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     1.1    Introduction 

 In February 2015, the Internet was consumed by an argument about fashion. A   
particular photograph of a particular dress was showing up wherever you might have 
scrolled on social media. Hanging on the rail of a shop, captured under a stream of 
daylight, this dress appeared, to many, to be white and gold. Yet, as if to represent the 
entire other half of the online community, others saw the same photo of the same 
dress as being blue and black. To this day, you can share that same photograph with 
unsuspecting live audiences, and by a show of 
hands, will recreate the eerie bipartisan opinion 
regarding the colors of the dress. But who was 
correct? Is the dress white and gold, blue and 
black, or some other combination in between? 

 The dress is, in fact, blue and black. While the 
consensus on the root cause of the debate is not 
clear [ 1 ], psychological variation in human per-
ception of colors, and our predicted corrections 
of those colors, likely plays a role. An illustration 
of the phenomenon for the reader of this book 
lies on the right side of  Figure  1.1  . For the four 
regions of interest (ROI) highlighted,  Table  1.1   
shares the average colors expressed in terms of 
mathematical color models we will discuss in 
the next section. For now, note that, for regions A 
and D, the numerical expressions of their colors 
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  Figure 1.1     Left: the original dress 
image that sparked the Internet 
debate. Right: cartoon variant of 
the dress, shows changes in likely 
color perception under different 
light sources. The four individual 
square ROI (left to right on the 
cartoon) mark areas A–D described 
in  Table  1.1  .  
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are not identical for this pair of regions. However, for regions B and C, each show-
ing the same apron under a warm and cold shade of light, show identical numerical 
expressions of their color, despite what your brain may tell you is different when 
judging these colors by eye.

While the story of the dress is not meant to set this chapter up as one about fashion 
history, it instead serves to demonstrate the subjectivity of our human perception of 
all things color. Furthermore, we see that the quantification of color, exemplified in 
Table 1.1, begins to reveal the more objective expression of color that lies “under the 
hood” of how it is captured by a camera. This subjective-to-objective shift is vital to 
enable a trustworthy and exploitable analysis of color-based phenomena.

Instead of formalwear, we might instead be concerned about the rate at which a 
palladium catalyst degrades into its notorious nightshade, palladium black. Equally, 
we could be making a note of the curious colors emerging from a settling bilayer, 
the dissolution of material in a new solvent, or capturing the characteristic colors 
emitted from a library of fluorescent toxins.

1.2   Fundamentals of Computer Vision in Chemistry

1.2.1   Color Theory

Color theory is a crucial concept for chemists, enabling them to actively monitor reac-
tions and observe changes over time. With the widespread availability of imaging 
devices, particularly in the age of social media, capturing image data from experi-
ments has become more accessible. This convenience, however, brings the challenge 
of encoding color data accurately, a problem rooted in the rich history of color theory.

The foundation of modern color theory lies in the Young-Helmholtz theory, or tri-
chromatic theory, developed in the nineteenth century.*1 Initially proposed by Thomas 
Young, this theory suggested that the human eye has three types of photoreceptors. 
Hermann von Helmholtz later expanded on this idea, identifying these photorecep-
tors as sensitive to blue, green, and red light (more appropriately referred to as “short,” 
“medium,” and “long” wavelengths, given that the peak and distribution in response 

*1  The socioeconomic significance of color is a richer story still, but not one that can be done 
justice in this book chapter.

ROIa Average RGB Average HSV Average L*a*b*

A [38, 59, 222] [53, 211, 222] [54, 43, −63]

B [147, 140, 187] [68, 64, 187] [79, 17, −10]

C [147, 140, 187] [68, 64, 187] [79, 17, −10]

D [255, 254, 255] [300, 1,255] [99, 8, 5]

 a. All ROI represent 120 × 120 pixels.

Table 1.1   Average RGB, HSV, and CIE–L*a*b* pixel values for four 120 × 120 square ROI on 
the cartoon apron, under each light source shown in Figure 1.1.
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for each receptor span more wavelengths than one specific color label). Tristimulus 
color theory is fundamental to understanding how colors are perceived and repre-
sented [2]. Several key concepts expand on this foundation, including color-matching 
functions, spectral reflectance, illuminants, and tristimulus values.

Color matching functions are critical in converting the spectral power distribu-
tion of light into tristimulus values. These functions, denoted as x̄(λ), y¯(λ), and z̄(λ), 
describe the sensitivity of the human eye to different wavelengths of light. They are 
derived from experimental data on how humans perceive colors and are standard-
ized by the International Commission on Illumination (CIE). Mathematically, the 
tristimulus values X, Y, and Z can be calculated using the color-matching functions 
described in Eqs. (1.1)–(1.3):

 X =  ∫ 
   380

        780    S  (  λ )    .  x¯    (  λ )   , dλ  (1.1)

 Y =  ∫ 
   380

        780    S  (  λ )    .  y¯    (  λ )   , dλ  (1.2)

 Z =  ∫ 
   380

        780    S  (  λ )    .  z¯    (  λ )   , dλ  (1.3)

where S(λ) is the spectral power distribution of the light source. This, in turn, relates 
to spectral reflectance, which is a measure of how much light is reflected by a sur-
face at each wavelength. It is defined as the ratio of reflected light to incident light 
and varies with the wavelength. The spectral reflectance function, R(λ), character-
izes the color of a surface, in a relationship with the spectral power distribution of 
the light source (or illuminant), I(λ), according to Eq. (1.4). The visual intuition for 
arriving at XYZ color values is shown in Figure 1.2.

 S  (  λ )    = I  (  λ )    . R  (  λ )     (1.4)

The color spaces, several of which are introduced below and first hinted at in  
Table 1.1, allow us to conceptualize colors in an exploitable numerical framework 
(think back to the dress conundrum). Understanding and utilizing these color spaces 
is essential for accurately capturing and interpreting the color data in chemical case 
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studies in later sections of this chapter and beyond. Up front, there are two common 
factors of color spaces that cater toward intuitively quantifying what a human observer 
may perceive perceptual uniformity and visualization.

Perceptual uniformity means that equal distances between colors in the color 
space correspond to equal perceived differences in color. In other words, if two 
colors are separated by the same amount in this space, they will look equally dif-
ferent to the human eye. This makes the color space more consistent with how we 
actually perceive colors, even though it might not be a simple linear mathematical 
relationship. A linear space means that the points in the color space (i.e., the vec-
tors) can be added and multiplied (or scaled) correctly and will result in another 
color in that space. When taking the Euclidean distance between two points in a 
color space, perceptual uniformity means that the distance is the same as the dif-
ference in how a human perceives color. Visualization (in this context) means the 
ability of a human observer to look at the individual elements of the color vector in a 
color space and understand what the element represents. These two factors account 
for a color space that is easily interpretable by a human but are not necessary for 
a color space to be functional (e.g., RGB spaces, while not having these factors are 
commonly used in capture devices).

1.2.1.1   RGB Color Spaces
The RGB color spaces (linear RGB, sRGB, Adobe RGB, and more) are among the 
most widely used color models, especially in digital imaging, computer graphics, 
and electronic displays. These models are based on the additive color theory, where 
colors are created by combining different intensities of red, green, and blue light. 
The additivity of red, green, and blue light, along with exemplar 8-bit color coding 
in RGB, is shown in Figure 1.3.

Certain RGB color spaces are device-dependent, meaning that the colors displayed 
can vary across different devices due to variations in hardware characteristics, such 
as screens or printers. Examples of such device-dependent spaces include those 
used in monitors, cameras, or printers. However, there are also device-independent 
RGB spaces, like sRGB, which aim to ensure consistent color reproduction across 
different devices by standardizing the color transformations. While this variation 
among devices may seem to initially be a major drawback of using RGB, the abil-
ity to transform between color spaces leads to color models that mitigate such risk. 
RGB space itself is non-intuitive due to the difficulty of understanding how the R, 
G, and B components combine (or add) to produce the final color. It can be linear; 
however, there are also non-linear variations, such as the sRGB color space [3].

1.2.1.2   CIE XYZ and xyY Color Space
In the XYZ space, the X and Z values refer to chromaticity and Y luminance. 
Chromaticity defines what color something appears to be (its hue and saturation), 
while luminance defines how bright or intense that color appears. As demonstrated 
in Figure 1.4, objects with different Y (luminance) values might look like the same 
color but with different brightness levels, while objects with the same Y value but 
different X and Z values might have the same brightness but appear as different 
colors (chromaticity).
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Figure 1.3   Top left: a 
demonstration of the additive 
properties of overlapping red 
(R), green (G), and blue (B) 
lights. Bottom: an overview of 
exemplar RGB values and their 
geometric positioning.

Y=0.02 Y=0.30

Same Chromaticity (Grayscale), Different Luminance

Same Luminance (Y=1.00), Different Chromaticity
Y=0.54 Y=0.77 Y=1.00

X=0.18, Z=0.01 X=0.20, Z=0.06 X=0.23, Z=0.45 X=0.11, Z=0.43 X=0.19, Z=0.01

Figure 1.4   A simple demonstration of the distinction between chromaticity (X and  
Z values) and luminance (Y value).
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Unlike RGB, this color space was designed to be device-independent and, as such, 
is often used as an intermediate color space as every color space has an appropriate 
transformation. For example, the transformation between XYZ and sRGB is given 
by Eq. (1.5) [4].

   [    
R

  G  
B

  ]    =   [    
3.2406

  
− 1.5372

  
− 0.4986

    − 0.9689  1.8758  0.0415    
0.0557

  
− 0.2040

  
1.0570

  ]     [   
X

  Y  
Z

     ]     (1.5)

In the equation above, the 3 × 3 matrix contains all the coefficients for transforming 
to RGB. These coefficients are empirically determined by correlating white in both 
spaces using various samples.

In a transformation closer to XYZ itself, we find the xyY color space, which is 
designed to separate chromaticity (x,y) from luminesce or brightness (Y). The con-
version is accomplished according to Eqs. (1.6) and (1.7) (luminance in Y remains 
unchanged from the XYZ space).

 x =   X_ X + Y + Z    (1.6)

 y =   Y_ X + Y + Z    (1.7)

As we will see in the case studies later, this transformation is a useful example of 
being able to decouple color from lighting information.

1.2.1.3   Hue, Saturation, and Value
This color space defines hue (H), saturation (S), and value (V). Hue is itself what deter-
mines the color, while saturation describes how non-white the color is. Higher satura-
tion means more vivid colors. Value is the brightness of a color, with its extremes being 
black and white. The HSV color space is a non-linear transformation of the RGB color 
space, expressed in polar coordinates. It is also device-dependent. This non-linearity 
makes it harder for human perception due to not being perceptually uniform.

The relationship between HSV and RGB can be expressed according to Eqs. 
(1.8)–(1.10).

 V = max (R, G, B)    (1.8)

 S =  
{

  
0

  
if V = 0

    
  V − min (R, G, B)  ______________ V  

  
if V > 0

     (1.9)

 H =  60   ∘  ×   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   

    G − B______________  V − min (R, G, B)  

  

if V = R

      (  2 +   B − R______________  V − min   (  R, G, B )      )     if V = G    

  (  4 +   R − G______________  V − min   (  R, G, B )      )   

  

if V = B

    (1.10)

In Figure 1.5, the HSV visualization has assumed that S and V are normalized on a 
percent scale of 0–100, relative to the 8-bit RGB scale.
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 Normalized R or G or B  =   R or G or B_ 255   × 100   (1.11)

1.2.1.4   CIE–L*a*b*
The CIE–L*a*b* color space is a powerful tool for color representation, providing 
a valuable attempt at perceptually uniform space. The elements of this color space 
represent lightness (L*), red to green (a*), and yellow to blue (b*). The L*a*b* color 
space was initially designed in 1976 to be a proxy for human vision (Figure 1.6). 
The distance between two colors correlates to the difference in the human percep-
tion between those two colors. This property makes L*a*b* attractive for marrying 
by-eye perception to a framework of color that leads to an intuitive interpretation 
of the numbers. This is not the case for RGB, for example. Linking the CIE–L*a*b* 
color space with human biology, the chromatic axes, a* and b*, link to two modes of 
human color blindness, namely deuteranopia (red-green blindness) and tritanopia 
(blue-yellow blindness) [5, 6].

While the more involved transformations to get to the CIE–L*a*b* space from 
XYZ and RGB are left for consideration elsewhere [7], a calculable consequence of 
this particular model is worth highlighting, namely ∆E. Described in Figure 1.6, 
Eq. (1.12), and Table 1.2, the simplest definition of ∆E is as the Euclidean (straight 
line) distance through the color space. This metric enables one to calculate the 
magnitude of contrast between two colors in a way that is agnostic to the colors 
involved.

 ∆ E  1976   =  √ 
______________________________

   ( L  2   −  L  1    )   2  +   (    a  2   −  a  1   )     2  + ( b  2   −  b  1    )   2     (1.12)
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Figure 1.5   A cone-shaped 
representation of the HSV color 
space, showing representative HSV 
values for illustration. Cylindrical 
representations of this space 
also exist. While the cone is more 
intuitive, representing decreasing 
color saturation as value decreases, 
the cylindrical variant of this 
model is also useful, especially for 
computational reasons.
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From these theoretical frameworks of color, we are now ready to explore how these 
data are likely to be captured in the first place.

1.2.2   Digital Photography Basics

1.2.2.1   How Does a Digital Camera Work?
Before digging the hole down to image analysis, algorithms, and computer vision 
in chemistry, we must first understand the picks and shovels we are using to do 
the digging. For us, we need to understand how a digital camera works. The nuts 

L2a2b2

L1a1b1

L* = 100

L* = 0

Normal vision Tritanopia
(blue-yellow
blindness)

Deuteranopia
(red-green
blindness)

+b*

+a*

−b*

Db*

DL

DE

Da*

−a*

Figure 1.6   Top: A visual 
representation of the CIE–
L*a*b* color space. Bottom: 
Color wheels comparing 
unhindered human vision 
versus two modes of color 
blindness.

∆E Interpretation

0 Change is not perceptible by the human eye.

1–4 Perceptible change with very close observation.

5–10 Subtle change, perceptible at a glance.

11–49 Color changes are more similar than the opposite.

50–99 Colors changes are increasingly obvious.

100+ Color changes are stark.

Table 1.2   Interpretation of the magnitude of ∆E color contrast metric.
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and bolts of a traditional digital single-lens reflex (DSLR) camera are shown in 
Figure 1.7.

When you take a photograph of the by-eye visible chemical phenomenon you 
want to capture – catalytic or not, debated dress or otherwise – you have begun the 
process of turning subjective interpretation to objective measurement amenable to 
ML. First, light from the chosen light source (the fluorescent lights of your fume 
cupboard, a light box filled with LED strips, and the sun through the laboratory 
window) will be reflected, scattered, and transmitted from the object of interest. 
The resulting light rays will be focused using the camera’s lens system, wherein the 
light path is made to converge on the image sensor. Before the light ever reaches the 
photosensitive sensor itself, it first passes through two filters:

	 1.	 An infrared filter, cutting out wavelengths greater than those in the red end of 
the visible spectrum.

	 2.	 A color (typically Bayer) filter that enables color information to be derived 
from light hitting the sensor. In most cases, the color filter will have an 
arrangement of red, green, and blue components for which the green is rep-
resented twice as often as the other filters. This relates to our human light 
sensitivities, which are greater for wavelengths in the green region than 
elsewhere.

Having passed through these filters, the remaining light will trigger reactions on 
the semiconductor material that makes up the sensor itself. Electronically, the sen-
sors are either CCD or CMOS in design, the deeper distinctions between which are 
beyond the concerns of this chapter.

The analogue signal collected is then sent to an analogue-to-digital converter, 
which then enables the data to be processed for the likes of image compression and 
noise reduction. The resulting image is then temporarily stored in a memory buffer 

sensor

viewfinder

shutter

display

electronics

battery

lens
system

LIGHT

color/IR
filters

pentoprism
mirror

detachable
lens joint

aperture
matte cover

Figure 1.7   A simplified top-down view of the inner workings of a DSLR digital camera.
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before being sent to the long-term storage on the device. After all of this, the image 
can then be retrieved for display on a camera or computer display.

Ultimately, given how the data are collected in a digital camera, the chemist seek-
ing to exploit computer vision for their research purposes must always be aware that 
the images created will be affected by:

	 1.	 The light source used to illuminate the chemical reaction.
	 2.	 The object composition of the system under study (e.g., matte or gloss).
	 3.	 The angle between the incident light and the camera that serves as our detector.
	 4.	 The lens choice (in cameras where this can be interchanged to alter the field of 

view, depth of field, and related photographic considerations).
	 5.	 The camera type and manufacturer (e.g., full frame vs. smaller sensor sizes).

Practically speaking, rather than the paradox of choice trapping us into sinking time 
picking the perfect camera, it is often more important to apply a consistent set of pho-
tographic conditions within any one application or piece of research. Such an approach 
allows maximum interpretability of chemistry outcomes with minimal risks of com-
paring images collected under different environmental conditions. It is the digital for-
mat of images and videos captured in the memory storage of the digital cameras that 
ties their application in computer vision to our earlier discussions of color theory.

1.2.2.2   Image and Video: The “Crude Oil” that Fuels Computer Vision
Be it a JPEG or PNG file for image analysis or MP4, AVI, or MOV for video analysis, 
the base currency of visible range computer vision applications in chemistry is the 
three-dimensional array of RGB values. These RGB arrays capture the triplet of red, 
green, and blue values associated with each pixel of the image. In relation to each 
pixel, every position in a RGB array is composed of three values, running from 0 to 
255, or 256 integer possibilities total. These numbers, far from arbitrary, are based 
on the binary (base 2) numbers. Oftentimes, colors are stored as 8-bit binary num-
bers (28 = 256). While each “slice” of the RGB array can be accessed and used in 
isolation (Figure 1.8), it is also commonplace to reduce the array dimensionality by 
converting the RGB values to single grayscale values [8]. A single grayscale value is 
commonly calculated as a linear combination from RGB and, like the Bayer filter 
featured in a camera’s anatomy (Figure 1.6), green values are higher weighted than 
R or B, tipping the mathematical hat to our biological predisposition towards higher 
sensitivity to green wavelengths than to any other.

 Gray = 0.21R + 0.72G + 0.07B   (1.13)

Video, as opposed to image analysis, adds the dimension of time, where a times-
tamped list of such RGB arrays comes into play. The higher the camera’s image reso-
lution, the more pixels there are capturing RGB values, and the larger the resulting 
data array to be read in for programmatic analysis and ML. Higher image resolution 
tends to be more important in microscopic applications, where finer details may 
need to be segmented. Where video is concerned, the higher the available frame rate 
(or frames per second, FPS) of video capture, the more frames of RGB arrays can be 
collected within a given recording time. Higher temporal resolution opens opportu-
nities to track faster processes and harness the power of slow-motion videography.
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The management of larger and larger data inputs for computer vision analysis 
demands that issues of software performance, memory management, and (big) 
data distribution be addressed, but those matters will be left for a more computer 
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Figure 1.8   Top: a visual representation of the RGB array data structure. Bottom: a 
simplified overview of how RGB arrays can represent video frames for time-resolved 
analysis.
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science-focused discussion. Our focus here remains on chemistry and catalysis 
applications of computer vision.

1.2.2.3   Algorithms and Computer Vision
With an appreciation for common color models, photography, and important data 
structures for programmatic analysis, one is ready to understand some common 
algorithms applied in computer vision. From here, applications in chemistry are 
then easier to identify and categorize.

1.2.2.4   Color Distributions/Histograms
In the context of computer vision, color histograms are a graphical representation of 
the distribution of colors in an image. They quantify the number of pixels possess-
ing each color intensity level, typically in each of the RGB (red, green, blue) chan-
nels. This is achieved by scanning through each pixel in the image, determining its 
color value, and then incrementing the corresponding bin in the histogram. The 
final histogram represents the frequency distribution of the colors in the image. The 
grayscale (or luminosity) histogram provides a visual representation of the linear 
combination of the R, G, and B quantities, according to Eq. (1.13). These histograms 
are useful for a variety of reasons. They provide a compact summary of the color 
content of an image, making them valuable for image retrieval, object recognition, 
and image classification tasks. We will see examples of their application in Section 3.  
See an exemplar comparison of R, G, B, and luminosity histograms in Figure 1.9.

1.2.2.5   Texture Analysis
In the context of computer vision, texture analysis involves examining the spatial 
distribution of pixel intensities within an image to identify and quantify patterns, 
textures, and structures [9]. This process helps distinguish regions in an image based 
on their surface characteristics rather than their color or intensity alone. Texture 
analysis is calculated using various statistical, structural, and spectral methods. One 
of the simplest and perhaps most intuitive of such metrics is derived from pixel 
thresholding. The contact metric (Figure 1.10) measures the total perimeter out-
lined by boundaries between the pixels above and below the set threshold. A low 
value indicates few or no boundary regions, few pixels distinguished on the basis 
of the threshold, and, therefore, a short overall perimeter length. Such low contact 
values would be indicative of a more homogeneous texture or smooth distribution 
of color over an image. Conversely, there are more instances of black pixels meeting 
white, a larger calculated perimeter, and a resulting suggestion of a more heteroge-
neous image composition [10].

Going deeper, more intricate methods of calculating texture involve analyzing 
these pixel value distributions and relationships within defined windows or the 
entire image. For example, the gray level co-occurrence matrix (GLCM) quantifies 
the number of instances of pixel value pairs in a specified spatial relationship in 
an image (Figure 1.11) [10–13]. It is used to extract various statistical measures 
that describe the texture of the image in question. Such measures include contrast, 
angular second moment (ASM), and entropy, and are defined in Eqs. (1.14)–(1.16) 
below.
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Figure 1.9   Top: three test tubes filled with three differently colored liquids.  
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ensemble composition of pixel colors captured in the top image. Source: B. Lachner/
Wikimedia Commons/Public domain.
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 Contrast =  ∑ 
i,j

    (i − j  )   2  . P(i, j)  (1.14)

 Angular Second Moment (ASM ) =  ∑ 
i,j

     P(i, j  )   2   (1.15)

 Entropy = −   ∑ 
i,j

     P  (  i, j )    . log    [P  (  i, j )   ]  (1.16)

where P(i,j) is the value of the element in row i, column j of the GLCM, normalized 
as a fraction of the sum of all values in the matrix (the grand sum).

 P  (  i, j )    =   
 a  ij   _ 

  ∑ 
i=0

  
N−1

     ∑ 
j=0

  
N−1

    a  ij  
   =   

 a  ij   ________________  grandsum  (  GLCM )       (1.17)

 ∑ P(i, j) = 1   (1.18)

To understand the relative (high and low) values of texture metrics, consider the 
example texture analysis shown in Figure 1.12. Our by-eye comparison of the test 
tubes leads to the intuition that Tube 1 is more poorly mixed or more heterogene-
ous than Tube 2. In other words, the color distribution is more uniform in the sec-
ond test tube. From the exemplar texture metrics displayed in the accompanying 
graph, we can quantitatively state that the color distribution in Tube 1 contains 
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more local variation (higher contrast), contains more uniformity or patterned 
regularity (lower angular second moment, or ASM), and is closer to maximum 
randomness (higher entropy) versus Tube 2. All these metrics are derived from the 
GLCM of the region of interest selected within each test tube from the image file.

These exemplified analyses represent one class of image segmentation, classifying 
pixels above and below certain thresholds, and not always binary. We can take the 
idea of segmentation further to understand how images can be transformed to extract 
(or eliminate) certain features on the road to more complex machine-learning efforts.

1.2.2.6   Convolution and Edge Detection
Segmentation and object detection are crucial techniques in computer vision. With 
countless colors, textures, phases, vessels, and processes, the chemistry applications 
of computer vision are no exception [14]. As we have seen most clearly with the 
Contact metric defined above, segmentation involves partitioning an image into 
distinct regions to isolate objects or boundaries, thereby simplifying image repre-
sentation. While not limited to the following, additional methods to achieve seg-
mentation include edge detection and advanced deep learning approaches using 
convolutional neural networks (CNNs). Common to both of these methods is a need 
to introduce the last fundamental computer vision concept we will consider before 
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discussing chemistry- and catalysis-specific applications of computer vision and 
downstream ML,  convolution . 

 Image convolution is a fundamental operation in computer vision used to trans-
form images and thus extract features and later image quality. It involves applying 
a kernel (or filter) to an image, where the kernel is a small matrix of numbers that 
is slid over the image, performing element-wise multiplication and summing the 
results to produce a new pixel value ( Figure  1.13  ). This process is repeated for every 
pixel in the image, resulting in a transformed output image. Different kernels have 
distinct structures and impacts on the image, as demonstrated in  Figure  1.14  .         
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From color spaces and their interconversions to photography hardware, color arrays, 
and all the valuable manipulations thereof, this combined software and hardware 
approach to understanding computer vision leaves us well-placed to consider the illus-
trative chemistry case studies below. Considering the broader topic of ML, we learn 
that, with computer vision, it is as much about the choice of machine as it is about any 
of the underlying software that comes front of mind with a term like ML.

1.3   Computer Vision and Machine Learning in Chemistry

Given that, at the time of writing, the applications of computer vision in cataly-
sis itself remain sparse, the examples below include catalysis and phenomena that, 
while not directly related to catalysis, represent analytical challenges that will likely 
be relevant to future applications in the field.

1.3.1   Single Image Applications

1.3.1.1   High-throughput Digital Fingerprinting of Drug-like  
Compound Libraries
In 2011, Hodder and coworkers combined the hardware and software needed 
to build a system for assessing the quality of a library of drug-like compounds 
solvated in dimethyl sulfoxide (DMSO) [15]. Their system exemplified several key 
features that make computer vision valuable to chemistry and, potentially, cataly-
sis. The team’s use of a telecentric lens system was key to enabling distortion-free 
imaging of an entire well plate without optical distortion of parallax errors lead-
ing to unequal imaging of central versus outer wells. A telecentric lens is a spe-
cialized type of optical lens designed to have constant magnification regardless of 
the distance between the lens and the object being imaged. This unique charac-
teristic is achieved by ensuring that the chief rays (rays passing through the center 
of the aperture) are parallel to the optical axis in either object space, image space, 
or both.

Original Gaussian Blur Mean Filtering (3x3) Mean Filtering (7x7)

Sharpening Sobel Horizontal Sobel Vertical Laplacian

Figure 1.14   Exemplar demonstrations of the effect of using the convolutional filters 
described in Figure 1.13 on the output image.
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From a chemical perspective, the solvation screening of the available compound 
library involved colored compounds, colorless compounds, soluble and precipitous 
insoluble candidates, as well as empty wells and solvent-only wells for calibration. 
With such a range of physicochemical behaviors, a range of visible “artifacts” could 
be captured and processed with computer vision. Using the grayscale lightness 
histogram distribution from a single well image, it was possible to create a binary 
black and white image to visually exaggerate the homo- or heterogeneity of the 
DMSO-solvated sample. The team used a combination of visible and infrared imag-
ing in order to more fully distinguish visibly similar wells, especially in cases where 
colored compounds masked underlying precipitates. From here, a unique compound 
“signature” (the details of which are not clear from or not disclosed in the publica-
tion), providing a digital fingerprint with which that compound could be stored in a 
database containing all computer vision outputs (Figure 1.15).

1.3.1.2   Segmentation and Parallel Analysis of Nerve Agents
In 2018, Anslyn and Marcotte reported the use of photographic methods to measure 
fluorescence from self-propagating cascades used to amplify the signal and thus opti-
cally detect ions of various nerve agents (Figure 1.16) [16]. While the measurement 
of fluorescence for such purposes typically requires sophisticated, capital-intensive 
methods like fluorescence microscopy, UV-vis spectroscopy, and X-ray photoelec-
tron spectroscopy, a demand for a more accessible and field-deployable technique 
was required in this case. To this end, a smartphone was used as the optical detector 
of fluorescence for samples housed in an opaque stage built from black toy building 
blocks.
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Two elements of this work are important from a computer vision perspective, and 
both appear in Figure 1.17. First, the team employed the xyY color space, closely 
related to the above-mentioned XYZ color space (see Section 2.1.2). In doing so, the 
team used the chromaticity components, x and y, separate from the lighting-focused 
luminosity parameter, Y, to find the representative color of each sample well. In 
relation to the above-mentioned computer vision analytics and algorithms, the rep-
resentative chromaticity of each sample was calculated based on the median pixel 
distribution within a given sample’s color histogram for components x and y. By 
discounting the luminosity component, it was envisaged that the method would 
remain robust to changes in mobile phones used, owing to the inevitable variation 
in camera sensors when moving from one device to another. Plotting calibration 
samples on the xy-plane, the team interpolated the concentration of unknown nerve 
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agent samples by using a piecewise linear regression approach. Here, Euclidean dis-
tances (i.e., lines between two points) were calculated for every adjacent pair of 
data points. Unknown sample concentrations were then estimated according to the 
equation embedded in Figure 1.18.

Yet, beyond the application of color theory and simple statistical analysis to pro-
duce a field-deployable method, it is how the individual samples on the 96-well 
plate were identified that merits further illustrative discussion. To this end, the 
team applied the so-called waterfall algorithm (Figure 1.17a,b) to segment one well 
from another and thus automatically optimize the selection of pixels used for the 
above-mentioned calculation of median chromaticity in each case. The waterfall 
algorithm is a refinement of the watershed algorithm, treating the grayscale image 
as a topographic surface, where the pixel values represent elevation. It simulates 
the process of water flooding from the lowest points (local minima), progressively 
filling up basins, and defining boundaries at points where water from different 
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Figure 1.18   Top: A representation of the photographic hardware and staging used for 
the fluorescent imaging of nerve agents. Bottom: The resulting statistical framework, built 
around the xy-plane of the xyY color space, through which unknown sample concentrations 
could be estimated from the extracted xy-color parameters of calibration wells.
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basins would meet (Figure 1.17b). This method effectively segments the image into 
distinct regions based on the topography of the intensity landscape. However, as 
noted by Anslyn and Marcotte, the watershed algorithm can be sensitive to noise 
and over-segmentation, creating too many small regions. The waterfall algorithm 
addresses this issue by iteratively merging regions based on certain criteria, such 
as similarity in intensity or connectivity, to produce more meaningful and less 
fragmented segments. Essentially, the waterfall algorithm enhances the watershed 
method by introducing a post-processing step that reduces over-segmentation, lead-
ing to more coherent and robust image segmentation outcomes. The overall practi-
cal impact of this transformation is to shrink the object whose remaining pixels are 
then used for further analysis (Figure 1.17c). One can imagine such methods being 
applied to the analysis of high-throughput catalyst screening samples.

1.3.1.3   Neural Networks for Identifying Glassware
While case-specific edge detection, object recognition, and segmentation approaches 
are established aplenty in computer vision, the identification of myriad variations  
on chemistry glassware and its multiphase contents represents a notable chal-
lenge in chemistry-focused computer vision applications. In 2020, the Eppel and 
Aspuru-Guzik groups collaboratively released an approach to this problem, and 
in so doing provided an ideal exemplar of using CNNs in chemistry-centered com-
puter vision [17].

CNNs are a class of deep learning models specifically designed for and trained 
on tasks involving image analysis and computer vision. They are inspired by 
the organization of the animal visual cortex, where individual neurons respond 
to stimuli only in their receptive fields, allowing for hierarchical feature extrac-
tion. In CNNs, convolutional layers perform feature extraction by applying a set 
of learnable filters (kernels) to input training images, first discussed in Section 
2.2.3 (Figures 1.13 and 1.14). These filters detect various features such as edges, 
textures, and patterns, preserving spatial relationships through weight sharing and 
parameter sharing. Pooling layers then down sample the feature maps, reducing 
computational complexity and helping the network become more robust to transla-
tion and distortion invariance. Through multiple convolutional and pooling layers 
followed by fully connected layers, CNNs can learn hierarchical representations of 
visual data, enabling them to perform the likes of the object and chemical phase 
detection tasks reported by the Eppel and Aspuru-Guzik groups. The fundamen-
tal connectivity of a deep neural network and the distinct elements of CNNs are 
shown in Figure 1.19.

Using a labeled library of 2187 images of reaction vessels containing different 
colors and phases of material, the team employed several different CNNs to inves-
tigate how best to segment the reaction vessel from the material within. It is worth 
noting that the image library used for training in this case was relatively small, espe-
cially compared to available training libraries like ImageNet, which, at the time of 
writing, contains over 14 million openly available training images [18]. Among the 
methods tested was the R-Mask CNN approach [19]. An R-mask CNN (region-based 
mask convolutional neural network) is a type of CNN architecture specifically 
designed for semantic segmentation tasks in computer vision. It combines the 
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strengths of region-based convolutional neural networks (R-CNNs), which are 
adept at object localization, and mask-based CNNs, which excel at pixel-level seg-
mentation. In R-Mask CNNs, the network first generates region proposals using 
techniques like selective search or region proposal networks (RPNs). Then, for each 
region proposal, the network simultaneously predicts the class label and generates a 
binary mask indicating the object’s presence at the pixel level. This allows for accu-
rate object detection and precise segmentation in images, making R-Mask CNNs 
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Figure 1.19   An overview of deep neural networks and the layers through which CNNs 
represent a strategic architecture for the analysis of grid-like or image-based input data. 
Inset: An example of the output segmentation of liquid from the vessel, published by 
Aspuru-Guzik. Reproduced with permission from [17]/American Chemical Society.
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particularly suitable for tasks such as instance segmentation, where distinguishing 
between individual object instances is crucial.

Based on the chosen scoring systems of the CNNs applied, it was found that seg-
mentation between the vessel and a solid or liquid material inside was higher scor-
ing than more granular segmentation of multiphase systems (e.g., liquid vs. foam). 
Indeed, this point helps exemplify a broader point of importance when consider-
ing CNNs and ML for image analysis. CNNs can make various types of errors in 
predictions, such as false positives (where the model incorrectly identifies a pat-
tern or feature as present) and false negatives (where the model fails to identify a 
pattern or feature that is present). These errors are manifested in predicted values 
versus actual values, often expressed as metrics like mean squared error (MSE) or 
root mean squared error (RMSE). In the Eppel and Aspuru-Guzik study [17], the 
more CNN-focused evaluation metric known as intersection over union (IOU) was 
applied (Figure 1.20). The roots of errors in CNNs can include the likes of overfit-
ting, which occurs when the CNN model learns noise or irrelevant details from the 
training data, leading to poor generalization of new data. Conversely, if the CNN 
model is too simple, it may not capture the complexity of the chemical data, leading 
to high bias and systematic errors. Additionally, errors can arise if the training data 
(in this case, labeled images) contains noise, mislabeled samples, deliberate adver-
sarial manipulation [20], or is not representative of the broader chemical space. 
Having said this, if errors themselves can be quantified, they can be used as an addi-
tional model parameter to help improve CNN performance [21].

Such single image-based applications of computer vision are far more broadly 
precedented than is detailed here [7, 22–24]. However, going beyond images into 
the domain of video analysis represents a relatively more opportune and underde-
veloped area for catalysis and ML. This brings us to the final application-focused 
section of this chapter.
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Over Union (IOU) =

Union

Intersection

versus

Prediction
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Figure 1.20   A visual 
representation of the IOU 
evaluation metric is applied to 
understanding CNN performance 
versus human-labeled definitions 
of object detection.
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1.3.2   Video Analysis Applications

When we move from analyzing static images to dynamic video data, we build in the 
dimension of time, opening ML opportunities in time series analysis for reaction 
monitoring, mechanistic analysis, and a more characteristic level of problem diag-
nosis than is possible from single image inputs.

1.3.2.1   Phase Separation and Partition Coefficients
An emerging area of time-resolved computer vision for chemical interests in ana-
lyzing the dynamic nature of biphasic mixtures used in separation and purification 
strategies [25–27]. From a catalysis perspective, such efforts are of potentially high 
value in processes like metal scavenging during post-catalytic reaction clean-up [28].

An illustrative example of such analysis, revealing several key features of com-
puter vision methodology in a chemistry context, was reported by Kapur’s team and 
industrial collaborators in 2023 [25]. Here, the team set up a monochrome camera to 
capture grayscale video frames over time (1 FPS) and used these data to analyze layer 
heights in biphasic mixtures. The chemical composition of the mixtures was designed 
to represent common aqueous/organic liquid–liquid combinations, generating vis-
ibly separate layers over a range of time periods or, in extreme cases, generating stable 
emulsions that never settle into a visible bilayer. A key feature employed in the early 
steps of the algorithms included a low-pass filter to smooth (or blur) the raw grayscale 
image frame to remove high-frequency noise prior to more in-depth analysis. More 
specifically, the primary purpose of the low-pass finite impulse response (FIR) filter 
used is to allow low-frequency components of a signal to pass through while reduc-
ing the amplitude of the high-frequency components [29]. The FIR filter processes 
the input grayscale image by performing a convolutional operation similar to the one 
introduced in Section 2.2.3 (Figures 1.13 and 1.14). When you apply this filter to a 
grayscale image, each pixel in the output image is the average of the correspond-
ing pixel in the input image and its neighbors. The output image appears smoother 
because the high-frequency components (sharp edges and noise) are reduced. Fine 
details and sharp transitions are blurred. While fine details are smoothed out, the 
overall structure and low-frequency components of the image (such as larger regions 
and gradual transitions) will be preserved.

With the use of the FIR filter, the team was then able to provide a rare example of 
using the first, second, and third derivatives of the smoothed grayscale image frame 
to help extract the sediment and cream phase fronts. These derivatives, with respect 
to pixel coordinates, provide important information about the changes in intensity 
values and highlight edges in the image via abrupt changes in intensity. High values 
of the first derivative, therefore, indicate the presence of edges. The magnitude of the 
gradient gives the strength of the edge, and the direction of the gradient indicates the 
orientation of the edge. The second derivative of a grayscale image measures the rate 
of change of the first derivative and provides information about the curvature of the 
intensity surface. Points where the second derivative changes sign indicate potential 
edges. These so-called zero-crossings are used in edge detection problems, as exem-
plified in Kapur’s time-resolved detection of bilayers. The same second derivative can 
enhance the edges detected by the first derivative, making them more prominent.
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The more rarely applied third derivative of the grayscale image measures the rate 
of change of the second derivative. While it is less commonly used in basic image 
processing tasks, it provides information about higher-order changes in intensity. 
Points where the third derivative changes sign can indicate inflection points in the 
intensity profile (Figure 1.21). In this case, Kapur was able to use the second deriva-
tive of the final video frame to locate positions near the interface within each of the 
two layers. The third derivative provided the reassuring location of the interface, 
between the positions found by the second derivatives of the top and bottom layers.

Each derivative order provides different levels of detail and can be used for various 
image processing tasks, from basic edge detection to more complex feature extrac-
tion and analysis. Consistent with earlier discussion on high-throughput meth-
ods, Kapur’s team also made limited but promising attempts to use their method 
of monitoring phase separation dynamics in high-throughout developing a rig on 
which multiple biphasic samples could be mixed before being recorded using the 
monochrome camera chosen by the team. In relation to the introductory discussion 
on photography, it is worth noting that the monochrome camera is grayscale by its 
nature, without intermediate conversion of any RGB data to a linearized grayscale 
format. In other words, no Bayer (or other RGB) filter is applied before the incom-
ing light is focused on the image sensor. Such cameras can be useful when higher 
sensitivity is needed, while color information is not.
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Figure 1.21   From Ref. [25], second (left) and third (right) derivative plots of grayscale 
gradient across the central image of a biphasic mixture. In the image, the bound boxes 
represent regions identified by the second derivative. The intersection of these areas is 
highlighted by a peak in the third derivative. [58]/Elsevier/CC BY 4.0.
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1.3.2.2   Reaction Kinetics
From reaction monitoring [30] to solubility testing [31] and chemical networking 
[32], the use of video as an input data source for kinetic analysis via computer vision 
and ML is, at the time of writing, a growing trend.

In this author’s team’s efforts to develop time-resolved computer vision for 
reaction monitoring, including applications in catalysis, a necessary challenge 
in time series analysis presented itself. Namely, to understand the level of agree-
ment between highly time-resolved imaging data from videos of reaction bulk and 
comparatively more sparse time series data collected from samples taken from the 
same reaction mixture for offline, more molecularly specific analyses (e.g., NMR, 
HPLC). In doing so, a ML approach was required such that any probable correla-
tions between imaging and more established analytics could be determined without 
necessarily assuming whether any resulting model should be linear or otherwise.

To this end, mutual information (M.I.) analysis, based on Claude Shannon’s pio-
neering quantification of information theory, became a natural choice [33, 34]. 
Here, entropy is used as the measure of the uncertainty associated with a random 
variable. The more uncertain we are, the more we lack information, where informa-
tion is the capacity to reduce uncertainty. If a data source has a lowprobability value, 
the event carries more “surprisal” than when the source data has high probability. 
Overall, M.I. is a measure of the mutual dependence between two variables. It quan-
tifies the amount of information obtained about one variable through the other, 
thus serving as a powerful tool for identifying correlations in time series datasets. 
Mathematically, M.I. I(X;Y) between two variables, X and Y is defined according to 
Eq. (1.19):

  
I(X; Y)

  
=

  
−   ∑ 

x∈X
      ∑ 
y∈Y

    P  (  x, y )    .   log  2    [     P  (  x, y )    _ P  (  x )    . P(y)   ]   
    

 
  
=

  
P  (  x, y )    .  {     log  2    [  P  (  x, y )    ]    −   log  2    [  P  (  x )    . P(y )  ]   }

   (1.19)

where P(x,y) is the joint probability distribution of X and Y, and P(x) and P(y) are 
the marginal probability distributions of X and Y, respectively. A higher M.I. value 
indicates a stronger dependency between the variables, making it especially useful 
in analyzing the relationships and dependencies within multiple time series data-
sets. By capturing both linear and non-linear relationships, M.I. provide a more 
comprehensive measure compared to traditional correlation coefficients. Some 
non-mathematical intuition for the M.I. approach is provided in Figure 1.22.

One way to estimate marginal probability is the histogram approach (Figure 1.21a 
and Eq. 1.20). The marginal probabilities to be summed are then the frequency 
counts falling within each histogram bin divided by the total number of samples 
(i.e., elements in the time series array).

 P( x  i   ) =   no. elements in bin______________________   total no. elements in series    (1.20)

If there are 10 histogram bins, the i ranges from 1 to 10. The process repeats for the num-
ber of supposedly independent features to be compared. After calculating the entropy 
for each feature, one can then look to understand the information available in one fea-
ture when another feature is given. This is where joint entropy (Eq. 1.21) comes in. 



c01.indd Page 30 20 Jun 2025

1 Computer Vision in Chemical Reaction Monitoring and Analysis30

The joint entropy of discrete random variables X and Y is the entropy of their pairing, 
H(X;Y). By the same chord, we now need to consider joint probability,  P ( xi,yi ), instead 
of marginal probability. 

H(X, Y )= − ∑
x∈X

∑
y∈Y

P(x, y) . log2 [ P(x, y)]   (1.21)  

As a means of building intuition, ( X,Y ) could represent the position of a chess piece. 
X stores the row position, Y stores the column position. The entropy of the row of 
the piece and the entropy of the column of the piece come together to represent the 
entropy of the position of the piece. To estimate the joint probabilities, we can use 
2D instead of 1D histograms. Each 1D histogram composing the 2D histogram can 
come from two “independent” features (Eq.  1.22 ). 

P(x, y) = no. elements in 2D grid position___________________________   total no. elements in the 2D grid    (1.22)  

Taking all of this toward an understanding of the M.I. held between two features or 
variables requires a Venn diagram visualization of the entropies thus far formulated 
( Figure  1.20  ). In reading these Venn diagrams:  

				 •	  As overlap increases, the amount of shared information between X and Y 
increases. It does NOT mean there is any additional transfer of information 
between X and Y.  
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  Figure 1.22     Top: A mechanistic representation of the Miyaura borylation, highlighting 
processes and analytes for which a combined monitoring approach employing cameras and 
HPLC analysis was employed. (a) A histogram approach to working out joint probabilities 
of occurrences from the independent computer vision and time series datasets. (b) A Venn 
diagrammatic overview of calculating M.I., I(X;Y). Part C: The practical output of a table 
showing a ranked order of color parameters that are decreasingly likely to correlate – 
linearly or otherwise – with the ground truth concentration data from HPLC.  
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	 •	 When the M.I. is expressed using a comma between X and Y, it assumes the 
sizes of X and Y are the same. It also assumes we are only considering two fea-
tures, X and Y. For example, X could be an array of HPLC samples over time. 
Y could be the subset of color data at the same time points as HPLC samples, 
making arrays X and Y the same size.

	 •	 The use of a semicolon is more general (e.g., for conditional M.I. involving 
more than two features). The semicolon denotes everything that is to be meas-
ured (left) given everything known (right).

Using this approach, it has been possible to rank order 10+ color parameters, col-
lected and calculated with computer vision methods, in terms of their likely correla-
tion with offline measures of product concentration by NMR and HPLC. Applications 
include the determination of reaction progress for the above-mentioned tracking of 
successful versus compromised Pd-catalyzed borylations [30], large-scale SNAr reac-
tions [10], and solid-phase peptide synthesis [35].

1.4   Summary and Conclusion

From a chemist’s perspective, the field of computer vision is one of intriguing con-
tradictions. On the one hand, it is a rapidly maturing field, with otherworldly appli-
cations developed for self-driving cars, factory robotics, drones and satellites, and 
cybersecurity. On the other hand, such sophisticated developments are surprising 
when they are compared to the relative infancy of computer vision applied to chem-
ical analysis. This point is further emphasized when considering the near absence 
of any literature attending ML, computer vision, and catalysis.

In this chapter, we have considered selected illustrative examples of cameras being 
used to capture various visually characterizable chemical phenomena. Whether via 
single image or video, the availability of the singularly large datasets represented by 
arrays of pixels represents inordinate opportunities for the application and develop-
ment of chemically intelligent ML applications.

Fueled by the wealth of transferable ML architectures and ever-increasing com-
puting power available, it is envisaged that an increased number of video-focused 
computer vision applications will be realized for catalysis and computer vision. In 
the context of ML, the case studies shared show that, in the field of computer vision, 
much of the learning has as much to do with the machine (or camera) you choose 
as it does with the algorithms we more commonly associate with the term “machine 
learning.”
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