary, since according to these results, a probable
non-negligible influence in the modeling of moisture transport arises.

To estimate the film thicknesses addressed, a theoretical consideration on film
thickness evolution is given below, which starts from the following Gibbs–Duhem
equation (1.90), derived from the well-known Gibbs energy equation with surface
energy influence and describing the enthalpy at equilibrium for constant tempera-
ture and constant external pressure.∑

ni ⋅ dni + A ⋅ d𝛾 = 0 A = surface (1.90)

This equation makes clear the direct relationship between chemical potential and
surface energy, which will be used below.

Dash and Peierls [51] gives the related equation d𝛾 = −n ⋅ d𝜇 with 𝜇 as chemical
potential and n as sorption layer thickness to characterize sorption film thicknesses.
However, concrete layer thicknesses are not derived from Dash.

It is assumed that the chemical potential starting from the solid surface decreases
as follows according to the well-known approach, for example, Churaev/Setzer [52]
or the course of the disjoining pressure approach Eq. (1.83):

Δ𝜇(h) = Δ𝜇0 ⋅ exp
(
− h

hm

)
(1.91)

For this, it is necessary that the solid surface has a larger surface energy than the liq-
uid or water, according to the condition for spreading given by Eq. (1.10). As shown
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by Wu/Zandavi/Ward [44], compared to Figure 1.26, it is assumed that the surface
energy within the surface film must change from 𝛾SV to 𝛾LV .

The number of moles per m2 area per monolayer is

zm =
hm ⋅ A

VL

With the surface energy 𝛾SV [Nm/m2 = J/m2] of the solid surface A, the associated
change in the chemical potential of the 1st molecular layer related to the molar vol-
ume VL is now formulated as follows:

Δ𝜇0 =
𝛾SV ⋅ A

zm
= −

𝛾SV ⋅ VL

hm
(1.92)

In the present approach, the chemical potential changes from the film thickness
hmax to the value of bulk water 𝛾L, i.e. the chemical potential is reduced by the
value Δ𝜇hmax

:

Δ𝜇hmax
= −

𝛾L ⋅ VL

hmax
(1.93)

Substituting the Eqs. (1.92) and (1.93) into (1.91), we obtain the equation for
the total film thickness hmax sought for a plane solid surface covered
with bulk water:

exp
(
−

hmax

hm

)
=

𝛾L

𝛾SV
⋅

hm

hmax
(1.94)

The results resulting from Eq. (1.94) are explained in the following:
First, the influence of the capillary pressure from the meniscus, which is

to separate the liquid filling in the considered pore region from the not yet
filled pore region, shall still be considered.

Let the capillary suction on the inner pore surface, which depends on the vapor
partial pressure at the concave surface of the meniscus, be denoted by Δpcap(𝜙)
with 𝜙 = p∕pS.

It is assumed that this results in a change of the chemical potential of the liquid
and also in the influence of thickness hmax accordingly:

Δ𝜇1hmax
= −

(
𝛾L

hm
+ Δpcap(𝜙)

)
⋅ VL (1.95)

In it, with Eq. (1.34) and considering the Kelvin equation

Δpcap(𝜙) =
2 ⋅ 𝛾L

rmeniscus(𝜙)
= −RT ⋅ ln(𝜙)

VL

(1.96)

Substituting Eq. (1.96) into Eq. (1.95) and then combining it with Eqs. (1.91) and
(1.92) gives the equation for the film thickness hmax for the inner surface of
water-filled cylindrical pores under capillary suction influence at given vapor
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partial pressure p∕pS = 𝜙 :

exp
(
−

hmax

hm

)
=

(
𝛾L

hmax
+ Δpcap(𝜙)

)
𝛾SV

hm

(1.97)

From the Eq. (1.97), the film thickness can now be estimated as a function of the cap-
illary pressure in filled pores or the relative vapor pressure 𝜙. To solve the equation,
hmax = hm ⋅ x is set. The results can be obtained from Figure 1.34.

The value x = 2.5 molecule layers would be assigned to narrow pores, 4.4 molecule
layers or approx. 1.3 [nm] to planar, water-covered silicate surfaces.

The following values were used for calculation: 𝛾SV = 1.4 [J/m2] for silicate
hydrates and HCP, respectively, 𝛾L = 0.073 [J/m2], hm = 0.30 [nm] or 0.30 ⋅ 10−9 [m]
as monolayer thickness for water, V L =molar volume of the liquid (water).

The measured value given by Zhao et al. in literature [53] for film thicknesses
in bulk-water on muscovite mica is 0.9 [nm], compare Figure 1.39b. The film
thicknesses for water-filled pores estimated here by calculation as a function
of capillary pressure are 2.5–4.4 molecular layers and 0.75–1.3 [nm] for water
on silicates, respectively. From these results, it can be concluded that a simple
“extension” of the film thicknesses determined in the non-water-filled pore
region in front of a meniscus into the water-filled region is not readily
possible and justified. Therefore, the behavior of the film thickness trajectories
assumed in Figure 1.33a,b cannot be adopted in this way, which is supported by
the investigation results in Section 1.4.6.5.
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Figure 1.34 Calculated film thicknesses on the inside of water-filled cylindrical pores via a
surface energy approach. The intersections of the curves with the zero line give the number
x of molecular layers of the sought film thicknesses hmax = hm ⋅ x. For 𝜙 = 0.99 RH: x = 4.4
layers and for 𝜙 = 0.10 RH: x = 2.5 layers.
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1.4.6.5 Volume of Aadsorbed Water Molecules on the Inner Surface
in the Water-filled Pore Area
In Section 1.4.7, results of experimental investigations and molecular-dynamic (MD)
studies are reproduced on the question of adsorbed water-molecule films at the inner
surface in the water-filled pore region.

Reported are, among others, the results of capillary water transport experiments
on nanopores, according to which stable surface films of 0.4–0.6 [nm] thickness (Xu
et al. [54]) or 0.60 [nm] thickness (Gruener et al. [55]) are formed on the inner sur-
faces of the pores. These adsorbed films constrict the pore cross sections and do not
themselves participate in fluid transport.

K. Wu et al. [56] evaluates 50 corresponding studies and finds a nonpartici-
pating film thickness of about 0.7 [nm] and a “dramatic” increase in viscosity
of the adsorbed films at pore diameters ≤ 1.4 [nm].

Antognozzi et al. [57], Zhao et al. [53], and Arai et al. [58] determine using AFM
that tough molecular layers of at least 0.70 [nm] form on surfaces with behavior dif-
ferent from bulk water.

The theoretical consideration undertaken in Section 1.4.6.4 based on the
surface energy of adsorbed films yields a sorption thickness between 2.5 and 4.4
molecular layers, on average order of magnitude 0.90 [nm].

Knowing the sorption film thicknesses in the water-filled pore regions is
of high importance for understanding and modeling moisture transport in porous
materials. Therefore, for the sample material REF, it was computationally deter-
mined which water content fraction results in partial or complete water saturation
of the material, if constant adsorption film thicknesses are taken as a basis in the
order of magnitude of the previously mentioned, experimentally and theoretically
determined values.

Film thicknesses tfilm= 0.30, 0.45, and 0.60 ⋅ 10−9= const. [m] were used in the
calculation.

The following relation was used for this purpose:

ΔVfilm(𝜑1) = 𝜃N (𝜑0) + tfilm ⋅ ΔA(𝜑0, 𝜑1) (1.98)

Then, to an initial value 𝜃N (𝜑0) is added the water volume, which is the product of
the film thickness tfilm and the inner surface area ΔA(𝜑0, 𝜑1) between the initial 𝜑0
and the running upper 𝜑1 boundaries. 𝜃N (𝜑0) is the water content of the net adsorp-
tion curve at a pore radius of a water molecule rR(𝜑0) = 0.30 ⋅ 10−9 with 𝜑0 = 0.0116.
ΔA(𝜑0, 𝜑1) corresponds to the area integral (1.77).

For smaller 𝜑 values, the volume from film thickness and surface area partially
exceeds the existing pore volume. It is then set equal to the corresponding volume
of the net storage function.

The result of the calculations can be seen in Figure 1.35. It can be seen that
for a film thickness of 0.30 [nm], the pores are filled with adsorbed water up to
𝜑 ≈ 20%, for a film thickness of 0.45 [nm] up to 𝜑 ≈ 40%, and for a film thickness
of 0.60 [nm] at relative air humidity up to 𝜑 ≈ 55%. These conditions have an
appreciable effect on moisture storage and transport in a pore system, which must
be taken into account when modeling moisture transport.
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Figure 1.35 Adsorption isotherm of the material REF and net storage function and
volume of adsorbed water molecules at the inner surface in the water-filled pore region
with film thicknesses of 0.30, 0.45, and 0.60 [nm]. The net adsorption isotherm shows the
water content of the pore system up to the considered value 𝜑, without the moisture
content adsorbed on the inner surface in the non-filled pore area above.

1.4.7 Molecular Simulations and Experimental Investigations on the
Dimension of Adsorbed Film Thicknesses (International Research
Results)

With the help of computer programs, that simulate via modeling, the interac-
tions between molecules and atoms to their motions, mergers and attachments, it
is possible to estimate the sorption of liquids on solids or resulting film thicknesses.
For years, programs have been used for this purpose, known as MD or MDS as
molecular dynamics simulations, which are further developed for simultaneous
description of chemical reactions under the name molecular mechanics, in the
last stage as reactive molecular dynamics (RMD), which obviously require
very large computational effort, for example, require the use of parallel computers,
compare H.M. Aktulga et al. [59]. An overview of the state of development and
available programs is given by K. Farah et al. [60].

Castrillon et al. [61] reports in his paper the results of MD simulations on
sorption of water films on quartz surfaces. Among other things, the distribution
of density and local potential energy near the surface is also reported. Castrillon,
extending his calculations to water molecule thicknesses corresponding to about 15
monolayers, finds an influence on the water-molecule orientation up to a distance
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of about 1.4 [nm] from the surface and a firmer bond or stiffness (H-bonding) of
the water-molecule layers up to a thickness of 0.4–0.6 [nm].

However, the results of calculations with current computer programs always
require confirmation by the results of experimental investigations:

The development of AFM or surface force apparatus (SFA) technique
now allows additional insight into the formation of film thicknesses at interfaces.
The paper by Israelachvili et al. [62] provides an overview of the status of this devel-
opment up to 2010. In these devices, an upper tip (guided by special piezoelectric
crystals) is gradually moved in small air-conditioned chambers to the material
surface to be tested, which may be covered with a liquid film thickness. The exact
distances are measured using light wavelengths or laser technology.

Figure 1.36 shows schematically the structure of an AFM. The caption pro-
vides more information about the function. A recent overview of the state of AFM
technique can be found from Peng et al. [63]. Problems concerning the interpreta-
tion of the results of conventional AFM technique with tip insertion are discussed
in [64]. An overview of other investigation techniques used, such as NMR and X-ray
techniques, can be found in Monroe et al. [65].

In the work of Xu et al. [54], permeability experiments and subsequent
MD simulations are reported. In particular, transport experiments are performed
on fine porous material of Vycor glass with mean pore diameters of 3.4 and 7.2 [nm]
and on porous quartz material Xerogel with mean pore diameters of 3.4 [nm].
Aqueous solutions with 1M NaCl and 1M CaCl2 are also used for comparison.

AFM cantilever

Si

≈ 1.7 [nm]

0 [nm]
≈ 0.7 [nm]

Tip
Tip

Thin water film

Muscovite mica

Figure 1.36 Schematic representation of the principle of an AFM (atomic force
microscope) inside a temperature and humidity adjustable measuring chamber. A very fine
tip attached to a cantilever is moved over the area of the interface to be measured,
horizontally in 2D or/and vertically in 3D scanning. The tip or curved surface can be guided
into the liquid film in Ångström steps. The path of the tip is measured by a laser apparatus
or a light wave interference system, and the ultra-small forces occurring at the tip are
measured via the spring stiffness of the cantilever. The cantilever can also operate above
the interface with the solid submerged in the liquid. The cantilever can be operated in
static mode or in dynamic mode (near its resonance frequency), in the latter case frequency-
modulated as FM-AFM or amplitude-modulated as AM-AFM. Source: The pictorial elements
shown here are taken from Arai et al. [58]/Springer Nature/CC BY 4.0. The measurements of
Arai et al. were made in saturated water vapor atmosphere on interface to muscovite mica.
The nanometer dimensions given in the figure are measurement results: up to about
0.7 [nm] a tough molecular layer was measured, covered up to about 1.7 [nm], with bulk
water.
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In both the experiments and the MD simulations, respectively, it is found that the
material pores have a 2-layer water-molecule film of about 0.6 [nm], which leads
to a corresponding narrowing of the pores during moisture transport. There were
no significant changes when sodium chloride and calcium chloride solutions
were used.

S. Gruener et al. [55] perform capillary water uptake experiments on Vycor glass
with mean pore diameters of 3.4 and 4.9 [nm]. The analyses revealed surface films
not participating in moisture transport on the order of 2 molecule layers.

Asay and Kim [66] performs infrared spectroscopic ATR (attenuated total
reflection) studies on flat silicate surfaces at 20 ∘C and increases the relative humid-
ity of air and finds that an approximately 3 monolayer thick water film of an “icelike”
nature forms on the silicate surface.

K. Wu et al. [56] evaluates the results of more than 50 different studies
on the question of the formation of water-film thickness using a model based on
Hagen-Poiseuille’s theory to describe water transport in cylindrical pores in the
presence of film thicknesses on the inner pore walls. The theory is applicable to
pore diameters >1.4 [nm], since a dramatic increase in viscosity occurs for smaller
diameters. Wu’s comparative calculations lead to the conclusion that, especially for
pore diameters <10 [nm], there is an increase in viscosity for hydrophilic materials
compared to bulk water, while a large decrease in transport resistance occurs for
transport processes in hydrophobic materials. In hydrophilic materials, according
to Wu, an approximately 0.7 [nm]-thick stable film thickness is formed on the inner
surfaces.

Antognozzi et al. show in [57] results of measurements on thickness-dependent
shear viscosity on a glass/mica combination, determined with a transverse dynamic
force microscope (TDFM). A section of an optical glass fiber with plane-cut surfaces
is used as a tip and guided in dynamic shear motions over water films of differ-
ent thicknesses on a muscovite mica surface. The experiments show, that below
about 0.9 [nm], there is a dramatic increase in shear viscosity or shear stiffness of
the water-molecule layers between the glass surface and the mica.

This increase in stiffness therefore occurs below a film thickness of 0.45 [nm] with
respect to one of the two material surfaces.

Figure 1.37 shows AFM results and MD calculations from Kimura et al. [67].
These analyses were performed at the interface between muscovite mica and an
upstanding 1M KCl aqueous solution. According to the results of Martin-Jimenez
et al. [68], ion concentrations ≤ 1M have only a minor influence on the structure of
the water-molecule layers, compare the following remarks. From the results shown
in Figure 1.37, it can be concluded that a film thickness of 0.45 [nm] was also
present, according to the results of Antognozzi et al. From these results, it can be
concluded that, at least for low-concentrated electrolyte solutions (or pure water), a
primary sorption layer thickness of about 0.45 [nm], already determined by Kimura
et al. and Antognozzi et al., can be assumed. Furthermore, it follows from the
present work that primary layers of greater thickness result at higher electrolyte
concentrations.
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Figure 1.37 Results of 2D force scanning of the muscovite mica material interface
perpendicularly into the overlying 1M KCl aqueous solution using FM-AFM. The left part
schematically shows the crystalline structure of the mica. Below is the microscopic AFM
image of the corresponding surface when scanning the surface. This cleaved mica surface
corresponds to a structural section corresponding to the blue-dashed line in the schematic
structure image above. The right part shows the registered structure in the aqueous
solution above the mica surface. At the muscovite mica/water interface, the water molecule
layer penetrates into the center of the hexagonal structure schematically illustrated on the
left. In the upper layers, fluid water molecule layers are observed, and they show a smaller
correlation with the surface structure. The layers registered by the authors are indicated at
the right edge of the image. The total image height is 1.1 [nm]. The yellow particles in the
sub-image are likely to be K+ ions or hydrated K+ ion complexes adsorbed on the surface.
Source: Kimura et al. [67]/AIP Publishing.

By Martin-Jimenez et al. [68] present further insightful investigation
results on 3D structure at interfaces. Figure 1.38 contains some results of these
investigations and related details. Further results of this work can be reproduced as
follows:

The interaction with the mica is found to have a nearly complete monolayer of
cations at low salt concentrations (0.2M), as indicated by the AFM images. The K+

ions from the solution occupy the positions in the cleaved plane previously occupied
by K+ ions in the bulk mica crystal. The water molecules from the first hydration
layer are tightly bound to the solid surface, occupying the space between the cations.
The second hydration layer is placed 0.25 [nm] above the adsorbed K+ ions and it fol-
lows its atomic corrugation. The water molecules in the 2nd layer are centered on top
of the cations of the first layer, but with a larger lateral spreading. The accompanying
DFC simulation predictions show a significant reduction of the cation coverage of
the mica at low salt concentration.

At higher salt concentrations (3–5M), the interfacial layer has a different structure
and composition. It is thicker and shows a crystal-like structure.

The observed phenomenology is not restricted to KCl solutions. It also applies to
other alkali halide electrolyte solutions.
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Figure 1.38 Three-dimensional AFM-images of muscovite mica/electrolyte solution
Interfaces. (a) 3D AFM image of a KCl (aq.) solution (0.2M KCl). The image shows a
monolayer resp. interface of partial adsorbed K+ ions (light red) topped by two hydration
layers (lighter stripes), following the atomic corrugation of the mica surface. (b) 3D AFM
image of a mica-KCl (aq.) interface (4M KCL). The interface is divided into two main regions:
an ordered liquid layer extending up to 2 [nm] from the mica surface into the bulk solution
above it. These 3D maps show the variations of the phase shift of the tip’s oscillation. The
3D AFM experiments were performed at 300 K. Source: Martin-Jimenez et al. [68]/Springer
Nature.

The results reported by G. Zhao et al. in [53] are particularly remarkable as
well. Figure 1.39a,b shows selected results of the investigations with a SFA 2000
apparatus.

These AFM investigations have the special feature that the conventional tip
configuration was not used, but instead 2 cylindrical surfaces (tube sections with
a radius of 2 [cm]) were arranged in a crossed configuration opposite each other.
Both crossed cylindrical surfaces were covered with a cleaved layer of muscovite
mica. The mutual distance of both surfaces was measured in the AFM in steps
of 0.1 [nm] using the MBI lightwave interference technique FECO, using a video
camera to allow direct monitoring of the surface separation and phase change of
the adsorbed water between two mica surfaces. More Details of the measurements
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Figure 1.39 Measurement results of G. Zhao et al. from [53] on water vapor sorption on
muscovite mica (measured with SFA 2000 measuring apparatus). (a) Time-dependent
evolution of sorption film thickness from water on muscovite mica under constant vapor
pressure. (b): The black squares give the measured values of the formed film thicknesses as
a function of vapor pressure at sufficient distance of the opposing surfaces. When the
surfaces are automatically moved together, part of the original water film is reduced. This
process comes to a halt due to corresponding counterforce at a mutual distance of the
muscovite surfaces in the order of D = 0.90 [nm] after 10 hours, which leads to a layer
thickness of D∕2 = 0.45 [nm] related to each of the two surfaces, if the feed force is not
significantly increased. The solid square symbols indicate the initial thickness of the
measured adsorbed water film at the moment of two mica surfaces contacting together. The
hollow square symbols indicate the film thickness reduced to the light blue area under the
action of the external load schematically shown by the sub-picture below. In the right part
of the figure (b) the corresponding measured value of approx. 0.9 [nm] after approx.10
hours pressure at 80% RH results, when the experiment is carried out in water. This result
also corresponds to an individual layer thickness of 0.45 [nm] per surface. Source: Zhao
et al. [53]/AIP Publishing.

can be taken from Figure 1.39b or the corresponding figure caption. Some relevant
details will be presented here in addition:

After vapor adsorption process, over hours at sufficient distance between the mica
surfaces, the opposing mica surfaces are pressed together with the pressure value
mentioned in the sub-figure of Figure 1.39b. A film of water molecules of thickness
of about 0.45 [nm] is formed under this pressure. The authors describe the state of
this film as similar to solid that cannot flow easily.

In following experiments, the stability of this film under sustained com-
pression was tested. It is found that creeping occurs at which after hours, the layer
thickness was reduced approximately to half. They conclude that the primary layer
(of 0.45 [nm]) of the adsorbed water is unstable under the action of an external load
and its property is similar to an ice-crystal structure that will creep under the action
of an external load even with a smaller pressure.

Separation tests after compression were also performed. In this case, the separa-
tion between two rigid solid surfaces happens without any capillary condensation.
It is found that the adhesion force increases with the relaxation time when the mica
surfaces are bridged by the first layer of the adsorbed water film.
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Figure 1.39a shows the results of time-dependent adsorption experiments: after
10 hours at 60% RH/25 ∘C an adsorption layer thickness of D∕2 ≈ 0.70 [nm] was
formed on the mica surface due to the vapor pressure in the test chamber. These
results on 12 independent measurements, each with new muscovite surfaces, show a
time dependence of the sorption process. Information on the related air/vapor veloc-
ity in the measuring chamber was not provided.

In Section 1.4.6.4, the question was asked at the beginning: Can one really
assume that the sorption film thicknesses at the pore walls to be expected in the
water-filled pore region correspond to the vapor pressure-dependent adsorption film
thicknesses that are present in the open pore fraction not yet filled with water?

From the present book section and the preceding Sections 1.4.6.4 and 1.4.6.5, it is
now clear that there is no correlation between the sorptive film thicknesses
in these two regions. Films from vapor sorption with thicknesses of up to about
1.7 [nm] can be expected at high RH, while in the water-filled region films formed on
the pore walls have a structure deviating from bulk water up to thicknesses of at most
about 0.70 [nm], and which exhibit ice-crystalline properties at thicknesses ≤ about
0.45 [nm]. According to previous findings, this is true for hydrophilic interfaces to
pure water or aqueous electrolyte solutions with concentrations ≤ approx. 1M.

For higher concentrated aqueous electrolyte solutions, significantly higher film
thicknesses must be assumed, compare [68].

The analyses of ion concentrations in the pore solution of HCP from Port-
land cements according to EN-197 yield concentrations of at most ≈ 0.30M,
compare Lothenbach et al. [69] and Kenny/Katz [70]. The vast majority of ions in
the hydrated state of the cements consist of potassium and sodium ions. The ion con-
centration in hydrated hardened cement paste decreases drastically when increasing
amounts of fly ash are used [70].

From the experimental studies, especially by G. Zhao et al. [53], it appears that
mutual compression from opposing surfaces makes the adsorption films thinner, but
they apparently adopt an even more stable consistency.

Therefore, the question is to be asked whether, for example, the decrease in
permeability during a pressure test with high pressures when determining the
hydraulic conductivity can also be attributed to a parallel solidification of formed
adsorption films, compare Section 3.1.8.1.

1.4.8 Influence of Adsorption Films on Meniscus Formation
and on Capillary Pressure in Capillary Pores

In Section 1.3, the basic relationships of fluid uptake in porous materials as a result
of surface energetic conditions were discussed. A distinction was made between
fluid uptake due to capillary suction and fluid storage due to condensation from the
penetrating vapor phase. The investigations in the previous sections showed that
different adsorption layer thicknesses can form behind a meniscus in the
water-filled pore region and in front of the meniscus, which meet each other
in the region of the meniscus.
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At 𝜑 = 50%, according to Section 1.4.6.5, an adsorption film thickness of about
0.7 [nm] is present behind the meniscus, while in front of the meniscus, the adsorp-
tion film thickness from the vapor phase is about 0.50 [nm] (Figure 1.28a). This
raises the question of the consequences for the formation of the meniscus and
its edge angle to the pore surface, and thus for an influence on the capillary pres-
sure. Related to this is the question of fluid storage potential by suction or capillary
condensation.

Numerous publications have investigated what shape the fluid surface of a
meniscus takes at the transition to the pore wall. Cited here are only the papers
by Churaev et al. [52] and Kuchin and Starov [72], from which Figure 1.40a,b were
taken.

In Figure 1.40a, the shape of the menisci at complete wetting (2) and partial
wetting (1) with associated edge angle is given in the figure scale. Furthermore, an
adsorption film he at the pore inner surface of thickness 1.85 [nm] is assumed there.
This is a film thickness present at the basic isotherms for flat surfaces used here at a
relative vapor pressure of 𝜑 ≈ 99% (compare Figure 1.27). The corresponding cal-
culated shapes of the liquid surface at the transition of the meniscus to the pore wall
are given in detail for the partial wetting case in Figure 1.40b.

Particularly in the presence of larger film thicknesses of, for example,
t = 1.5 [nm] (in front of the meniscus), the question remains, despite the theoretical
modeling results of Kuchin (Figure 1.40b), for example, to what extent a force
transfer from a meniscus to the pore wall in the longitudinal direction of the pores
into the membrane surface of the film may be assumed.

This mainly concerns situations where liquids are transported by capillary suction
in a pore system whose pore walls are covered by said liquid film. It must be taken
into account that the liquid molecules below the film surface are largely in the bulk
state in the case of thicker films. Notable forces in the form of shear stresses cannot
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Figure 1.40 Figures and results of modeling from Kuchin et al. [71] and Kuchin and
Starov [72]. (a) Representation of the shape of the menisci in total wetting (2) and in partial
wetting with the corresponding contact angle 𝜃e. (1) (b) Liquid profile in a capillary in the
case of partial wetting in the state of local equilibrium at excess pressure P ≠ Pe; r and 𝜃

are the radius of the spherical meniscus in the central part of the capillary and the new
local equilibrium contact angle (𝜃 ≠ 𝜃e) (1) Spherical meniscus of a new radius r, where
r ≠ re; (2) profile of part of the transition zone at local equilibrium with the meniscus; (3)
flat equilibrium liquid film of thickness he, with old equilibrium excess pressure Pe; (2’) a
flow zone inside the transition region. Source: Kuchin et al. [71] and Kuchin and Starov
[72]/American Chemical Society.
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be transmitted to the pore wall in this region, if the results of research work are
interpreted accordingly.

According to the results, for example of [73], [74], and [75], when shear stresses
are applied, slipping takes place between the film surface and the firmer
approximately 2 molecule-layer-thick layer on the material surface. Only when
approaching the pore wall does the surface free energy in the adsorbed film increase
according to the Sections 1.4.7, 1.4.6.1, or 1.4.6.4, and thus the ability to absorb the
edge stress from the meniscus.

This is also clear in the approaches to disjoining pressure in adsorption films by,
for example, Churaev et al. [52] and Kuchin et al. [71]. Also, Schimmele et al. [76]
assumes that, especially at contact angles≥ 0o, the meniscus edge force is introduced
into the “load-bearing” pore wall.

From this, the assumption could be derived that the force transfer from a menis-
cus in the mentioned transport situation (with the occurring molecular slipping) is
always transferred into the “solidly” adsorbed surface layer about 2 molecule layers
thick, according to Figure 1.41a,b.

Systematic investigations of this question on capillaries with different inner film
thicknesses, generated from different relative humidities of air, have probably not
been realized so far because of experimental difficulties.

Behavior as assumed in Figure 1.41a,b, on the other hand, could be unjustified
in the case of capillary condensation in pore systems, where increasing pore
filling occurs not by suction but by condensation from the vapor phase. In this case, a
stress equilibrium between meniscus edge force and pore-film surface is conceivable
in the region of the meniscus transition, depending on local conditions, without any
appreciable effect of a slipping influence.
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Figure 1.41 Modeling of the force transmission from the meniscus edge into the area of
the contact zone. (a) Complete wetting with contact angle 𝜃 ≈ 0o. (b) Partial wetting with
contact angle 𝜃 ≥ 0o.
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Figure 1.42 Schematic illustrated
behavior of the shape of the menisci
and the contact angles in a pore
system during fluid adsorption
(advancing meniscus) or fluid
desorption (receding meniscus).
Source: Andrew et al. [78]/with
permission of Elsevier.

Equilibrium
Advancing Receding

However, compared to equilibrium, a flattening of the meniscus takes place in the
case of water absorption by vapor sorption and an increase of the curvature in the
case of drying processes. Many publications attempt to model this process, see Starov
and Velarde [77] and Kuchin and Starov [72]. Measured values on the phenomenon
are reproduced, for example, in [78] and [79].

With capillary fluid uptake, a flatter meniscus and larger edge angle usually
establishes itself because of the lower initial transport resistance, which transitions
to the equilibrium position when transport stops. The degree of change of the edge
angle depends on the particular transport resistance, see Popescu et al. [80] and
Figure 1.42, for instance. Many publications are concerned with this question resp.
the shape of the meniscus and the contact angle as a function of liquid uptake
or liquid release in the pore system.

Different capillary pressures are associated with each of these meniscus shapes,
which can differ significantly in the adsorption and desorption phases. Nevertheless,
no influence on the hysteretic behavior of the moisture storage can be derived from
these transient phases, since the respective equilibrium states are assigned to this
behavior with the associated stationary menisci and contact angles. The condensate
volume at the inner pore surfaces of the pore system forms according to Section 1.4,
and because of the small influence of the discussed relation on the pore radii, the
dependencies between pore radius and capillary pressure or of Section 1.3
should be applied unchanged.
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