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1.1    Nanoscience and Molecular Engineering

Nanoscience is most ordinarily defined by its scale, the nanometer that is equivalent to 
10−9 m, or a thousandth of a micrometer. As illustrated in Figure 1.1, the nanometer is 
multiple times larger than the smallest distance between atoms in crystalline materials, 
matches roughly the smallest molecular distances in self-assemblies, and is approximately 
ten thousand times smaller than the thickness of a human hair. Practical material systems, 
devices, and technologies based on nanoscience are coined Nanotechnology.

Certainly, size plays a crucial role in various practical applications related to the 
nanoscale. But there is more to be said about this technology and its underlying science. 
Nanoscience and nanotechnology thrive on constraints that alter the boundary condi-
tions of the macro world we are so accustomed to and present us with a world of won-
ders and surprises. The two employ and highlight, in particular, material interfaces and 
dimensionally constrained systems that alter molecular and atomistic arrangements 
and enhance fluctuations that affect the system equilibrium. We realize that most of our 
current technologies heavily rely on phenomenological bulk properties, often ignoring 
the fine subtleties that could be gained by involving interfaces in our designs to enhance 
or alter material properties.

In our world, material properties are important for several reasons, including:

	 •	 ensuring the mechanical integrity of devices;
	 •	 enabling and facilitating processes to run, such as chemical reactions;
	 •	 providing adequate conduction properties for particles and energy (heat) transport;
	 •	 customizing interaction interfaces between electromagnetic (EM) radiation and 

material transport systems toward energy production and communication, among 
others.

The processes developed to modify the bulk properties of materials have encompassed 
both mechanical and chemical methods, besides the blending of different materials. Steel, 
one of humanity’s oldest engineered materials, is produced through techniques such as 
mechanical folding, compressing, and stretching, while simultaneously incorporating 
carbon into the iron’s crystal lattice and removing oxygen through heating and stress. While 
the chemistry involved in metalworking was largely undertaken unintentionally in ancient 
times, these trial-and-error methods have been refined over the centuries, leading to a 
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1  The Realm of Nanoscience and Molecular Engineering2

deeper and more fundamental understanding of the processes that occur at the atomistic 
and molecular levels. Thus, while Charles Goodyear invented the vulcanization process 
of rubber in the middle of the 19th century, a later generation of scientists recognized the 
true nature of the process, as chemical cross-linking between the polymer molecules, as 
sketched in Figure 1.2.
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Figure 1.2    Trial-and-error discovery: Sulfur vulcanization of natural rubber (patented by Charles 
Goodyear in 1844). During vulcanization, chemical cross-links are formed between individual 
polymer chains. The degree of cross-linking density determines if the rubber is soft or hard.
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Figure 1.1    The nanoscale, microscale and macroscale. The significant difference between the 
nanoscale and its two larger cousins is that it exhibits deviating physical properties for condensed 
materials.
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1.1  Nanoscience and Molecular Engineering 3

With a fundamental understanding of material engineering, molecules with chemical 
linkers could be specifically synthesized to bring forward novel materials with prop-
erties tailored toward unique processes. This molecule-specific rational approach toward 
engineering is coined these days as Molecular Engineering. Thus, while molecular engi-
neering deals with the rational design of functional molecules, nanoscience focuses on 
the fundamental understanding of the properties of material if confined to the nanoscale. 
Even if the two fields are not necessarily inclusive, their sweet spot lies in their shared 
realm, where we have control over the molecular building blocks, as well as a fundamental 
understanding of their collective properties under regulated conditions that go beyond 
far-field controls employed to bulk systems, such as externally applied electric fields, and 
concentration and temperature gradients.

To illustrate the shared realm between nanoscience and molecular engineering, let us 
revisit the cross-linking example and assume that the organic polymer molecules are 
electric conductive and the linkers function as switches that can be activated or deacti-
vated by an external electric field. Notably, there are distinct differences between a bulk 
system and a nanowire composed of these materials: (1) The nanowires contain signif-
icantly fewer switches compared to the bulk system, and (2) the polymer chain mole-
cules in the bulk system exhibit a more isotropic distribution than those in the nanowire. 
Point (1) emphasizes how a low number of switches in nanowires can significantly affect 
overall conductivity. In contrast, point (2) focuses on the directional spinning process that 
aligns polymer chain molecules along the length of the wire, showcasing the transition of 
electric current flow from three dimensions to one dimension. As a result, we can antic-
ipate a fundamental change in how electric current flows and how we can manipulate 
it, particularly when confined to the nanoscale. Given that the on-state and off-state of 
electric current represent a binary signal, it follows that significantly fewer electrons are 
needed in a nanowire compared to a bulk wire. By utilizing local fields that influence the 
switches differently along the wire, the nanowire could evolve into a complex network 
with extensive logical functionalities akin to those found in a computer. Therefore, our 
molecularly linked nanowire system has the potential to function as a versatile electric 
conductor with a wide array of applications, often described as a “smart” and “unique” 
nanosystem.

It is important to note that in this example, the intricate rational design of the molec-
ular building blocks plays a crucial role in determining the functionality of the nanow-
ires. Factors such as the polymer length, the placement of linkers at end groups or side 
groups, and the linker reversible strength of binding are of equal importance as the 
physical confinement in dimensions and local fields. The entire system design and its 
functionality employ both nanoscience and molecular engineering. Through nanosci-
ence, we can tap into the physical world of lower dimensionalities and the quantum 
world, both substantially different from our macroscopic world. Meanwhile, molecular 
engineering allows us to move beyond the limitations inherent in traditional material 
engineering, which is often constrained by the properties of inorganic materials or by 
trial-and-error methods. Consequently, by combining these two fields, we can unlock 
future possibilities filled with remarkable innovations in novel materials and device 
technologies.
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1  The Realm of Nanoscience and Molecular Engineering4

1.1.1    Trial-and-Error Approach and Deductive Rational Engineering

Common to both nanotechnology and molecular engineering is the development of novel 
materials and systems that are based on deductive rational approach principles, in contrast 
to trial-and-error approach methodologies. While everything we do involves atoms or mol-
ecules, it does not imply that we understand or control what we do on that scale. Take, for 
example, the process of brewing coffee: it darkens the water and imparts flavor through the 
interaction of small particles and molecules. However, this does not infer that it involves 
nanotechnology or molecular engineering. In fact, neither of the two scientific principles 
is applied in coffee making, which is rooted in the trial-and-error practices of our distant 
ancestors. This highlights that the advancements we have made over the centuries have 
largely been incremental, as they were trial-and-error based.

The development of nonsynthetic petroleum-based motor oils offers a more involved 
example than coffee brewing of incremental trial-and-error improvements over decades. 
These conventional petroleum oils require extensive distillation processes to remove 
waxes, sulfur, nitrogen, and oxygen compounds to generate the base stock to make use-
able lubricants. Many additives have been added to the base stock over the years. They 
provide lubricant oils with high boiling and low freezing points, high viscosity indices, 
improved thermal and hydraulic stabilities, demulsibility and corrosion insensitivity, and 
a high oxidation resistance. An example that required an incremental change of conven-
tional motor oils involved the removal of zinc dialkyldithiophosphate (ZDDP), the most 
common zinc-based additive added primarily as an antiwear agent to reduce premature 
engine wear. In an attempt to remove ZDDP in the 1990s to minimize the phosphorous 
contents in petroleum oils, it was recognized that ZDDP’s role was significantly more 
involved in the performance of the oil-based lubricant than anticipated, reaching beyond 
corrosion and oxidation protection and also affected the viscometry. Over the years, 
trial-and-error incremental improvements in the hundreds, if not thousands, brought 
forward lubricants of such high complexity that it was impossible to phantom the intri-
cate contributions of the single components to the overall performance. Consequently, 
the trial-and-error approach for the further evolution of motor oils ran out of steam. A 
new, bottom-up approach was brought forward that culminated in the development of 
synthetic motor oils. Unlike their crude-oil-distilled and additive-loaded counterparts, 
synthetic oils are built up in the laboratory, starting with pure phases of molecules, such 
as ethylene. Instead of distilling down petroleum, crude oil is first broken down into pure 
chemical substances, followed by organic synthesis that brings forward larger molecules 
known as poly-ɑ-olefins (PAO). PAO is the molecularly engineered base stock of synthetic 
motor oil. With the synthetic root, upcoming environmental requirements, such as the 
reduction in phosphorous compounds, could be quickly resolved, as the interplay between 
the chemical components was known.

Many more examples could be listed here that illuminate the shortcomings of prod-
ucts based on trial-and-error approaches. While products designed from the bottom 
up can be quicker and more effectively changed, the shortcomings of the deductive 
rational approach are typically initial costs and a high risk of failure during the original 
development phase. Table 1.1 provides a summary assessment of the pros and cons of 
the two engineering approaches. The trial-and-error approach applies to most current 

c01.indd   4c01.indd   4 8/7/25   10:01 AM8/7/25   10:01 AM



1.1  Nanoscience and Molecular Engineering 5

engineering developments of both mature and emerging technologies. The deductive 
rational approach, on the other hand, emerges either first as a curiosity without having 
the urgent need to find a solution for an engineering challenge, and thus, only leads later 
to products, or, if motivated by an engineering challenge driving a truly deductive research 
development from the bottom up. The deductive rational approach is slow to market but, 
if successful, revolutionary.

1.1.2    Combined Deductive Rational Engineering

One of the greatest triumphs of a deductive rational approach involving nanoscience and 
molecular engineering has been the development of the vaccine platform for SARS-CoV-2 
(COVID-19) that took 2019/2020 less than a year to complete (including federal approval). 
It is one of the most extraordinary accomplishments of Synthetic Biology in combination 
with Colloidal Sciences that provided the sequence of the viral genome and an effective 
drug delivery system, respectively. Synthetic biology was instrumental in identifying and 
characterizing the molecular mechanisms that drive COVID-19,1 which consequently led 
to the development of the crucial messenger ribonucleic acid (mRNA) precursors.2 Once 
transcribed, the mRNA molecules were lipid-encapsulated to shield them from enzymatic 

1  COVID-19 stands for the coronavirus disease in 2019.
2  mRNA is a type of single-stranded RNA that is involved in the production of proteins.

Trial-and-error approach Deductive rational approach

Repeated, varied attempts, continued until 
success. Typically “hunch” based.

Extracted from a fundamental understanding 
of the atomic/molecular building blocks and 
collective phenomena.

PROS PROS

	•	 Relative fast success (fast to market)
	•	 Relative inexpensive (at first sight)
	•	 Low risk of success

	•	 Highly tunable and flexible to changing 
requirements

	•	 Inexpensive toward further developments

CONS CONS

	•	 Limited fundamental insight
	•	 Increasingly expensive toward further 

development
	•	 Adjustment inflexible (e.g., in the removal 

of environmentally detrimental molecular 
components)

	•	 Relative slow success (slow to market)
	•	 Very expensive (initially)
	•	 High risk of failure to deliver initial product

Applies to most current engineering 
developments of mature and emerging 
technologies.

More often involves nonengineering targeted 
fundamental discoveries that lead “after the 
fact” to products.

Table 1.1    Fundamental approach toward materials/system engineering.
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1  The Realm of Nanoscience and Molecular Engineering6

degradation. With the use of lipid nanoparticles (LNPs), it was possible to transfer the 
mRNA molecules into the cell cytosol, as shown in Figure 1.3.

Briefly, when a nanoparticle is introduced into a cell’s external milieu, it can interact 
with the outside of the plasma membrane, resulting in the nanoparticle entering the cell 
via a process called endocytosis, i.e., the invagination of its membrane to form a vacuole, 
which is pinched off to create membrane-bound vesicles that are routed within the cell 
to specific locations at which they open up and release the cargo, that is the mRNA-LNP. 
Once the lipid dissolves under the given pH conditions in the cytoplasm, the drug (here, 
mRNA) is released.

Clearly, the LNP molecular payload delivery process into living cells encompasses a 
highly deductive rational engineering methodology with many steps from encapsulation, 
environmental protection, storage prior to injection, initiation of endocytosis, routing to a 
specific location in the cell, to releasing the payload.

1.1.3    Perception of Our World – Apparent Unique Behaviors in  
Small Systems

While we live in a time in which we indulge ourselves with an atomistic and molecular 
perspective of matter, we are still very much stuck with perceptions derived from bulk 
material performances. This is self-evident on many occasions when we express our sur-
prise about supposedly “unexpected” material behaviors. For instance, by analyzing the 
shear flow of ultrathin liquid films, we can observe lateral system response forces that 
exhibit apparent “unique” stick-slip behavior, while classically, we would expect from 
a liquid a monotonously constant drag force, as illustrated in Figure 1.4 by contrasting 
stick-slip to viscous sliding.
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Figure 1.3    (a) LNP delivery system for mRNA payload. (b) 1–4 delivery steps of genetic mRNA 
material into the cell’s cytoplasm, where it is converted into a functional protein.
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1.2  Properties in Lower Dimensionalities 7

1.2    Properties in Lower Dimensionalities

The perception we hold concerning material behaviors is coined by our classical experi-
ences, as well as our bulk phenomenological theories that often neglect interfaces, system 
inhomogeneities, and intrinsic relaxation times. Furthermore, we readily make steady-state 
and equilibrium assumptions. Considering the mentioned stick-slip behavior in ultra-
thin liquids, we hypothesize that we understand the nature of a “liquid” and a “solid.” 
Searching in popular dictionaries, such as Webster’s Encyclopedic Unabridged Dictionary, 
for definitions of these two terms, we find rather peculiar descriptions. For instance, one 
finds for “solids” the definition “having the interior completely filled up,” and for “liquids” 
the description “composed of molecules, which move freely among themselves but do not 
tend to separate like those of gases.” Thus, based on these definitions, we expect that the 
molecules in liquid films should be free to move in relation to each other and exhibit dif-
fusive motions, as in a three-dimensional (3D) system at equilibrium. Furthermore, we 
assume constant drag resistances under a given external stress at steady state. With this 
perception in mind, we are in no condition to explain the observed stick-slip behavior in 
ultrathin films, a system constrained dimensionally.

Atoms and molecules at interfaces encounter a complex array of interaction forces, 
which also involve their surroundings. This situation leads to a reduction in degrees of free-
dom as we move from our 3D world to lower dimensions. Statistically, lower dimensional 
systems constrain the number of possible states or configurations for molecules, resulting 
in decreased entropy. Consequently, the pathways to equilibrium become more restricted, 
causing local minima or transient states to persist for longer durations. The implications of 
these phenomena are extensive.

Stick-slip sliding

Viscous sliding

0 t1 t2<�> = const.

F

k –kx = F

Time“steady state”

stop pulling

start up

Figure 1.4    “Liquid” films are sheared, and the lateral response force F is measured. Viscous sliding 
of thick films reveals viscous sliding as expected. For ultrathin films (~1 nm thickness), stick-slip 
sliding is observed in the “steady-state” regime. The relative force location of the two sliding 
behaviors is arbitrarily chosen.
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1  The Realm of Nanoscience and Molecular Engineering8

In fluid-like systems,3 the expected diffusive behavior may be disrupted. For example, 
while bulk diffusive transport typically involves a random walk scattering process, 
size-constrained systems, such as a one-dimensional (1D) wire, can exhibit ballistic 
transport, where the transport carriers move through the system with minimal scattering. 
Furthermore, the outcomes of natural laws or principles can also differ. For instance, 
according to Huygens’ principle, which postulates that every point on a wave front 
acts as a source of secondary waves, sound waves that stop emanating demonstrate a 
well-defined cessation in three dimensions due to the exponential decay of the acoustic 
wave equation. In contrast, in two-dimensional (2D) systems, no abrupt termination 
is observed; instead, one experiences a slow logarithmic decay. This distinction has 
significant ramifications, as acoustic communication in a genuinely 2D environment 
proves to be considerably more challenging than in our 3D world, primarily due to the 
temporal overlap of information.

In nanoscience, we must consider two key aspects: the size dimension, which encom-
passes a range of length scales, and the space dimensionality, which reflects the degrees of 
freedom within the system. When examining the spatial dimension relevant to nanosys-
tems, we expand our conventional 3D perspective to also include: (a) the zero-dimensional 
(0D) realm of atoms, small simple molecules, or quantum dots, (b) the 1D domain of 
long-chain molecules, nanofilaments, and nanotubes, and (c) the 2D space of surfaces, 
interfaces, and ultrathin films.

While further expansions of dimensionality are possible – particularly into fractal 
dimensions – we will restrict ourselves in our discussion to the realm of 0D, 1D, 2D, and 3D 
(bulk) dimensions. We perceive a system that is at least in one dimension size constrained 
to the nanoscale, a nanosystem.

In the following sections, we will explore how these nanoconstraints influence driving 
forces, transport phenomena, and material properties. We will begin with a simple narra-
tive illustrating how peculiar our world can seem when viewed from a different dimen-
sional perspective, while also reminding ourselves that our understanding of the world is 
fundamentally shaped by the three dimensions we inhabit.

1.2.1    Flatland – The Uniqueness of Lower Dimensionality

Since mathematicians have introduced us to many dimensions, it has been our desire to 
strive for more degrees of freedom while seemingly unsatisfied with the three dimensions 
we live in. Our pursuit of entertaining ourselves with fictions that escape our common 
senses is documented as early as 1884 in the satire “Flatland: A Romance of Many 
Dimensions” by Edwin A. Abbott (1952). While Abbott’s work tries to introduce the reader 
to the concept of the multidimensional space beyond ours, it chooses fewer dimensions 
than three as a starting point. By doing so, Abbott came up with imaginary laws of nature 
that apply in one and two dimensions. Although these laws, for instance, explain how rain 
is experienced in two dimensions, are unrealistic, they impressively illustrate the mystery 
of lower dimensionalities.

3  Applicable to molecular fluidic or electronic systems.
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1.2  Properties in Lower Dimensionalities 9

Let us inspect the example of rain in Abbott’s Flatland a little further. In our 3D world, 
rain is coming down from the sky, and we protect our houses from getting wet inside with 
roofs. How about in Abbott’s 2D world? Abbott artificially introduces cardinal directions 
to compensate for the lack of gravitation and requires rain to “fall” from North to South. 
Notice in Figure 1.5, the houses are arranged toward the North so that their openings 
are shaded from the rain. This example illustrates that driving forces, such as here the 
gravitational potential, familiar to us in our 3D macroscopic world can be put in question 
in lower dimensions. While Abbott insisted on rain by introducing an artificial cardinal 
direction that lacks any physical basis, he could have also easily argued that it never rains 
in Flatland, as there is no mass in two dimensions and, thus, no reason for gravitation. 
The loss but also the gain of driving forces (potentials), or more precisely their relative 
importance, explains some of the unique behavior of lower dimensional systems.

Thus, based on Abbott’s imaginary world, when dealing with nanosystems, we must 
carefully assess the driving forces or potentials and how they can impact system prop-
erties. In the case of Abbott, the house constitutes the system, and its openings signify the 
relevant properties toward shielding the system from rain. In nanosystems, we consider 
the molecular structure and the translated mechanical, optical, thermal, and electronic 
material properties. Abbott’s world deals with a single driving force that acts based on an 
imposed law on rain droplets. In nanosystems, we have to consider the transport involving 
a variety of corpuscular or non-corpuscular species on which forces are acting based on 
specific laws. We can assess the species transport in Abbott’s world by measuring the rain 
entering the house over time. In the case of a physical system in nature, we measure the 
thermal, electric, mass, and momentum transport properties, to name four of the most 
important transport properties. Abbott’s system, as unique as it seems, also possesses an 
intrinsic response time, which depends on the rate rain droplets move and the angle at 
which they hit the walls of the house. We can expect there is a critical rate beyond which 
either no water can enter the house or the opposite. Similarly, we observe, for any physical 
system, rate-dependent critical phenomena intrinsic to the system.

Going forward, the above aspects will be addressed in greater detail, emphasizing 
particular facets, such as transport laws, with a distinguishing eye on bulk versus molecular 
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Figure 1.5    Orientation of houses, roofs, and openings in regards to the direction of rain in (right) 
our 3D world and (left) Flatland, Abbott’s imaginary 2D world.

c01.indd   9c01.indd   9 8/7/25   10:01 AM8/7/25   10:01 AM



1  The Realm of Nanoscience and Molecular Engineering10

phenomena. We will also illuminate system time responses and dimensional restrictions and 
provide a classification scheme at the end, in addition to a potential outlook of nanoscience 
and molecular engineering. Specifically, we will discuss:

	 •	 mechanical system responses to stresses from both a bulk and molecular perspective;
	 •	 thermal transport, specifically regarding driving forces, bulk laws, statistical aspects, 

and size effects;
	 •	 electronic transport in dimensionally constraint systems;
	 •	 acoustic transport in 2D as compared to 3D systems;
	 •	 time effects and nanoconstraints;
	 •	 miniaturization and scaling;
	 •	 overall classification and expectations of nanotechnology.

1.3    Mechanical System Responses

In this section, we illuminate how to go beyond mere perceptions of material behavior and 
draw our understanding from assessing material responses to external disturbances. It is 
no surprise that classically tainted observations can obstruct our understanding of small 
systems. In this context, it is important to recognize that it is not the classical physical laws 
that impede our understanding but, often, a lack of recognition of the underlying assump-
tions. While examples are manifold to illustrate how material behaviors can be understood 
as nondiscriminatory, we will stay with our lubrication example discussed earlier, in which 
we compared thick film strain responses to the ones found in thin films under shear.

1.3.1    Bulk Rheological Responses

We take another look at the (on first sight) peculiar behavior of a liquid lubricant under 
shear, as depicted in Figure 1.4. It shall be pointed out that the shear behavior of liquid 
phases is of great technological importance in many areas, such as lubrication in the 
automotive and machinery industry, injection processes such as inkjet printing and jet 
molding, and noise suppression of systems that are exposed to humidity and temperature 
changes.

Webster’s perception of liquids and solids just toyed with microscopic molecular pic-
tures that go back to the Greek philosophers Leucippus and Democritus. An improved 
understanding of these two terms is obtained by considering classical rheological laws. 
In Rheology, a traditional branch of physics that deals with the deformation and flow of 
matter, we distinguish, in the extreme, between a perfect solid-like deformation behavior 
and a perfect liquid-like flow behavior. Typically, any practical material response to shear 
falls in between the two.

Perfect solid-like deformations in one dimension are well expressed via Hooke’s law as

​F = − kΔx​� (1.1)

where ​k​ and ​Δx​ reflect the spring constant and the elastic length deformation, respec-
tively. In three dimensions, assuming for simplicity an isotropic material, the equivalent 
force-deformation expression is given by the stress-strain ​σ(ε)​, in relation of the form,
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1.3  Mechanical System Responses 11

​σ = Eε​� (1.2)

where ​σ ≡ F / A​ in units of [Pa] reflects the normal plane stress (force ​F​ per unit area ​A​) and ​
ε ≡ ΔL / ​L​ o​​​ the dimensionless strain (uniaxial deformation ​ΔL​ divided by original length ​​L​ o​​​)  
in the material. The proportionality factor, ​E​, a material property, is known as Young’s 
modulus, which also carries pressure units. The basis of Hooke’s law is that the deforma-
tion energy is elastically stored and can be fully recovered. Considering simple shear, we 
can rewrite Eq. (1.2) with the elastic shear modulus ​G​,4 the shear stress ​τ​ and shear strain ​γ​ 
(angular shear), leading to the following stress-strain relationship:

​τ = Gγ​� (1.3)

Equation (1.3) reveals a linear increase in the stick-slip behavior in ultrathin films. In 
other words, ultrathin films can behave solid-like.

Worked Problem 1.3.1

Problem: Carbon nanotubes are cylinders of graphene (single graphite sheets) with  
diameters ranging from below 1 nm to several nanometers, for single wall carbon nano-
tubes (SWCNT), with Young’s modulus of around 1 TPa (1012 Pa) for diameters exceeding 
1 nm. It is important to note that SWCNT, because of its finite cross-section, is not truly 1D 
but rather a rod. A rod that is stretched longitudinally will thin in the center if we assume 
no structural changes because of mass conservation. The cross-sectional thinning process 
is captured by the Poisson ratio ​ν ≡ d​ε​ trans​​ / d​ε​ comp​​​. ​​ε​ trans​​​ is the transversal elongation strain 
with respect to the amount of axial compression strain ​​ε​ comp​​​ under tensile stress ​σ = F / A​. 
We shall estimate the shear modulus ​G​ based on ​ν = 0.16​.

Solution: We employ the isotropic relation that was introduced earlier in Footnote 4,  
i.e., ​G = E / ​[2​(1 + ν)​] ​​, which yields for ​G​ a value of 0.43 TPa. This value underestimates the 
value found in the literature, which is around 0.47, indicating that SWCNT is not isotropic.

Switching from elastic deformations to perfect plastic deformations, in which energy 
is entirely dissipated during the deformation process, we focus on the perfect viscous or 
perfect plastic behavior of a system. We can say that a perfect liquid-like flow situation is 
a perfect plastic deformation. For perfect viscous flow in one dimension, Newton’s law of 
viscosity applies, i.e.,

​​τ​ yx​​ = − η​​γ ̇ ​​yx​​​� (1.4)

where ​x​ represents the sliding direction, and, ​y​ represents the momentum direction normal 
to the sliding plane. We find in Eq. (1.4) the liquid viscosity ​η[Pa · s]​, also a material property, 
and the strain rate ​​​γ ̇ ​​yx​​​.5 As depicted in Figure 1.4 for thick liquid films, viscous sliding yields 
a constant shear stress as long as the deformation rate is kept constant.

4  The shear modulus can be related to the Young’s modulus for isotropic materials via the Poisson ratio ​ν​, 
as​ G = E / ​[2​(1 + ν)​] ​​.
5  The strain rate ​​​γ ̇ ​​ij​​​ of Newtonian (incompressible) fluids is given by​  ​​γ ̇ ​​ij​​ ≡ ∂ ​v​ i​​ / ∂ ​x​ j​​ + ∂ ​v​ j​​ / ∂ ​x​ i​​​, with ​​v​ k​​(k = i, j)​ 
defining both the flow and the momentum directions.
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1  The Realm of Nanoscience and Molecular Engineering12

Having gained an improved understanding of perfectly elastic and viscous shear behav-
iors, we are now ready to discuss the deviating qualitative shear behavior of thick and 
ultrathin liquid films. In the thick film, our assumption of strictly viscous Newtonian 
shear applies. We can assume that there are plenty of degrees of freedom for the molecules 
to move independently and dissipate the induced shear energy. In the case of ultrathin 
films, however, interfacial constraints limit the degree of freedom of the liquid molecules 
and require them to move to some degree in unison during shear deformations. Thus, the 
change in degree of freedom imposes different response times to stresses in the liquid. In 
Newtonian liquids, the response time of each individual molecule is so fast that any shear 
deformation dissipates instantaneously. For ultrathin films, however, even slow shear 
deformations can exceed the individual response time of a single molecule leading to a 
collective (cooperative) response phenomenon, as observed in solids. Thus, the stick-slip 
behavior in ultrathin films can be seen as a manifestation of ordering in the liquid under 
stress conditions. The sharp drop in the stick-slip phenomena can be interpreted as an 
instant strain release or as shear-induced “melting,” which provides a transitory increase in 
the degree of freedom and an increase in the molecular response time. From the language 
employed here, we can infer that the underlying theories to formally describe the stick-slip 
phenomena lie in Thermodynamics and Statistical Mechanics.

1.3.2    Molecular Perspective of Mechanical Systems

We chose the stick-slip phenomena above as one of many examples to illustrate the impor-
tance of carefully assessing the property law(s) on the macroscale before interpreting 
small-scale molecular systems. Specifically, there are two aspects to keep in mind:

	 •	 statistical ensemble behaviors of molecules under interfacial and size-constrained 
conditions, exemplarily addressed in this paragraph by considering the flow of a 
polymer melt in capillaries and,

	 •	 the strength and polarity of soft intermolecular interactions that dictate the material 
structure and property. This aspect will be discussed in some detail in the next section 
of this chapter.

We shall consider the cylindrical flow in a capillary rheometer of a thermoplastic melt 
composed of long-chain molecules with many repeat units, known as polymers. As illus-
trated in Figure 1.6, capillary rheometers are piston-die systems with which the viscosity 
of polymer melts can be determined as a function of temperature and rate of deformation. 
A small amount of thermoplastic in the form of granules, powder, or flakes is melted by 
heating and forced to flow out of a cylinder through a capillary die. If the temperature T of 
the melt significantly exceeds the glass transition ​​T​ g​​​ (the rule of thumb is ​T > ​T​ g​​ + 100 ° C​), 
the liquid viscosity ​​η​ o​​​ is well represented by the Arrhenius equation,

​​η​ o​​​(T)​ = A​e​​ ​E​ o​​/​k​ B​​T​​� (1.5)

​​E​ o​​​ represents a viscous flow activation energy in joules, ​​k​ B​​ = 1.380649 × ​10​​−23​  J / K​ the 
Boltzmann constant, ​T​ is the absolute temperature in Kelvin, and ​A​ is a constant. The sub-
scripted nod of the viscosity implies that no shear force is applied. The viscosity in SI units 
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1.3  Mechanical System Responses 13

is [Pa · s]. The viscous flow activation energy ​​E​ o​​​ is the energy barrier that has to be over-
come for flow to occur. With the Arrhenius equation, only temperature effects on viscosity 
are considered – time, or strain rate effects are neglected.

The phase system, described with the Arrhenius equation, typically consists of coiled-up 
chains with little entanglements. Rate effects have to be considered for a bulk polymer 
system if the system temperature is closer to the glass transition temperature, at which 
the polymer molecules have the tendency to entangle. The larger the chains, the larger the 
entanglement.

The Arrhenius expression is inadequate for an entangled polymer melt and must be 
expanded to reflect the rate effect. One way to do that is to consider the probability for 
chain motion given by the ratio of two volumes, namely the single diffusion jump volume ​​
v​ d​​​ divided by the average free volume per molecule ​​v​ f​​​. The single jump volume originates 
from a “jump model,” in which it is assumed that voids exist in the melt that allows seg-
ments of the molecules to move in consecutive jumps along the shear stress direction, 
Figure 1.7(a). Under zero stress ​(τ = 0)​, the activation barrier ​​E​ o​​​ is related to the jump 
frequency ​​ν​o​​​ as ​​ν​o​​ = ​(​E​ o​​ / 2m)​​1/2​​, where ​m​ is the mass of the molecular element affected, 
i.e., the single crankshaft element in the polymer chain.

The melt viscosity is a measure of the rate at which chains can move relative to each 
other. It depends on the energy ​​E​ o​​​ involved in local backbone rotation (crankshaft motions) 
and other mobility resistances, such as the degree of molecular entanglements. For polymer 
melts closer to the glass transition, the melt viscosity can be expressed as

​η = ​η​ o​​​(T)​​e​​ α​(​γ ̇ ​)​​​� (1.6)

where ​α​(​γ ̇ ​)​ ≡ ​v​ d​​ / ​v​ f​​​ is a parameter that adjusts the Arrhenius expression for chain entangle-
ment resistances during shear. Microscopically, it can be visualized as the ratio between the 
diffusion jump volume ​​v​ d​​​ and the free volume ​​v​ f​​​ per molecule, and as such, ​α​(​γ ̇ ​)​​ is strain 
rate ​​γ ̇ ​ ≡ dγ / dt​ dependent. The jump situation is depicted in Figure 1.7.

Die surface Piston

Melt phases
3 2 1 2 3

Phase 1 (bulk) 
Phase 2 (intermediate) 
Phase 3 (boundary)

Melt

Capillary
die

Figure 1.6    Capillary piston-die rheometer. Polymer phase regimes in capillary are highlighted on 
the left.
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1  The Realm of Nanoscience and Molecular Engineering14

Returning to the polymer melt in the capillary rheometer, Figure 1.6, for which we 
assumed a temperature ​T > ​T​ g​​ + 100 ° C​, we recognize that within the cylinder core, the 
polymer is in a purely coiled phase (phase I), i.e., its viscosity is only temperature dependent, 
as the molecular chains are not entangled. However, toward the capillary wall, we find 
an intermediate radial regime (phase 2), within which the polymer chains are entangled, 
despite the high temperature ​T​, due to loss in free volume. The loss in free volume origi-
nates from the interaction with the third phase regime, the polymer interfacial boundary 
layer (phase 3), close to the capillary wall. The polymer molecules in phase 3 experience, 
with the capillary wall surface, an interface that is repelling toward the polymer molecules, 
causing them to “shy away” by densifying and, thus, strongly entangling and shear aligning 
under the flow stress conditions. In turn, due to their natural attraction toward molecules 
in the intermediate phase, the molecules in phase 2 also deviate from the bulk behavior and 
are gradually entangled.

Thus, dependent on the strain rate ​​γ ̇ ​​, we will either observe smooth melt extrusion or a 
stick-slip flow phenomena. At low shear rates, the flow in both the bulk regime and the 
intermediate regime (phases 1 and 2) is very little affected by entanglements and smooth, 
thus, well described by Eq. (1.5), and captured in Figure 1.7(b). At some point, with 
increasing strain rate, ​​γ ̇ ​​ will reach a critical value, ​​​γ ̇ ​​crit​​​, where entanglements in phase 2  

V
is

co
si

ty

smooth
extrusion

stick-slip
regime

smooth
extrusion Strain rate

crit
γ· (2)

crit
γ· (1)

Eo

vo

Eo

τ = 0 τ ≠ 0

ΔE ΔE0
1 2

1 2

1 2

(a)

(b)

Figure 1.7    (a) Simple jump model: Submolecular activation barrier without stress ​(​E​ o​​)​ and with 
stress ​(​E​ o​​ ± ΔE)​. Unperturbed jump frequency ​​ν​o​​ = (​E​ o​​/2m​)​​1/2​​ with void dimension a. (b) Effect of 
entanglement and strain rate on flow performance of polymer melt.
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1.3  Mechanical System Responses 15

become noticeable in a stick-slip kind of hindrance to flow. During the sticking phase, the 
chains are gradually stretched without local flow, which in turn slows down the overall 
flow through the capillary. Once the stress exceeds the molecular “static frictional” resis-
tance imposed by the entanglement, the chains disentangle, which results in slippage. 
After disentangling, the chains release energy and re-entangle in the intermediate region 
while the shear flow commences at ​​γ ̇ ​ = ​​γ ̇ ​​crit​​​. The stick-slip process repeats itself. Further 
increasing the strain rate, ​​γ ̇ ​ > ​​γ ̇ ​​crit​​​ will bring forward the same stick-slip phenomenon until 
the strain rate is so high that it yields a permanently disentangled intermediate (phase 2) 
regime. Under such high strain rate conditions, the flow is smooth again. In the following 
Worked Problem, we shall explore the melt viscosity of an entangled polymer system, as 
found in the intermediate phase 2.

Worked Problem 1.3.2

Problem: We continue our conversation about the capillary piston-die rheometer, 
Figure 1.6b, and discuss the intermediate phase 2 in light of the core phase 1 at a 
temperature ​T​ that is closer to the glass transition temperature ​​T​ g​​​. We shall derive an 
expression for the molar amount of the activation energy at temperature ​T​ for the melt 
viscosity of an entangled polymer system.

Solution: As we have seen, the Arrhenius expression for the melt viscosity at high 
temperature includes with ​​E​ o​​​ an activation barrier that is temperature independent. 
Considering now Eq. (1.6), we substitute the average free volume per molecule ​​v​ f​​​ with 
its molar quantity ​​V​ f​​ = ​N​ A​​​v​ f​​​ and the single diffusion jump volume ​​v​ d​​​ with its molar 
equivalent ​​V​ d​​​ (where ​​N​ A​​ = 6.0221 × ​10​​23​ ​mol​​−1​​ is Avogadro’s number), replace ​​E​ o​​​ with 
the molar activation energy ​​Q​ o​​​, as ​​E​ o​​ = ​Q​ o​​ / ​N​ A​​​, introduce the universal gas constant  
​R = ​k​ B​​T = 8.31432 J ⋅ ​K​​−1​ ⋅ ​mol​​−1​​, and set ​Q(T,​v​ d​​ / ​v​ f​​) = ​Q​ o​​ + RT(​V​ d​​ / ​V​ f​​)​, we obtain

​η = A​e​​ ​
Q​(T,​γ ̇ ​)​ ____________ RT  ​.​​

We note that with the extended Arrhenius form presented here, we utilized an apparent 
activation barrier that depends on both temperature and strain rate (via the rate-dependent 
volume ratio ​​v​ d​​ / ​v​ f​​​).

Looking back at the polymer extrusion example, apparent misconceptions or expec-
tations of the flow of a polymer melt above its glass transition could be resolved by con-
sidering molecular phenomena and local interactions. For this particular example, the 
molecular phenomena were based on chain entanglement induced locally by interfacial 
interactions. The driving force for the polymer extrusion example was a pressure force 
given by the piston, and our observable was the rate of melt extrusion. In the following 
section, we explore some of the important driving forces in nature and discuss system 
responses. The structure is based on the transport mechanism. Having addressed, to some 
degree, momentum transport with fluid flow, we will give preference in the next three 
sections to thermal, electronic, and acoustic transport.
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1  The Realm of Nanoscience and Molecular Engineering16

1.4    Driving Forces and Responses in Thermal Transport

1.4.1    Classical Thermal Transport

The term “driving force” is not a precisely defined quantity. It describes a property gradient 
that gives rise to a rate of flow of a quantity per unit area, in short, called a flux. For instance, 
the temperature gradient ​𝛁T​ in a wall separating two rooms that are at temperatures ​​T​ 1​​​ and ​​
T​ 2​​​ gives rise to a heat flux ​q​, as long as the temperatures are dissimilar. A constitutive relation 
is needed to connect the resulting flux to the driving force. Some constitutive equations are 
empirical, and others are derived from first principles. The empirical constitutive equation 
that relates the heat flux ​q [W · ​m​​ −2​]​ to the temperature gradient ​𝛁T​ during conductive heat 
transfer is Fourier’s law,

​​ → q ​ = − ​k​ c​​ ​ ∇​​ 
→

​T;  with  ​ ∇​​ 
→

​ = ∇​​  and  ​ ∇​​ 
→

​ = ​(​ ∂ _____________ ∂x ​ , ​ ∂ _____________ ∂y ​, ​ ∂ _____________ ∂z ​)​ for T = T (x, y, z) ​� (1.7)

where the material property ​​k​ c​​ [W / m · K]​ is the thermal conductivity. In this simple form 
of conductive heat transfer, we assume isotropic thermal conductivity, as presented in the 
Worked Problem below, in which we restrict ourselves to 1D heat transfer.

Worked Problem 1.4.1

Problem: Consider a uniform wall of thickness ​L​ that separates two large rooms at  
temperatures ​​T​ 1​​​ and ​​T​ 2​​​. The temperatures at each side of the wall shall match the room 
temperatures. Our goal is to find an expression for the temperature gradient in the wall.

Solution: First, we notice that the conservation of energy requires the heat flux ​​q​ x​​​ to be 
constant throughout the wall. Based on Fourier’s law, expressed here in one dimension to 
match the figure to the left,

​​q​ x​​ = − ​k​ c​​ ​ 
dT _ dx ​​

and the boundary condition ​T = ​T​ 1​​​ at ​x = ​x​ 1​​​ and ​T = ​T​ 2​​​ at ​x = ​x​ 2​​​, we 
find after integration:

​​q​ x​​​(​x​ 2​​ − ​x​ 1​​)​ = − ​k​ c​​​(​T​ 2​​ − ​T​ 1​​)​​

Combining the two equations yields the temperature gradient

​​ dT _ dx ​ = ​ 
​T​ 2​​ − ​T​ 1​​

 _ ​x​ 2​​ − ​x​ 1​​ ​ = ​ 
​T​ 2​​ − ​T​ 1​​

 _ L  ​ = ​ ΔT _ L  ​,​

which is proportional to the temperature difference ​ΔT = ​T​ 1​​ − ​T​ 2​​​,  
and, inversely dependent on the wall thickness. While ​ΔT​ is consid-
ered the driving force, ​1 / L​ is known as the wall resistance for heat 
conduction.

With Fourier’s rate law, we introduced the thermal conductivity ​​k​ c​​​, which depends on the 
temperature and the material of choice. The conduction parameter is material intrinsic and, 
thus, independent of size or shape of the material. It expresses the ability of the material 

T
L

T1

T2

T(x)

qx

x1 x2
x

Figure P1.4.1    
1D Heat flux 
through a plane 
wall.

c01.indd   16c01.indd   16 8/7/25   10:01 AM8/7/25   10:01 AM



1.4  Driving Forces and Responses in Thermal Transport 17

to conduct heat. The ability to store energy in materials is expressed by the volumetric heat 
capacity at constant pressure, ​​C​ V​​ = ρ​c​ p​​​, where ​ρ​ is the mass density and ​​c​ p​​ [J / kg · K]​ is the 
specific heat per unit mass at constant pressure. Values of the thermal conductivity and 
specific heat for some selected solids are provided in Table 1.2. The ratio between thermal 
conductivity and storage capacity defines how fast a material can transfer heat. Thus, we 
define the thermal diffusivity as ​α ≡ ​k​ c​​ / ρ​c​ p​​​. The SI units for diffusivities here are [m2/s] and 
are defined analogously to other diffusion parameters, such as particle diffusivity. With the 
introduction of the thermal diffusivity, Fourier’s law can be expressed as

​​ 
→
 J ​ ≡ ​ 

​ → q ​
 ______________ ρ​c​ p​​ ​ = − α ​ ∇​​ 

→
​T.​� (1.8)

A comparable expression to Fourier’s rate law can be found for particle diffusion  
(e.g., molecular species ​A​ diffusing through ​B​) via Fick’s law at constant total concentration, ​​
J​ AB​​ = − ​D​ AB​​𝛁​c​ A​​​, where ​J​ [mol/m2 · s] is the diffusive flux of ​A, ​D​ AB​​  [​m​​2​ / s]​ is the binary dif-
fusion coefficient, and ​∇ ​c​ A​​​ represents the driving force, namely, the molar concentration 
gradient of ​A​. There are many more examples of property gradients that can give rise to 
fluxes.

Material Thermal 
conductivity, ​​k​ c​​​ 
[W/m · K]

Specific heat 
capacity, ​​c​ p​​​  
[J/kg · K]

Density, ​𝝆​  
[kg/m3]

Speed of sound, ​​
𝘷​ s​​​ [m/s]

Poor conductors

Glass (Pyrex) 1.005 840 2230 5600

Cork 0.04 2000 200 366

Mica (muscovite) in-plane 0.71 840 2800 2400

Neoprene 0.192 2176 1250 1600

Nylon 6 0.23 1530 1130 1100

Oak (English brown) 0.17 2380 740 2565

Pine wood (with grain) 0.22 2301 670 3960

Polyethylene (LD) 0.331 2092 920 2600

Polyethylene (HD) 0.5 2300 950 2000

Polystyrene (foam) 0.026 1130 46 2350

Rubber (butyl) 0.088 1966 900 1830

Uranium oxide 8.8 300 10970 3850

Teflon 0.25 1000 2200 1400

Good conductors

Aluminum 226 921 2698 6320

Copper 398 385 8940 4600

Gold 317 128 19300 3240

Table 1.2    Thermal properties, densities, and speed of sound of selected materials.
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1  The Realm of Nanoscience and Molecular Engineering18

1.4.2    Thermal Conductivity Based on Classical Mechanics and Statistics

Let us consider the wall in Problem 1.3.1 to be a vessel of thermal conductivity ​​k​ c​​​ (with 
ultrathin vessel walls of infinite conductivity) filled with an “ideal gas” of noninteractive 
particles (e.g., molecules). The average (statistical) distance the particles can move bet-
ween collisions is the so-called mean free path ​λ​, which we assume to be much smaller 
than any of the three vessel size dimensions. The mean free path is given as the product 
between the average particle velocity ​​⟨𝘷⟩ ​​ and average time ​τ​ of free traveling between 
collisions:

​λ = ​⟨𝘷⟩ ​τ​� (1.9)

With the mean free path, we can express how the thermal energy is dispersed using the 
thermal diffusivity ​α​, which is related to ​λ​, as

​α = ​ 1 _ 3 ​​⟨𝘷⟩ ​λ​� (1.10)

The factor 1/3 expresses the equal probability of diffusion in a 3D volume ​V​. Considering 
that the thermal diffusivity ​α​ is related to the thermal conductivity ​​k​ c​​​ as ​α = ​k​ c​​ / ρc​, it follows 
for a constant volume system,

​​k​ c​​ = ​ 1 _ 3 ​​⟨𝘷⟩ ​λρ​c​ V​​​� (1.11)

where ​​c​ v​​​ is the specific heat at constant volume. Note that here, we describe thermal 
conduction only and do not consider convective heat transfer. In that sense, we consider 
the gas system to be quiescent.

It is convenient to combine ​ρ​c​ V​​ ≡ C​, known as volumetric heat capacity with SI units  
[J · K−1 · m−3] (not to be confused with the heat capacity at constant volume ​​c​ V​​​ that carries 
the units [J/K]). While considering a constant volume system, the gas pressure represents 
a variable affecting the volumetric heat capacity and the mean free path. It is interesting to 
note, however, as we will see later, that the product ​λC​ is pressure independent, and with 
it, so is the thermal conductivity ​​k​ c​​​, as long as the mean free path is much smaller than the 
smallest system size ​L​ in ​V​ (i.e., ​λ ≪ L​). In other words, for a bulk system with a pressure ​P​ 
large enough that molecular collisions are statistically relevant, we can assign to the system 
a standard pressure-independent conduction coefficient ​​k​ c,o​​​

​​k​ c,o​​ = ​ 1 _ 3 ​ ​​​⟨𝘷⟩ ​λC|​​​T​ o​​​​​� (1.12)

at a given reference temperature ​​T​ o​​ = 0 °C​.
The pressure ​P​ of the ideal gas of ​N​ molecules of molecular mass ​m​ in volume ​V​ can be 

expressed from the perspective of classical mechanics, as

​P = ​ 1 _ 3 ​​ρ​ N​​m​⟨​𝘷​​ 2​⟩ ​​� (1.13)

where ​​ρ​ N​​ = N / V​ is the molecule number density. If we furthermore consider that the 
kinetic energy per unit volume of the system is given by

​​e​ kin​​ = ​ 1 _ 2 ​ρ​⟨​𝘷​​ 2​⟩ ​ = ​ 1 _ 2 ​​ρ​ N​​m​⟨​𝘷​​ 2​⟩ ​​� (1.14)
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1.4  Driving Forces and Responses in Thermal Transport 19

we find that the pressure is 2/3 of the translational system energy per unit volume, i.e.,

​P = ​ 2 _ 3 ​    ​e​ kin​​​� (1.15)

The pressure can be perceived as a static system pressure, as we do not consider convective 
transport but only random diffusive particle motions.

Lastly, we shall employ the equation of state of an ideal gas based on the Boltzmann 
constant ​​k​ B​​ = 1.38 × ​10​​−23​ J / K​, which is ​PV = N​k​ B​​T​, to express the system pressure as

​P = ​ρ​ N​​kT​� (1.16)

Combining Eqs. (1.14)–(1.16) yields

​​ 1 _ 2 ​m​⟨​𝘷​​ 2​⟩ ​ = ​ 3 _ 2 ​​k​ B​​T​� (1.17)

which brings forward the average thermal energy of the system that is carried by each 
microscopic degree of freedom:

​E = ​ 1 _ 2 ​​k​ B​​T​� (1.18)

Contemplating, for instance, a monoatomic gas system of ​N​ atoms (e.g., helium), the 
total internal kinetic energy is

​U = ​ 3 _ 2 ​N​k​ B​​T​� (1.19)

where the number three represents the three translational degrees of freedom. In the case 
of a diatomic gas system (e.g., H2 or O2), we have to consider, in addition to translation, also 
rotations that add two additional degrees of freedom, which brings the total up to ​3 + 2 = 5.​ 
For a molecular system with ​f​ degrees of freedom, we can write

​U = ​ 
f
 _ 2 ​N​k​ B​​T​� (1.20)

Considering that the heat capacity is defined as the thermal gradient of the internal 
energy (​∂ U / ∂ T​), we find that the volumetric heat capacity ​C = ​N​ A​​​c can be expressed as

​C = ​ ∂ U / ∂ T _ V  ​ = ​ 
f
 _ 2 ​ ​ N _ V ​​k​ B​​ = ​ 

f
 _ 2 ​​ρ​ V​​​k​ B​​​� (1.21)

where ​​ρ​ v​​​ stands for the mass density. Thus, returning to the thermal conductivity

​​k​ c​​ = ​ 1 _ 3 ​​⟨𝘷⟩ ​λc​

with ​c = ρ​c​ v​​​, it follows

​​k​ c​​ = ​ 
f
 _ 6 ​​k​ B​​    ​ρ​ N​​​​⟨​​𝘷​⟩​​​λ​� (1.22)

According to the Maxwell-Boltzmann distribution, we can express the mean velocity as

​​⟨𝘷⟩ ​ = ​√ 

___

 ​ 
8​k​ B​​T

 ______________ πm  ​​​� (1.23)
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1  The Realm of Nanoscience and Molecular Engineering20

where ​m​ is the mass of the gas particle. The mean free path between elastic collisions of 
molecules with diameter ​d​ is derived, as

​λ = ​  1 _______________________________ 
​√ 

_
 2​​ρ​ N​​π​d​​ 2​

 ​​� (1.24)

If we substitute these two expressions, Eqs. (1.23) and (1.24), into Eq. (1.22), the thermal 
conductivity becomes

​​k​ c​​ = ​ 
f
 _ 

3​d​​ 2​
 ​ ​√ 

____

 ​​(​ 
​k​ B​​

 _____________ π ​)​​​
3

​ ​ T _ m ​​​� (1.25)

The key features of the thermal conductivity with a mean free path substantially smaller 
than any system size dimension ​(λ ≪ L)​, as expressed in Eq. (1.25), are:

	 •	 ​​k​ c​​​ is independent of the number particle density, and thus, the static system pressure, 
but temperature-dependent (more specifically: ​​k​ c​​ ∝ ​√ 

_
 T​​).

	 •	 Gases composed of smaller molecules transport heat more effectively than gases with 
larger particles (i.e., smaller particle gases possess larger ​​k​ c​​​ values), which is matched 
and further enhanced by a particle mass comparison between small and large particle 
systems.

It shall be noted that the gas kinetic theory is restricted to modest pressures, where molec-
ular interactions (i.e., Van der Waals interactions) can be ignored, and the mean free path 
is significantly smaller than the system size.

For the gas kinetic derivation of ​​k​ c​​​, Eq. (1.25), we assumed that the molecules are spherical 
and move with velocities close to the average velocity. The isotropic spherical assumption is 
only truly applicable to single-atom molecules. Already, small polyatomic molecules, such 
as the diatomic molecules, hydrogen H2, oxygen O2, or nitrogen N2 are not well described 
by Eq. (1.25). The second assumption of a small deviation from the average velocity does 
not apply to every molecular gas system. For instance, the velocity distribution of argon 
is narrow, which leads with Eq. (1.25) to a decent estimate of the thermal conductivity. 
Different is the situation for helium, for which we find a wide distribution, and thus, many 
molecules with velocities different from the average value. Consequently, Eq. (1.25) yields 
a poor estimated value for thermal conductivity, an aspect further illuminated in a study 
problem at the end of this chapter. The sensitivity toward the width of the velocity distri-
bution originates from the thermal transport direction, which is in line with the molec-
ular motion. Thus, a large population of molecules moving substantially different from 
the mean velocity can greatly affect the thermal transport parameter ​​k​ c​​​. As illustrated in 
the Worked Problem below, the velocity distribution is given by the Maxwell-Boltzmann 
distribution

​f ​(𝘷)​ = 4π​𝘷​​ 2​ ​​(​  m _________________ 2π​k​ B​​T ​)​​​
3/2

​​e​​ ​
−m​v​​ 2​ _ 2​k​ B​​T ​​​� (1.26)

where ​𝘷​ stands for the molecule velocity. The probability density function ​f(𝘷)​ gives the 
probability, per unit velocity, of finding particles with a velocity near ​𝘷​. We can infer from 
the Worked Problem that the distribution is skewed to the right, which shifts the mean 
value to the right, i.e., faster-moving molecules – an aspect that we did not consider in the 
development of our gas kinetic theory.
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1.4  Driving Forces and Responses in Thermal Transport 21

To remedy the situation, we shall consider the relationship between the heat and 
momentum transport coefficients, ​​k​ c​​​, and ​η​, the dynamic viscosity. The two quantities can 
be expressed in terms of molecular number density and mean free path as ​​k​ c​​ = 1 / 3 ​ρ​ N​​​⟨𝘷⟩ ​m​
c​ V​​λ​ and ​​k​ c​​ = 1 / 3 ​ρ​ N​​​⟨𝘷⟩ ​mλ​, which yields the relation

​​ 
​k​ c​​ _____________ η ​ = ​ 

​c​ V​​
 _ m ​​� (1.27)

This relationship is challenged when the velocities between the two transport phe-
nomena differ.

To address the issue, Arnold Eucken6 considered first to separate the specific heat into 
two components, i.e., ​​c​ 𝘷​​ = ​c​ 𝘷,t​​ + ​c​ 𝘷,r​​​, in which ​​c​ 𝘷,t​​​ reflects the heat capacity component 
attributed to molecular translation, and ​​c​ 𝘷,r​​​, the heat capacity component attributed to 
molecular rotation. He then modified the transport coefficient relation for ideal gases, ​​
k​ c​​ = η​(2.5​c​ 𝘷,t​​ + ​c​ 𝘷,r​​)​​. Returning with this expression to the gas kinetic theory and intro-
ducing the heat capacity ratio ​γ = ​c​ p​​ / ​c​ 𝘷​​​, where ​​c​ p​​​ is the heat capacity at constant pressure, 
we obtain after some tweaking the Eucken’s gas kinetic formula for the thermal conduc-
tivity for ideal gases:

​​k​ c​​ = η​c​ 𝘷​​​(​ 
9γ − 5

 _________________ 4  ​)​​� (1.28)

While Eucken’s formula has been adjusted further over the years by incorporating a 
dimensional constant that accounts for differences in the molecules’ internal degrees of 
freedom, it provides a reasonably good estimate for the thermal conductivity of many 
pure gases at modest pressures and temperatures. This is shown in the Worked Problem 
below based on gas properties summarized in Table 1.3.

Returning to the gas kinetic derivation of ​​k​ c​​​, Eq. (1.25), we introduced with ​f​ a parameter 
that captures the molecular degrees of freedom. The most obvious of them are the three 
translational degrees of freedoms, ​​f​ trans​​​, a molecule possesses in a bulk gas system. Molecules 
of more than one atom also have the ability to rotate visually around rotational axes. While 
linear molecules, such as carbon monoxide (CO), possess two axes and hence, ​​f​ rot​​ = 2​ rota-
tional degrees of freedom, nonlinear molecules, e.g., carbon dioxide (CO2), have ​​f​ rot​​ = 3​ 
rotational degrees of freedom. Lastly, ignoring electronic degrees of freedom,7 intermolec-
ular bond vibrations provide additional degrees of freedom with ​​f​ vib​​ = 3N − 5​ (for linear 
molecules) or ​​f​ vib​​ = 3N − 6​ (for nonlinear molecules), where ​N​ stands for the number of 
atoms in the molecule. In total, molecules can have up to ​f = ​f​ trans​​ + ​f​ rot​​ + ​f​ vib​​ = 3N​ degrees 
of freedom, regardless of the molecular shape. Monoatomic molecules, such as helium 
(He), possess with ​f = ​f​ trans​​ = 3​, only translational degrees of freedom. Diatomic molecules, 
such as CO can exhibit up to ​f = ​f​ trans​​ + ​f​ rot​​ + ​f​ vib​​ = 3 + 2 + 1 = 3N = 3 × 2 = 6​ degrees of 
freedom.

The degrees of freedom are also referred to as thermal modes that can be dormant or 
active. With increasing temperature, the thermal modes in a gas are turned on. For very low 
finite temperatures, only translational modes are active. The molecular scattering events 
do not transfer enough energy to activate rotational modes. Once a critical temperature 

6  A. Eucken, Ceramic Abstracts, 11, 353 (1932).
7  The impact of electronic degrees on heat conduction is small in comparison to the other three.
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threshold is reached, the temperature-induced kinetic energy is sufficient to free rotational 
modes, and thus, system internal energy changes involve molecular translations and rota-
tions. With further temperature increases, the thermal disturbances will reach a point 
where bond vibrational modes in polyatomic molecules are activated. The addressed mode 
activation temperatures are strongly dependent on the inner structure and shape of the 
molecules, as well as, at high pressures, on intermolecular interactions.

Worked Problem 1.4.2

Problem: We shall determine the thermal conductivity for argon (Ar), methane (CH4), and 
oxygen gas (O2) at 1 bar and 300 K and compare the values to the experimental values of 
0.0177 W/m · K, 0.0344 W/m · K, and 0.026 W/m · K, respectively.

Solution: We employ first Eq. (1.25)

​​k​ c​​ = ​ 
f
 _ 

3​d​​ 2​
 ​ ​√ 

____

 ​​(​ 
​k​ B​​

 _____________ π ​)​​​
3

​ ​ T _ m ​​​

and set ​​f​ Ar​​ = ​f​ trans​​ + ​f​ rot​​ + ​f​ vib​​ = 3 + 0 + 0 = 3​ for argon, ​​f​ C​H​4​​​​ = ​f​ trans​​ + ​f​ rot​​ + ​f​ vib​​ = 3 + 3 + 0 = 6​ 
for methane, a nonlinear molecule, and, ​​f​ ​O​2​​​​ = ​f​ trans​​ + ​f​ rot​​ = 3 + 2 + 0 = 5​ for oxygen, a 
diatomic molecule. The activation of the vibrational mode requires much larger temper-
atures above 1000 K. From Table 1.3, we substitute approximate values for the molecular 
diameters (​​d​ Ar​​ = 1.4 Å​, ​​d​ C​H​4​​​​ = 3.8 ​Å and ​​d​ ​O​2​​​​ = 3.0 Å​) and molecular masses, ​m = M × ​N​ A​​​  
(​​m​ Ar​​ = 6.634 × ​10​​−26​ kg, ​m​ C​H​4​​​​ = 2.66 × ​10​​−26​ kg​ and ​​m​ ​O​2​​​​ = 5.631 × ​10​​−26​ kg​) into Eq. (1.25), 
which yields

Molecules ​​c​ V​​​  
​[kJ/kg ⋅ K]​

​𝜸​ ​𝜼​  
​[μ   Pa ⋅ s]​

​M​  
​[g/mol]​

​d​  
​[​​Å​​]​

​​k​ c​​​  
​[mW/​m​​2​ ⋅ K]​

Monoatomic

Helium (He) 3.12 1.667 19.6 4.00 1.4 149

Argon (Ar) 0.31 1.667 22.3 39.948 1.88 17.7

Krypton (Kr) 0.15 1.667 25.4 83.798 2.02 9.5

Diatomic

Hydrogen (H2) 10.2 1.4 9.0 2.016 2.4 186.6

Nitrogen (N2) 0.74 1.4 17.8 28.013 3.0 25.8

Oxygen (O2) 0.66 1.4 20.6 31.999 3.0 26

Linear

Carbon dioxide (CO2) 0.66 1.28 15.0 44.01 3.3 16.8

Nonlinear

Ammonia (NH3) 1.64 1.32 10.1 17.03 2.6 25.1

Methane (CH4) 1.70 1.31 11.1 16.05 3.8 34.4

Table 1.3    Properties of selected gases at 300 K and 1 bar.
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1.4  Driving Forces and Responses in Thermal Transport 23

​​k​ c,Ar​​ = 0.0175 W / m · K​

​​k​ c,C​H​4​​​​ = 0.0135 W / m · K​

​​k​ c,​O​2​​​​ = 0.0128 W / m · K​

for the respective thermal conductivities. As expected, only for argon the thermal  
conductivity is estimated well with Eq. (1.25). The calculated methane value is off the 
literature value by about a factor of 2.5, and the one for oxygen is off by a factor of 
about 2. The discrepancy for oxygen originates most prominently from the non-isotropy 
of the molecular shape, while the even larger discrepancy for methane comes from the 
wide-skewed velocity distribution, as highlighted in the Maxwell-Boltzmann graph 
further below.

Employing Eucken’s gas kinetic formula, Eq. (1.28),

​​k​ c​​ = η​c​ 𝘷​​​(​ 
9γ − 5

 _________________ 4  ​)​​

yields for the respective conductivities:

​​k​ c,Ar​​ = 0.0174 W / m · K​

​​k​ c,C​H​4​​​​ = 0.032 W / m · K​

​​k​ c,​O​2​​​​ = 0.026 W / m · K​

After having substituted experimental data for (​η​, ​​c​ 𝘷​​​, ​γ​) from Table 1.3, the calculated 
values compare well with the experimental thermal conductivity values.
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Figure P1.4.2    Maxwell-Boltzmann distribution of Ar, O2, and CH4 gas at 1 bar and 300 K.  
The root-mean-square (rms) velocities are shown for O2 and CH4, highlighting with the shaded 
areas, the degree of which the distributions are screwed to faster velocities.
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1  The Realm of Nanoscience and Molecular Engineering24

Side note to Eq. (1.25) calculations: If we had also considered the vibrational degrees 
of freedom that yield an additional nine and one degree(s) of freedom for methane and 
oxygen, respectively, both calculated values for ​​k​ c​​​ would be closer to the actual values of 
the thermal conductivity. While for oxygen the discrepancy would shrink to a factor of 1.6, 
for methane, the calculated ​​k​ c​​​ value would match the literature value of 0.034 W/m · K. 
This is a surprising result and should be considered coincidental. For oxygen to reach the 
observed experimental value, the degrees of freedom in Eq. (1.25) would have to be raised 
to 10, which cannot be justified.

While we restricted our discussion of the thermal conductivity above to ideal gas particle 
collisions, we can extend the kinetic theory of gases also to amorphous (noncrystalline) 
solids, such as oxides or polymers, in which heat conduction is predominantly carried via 
atomic positional oscillations that move through the material. The energy quanta moving 
through solids are known, quantum mechanically, as phonons. This leads to the so-called 
“dominant phonon approximation” of the thermal conductivity of a solid that involves a 
phonon gas, which is described analogously to what was discussed above for ideal gases. The 
mean free path of the phonons, ​​λ​ ph​​​, is given by phonon scattering at imperfections (defect 
sites) in the solid that are abundant in amorphous materials. As for ideal gases above, the 
phonon approximation for heat conduction, expressed with Eq. (1.25), requires that ​λ ≪ L​.

The requirement for the mean free path of gases and amorphous solids to be much 
smaller than any system size dimension is not met for

	 •	 gases at ultralow pressures, where particle collisions are statistically sparse,
	 •	 systems with critical size(s) on the nanoscale (e.g., nanoporous materials with pore 

sizes below 50 nm), and
	 •	 and solids with a low defect number density.

In all three cases, the mean collision or scattering length is on the order of the system size 
dimension. In the extreme, scattering occurs only at the system boundary, and thus, the 
thermal conductivity within the material reaches zero. We shall discuss this aspect next.

1.4.3    Size Effect on Thermal Energy Transfer

Classical non-convective heat conduction based on the kinetic dilute gas theory requires 
that any critical system size exceeds the mean free path by at least one to two orders of 
magnitude. The theory breaks down for mean free paths on the order of 10 L ​(λ ~ 10 L)​, as 
illustrated in Figure 1.8 for a nanoporous system with air-filled pores of diameter ​D​ (​D​ is 
a system-specific ​L​, more generally known as the characteristic length for the gas, the gas 
volume), where the thermal conductivity falls dramatically. The ratio between the mean 
free path and the characteristic length of the gas volume, here ​λ / D​, is known as Knudsen 
number Kn. Thus, for ​Kn ≡ λ / D ≪ 1​, the earlier, pressure-independent, kinetic gas theory 
applies. As a rule of thumb, we consider that for ​Kn > 0.1​, adjustments or extensions to the 
classical bulk theory are necessary.
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Here we introduce the well-known Knudsen’s extension of the gas theory applicable to 
confining dimensions, where the thermal conductivity for gases is expressed as

​​k​ c​​ = ​ 
​k​ c,o​​
 ___________________________ 

1 + 2β​(​ λ _ D​)​
 ​​� (1.29)

The parameter ​​k​ c,o​​​ represents the classical thermal conductivity for ​λ ≪ L(Kn ≪ 1)​ at 
standard condition (1 atm, 20  °C) while ​β​ denoting a dimensionless coefficient that is 
dependent on the type of gas and temperature. For air, ​β​ is within the range of 1.5 and 2.  
It reflects the material-specific scattering quality at the pore interface, which becomes 
increasingly more prominent for smaller pores. In the limit of single-digit nanometer pore 
sizes, gas molecular collisions are unlikely, and mostly boundary scattering is observed. At 
this point, gases seize the ability to carry thermal energy effectively, reducing the thermal 
conductivity to close to zero.
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Figure 1.8    Thermal conductivity as a function of the critical size ​L = D​ for a mean free path ​
λ ~ 10D​ or smaller based on Knudsen kinetic theory. Data used for this plot are from ambient air: ​​
k​ c,o​​ = 0.026 W/m ⋅ K​, ​λ = 68 nm​. ​β = 1.5​ (arbitrary choice in the range of 1.5 to 2 for air). Inset: 
Air-filled hollow pores (e.g., found in porous polymers) are consistent with the plot presented. 
Qualitatively similar ​​k​ c​​(L)​ behaviors can be found for thin films and solid particles.
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A similar expression as Eq. (1.29) is used for amorphous solids with

​​k​ c​​ = ​ 
​k​ c,bulk​​

 ________________ 
1 + ​(​​λ​ ph​​ _ L ​)​

 ​​� (1.30)

where ​​k​ c,bulk​​​ is the bulk thermal conductivity, and ​​λ​ ph​​​ is the mean free path of phonon 
scattering at defect sites in the solid. The mean free path can be expressed as

​​λ​ ph​​ = ​ 
3​k​ c,bulk​​

 _ C​𝘷​ g​​
  ​​� (1.31)

In terms of the phonon group velocity ​​𝘷​ g​​​, which expresses the overall collective wave 
velocity.

Worked Problem 1.4.3

Problem: The local size reduction to the nanometer scale in materials that reduce  
diffusion based on molecular collisions or phonon transport with boundary scattering 
resulted in insulating materials that can reduce the thermal conductivity by up to two 
orders of magnitude. We compare the heat transfer coefficients between an insulating 
double sheet wall with a macroscopic air gap of volume ​V​ with a porous wall of a pore 
size of 5 nm and 100 nm, assuming the same gas volume ​V​ within the wall as in the 
porous system.

Solution: We employ Eq. (1.29)

​​k​ c​​ = ​ 
​k​ c,o​​
 ___________________________ 

1 + 2β​(​ λ _ L​)​
 ​​

and use the values ​​k​ c,o​​ = 0.026 W/m ⋅ K​, ​λ = 68 nm​. ​β = 1.5​ for ambient air in the gas-filled 
volume ​V​. Substituting the values into the equation yields a thermal conductivity through 
the pores in the porous wall of 0.0006 W/m · K and 0.0086 W/m · K for 5 nm and 100 nm 
size pores, respectively. The comparative ratio between the bulk system and the porous 
system is

​​ 
​k​ c,o​​

 _ ​k​ c​​
  ​​k​ c​​ = ​ 0.026 _ 0.0086 ​ = 3 ​(for 5 nm pores)​​

​​ 
​k​ c,o​​

 _ ​k​ c​​
  ​​k​ c​​ = ​ 0.026 _ 0.0006 ​ = 43 ​(for 100 nm pores)​​

Ignored in this comparison was the heat conduction through the solid mesh around 
the pores.

Our focus in this last section has been on size-constrained transport, making inter-
faces more prominent in defining the transport phenomena. Going a step further and 
reducing any of the size dimensions, such as the cross-sectional area of a wire or the 
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1.5  Electronic Transport of Lower Dimensional Systems 27

thickness of a film, to the mean free path of the heat carriers, phonons, and electrons, 
the thermal conductance Gth can show limiting quantum effects. As we discuss in greater 
detail in the next section for electrical transport, 1D transport systems reveal minimum 
conductance quanta if the transport of phonons or electrons can be considered ballistic 
(scattering-free). For quantum effects to occur, nanoscale dimensions and a close to 
zero Kelvin temperature are required. The conduction quantum for 1D heat conduction 
(equivalent to thermal conductivity per unit length ​L​) was, for single polarization, theo-
retically predicted8(a) and experimentally8(b) confirmed to be

​​G​ o,1D​ th  ​ ≡ ​ 
​k​ c,1D​​

 _ L  ​ = ​ 
​π​​ 2​​k​ B​ 2​T

 _________________ 3 h  ​  ​[​  J _ s ⋅ K ​ = ​ Watt _ K  ​] ​​� (1.32)

Most notable is that the thermal conduction quantum is independent of any material prop-
erties and only dependent on temperature. While for 1D systems, the thermal quantum 
conductance shows a linear temperature dependence, for 2D polar nanofilms, a quadratic 
temperature dependence has been suggested.9 As we will see in the next section, the 
quantum conductance depends on the density of states that distinctly differ based on the 
system’s dimensionality.

1.5    Electronic Transport of Lower Dimensional Systems

So far, we have focused on the impediment of transport due to size constraints that led to 
effective properties, such as the Knudsen thermal conductivity. Effective properties invite 
scaling laws, as they will be discussed in Section 1.8. Here, our interest goes beyond just 
constraining the size, but in effect to reduce a dimension entirely and discuss aspects of a 
system of lower dimensionality. While we illustrated size constraints in Section 1.4 with 
thermal transport, we chose in this section the transport of electrons, as our expository 
transport system.

Material properties, such as the ability to conduct heat, electric current, and absorb light, 
are closely related to the material’s atomistic or molecular structure. The most dramatic 
changes in material structures occur by entirely removing a dimension from the system. 
This leaves us with 2D, 1D, and 0D materials. Respectively in practice, we deal with quantum 
wells or ultrathin films (e.g., metal films of <2 nm thickness and graphene); quantum wires, 
nanotubes, or nanofilaments (e.g., metal nanowires of <2 nm diameter, and single wall 
carbon nanotubes); and quantum dots or nanoclusters (e.g., metal nanoparticles with <2 nm  
diameter, and Buckminster fullerenes such as C60), Figure 1.9. The term “quantum” is 
employed for systems for which the electronic properties are of interest.

In Figure 1.10(a), the electric conductance in units of ​[A / V]​ is plotted schematically as a 
function of the electric potential ​[V]​, for a bulk 3D, 2D, 1D, and 0D system. The bulk system 
follows the classical Ohm’s law, i.e.,

​​G​ e​​ ≡ 1 / ​R​ e​​ = I / V ​[S = Siemens] ​​� (1.33)

8  (a) L.G.C. Rego et al., Phys. Rev. Lett., 81, 232 (1998); (b) K. Schwab et al., Nature, 404, 974 (2000).
9  Y.Y. Guo et al., Phys. Rev. B, 104, L201407 (2021).

c01.indd   27c01.indd   27 8/7/25   10:01 AM8/7/25   10:01 AM



1  The Realm of Nanoscience and Molecular Engineering28

that sets the conductance, which is equivalent to the inverse of the electric resistance  
​​R​ e​​[Ω = V / A]​, equal to the ratio of the resulting electric current, ​I  [A]​, and the applied 
voltage ​V [V]​. Thus, in the bulk, an altered voltage (i.e., driving force) changes the current 
proportionally so that the electric conductance stays constant, as depicted in Figure 1.10(a). 
The conductance is an extensive property, depending on the cross-sectional area ​A​ and the 
length ​L​ of the wire. Its intrinsic property is known as conductivity ​​σ​ e​​​, defined macroscopi-
cally as ​​σ​ e​​ =   ​G​ e​​   L/A​, and carries the SI units [S/m]. The conductivity relates the current 

density ​​ 
→
 j ​​ to the electric field ​​ 

→
 E ​, ​as ​​ 

→
 j ​  =  ​σ​ e​​​ 

→
 E ​​. In analogy, the intrinsic property of the electric 

resistance, the resistivity ​​ρ​ e​​​, is ​​ρ​ e​​ = 1/​σ​ e​​ = ​R​ e​​   A/L​. Ohm’s law deviating behaviors are found 
for lower dimensionalities, Figure 1.10(b,c).

Quantum point contacts (2D), Figure 1.10(b), and quantum wire connections (1D) bet-
ween electron reservoirs can exhibit a staircase conductive behavior if the transport can 
be considered 1D ballistic (no scattering). This staircase behavior originates in the uncon-
strained flow direction of the contraption that connects the reservoirs due to dimensional 
quantum constraints in either one or both perpendicular system directions. The quantum 
constraint is on the order of ​h / m𝘷​ (inverse of the particle linear momentum ​p = m𝘷​, times 
the Planck constant ​h​), also known as the de Broglie wavelength of the electrons. We will 
address this unique behavior in greater detail below.

With Figure 1.10(c), we added an electronic transport system, the single electron box that 
features a classically forbidden element, namely, the tunnel junction. This aspect will be 
discussed in greater detail in a later chapter. Here, we shall provide just a brief teaser of 
what is coming. The tunnel junction manifests a very narrow insulating gap on the order 
of several Ångstrom (0.1 nm), small enough for an electron to travel through. The single 
electron box in Figure 1.10(c) features a close 0D conductor or semiconductor particle of 
<2 nm diameter, known as a quantum dot (QD). The QD is separated from the electron 
source by the tunnel junction of tunnel-resistant ​​R​ t​​​. The distance between the QD and the 
gate, however, is chosen to be large to eliminate the possibility of tunneling. Thus, elec-
trons that reach the QD through the tunnel junction are trapped. The QD behaves like an 
artificial atom and can be depicted, in accordance with Bohr’s model, as a particle with 
discrete energetic “electron orbitals” that fulfill Pauli’s exclusion principle. We will learn 
more about these aspects related to single electron transistors later. The point here is that 

Nanoparticles Nanofilaments Ultathin films

Quantum wellQuantum wireQuantum dot

0D 1D 2DCNTC60
Graphene

Figure 1.9    Zero, one-, and two-dimensional systems: Nanoparticles (0D), nanofilaments (1D) in 
nanoconduits, and ultrathin films (2D). Provided are examples of carbon allotropes (C60 fullerenes, 
single wall carbon nanotubes (CNT), graphene).
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a well-defined energy quantum is required to move a single electron from the source to an 
uncharged QD. If the QD is already loaded with uncompensated charges, ​ne​ (​n​ being the 
number of elementary charges ​e = 1.6022 × ​10​​−19​ C​), then the energy necessary to charge 
the QD is

​​E​ c​​ = ​ 
​​(ne − ​Q​ e​​)​​​2​

 _ 2​C​ dot​​
  ​ ; with ​Q​ e​​ ≡ V​C​ o​​​� (1.34)

where the charge buildup (polarization) toward the gate, ​​Q​ e​​​, lowers the Coulomb barrier. ​​
C​ dot​​​ represents the total charge capacitance of the dot that includes also the gate polari-
zation capacity ​​C​ o​​​. Figure 1.10(c) shows the resulting single electron conductance of the 
charge ​Δ​Q​ e​​ = e​ at discrete bias voltage steps of ​ΔV = e / ​C​ o​​​.

1.5.1    Drude Model – Microscopic Model for Macroscopic  
Electron Transport

To obtain a microscopic description of the bulk electronic transport, we shall consider 
the semi-classical model of charge transport introduced by Paul Drude (1900)10 that 
treated electrons are not unlike gas particles. Drude conceived for metals an electron gas 
in equilibrium with a positive metal ion structure. According to the effective mass ​m​ of 
an electron in its environment, we can express the drift velocity ​​𝘷​ d​​​ of the electron in an 
electric field as ​​𝘷​ d​​ = p / m​, where ​p​ is the linear momentum. Considering next that the 
electron experiences flow resistances due to scattering with other electrons, as well as 
the metal ion structure, Drude required that the rate at which electrons gain momentum 

10  P. Drude, Anal. Phys., 1, 566 (1900).
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Figure 1.10    (a) Constant conductance (Ohm’s law) in bulk systems. (b) Quantum point contacts 
and ballistic electron transport show voltage-dependent conductance staircase due to contact size 
increase and mode discretization. (c) Single electron conduction through tunnel junction resistance ​​
R​ t​​​ from a source electrode to a QD (QD ​→​ artificial atom) that exhibits well-defined electron levels.
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1  The Realm of Nanoscience and Molecular Engineering30

from the electric field ​E​, i.e., ​dp / dt = eE​ (where ​e​ is the elementary charge) is balanced 
by the rate of momentum scattering losses, ​dp / dt = m​v​ d​​ / ​τ​ m​​​. With ​​τ​ m​​​, Drude introduced 
an arbitrary scattering time,11 which will be further discussed below. We can express the 
electron current density ​j​ by the product of the charge, ​e​, the electron number density, ​​n​ e​​​ 
(see Table 1.4) and the drift velocity, ​​𝘷​ d​​​, i.e.,

​j = e​n​ e​​​𝘷​ d​​​� (1.35)

Substituting ​​𝘷​ d​​​ from ​eE = m​𝘷​ d​​ / ​τ​ m​​​ into Eq. (1.35), yields for the current density,  
​j = ​(n​e​​ 2​​τ​ m​​ / m)​E​. Finally, using Ohm’s law of the electrical conductivity ​σ = j / E​, which 
denotes the ratio of the current density and the electric field, Drude deduced, based on 
what was said above, the following microscopic model expression for the conductivity:

​​σ​ e​​ = ​ 
​n​ e​​​e​​ 2​​τ​ m​​

 _________________ m  ​​� (1.36)

11 ​ ​τ​ m​​​ is known as relaxation time.

Valency ​u​1 ​𝝆​2  
[g/mol]

ne
3  

[1028 m−3]

Alkali metals

Lithium Li 1 6.941 0.534 4.631

Potassium K 1 39.0983 0.89 1.370

Cesium Cs 1 132.9055 1.873 0.848

Alkaline earth metals

Beryllium Be 2 9.0122 1.85 24.715

Magnesium Mg 2 24.305 1.74 8.619

Calcium Ca 2 40.078 1.54 4.626

Transition metals

Nickel Ni 2 58.6934 8.90 18.259

Copper Cu 1 63.546 8.96 8.488

Zinc Zn 2 65.38 7.134 13.138

Post transition metals

Aluminum Al 3 26.9815 2.70 18.079

Gallium Ga 3 69.723 5.91 15.308

Indium In 3 114.818 7.31 11.498

	1.	 Atomic mass unit: National Institute of Standards and Technology (NIST), Experimental data, 
Computational Chemistry Comparison and Benchmark Database Release 22 (May 2022) Standard 
Reference Database 101.

	2.	 Molar density: Royal Society of Chemistry, Periodic Table.
	3.	 Number density: Calculated based on the numbers provided (see Study Problems to Chapter 1).

Table 1.4    Properties of selected metals.
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1.5  Electronic Transport of Lower Dimensional Systems 31

Drude’s model describes the diffusive current flow in macroscopic systems phenomeno-
logically described by Ohm’s law. While lacking any quantum mechanical consideration 
of electrons, it proved surprisingly accurate on the macroscopic scale. On the nanoscopic 
scale, however, the model breaks down when the conductor dimensions meet characteristic 
length scales, specifically, the de Broglie wavelength, ​λ​, the electron mean free path (scattering 
length), ​​L​ m​​​, and the phase coherence length, ​​L​ ϕ​​​ that are discussed next.

1.5.2    Characteristic Length Scales for Electron Transport

Louis de Broglie’s thesis in 1924 brought forward the wave-particle duality theorem that 
assigned a corpuscular particle of mass ​m​ and velocity ​𝘷​ a wavelength ​λ = h / m𝘷​, employing 
Planck’s constant ​h = 6.626 × ​10​​−34​ J · s​. The expression originated from Einstein’s energy 
relation ​E = hν = pc​ of the photon, where ​ν​ and ​c​ are the frequency and speed of light, respec-
tively. Based on de Broglie’s relation, particles confined to a scale ​λ​ behave like standing 
waves that discretize the energy spectrum. In other words, continuous classical mechanics 
breaks down, and kinetic energy is discretized. An example of a quantum-confined system 
is an electron trapped by the attractive potential in an atom. The electron can only exist at 
discrete places around the atom, also known as electron shells. In a conductive wire, the 
length scale to compare the de Broglie wavelength to is the circumference ​G​ of the wire. If ​
G ~ λ​, the circumferential transport is quantized, and hence, the transport along the wire is 
reduced to one dimension. Such a thin wire is named a quantum wire.

The second characteristic length scale to consider for electron conduction in a wire 
referred to as the electron mean free path ​​L​ m​​​, is the average length an electron can 
freely travel without collisions. For a wire length ​L < ​L​ m​​​, the electron transport is called 
ballistic. Scattering can occur between electrons but also within the atom lattice. The 
former scattering process is known as electron-electron scattering, and the latter as 
electron-phonon scattering caused by lattice vibrations. Other scatters are impurities and 
defects. For ​L ≫ ​L​ m​​​, the transport is diffusive. In the ballistic regime, ​L < ​L​ m​​​, the smallest 
possible conductance for any dimensional conductor is

​​G​ o​​ = 2​e​​ 2​ / h​� (1.37)

known as conductance quantum. Equation (1.37) is derived in the Worked Problem below 
for a quantum wire. Most notable is that the conductance quantum is constant ​(7.72 × ​
10​​−5​ S)​, independent of the size of the conductor. So is also its corresponding resistance, 
the resistance quantum

​​R​ o​​ ≡ 1 / ​G​ o​​ = h / 2​e​​ 2​​� (1.38)

with 12.95 kΩ. Following this section, we will discuss further the implication of dimen-
sional constraints on electric transport.

Worked Problem 1.5.1

Background: For quantum systems, the linear momentum ​p​ is expressed by ​h / λ​, where ​
h​ is the Planck constant. Introducing the wavenumber ​k = 2π / λ​, which is a measure of 
how many times the wavelengths fit into ​2π​, we can rewrite the linear momentum as ​
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1  The Realm of Nanoscience and Molecular Engineering32

p = ​ h ______________ 2π ​ ​ 2π ______________ λ  ​ = ℏk​, having introduced the symbol ​ℏ​ for ​h / 2π​. As the velocity is ​𝘷 = p / m​, it 

follows ​𝘷 = ℏk / m.​

Problem: We shall derive the conductance quantum ​​G​ o​​ = 2​e​​ 2​ / h​ for a quantum wire given 
that (a) in a metal, the kinetic energy of electrons in the current is close to the Fermi 
energy, and (b) in 1D, the relation between the number density ​n​ (of a spin-1/2 system) 
and the Fermi wave number ​​k​ F​​​ is ​n = 2​k​ F​​ / π​.

Solution: We express the conductance of a 1D system in terms of the conductivity ​σ​, as

​​G​ e​​ = ​ σ _____________ L ​ = ​ 
​n​ e​​​e​​ 2​τ

 ________________ mL  ​​� (1)

according to Drude’s ballistic model for ​L ≤ ​L​ m​​​. The mean free path is given by the drift 
velocity of the electron (here, the electron Fermi velocity ​​𝘷​ F​​ = ℏk / m​), and the scattering 
time ​τ​, as

​​L​ m​​ = ​𝘷​ F​​τ = L​

that we equated with the system length ​L​. Substituting for ​​n​ e​​ = 2​k​ F​​ / π​ and ​τ = L / ​𝘷​ F​​​ into (1) 
yields

​​G​ e​​ = ​ 
2​k​ F​​

 _____________ π  ​ ​  ​e​​ 2​ _ mL ​ ​ L _ ​𝘷​ F​​ ​ = ​ 2 _____________ π ​​e​​ 2​ ​ 
​k​ F​​

 _ ​𝘷​ F​​m ​ = ​ 2 _____________ π ​​e​​ 2​ ​ 
​k​ F​​
 _ 

​(​ℏ​k​ F​​ _ m ​)​m
 ​ = ​ 2 _____________ π ​​e​​ 2​ ​ 2π ______________ h  ​ = ​ 4​e​​ 2​ _ h  ​​

Now, this expression for the conductance is off by a factor of two, as we have to con-
sider two scattering sites, at ​x = 0​ and ​x = L​. Thus, the final solution reduces to the con-
ductance quantum

​​G​ e​​ = ​ 2​e​​ 2​ _ h  ​ ≡ ​G​ o​​​

The third and final characteristic length scale to compare the system size ​L​ with is the 
phase coherence length ​​L​ ϕ​​​. ​​L​ ϕ​​​ is the largest of the three characteristic length scales. If ​
L​ is between ​​L​ m​​​ and ​​L​ ϕ​​​ the scattering processes are considered elastic and the particles 
move coherently, not unlike synchronized swimmers. For ​L > ​L​ ϕ​​​, the electron scattering 
process is predominantly inelastic, which results in incoherent, diffusive, electron trans-
port. The concept of phase behavior is most effectively illustrated by following the path 
of corpuscular particles through two parallel slits in an impenetrable wall, and recording 
the intensity impact on a screen, positioned at a large distance after the slits, as illustrated 
in Figure 1.11. We contrast the intensity impact, which is equivalent to the probability of 
particles impacting the screen at a particular screen location, with the intensity of a wave 
(e.g., light) that travels through the same slit contraption.

We find that the particle intensity ​​I​ 1,2​​​ on the screen is initially more prominent right 
behind the two slits until, after an extended period, a single convoluted intensity maximum 
establishes itself in the center of the screen, between the two slit projections. If we covered 
up one of the two slits and measured the intensity of impacts of the screen for one and the 
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1.5 Electronic Transport of Lower Dimensional Systems 33

other slit behind each slit, i.e.,   I1   and   I2  , we would find that the convoluted intensity   I1,2   is 
simply the sum, i.e., 

I1,2 = I1 + I2 (for corpuscular particles)   (1.39)  

as illustrated in Figure  1.11(a) . 
 Different is the situation for a wave that is passing through the slits. The two waves are 

expressed according to their wave functions,   ψi(x,t) = Aicos(kx − ωt + φi)  , 12    i = 1,2  , where   
Ai   and   ϕi   represent their respective amplitude and phase. The intensity of a beam from 
a single slit is   Ii = |ψi|2   per unit area, while for the superimposed wave, the intensity is 
obtained from   I1,2 = |ψ1 + ψ2|2  , which yields 

I1,2 = I1 + I2 + 2√
_
I1I2cosδ (for waves)   (1.40)  

We observe for waves a refractive pattern, Figure  1.11(b) . The phase discrepancy of the 
two superimposed waves is captured with the relative phase   δ  . In the case of   δ = (2n + 1)
π/2, n = 0,±1,±2,…  , the two waves superimpose incoherently, which results in an inten-
sity pattern   I1,2   found for corpuscular particles, expressed by Eq.  (1.53) . Thus, we can say 
that classical particles behave intrinsically incoherently to each other. Waves, on the other 
hand, are capable of exhibiting any interference behavior, from constructive to destructive 
ones, that culminates in the intensity line pattern in Figure   1.11  .     

12     k ≡ 2π/λ   is the wave number (  λ  , the wave length), and   ω ≡ 2πν   is the angular frequency (  ν  , the wave 
frequency).  
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  Figure 1.11     Double slit experiment of (a) corpuscular particles, and (b) waves. The wave 
diffraction in (b) is caused by (c), the phase relation of the two emanating waves from the slits.  
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This brings us back to the particles at hand, namely electrons. Electrons are not classical 
particles but quantum particles that are both particles and waves. As such, the probability 
of finding them on the screen behind the two slits yields a similar refractive pattern as 
for waves, Figure 1.11(b) found for light or water. In other words, electrons can move 
coherently, as we argued for electrons in the ballistic flow regime in a 1D wire. Elastic 
scattering also leaves the phase relation intact. Inelastic scattering, however, breaks the 
phase relation, and the particles move incoherently, typically referred to as diffusively.

1.5.3    One-dimensional Electron Transport

Electrical current transport through a quantum wire requires, like any transport, a driving 
force. For electrical transport, the driving force is given by a difference in the electrochemical 
potential, ​Δμ = ​μ​ 1​​ − ​μ​ 2​​​, measured at its leads of the conductor to two electron reservoirs. The 
resulting current of electrons with charge ​e​ can be expressed qualitatively by

​I ∝ e​ ∑ 
n=1

​ 
N

  ​​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​​D​ s,n​​​(E)​​​f​ n​​​(E,Δμ,T)​​v​ n​​​(E)​​T​ n​​​(E)​ dE​​� (1.41)

as derived in the Worked Problem below. We find with ​​D​ s,n​​(E)​, the number of states in the 
conductor that can be populated with electrons, with ​​f​ n​​(E,Δμ,T)​, the probability of pop-
ulating states with electrons, with ​​𝘷​ n​​(E)​, the electron velocities, and, with ​T(E)​ the trans-
mission probability. Assuming otherwise ballistic transport within the wire, the transition 
probability ​​T​ n​​(E)​ takes into account that electrons can backscatter from the lead bound-
aries. With the sum from ​n = 1, 2, 3,… N​, it is indicated that the process is discrete due to 
the cross-sectional confinement.

Quantum confinements bring forward distinguishable states. On the macroscopic scale, 
where we find a continuous infinite number of states, we are typically ignorant of the 
fact that it requires a state for electrons to exist in a system. We can think of an electrical 
conductor that connects two electron reservoirs as a train that connects two locations. It 
requires seats in the train to transport passengers between two locations. The train is typi-
cally made up of a series of wagons. In a bulk system, the wagons are connected so that the 
passengers can populate the entire train. In a quantum-constrained system, the wagons are 
in the interior isolated from each other.

Let us fine-tune our train model. First, we consider a bulk system. In Figure 1.12(a), we 
replace a train composed of multiple wagons that are all accessible from the inside with 
a single wagon that can be expanded. This allows us to increase the capacity of the train, 
more or less, continuously. We introduce a loading potential ​​E​ pot​​ = ½ k​x​​ 2​​, where ​x​ stands 
for the length of the wagon, and ​k​ represents a system intrinsic stiffness that is visualized 
with horizontal springs along the wagon that can be extended. Ignoring that people and 
chairs come quantized, our train can increase its passenger loading capacity linearly with 
potential changes, Figure 1.12(b). Now we switch to the quantum perspective of our train 
composed of ​N​ rigid and isolated wagons. We assume our train station to be a dead-end 
railway station, where trains can only enter and exit from one end. To penetrate into the 
station and reach the passengers on the platform, the train has to do work against a spring, 
as depicted in Figure 1.12(c, d). Consider now that based on the applied force (equivalent 
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1.5  Electronic Transport of Lower Dimensional Systems 35

to the applied voltage in an electrical system), only a limited number of wagons can reach 
the passengers. This is shown in Figure 1.12c, d, where only one or two wagons reach the 
passenger platform, respectively. Thus, as each wagon can only be loaded from the outside, 
only the seats (called states) of the wagons (modes) at the platform can be populated with 
passengers (electrons). With increasing force (bias), a critical value, ​ΔF​, can be reached that 
allows for an additional wagon to be loaded. The sudden availability of a new mode (also 
called subband) abruptly changes the number of passengers (electrons) that can be trans-
ported. Thus, it comes as no surprise that the current-voltage curves, as discussed further 
below, show discontinuities. In the case of a 1D wire (or contraption), the current-voltage 
relation reveals qualitatively a staircase behavior.

After working through the details (see Worked Problem below), the resulting 
current-voltage relation for ballistic transport through a 1D quantum contraption is

​I = ​(​ 2​e​​ 2​ _ h  ​N)​V​� (1.42)

providing a system size-independent conductance,

​​G​ e​​ = ​ I _ V ​ = ​(​ 2​e​​ 2​ _ h  ​)​N = N​G​ o​​​� (1.43)

This result, known as the Landauer formula, is the total mode multiple (N-multiple) of the 
conductance quantum ​​G​ o​​​, derived earlier. It applies to ballistic 1D electrical systems, such as 
nanowires, point contacts, and devices with 1D contraptions. Should the transition be hindered 
by scattering, most specifically, reflective scattering at the leads, the expression (Eq. (1.43)) can 
be extended with the mode-dependent transmission probability ​​T​ n​​(E)​ to yield

​​G​ e​​ = ​ 2​e​​ 2​ _ h  ​ ​ ∑ 
n=1

​ 
N

  ​​T​ n​​​(E)​​​� (1.44)
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Figure 1.12    Train model to contrast bulk transport to quantized transport. (a) Single wagon train 
that can be (b) continuously extended. (c–d) Multiple size-defined isolated wagons, mimicking a 
discrete quantized system. Loading is restricted to one wagon for (c) and to two wagons for (d).
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More details about ​​T​ n​​(E)​ are found in the Worked Problem below. Figure 1.13 provides 
an illustration of the staircase-like conductance for fully transmitting modes ​(​T​ n​​(E) = 1)​ 
at zero absolute temperature. For finite increasing temperatures ​(T > 0 K)​, the staircase 
behavior washes out, until it is no longer recognizable at room temperature. The reason 
for it are scattering effects inside the wire that we discussed earlier, which brings forward 
a diffusive electron transport.

Worked Problem 1.5.2

Problem: We shall derive the current-voltage relation for a 1D quantum wire at absolute 
zero Kelvin. The conduction shall be ballistic.

Solution: Let us return to our earlier expression for the electron current density, Eq. (1.35), 
and express the current for a 1D quantum wire as13

​I = e​(​n​ e​ 1D​)​​𝘷​ d​​​� (1.45)

The electron number density ​​n​ e​ 1D​​ can be expected to depend on the number of available 
states in the wire, as well as the probability of being populated. Both terms of ​​n​ e​ 1D​​, as well 
as the electron drift velocity ​​𝘷​ d​​ = 𝘷  ​(E)​ = ​​(ℏ)​​​−1​∂ E / ∂ k​ depend on the total energy ​E = ​E​ n​​​(k)​​ of 
the electron, which is given by the sum of the kinetic energy ​​E​ kin​​ = ​p​​ 2​ / 2m = ​ℏ​​2​​k​​ 2​ / 2m​, attrib-
uted to the unconstrained directional flow in ​z​ along the wire, and the quantized potential 
energy ​​E​ pot​​ = ​​(​​n + ½​)​​​   h𝘷​, with the quantum number or mode number ​n = 0, 1, 2, 3,…​,14 
accredited to the cross-sectional ​xy​ confinement. For a given quantum state ​n​, we rewrite 
the product ​​n​ e​ 1D​​𝘷​ d​​​ as ​​n​ e,n​ 1D​​​(​​E​)​​​   ​𝘷​ n​​​​(​​​E​ n​​​)​​​​.

The electron number density is given by the sum of the filled electronic states per wire 
length. We express this with an integral over the product of the density of states ​​D​ s​​​(E)​​ and 
the Fermi-Dirac distribution function ​f​​(​​E − μ,T​)​​​​, i.e, ​​n​ e​ 1D​​​(​​E​)​​​ = ∫ ​D​ s​ 1D​f   ​​(​​E​)​​​   dE​.

Combining the terms in Eq. (1.45) yields for a single-mode wire.

​​I​ n​​ = ​ 1 _ 2 ​e ​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​​​D​ s,n​ 1D​​​(​​E​)​​​​​[​​   f   ​​(​​E − ​μ​ 1​​,T​)​​​ − f   ​​(​​E − ​μ​ 2​​,T​)​​​​]​​​n​​​v​ n​​​​(​​​E​ n​​​)​​​   dE​� (1.46)

13  We absorbed the cross-sectional area in the electron number density.
14  A derivation of this expression will be provided in a later chapter.
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Figure 1.13    Quantized staircase-like conductance for 1D 
quantum wires at zero Kelvin. The conductance increases in 
increments of the conductance quantum for every ​ΔV​ increase 
and is constant in between. The step function smears out with 
increasing temperature.
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In so doing, the two reservoirs are represented by their electrochemical potentials ​​μ​ i​​(i = 1, 2)​, 
and with ​f   ​​(​​E − ​μ​ 1​​,T​)​​​ − f   ​​(​​E − ​μ​ 2​​,T​)​​​ ​corresponding probabilities to add or remove electrons from 
states in the wire. The two potentials define the bias voltage of ​V =  ​​(​​​μ​ 1​​ − ​μ​ 2​​​)​​​   /e​. The prefactor  
of ​½​ originates from the electron spin. So far, we have considered the electron transport to be 
perfectly ballistic.

Next, we consider ​N​ electron transfer modes and consider a backscattering probability ​​
T​ n​​(E)​ at the two boundaries to the reservoir, ​​T​ n​​(E)​, that is

​I = ​ 1 _ 2 ​e ​ ∑ 
n=1

​ 
N

  ​​ ​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​​​D​ s,n​ 1D​​​(​​E​)​​​​​[​​f   ​​(​​E − ​μ​ 1​​,T​)​​​ − f   ​​(​​E − ​μ​ 2​​,T​)​​​​]​​​n​​​𝘷​ n​​​​(​​​E​ n​​​)​​​​T​ n​​​​(​​E​)​​​   dE​� (1.47)

For small voltages, we can consider the backscattering probability to be independent of 
energy, i.e., ​​T​ n​​(E) = ​T​ n​​(​E​ F​​)​, which let us move ​​T​ n​​(​E​ F​​)​ outside the integral:

​I = ​ 1 _ 2 ​e ​ ∑ 
n=1

​ 
N

  ​​​T​ n​​​​(​​​E​ F​​​)​​​​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​​​D​ s,n​ 1D​​​(​​E​)​​​​​[​​f   ​​(​​E − ​μ​ 1​​,T​)​​​ − f   ​​(​​E − ​μ​ 2​​,T​)​​​​]​​​n​​​𝘷​ n​​​​(​​​E​ n​​​)​​​   dE​� (1.48)

As the probability of backscattering vanishes for long distances, i.e., ​T(​E​ F​​) → 1​ for  
​L ≫ ​λ​ B​​​, where ​​λ​ B​​​ stands for the backscattering mean free path, and ​L​ the wire length, ​
T(​E​ F​​)​ is well described by

​T​(E)​ = ​ 
​λ​ B​​​(E)​

 ___________________ 
​λ​ B​​​(E)​ + L

 ​​� (1.49)

Considering that the probability of populating the states with electrons (spin ​½​ particles, 
also known as Fermions), is given by the Fermi-Dirac distribution

​f   ​​(​​E − μ,T​)​​​ = ​  1 ___________________ 
1 + ​e​​ ​​(​​E−μ​)​​​   /​k​ B​​T​

 ​​� (1.50)

we find for ultralow temperature that ​∫ f   ​​(​​E − ​μ​ 1​​,T​)​​​ − f   ​​(​​E − ​μ​ 2​​,T​)​​​   dE → 1​ for ​T → 0 K​, and 
thus, the current expression rewrites to:

​I = ​ 1 _ 2 ​e ​ ∑ 
n=1

​ 
N

  ​​​T​ n​​​​(​​​E​ F​​​)​​​​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​​​D​ s,n​ 1D​​​(​​E​)​​​​𝘷​ n​​​​(​​E​)​​​   dE​� (1.51)

Now, we substitute for the 1D density of states14

​​
​D​ s​ 1D​​(E)​

​ 
=

​ 
​ 2 _____________ π ​ ​√ 

_
 ​  m _ 

2​ℏ​​2​
 ​​ ​  1 _ 
​√ 

_
 E​
 ​
​  

​
​ 

=
​ 
​ 2 _____________ π ​ ​ dk _ dE ​

  ​​� (1.52)

and for the drift velocity

​𝘷  ​(E)​ = ​ 1 _ ℏ ​ ​ dE _ dk ​​

which yields:

​I = ​ 2e _ h ​ ​ ∑ 
n=1

​ 
N

  ​​T​ n​​​(​E​ F​​)​​ ∫ 
​μ​ 1​​

​ 
​μ​ 2​​

​dE​​ = ​ 2​e​​ 2​ _ h  ​ ​ ∑ 
n=1

​ 
N

  ​​T​ n​​​(​E​ F​​)​V​​� (1.53)
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Rooted on the definition of the conductance as the ratio ​I / V​, it follows

​​G​ e​​ = ​ 2​e​​ 2​ _ h  ​ ​ ∑ 
n=1

​ 
N

  ​​T​ n​​​(​E​ F​​)​ = ​G​ o​​​​ ∑ 
n=1

​ 
N

  ​​T​ n​​​(​E​ F​​)​​​� (1.54)

that is a multitude of the conductance quantum ​​G​ o​​​. In the case of fully transmitting 
modes, i.e., ​​T​ n​​​(​E​ F​​)​ = 1​ for all ​n​ up to ​N​, the electrical conductance is

​​G​ e​​ = ​ 2​e​​ 2​ _ h  ​N​� (1.55)

Based on our discussion in this section, we found that electronic transport differs sub-
stantially in quantum-confined systems from bulk systems, as contrasted in Figure 1.10 
with the qualitative behavior of conductance. While pure dimensionality plays a role 
in transport quantization, i.e., via the electron number density, it is not the sole respon-
sible factor. One should also consider the size dimension through which transport occurs  
(e.g., the diameter ​D​ of a wire) with respect to the electron wavelength ​λ​. In narrow con-
tacts (known as quantum point contacts), as depicted, for instance, in Figure 1.10(b), at 
which an electron transport conduit is opened up that is smaller than the characteristic de 
Broglie wavelength of the electrons, we found scattering within the phase conduit becomes 
negligible compared to scattering at the conduit boundaries. This changes the underlying 
transport principle from ohmic diffusive scattering to ballistic mode-dependent transport 
through the quantum contraption. The dual concept of describing a corpuscular particle, 
like the electron, also as a wave, is inherent for small particles and forms the basis for 
describing quantum mechanical systems. We will discuss this aspect in greater detail in 
later chapters, such as the working principle of electronic switching devices involving 
quantum dots, Figure 1.10(c), which we briefly address here.

1.6    Acoustic Transport and Dimensionality

In our discussion involving electronic quantum point contacts, we addressed aspects of 
wave propagations under dimensional constraints. Similarly to charge transfer involving 
electrons, dimensionality also plays an important role in wave propagations involving light 
(i.e., photons) and energy and momentum transport via acoustic waves (phonons). Under 
nanoconfinement, fundamental laws and principles are again put to the test. For instance, 
one of the fundamental laws of wave propagation that works for sound, more specifically 
phonon waves, is the Huygens principle, which is put into question in lower dimensions, 
as hinted at earlier.

While Christiaan Huygens’ focus in his treatise in 1678 was on optics, its implications 
apply to many wave propagation phenomena. Huygens–Fresnel principle states that every 
point on a wave front may be considered a source of secondary spherical wavelets that 
spread out in the forward direction at the same speed as the overall wave front. The new 
wave front is the tangential surface to all of these secondary wavelets, Figure 1.14. The prin-
ciple is understood to apply equally to any point of constant phase. Based on Huygens, we 
expect from an incident involving a wave propagation event with a well-defined beginning 
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1.6  Acoustic Transport and Dimensionality 39

and end, such as transmitting a signal that starts at ​​t​ o​​​ and ends at ​​t​ 1​​​, that the duration of 
the event is experienced the same at any point in space. This is true for light that emanates 
from a light bulb. It shines for the same time period regardless of the observer’s distance 
from its source.

How about a surface wave in water that was initiated by dropping a pebble in it? Huygens’ 
principle does not apply. The closer the observer is to the pebble the longer the incident 
occurs. The reason is the difference with which the wave dies out at a given location. The 
light emanating from the light bulb possesses a well-defined trailing edge at ​t = ​t​ 2​​​ that moves 
as fast as the wave front, after which there is no signal. On the other hand, the waves on the 
water surface possess a highly defuse trailing boundary that has the observer theoretically 
experience the wave over an infinite period of time, although at a very small amplitude. Why 
that difference? The answer to this question is rather stunning. 

The reason for the observed difference in behavior is found neither in the wave source 
nor the medium through which the waves travel, but plainly in the mathematical solution 
of the ​N = 1, 2, 3, …​ N-dimensional wave equations of a scalar field15 ​ψ​, given as

​​ ∑ 
n=1

​ 
N

  ​​ ​ 
​∂​​2​ψ

 _______________ 
∂​x​ n​ 2​

 ​ = ​ 1 _ 
​c​​ 2​

 ​ ​ 
​∂​​2​ψ

 _______________ 
∂​t​​ 2​

 ​;    ψ   ​​(​​​x​ 1​​,... ​x​ N​​, t​)​​​​� (1.56)

in which ​c​ represents the wave velocity. The scalar field is explicitly dependent on time ​t​.  
It turns out that Huygens’ principle of “memory annihilation” behind the trailing edge 
of a disturbance only applies to odd dimensions (e.g., 1D and 3D waves) but is invalid for 
even-dimensional space (e.g., 2D waves). The practical consequences can be significant. It 
would mean for our fictitious 2D world, Flatland, addressed earlier, that listening to sound 
(e.g., a radio) would be very challenging, as the accumulated remnants of prior sound 
messages would generate substantial background noise.

Lord Rayleigh discovered that acoustic waves, propagating over the surface of a body 
with a small penetration distance into the interior of the body, travel with a velocity 
independent of the wavelength and slightly smaller than the velocity of equivoluminal 
waves propagating through the body. It has been found that the so-called Rayleigh waves, 

15  Scalar waves are frequently described as standing waves, implying they do not move through space but 
exist as stationary patterns of energy.

to+∆t

Source

to

Figure 1.14    Huygens principle: A wave propagates 
through a medium where each point on the advancing 
wave front (red solid line) acts as a new point source of  
the wave.
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which diverge in two dimensions only, acquire a continually increasing preponderance at 
great distances from the source.16 This two-dimensional effect of wave propagation is very 
important in the study of seismic phenomena.

The so-called surface acoustic waves (SAW) have found applications in actuators  
(i.e., for pumping, mixing, and jetting) in small-scale systems of microfluidics, as illus-
trated in Figure 1.15(a) and are part of electronic devices in telecommunications products, 
depicted in Figure 1.15(b). Based on the transduction of acoustic waves, SAW devices are 
employed as signal filters, oscillators, and transformers. The generation of SAW involves 
an oscillating electrical signal applied to the interdigitated transducer (IDT) using a radio 
frequency ​(rf   )​ signal generator and power amplifier. The SAW that propagates across the 
substrate, as a Rayleigh wave, possesses a wavelength ​λ​ in accordance with the dimension 
of the IDT finger width and spacing, both of which are ​λ / 4​.

The wave equation, Eq. (1.56), introduced above, has wide applications. It also applies to 
EM waves, as well as waves involving atomistic particles, such as electrons.

1.7    Critical Molecular Response Times in Nanoconstrained 
Systems

In our prior discussion on material behavior under shear (Section 1.3.1), we pointed out 
that intrinsically a material can respond to an external force instantaneously (i.e., elas-
tically) or time-delayed (i.e., viscously or plastically) depending on the material phase 

16  A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications New York, 2011.

Input transducer

IDT

Input transducer Output transducer

Piezoelectric substrate

Piezoelectric substrate

SAW

SAW R

(a)

(b)

Figure 1.15    Surface acoustic wave (Rayleigh wave) applications in (a) microfluidics as fluid 
actuators illustrated here with moving a water droplet, and in (b) telecommunication devices as 
signal transducers.
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behavior or structure. We established that a perfect elastic response is rate-independent, 
while any viscous response is rate-dependent. Furthermore, we argued that the response 
underlying material properties can be altered by the introduction of interfaces that con-
sequently reduce the degrees of freedom of the molecules to move and adjust to imposed 
stresses.

In this section, we tie the relevant macroscopic material properties, such as the elastic 
modulus, to molecular parameters that capture molecular mobility. More specifically, we 
illuminate intrinsic molecular response times. As our interest is in nanometer-constrained 
systems, we pick here, as the instructive process example, an interfacial process that has 
been relevant to mankind for millennia, namely frictional dissipation between two solid 
interfaces. The interface through which energy is actively dissipated is on the single-digit-
nanometer scale. Within this size regime, unlubricated “dry friction” and ultrathin film 
lubricated friction occurs. As a film with a thickness on the nanometer scale shows pre-
dominantly solid-like behavior, we shall dub the field in focus here “solid friction.” While 
bulk lubricated friction, involving fluids with thickness on the micrometer scale (or 
thicker), has been understood phenomenologically with Reynolds’ adjusted Navier Stokes 
equation since the end of the 19th century,17 a proper, as well as theoretical understanding 
of solid friction has evaded mankind until the second half of the 20th century. That is up 
to the early 1950s when Frank Bowden and David Tabor developed the adhesion theory 
of friction.18 In the following decades, experimental and molecular modeling tools were 
developed that allowed nanoscopic experiments and interpretations.19,20

Typically, friction manifests a force that counteracts dissipatively the motion of two 
solids in dry or lubricated contact. A century ago, it was assumed that the sliding friction 
force involving dry contacts was independent of the sliding velocity (Amonton’s third law). 
Over time, however, considering the plasticity of solid interfaces, rate dependences were 
considered. With the development of a scanning contact tool known as the Atomic Force 
Microscope (AFM) in the late 1980s, Figure 1.16(a), the friction rate dependence could be 
traced down to molecular dissipation interactions, known as Van der Waals (VdW) inter-
actions. In other words, it was recognized that plasticity in the interface was not necessary 
for friction forces to be rate-dependent, as illustrated in Figure 1.16. We will discuss in the 
following an excerpt of the frictional shear behavior of a thin polymer film, and find the 
molecular intrinsic molecular response time to external stresses of significant relevance.

Here in Figure 1.16(b), the oppositely directed dissipative force response ​F(x)​ to 
contact sliding of an AFM tip over a molecularly corrugated lipid surface is shown. Its 
qualitative behavior, at low velocity on the order of 1–10 nm/s, manifests a stick-slip 
solid-like phenomenon. In Figure 1.16(c), an amorphous glassy polymer that was scanned 
similarly to the molecular system with an AFM tip, Figure 1.16(b), reveals a dissipative 
force response distribution ​F(𝘷)​ in velocity ​𝘷​. The ​F(𝘷)​ distribution captures with its peak 
a material-specific relaxation mode, or, a combination of modes. As we will see in our 

17  O. Reynolds, Phil. Trans. Royal Soc. of London, 177, 157 (1886).
18  F. P. Bowden and D. Tabor, “Friction and Lubrication of Solids, Part I,” Oxford Univ. Press, London, 1954.
19  Nanoscopic experiments on thin films: R.M. Overney et al., Nature, 359, 133 (1992).
20  Combined experiment and modelling: B. Bhushan, J.N. Israelachvili, U. Landman, Nature 374, 607 
(1995).
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discussion that follows more generally, the peak is observed at a velocity at which the AFM 
spring deflection mode is locked with the intrinsic force gradient. At velocities decades 
higher, the friction-velocity behavior is logarithmic and as such, resembles an activated 
process with a well-defined activation barrier that can be attributed to specific molecular 
modes within the polymer.

1.7.1    Longitudinal Response to Stress – Maxwell Model

Any condensed matter system possesses intrinsic response times that can either be attrib-
uted to molecular or submolecular responses. Examples are molecular translations and 
side-group rotations. Furthermore, also collective molecular responses impact the response 
time, such as the earlier addressed stick-slip phenomena. Most of these conceivable feed-
backs to mechanical stresses can be described phenomenologically in simplistic form with 
a network of springs and dashpots. The spring reflects a particular solid-like response and, 
the dashpot, a liquid-like system response. One of the most basic spring-dashpot combina-
tions is the Maxwell model, depicted in Figure 1.17. With the Maxwell model, the material 
behaves viscous under very slow distortions, and, elastic for fast disturbances. At a moderate 
rate of deformation, the material will behave viscoelastic. To get a better understanding of 
the viscoelastic behavior of Maxwell solids, we analyze in the Worked Problem below the 
creep-recovery response of the depicted single spring-dashpot model, Figure 1.17.

F(�)

F(x)|� �x

�x�x

Fkin(�)

�o

Fkin

x

x

log(�)

Vdw

(a) (b) (c)
–vx

Figure 1.16    (a) AFM friction setup. Illustrated is the tip-apex/sample-surface VdW interaction. 
(b) Constant velocity, 𝘷, sliding over self-assembled lipid molecules, whose corrugated surface 
yields stick-slip friction forces, F(x)|v, as a function of location x. Macroscopically observed static 
friction Fstat and kinetic (sliding) friction Fkin are matched to local molecular friction. (c) Frequency-
dependent kinetic friction is shown around the critical material response velocity, 𝘷o.

σ
E

μ

ε

–σ

Figure 1.17    Maxwell model for longitudinal deformation: Combines a viscous damper of viscosity ​
μ​ with an elastic “spring” of stiffness (Young’s modulus) ​E​ linearly. The external stress ​σ​ (force by 
unit area) and the material response (strain: ​ε​ length extension/original length) are related via the 
constitutive expression, ​​ε ˙ ​ = ​σ ˙ ​ / E + σ / μ​, where the dot stands for the time derivate of the stress ​σ​ 
and the strain ​ε​.
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Worked Problem 1.7.1

Problem: We explore the strain versus time response (also called creep) to an instanta-
neous constant stress using Maxwell’s viscoelastic model. (a) First, we derive the constitu-
tive equation. (b) Next, we consider a stress ​σ​(t)​ = ​σ​ o​​ε​(t)​​ of constant magnitude ​​σ​ o​​​ that is 
applied suddenly at time ​t = ​t​ o​​​ and then kept constant until entirely removed at ​t = ​t​ 1​​​.

Solution:
	 a.	 We start with Newton’s law, which is given as

​​F​​ e​ = kΔ​x​​ e​​

for the 1D distortion in x-direction of an ideal spring that is elastically extended or 
compressed by ​Δ​x​​ s​​. The proportionality factor ​k​ is a spring property known as spring 
stiffness. To extend Newton’s law to uniaxial deformation, for instance, of a rod, we 
normalize the equation by the cross-sectional area ​A​, i.e., introduce the stress ​σ = F / A​,  
and by introducing the strain ​ε = ∆​x​​ e​ / L​ as the original object length ​L​ normalized dis-
tortion, which leads to the stress-strain relationship

​σ = Eε​

The stiffness of the system is now expressed in terms of modulus, known as the elastic 
modulus ​E​ (also known as Young’s modulus), and carries the units of pressure. For a 
fully viscous system, we use Newton’s law of viscosity, i.e., consider the time derivative 
of the force law, i.e.,

​​​F ˙ ​​​v​ = μΔ​​x ˙ ​​​v​​

The material property to consider for a fully viscous process, as implied by the 
dashpot, is the viscosity ​μ​. It shall be noted that the two x-distortions carry a differ-
ent upper index, ​e​ or ​v​, depending on whether the deformation is elastic or viscous 
respectively.

We consider next the Maxwell series model, as depicted in Figure 1.17, which yields 
for a given force (or stress) a total displacement of

​Δx = Δ​x​​ e​ + Δ​x​​ v​​

or displacement rate of

​Δ​x ˙ ​ = Δ​​x ˙ ​​​e​ + Δ​​x ˙ ​​​v​​

Substituting in the appropriate expressions from above, let us express the displacement 
rate as,

​Δ​x ˙ ​ = ​ ​​F ˙ ​​​ s​ _ E ​ + ​ ​F​​ v​ _____________ η ​, or​

​​ε ˙ ​ = ​ ​σ ˙ ​ _____________ E ​ + ​ σ _____________ μ ​​

which is the sought-out constitutive equation for Maxwell’s viscoelastic model.
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	 b.	 Next, we explore the constitutive expression within the time interval ​[− Δt,   Δt]​ around 
the onset of a sudden stress, here expressed in integral form:

​​  ∫ 
−Δt

​ 
Δt

​​ ​ ∂ ε​​(​​t​)​​​ _______________ ∂ t  ​dt = ​ 1 _ E ​ ​  ∫ 
−Δt

​ 
Δt

​​ ​ ∂ σ​​(​​t​)​​​ ________________ ∂ t  ​dt + ​ 1 _____________ μ ​ ​  ∫ 
−Δt

​ 
Δt

​​σ   ​​(​​t​)​​​   dt​

which we can write as,

​ε​​(​​ + Δt​)​​​ − ε​​(​​ − Δt​)​​​ = ​ 1 _ E ​​​(​​σ   ​​(​​ + Δt​)​​​ − σ   ​​(​​ − Δt​)​​​​)​​​ + ​ 1 _____________ μ ​ ​  ∫ 
−Δt

​ 
Δt

​​σ   ​​(​​t​)​​​   dt​

We consider now ​Δt → 0​ for a sudden stress ​​σ​ o​​​ applied (or removed). As ​σ(t)​ is finite, 
it follows

​​  ∫ 
−Δt

​ 
Δt

​​σ​​(​​t​)​​​   dt = 0​

While for or a sudden applied stress ​ε(− Δt) = σ(− Δt) = 0​, we can disregard ​ε(+ Δt)​ and ​
σ(+ Δt)​ for a sudden stress removal. Thus, our constitutive equation reduces to

​ε​​(​​Δt → 0​)​​​ = ​ 1 _ E ​σ   ​​(​​Δt → 0​)​​​​

for a sudden applied stress, which is equivalent to

​ε​(0)​ = ​ 
​σ​ o​​

 _____________ E ​​

This manifests our initial condition when integrating the constitutive equation with 
respect to time. For a sudden applied stress ​​σ​ o​​​ that is kept constant over time, the con-
stitutive equation simplifies to

​​ε ˙ ​ = ​ 
​σ​ o​​

 _____________ μ ​​

as ​​σ ˙ ​ = 0​. Integration yields

​ε​(t)​ = ​ 
​σ​ o​​

 _____________ μ ​t + const​

Considering the initial condition, the constant can be replaced by ​​σ​ o​​/E​, which yields 
a linear strain-stress (or creep) function of the form,

​ε​(t)​ = ​(​ t _____________ μ ​ + ​ 1 _ E ​)​​σ​ o​​​

that is depicted in Figure 1.18. We infer from the so-called creep-recovery response 
function of the Maxwell model that at the onset of sudden stress at ​t = 0​, the strain 
increases instantaneously to ​​σ​ o​​/E​ due to the distortion of the spring. When later, the 
stress is suddenly removed at ​t = ​t​ 2​​​, the energy stored in the spring is fully regained, 
seen as an instant drop in strain of magnitude ​​σ​ o​​/E​, while the viscous strain is not 
recovered at all. We can divide the strain ​ε(t)​ by the constant stress ​​σ​ o​​​, and obtain the 
so-called creep function ​J(t)​, i.e.,

​J​(t)​ = ​(​ 1 _____________ μ ​t + ​ 1 _ E ​)​​
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Instead of keeping the stress ​σ​ constant, as discussed in the Worked Problem above, 
the Maxwell model can also be explored by keeping the strain ​ε​ constant. Under constant 
strain ​​ε​ o​​​, the constitutive equation simplifies to an ordinary differential equation in time of ​​
σ ˙ ​ / E + σ / μ = 0​, with the solution ​σ = E​ε​ o​​exp​(− t / ​t​ R​​)​​, whereby we introduced the relaxation 
time ​​t​ R​​ ≡ μ / E​. The relaxation time is a characteristic time of the viscoelastic material to 
relax after being stressed. In analogy to the definition of the creep function in the Worked 
Problem, we obtain the relaxation function of the Maxwell material, ​G​(t)​ = E exp​(− t / ​t​ R​​)​​, by 
dividing our solution of relaxation by the constant strain ​​ε​ o​​​.

1.7.2    Shear Response to Stress

Moving now from longitudinal displacements to shear, let us consider a simple shear 
deformation of an isotropic material. The strain deformation is captured by the tangent 
of the shear angle, abbreviated simply as ​γ​. For the shear stress, we will use the symbol ​τ​.  
Considering elastic simple shear deformation, the constitutive equation is ​τ = Gγ​,  
where G stands for the elastic shear modulus.21 The stress-strain-rate relation is given 
by ​τ = μ​γ ̇ ​​. Considering again the Maxwell model, the creep and relaxation functions are,  
​J​(t)​ = ​(t / μ + 1 / G)​​ and ​G​(t)​ = G exp​(− t / ​t​ R​​)​​, correspondingly, with the shear response time ​​
t​ R​​ ≡ μ / G​.22

A viscous response to a deformation manifests itself in a time delay in response, while 
the ideal fully elastic response is instantaneous. Thus, any realistic material will exhibit, to 
some degree, a time-delayed viscous response. To test the dynamic response, the material 
is typically strained with a cyclic history by employing a time-harmonic deformation. For 
shear-strained material, we consider the sinusoidal shear strain function ​γ​(t)​ = ​γ​ o​​sin​(ωt)​​, 
where ​ω​ is the angular frequency. We keep the magnitude of strain ​​γ​ o​​​ small so that we can 
employ the linear viscoelastic theory, in which we consider the total deformation to stress as 

21  It can be shown that the longitudinal (Young’s) modulus ​E​ is related to the shear modulus ​G​ for 
isotropic materials via the simple expression: ​E = 3G​.
22 ​ G​ is known as elastic shear modulus and should not be confused with the relaxation function ​G​(t)​​.
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Figure 1.18    Maxwell creep-recovery response.
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1  The Realm of Nanoscience and Molecular Engineering46

a simple sum of elastic and viscous deformations. Reworded, we express the corresponding 
stress, by a linear combination of elastic and plastic stresses. The Maxwell model provides 
one of the simplest examples. Accordingly, we introduce the single prime elastic stress 
component ​τ′​(t)​ ≡ G​γ​ o​​cos​(ωt)​​ and the double prime viscous stress component ​τ″​(t)​ ≡ μ​γ ̇ ​ =  
μ​γ​ o​​ω sin​(ωt)​​. By recognizing that ​sin​(ωt)​ = cos​(ωt + π / 2)​​, we can rewrite the viscous stress 
component, as ​τ″​(t)​ = μ​γ​ o​​ω cos​(ωt + π / 2)​​. Comparing now the harmonic function of the 
strain ​γ​(t)​​ with the corresponding harmonic stress ​τ​(t)​​, once steady state is reached, we find 
them to move synchronized in time, as shown in Figure 1.19(a), but shifted in-phase by 
an angle ​δ = π / 2​. The two components formally manifest an instant elastic response and a 
time-delayed, fully viscous response. The time-delayed response is known in the literature 
as time retarded response.

For viscoelastic material, time retardation is captured by the phase lag ​δ​, which is bet-
ween ​− π / 2​ and 0, as illustrated by the dashed line in Figure 1.19(a). It is convenient to 
express with Euler’s formula23 the strain and the stress in complex notation that is,

​​ 
​γ​​ *​​(t)​

​ 
=

​ 
​γ​ o​​​e​​ iωt​

​ 
​τ​​ *​​(t)​

​ 
=

​ 
​τ​ o​​​e​​ i​(ωt+δ)​​

​​� (1.57)

The amplitudes of both strain and stress carry the lower index “o” with ​δ ϵ ​​(​​0, π/2​)​​​.​24

23  Euler’s formula: ​​e​​ ix​ = cos​(x)​ + i sin​(x)​​ with ​x = ωt​, where ​ω​ is the angular frequency in [rad/s] and ​t​ is 
the time.
24  We shifted the strain and stress harmonic function so that the strain is zero at ​t = 0​, with the stress 
harmonic function to be zero at ​t = − δ / ω​. As only the relative position of the two harmonic functions 
matters, the zero value of the time axis can be chosen arbitrarily.

τ γ

π/2

Time

Shear stress, τ

Strain, γ (viscoelastic)
Strain, γ (fully viscous response)(a)

τo” τ*

τo’γ
δ

ω(t)

Im

Re

(b)

Figure 1.19    (a) Shows the synchronized by time-delayed (phase-shifted) response between the 
harmonic strain and stress. (b) Mathematical Euler construct of (a) with the real axis Re expressing 
ideal elastic and the imaginary axis Im fully viscous responses. A viscoelastic response is shown 
with the vector ​​τ​​ *​​ defined by ​(τ,   δ)​ or ​(​τ​ o​ ′ ​,   ​τ​ o​ ″​)​.
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The situation is depicted in Figure 1.19(b) for an arbitrary viscoelastic material by the com-
plex stress vector ​​τ​​ *​​, which can be expressed in Cartesian coordinates ​(​τ​ o​ ′ ​,   ​τ​ o​ ″​),  as ​τ​​ ∗​ = ​τ​ o​ ′ ​ + i​τ​ o​ ″​,​ 
and polar coordinates ​(τ,   δ)​, as provided in Eq. (1.57).

Accordingly, we can introduce the complex linear viscoelastic modulus, ​​G​​ *​ = ​G ′ ​ + i​G ″ ​​, 
with the elastic in-phase response, ​​G ′ ​ = (​τ​ o​ ′ ​ /​γ​ o​​) = (​τ​ o​​/​γ​ o​​)  cos   δ​ and the viscous out-of-phase 
response, ​​G ″ ​ = ​τ​ o​ ″​ /​γ​ o​​ = (​τ​ o​​/​γ​ o​​)   sin   δ​. From these expressions, as well as by inspection of 
Figure 1.19(b), we find with the so-called loss tangent, ​tan    δ = ​G ″ ​ /​G ′ ​​, a relationship between 
the storage modulus ​​G ′ ​​, the loss modulus ​​G ″ ​​, and the phase angle or phase lag ​δ​.

In the Worked Problem above, we derived the constitutive equation for the Maxwell 
model as

​​ε ˙ ​ = ​ ​σ ˙ ​ _____________ E ​ + ​ σ _____________ μ ​​� (1.58)

for a longitudinal deformation, which we can rewrite for simple shear, as

​​γ ̇ ​ = ​ ​τ ̇ ​ ____________ G ​ + ​ τ _____________ μ ​​� (1.59)

If we now substitute the complex stress and strain expression from Eq. (1.57), we obtain, 
after some algebraic work, the following expressions for the storage and loss moduli:

​​G ′ ​ = ​ 
G ​​(μω)​​​2​

 _______________________________ 
​G​​ 2​ + ​​(μω)​​​2​

 ​ = G ​​(1 + ​​(​ G _________________________ μω ​)​​​
2
​)​​​

−1

​ = G​(​ 
​​(ω​t​ R​​)​​​2​

 ____________________ 
1 + ​​(ω​t​ R​​)​​​2​

 ​)​​� (1.60)

​​G ″ ​ = ​ 
​G​​ 2​μω

 _______________________________ 
​G​​ 2​ + ​​(​​μω​)​​​​2​

 ​ = G​​(​​​ G _________________________ μω ​​/​(​​1 + ​​(​​​ G _________________________ μω ​​)​​​​
2
​​)​​​​)​​​ = G​​(​​​ 

ω​t​ R​​
 ____________________ 

1 + ​​(​​ω​t​ R​​​)​​​​2​
 ​​)​​​​� (1.61)

where we substituted ​μ / G​ with the relaxation time ​​t​ R​​​.

1.7.3    Dissipative Two-Dimensional Shear Response

Continuing with our discussion on shear by transitioning to the nanoscopic process 
of interfacial friction, we introduce the Deborah number, ​De ≡ ​t​ R​​ / t​, the ratio bet-
ween the relaxation time, ​​t​ R​​​, and the time of observation ​t​. The observation time is 
equivalent to the time the system is perturbed by frictional sliding. The dimensionless 
Deborah number quantifies the capability of a material to react to an external distur-
bance. This leads back to our discussion of a viscoelastic response that lies between an 
instantaneous solid-like response and a sluggish, time-delayed, out-of-phase fluid-like 
response.

To connect friction to our discussion on viscoelastic responses, we recognize that friction 
is a dissipative process, which it has in common with the viscoelastic loss modulus ​​G ″ ​​. If 
we substitute for ​ω = 2π / t​ into Eq. (1.61), we can express the loss modulus in terms of the 
Deborah number, i.e.,

​​G ″ ​ = G ​  ​​(​​2π​)​​​De ______________________ 
1 + ​​(​​2π​)​​​​2​D​e​​ 2​

 ​​� (1.62)
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1  The Realm of Nanoscience and Molecular Engineering48

Considering next a uniformly exerted stress velocity ​𝘷​, which is applied to a spring-dashpot 
system, we can model the loss modulus for the relative sliding motion of two opposing 
surfaces in either direct contact or separated by a condensed lubricant film, as

​​G ″ ​ = ​ 
​F​ o​​

 _ A ​​​(​​​  De _ 
1 + D​e​​ 2​

 ​​)​​​​� (1.63)

with redefined ​De = 𝘷 / ​𝘷​ R​​​, the intrinsic material response velocity ​​𝘷​ R​​​, and ​G = ​F​ o​​ / A​. While ​​
F​ o​​​ represents a conservative intrinsic force of the interface or the lubricant that resists 
deformation, ​A​ is the corresponding shear area over which the force is acting. The product ​​
G ″ ​A​ is found to dominate the nonconservative, dissipative sliding force, known as friction 
force ​F​, as shown in Figure 1.20, as long as the sliding velocity ​𝘷​ is within the vicinity of ​​𝘷​ R​​​,  
i.e., ​De    ∼    1​. We can consider ​​G ″ ​A​ for ​De    ∼    1​, as the “macroscopic intrinsic” response to 
sliding motion.

If the sliding velocity ​𝘷​ is removed from the relaxation peak, viscous forces are more 
prominent, and we consider the rate dependence of the friction force. In the case of an 
ideal liquid, i.e., a perfectly viscous system, the force rate dependence is linear, as discussed 
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Figure 1.20    Friction on glassy PtBA at a reference temperature of 315 K modeled based on  
Eq. (1.65). Parameters: ​a = 0.846 N​, ​b = 17.277 N​, ​​V​ R​​ = 1.0 × ​10​​−8​ m / s​, ​​F​ o​​ = 159.37 N​. Sliding occurred 
at constant normal force of ​2.05 × ​10​​−8​ N​ at close zero humidity (adapted from [26]).
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1.7  Critical Molecular Response Times in Nanoconstrained Systems 49

earlier. For a realistic solid system, however, the dynamic portion of the friction force ​​F​ d​​​ is 
best described by25

​​F​ d​​ = a ln​(𝘷)​ + b​� (1.64)

which takes into account that frictional sliding is an activated process, not unlike a reac-
tion with its distinct reaction kinetics. This is similar to our discussion earlier, when we 
introduced a simple jump model to describe the stick-slip phenomenon, Figure 1.7(c). 
The dynamic portion of friction is characterized by jump distances ​ξ​ and jump rates ​𝘷​, 
and thus, by temporary microscopic jump velocities ​​𝘷​ o​​ = ξ𝘷​. Based on its stochastic nature 
of dynamic friction, we can expect that material phase structures can have a significant 
impact on the magnitude of the jump parameters, as shown in Table 1.5.

For crystalline (highly structured) materials, such as self-assembled monolayers of octa-
decylphosphonic acid (ODPA), the jump velocity can be expected on the order of 100 m/s. 
That is by three orders of magnitude exceeding the one of solid polymer glasses, such as 
poly(tert-butyl acrylate) (PtBA).26 In the glassy state, the polymer backbone can relax via 
local individual crankshaft rotations of chain segments, known as ɑ-relaxation. The glassy 
solid phase is found in polymers at temperatures below the glass transition temperature ​​T​ g​​​.  
Above ​​T​ g​​​ but below melting, the polymer is in a solid rubbery phase, for which the jump 
velocity ​​𝘷​ o​​​ reduces by orders of magnitude from the one of the glass. The origin of the rub-
bery behavior of the polymer above ​​T​ g​​​ is the collective occurrence of the rotational crank-
shaft motion in polymer chains that allow the entire chains to move (reptiles) through the 
matrix. Its relaxation mode is known as ɑ-relaxation.

If we now add the kinetic portion of friction ​​F​ d​​​, Eq. (1.64), to the macroscopic Maxwell 
component ​​G ″ ​A​, Eq. (1.63), the total friction force is

​​F​ F​​ = ​G ″ ​A + ​F​ d​​ = ​F​ o​​​​(​​​  De _ 
1 + D​e​​ 2​

 ​​)​​​ + a  ln ​​(​​𝘷​)​​​ + b​� (1.65)

an expression that was confirmed experimentally with glassy polymer PtBA at a reference 
temperature of 315 K, Figure 1.20.

25  F. Heslot et al., Phys. Rev. E., 49, 4973 (1994); S.E. Sills and R.M. Overney, Phys. Rev. Lett., 91, 095501 
(2003).
26  D.B. Knorr et al. J. Chem. Phys., 134, 104502 (2011).

Solid material phases Crystal* Amorphous glass* Rubber*

Jump velocity, ​​𝘷​ o​​​ ​~100 m / s​ ​~0.1 m / s​ ​~​10​​−5​–​10​​−4​ m / s​
Jump distance, ​ξ​ ​~1 nm​ ​~1 nm​ ​~10−​10​​2​ nm​

Jump frequency, ​ν = ​𝘷​ o​​ / ξ​ ​~100 GHz​ ​~0.1 GHz​ ​~0.1−10 kHz​

*  Order of magnitude.

Table 1.5    Intrinsic jump parameters of solids based on material structure.
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We see that when the sliding velocity ​𝘷​ matches the local backbone crankshaft velocity  
(​a​-relaxation) of ​​𝘷​ R​​ = 0.1 nm / s​, the Maxwell component of friction dominates. Away from ​​
𝘷​ R​​​, ​​F​ d​​​ dictates the friction response, or more accurately, the “lateral” response to shear. 
It shall be noted that by changing the velocity, we change the time of perturbation. As 
a change in the time observation window can be perceived as a change in temperature, 
based on the time-temperature superposition principle,27 we can rescale time with temper-
ature, and vice versa. In other words, by moving to faster and faster sliding velocities, the 
temperature of observation can be driven beyond the glass transition temperature. At this 
point, the cooperative motion of crankshafts, the ​γ​-relaxation mode, becomes available. As 
a consequence, we will be able to couple with the shear displacement to the ​γ​-relaxation 
mode, and thus, can expect a similar increase in friction as observed at 0.1 nm/s with the ​
a​-relaxation. The critical sliding velocity for PtBA to reach the ​γ​-relaxation mode can be 
expected in the range of 1–10 nm/s.

The difference between changing the sliding velocity to mimic an increase in tempera-
ture versus actually increasing the temperature to above ​​T​ g​​​ is found in the parameters of ​​
F​ d​​​. The two parameters ​a​ and ​b​ in Eq. (1.64) are dependent on the molecular interactions 
in the polymer, which are significantly changed if a polymer transitions from a glass to a 
rubber state. On a structural level, the change manifests itself by an increase in free volume 
that allows the individual molecule to reptile through the polymer matrix. Thus, while our 
simple shear model can distinguish between the “static” and “dynamic” effects of friction, 
capturing the structural change is beyond its scope.

1.8    Miniaturization, Scaling, and System Constraints

The physical performance of a system is dependent on external parameters as well as on 
intrinsic properties and typically scales with changes in the dimension. To have a true mea-
sure of performance, it is common to consider the intrinsic performance, i.e., the volume nor-
malized performance. An example is the power density of an engine. Volume normalization 
does, however, not imply that the physical performance of interest is size scale independent.

Let us look at a simple comparison of the power density of two engines that differ in 
volume size 1000-fold. The question to ask is, how do 1000 small engines perform compared 
to a single large engine of the same volume, ​V​? Is their power density smaller, larger, or the 
same? The power ​P​ at a particular instant in time is given as the product between the force ​
F​ and the velocity, ​𝘷​, that is,

​P = F𝘷​� (1.66)

To evaluate the scaling of the two system parameters ​F​ and ​𝘷​ with the size dimension,  
we introduce the characteristic length dimension ​L​. Considering the units of the force  
(kg · m/s2) and the velocity (m/s), we find that both ​F​ and ​𝘷​ scale with L (i.e., ​F    ∼    L​ and ​
𝘷    ∼    L​) and consequently, we find the scaling law for the power, as

​P ∼ ​L​​ 2​​� (1.67)

27  M.L. Williams, R.F. Landel, J.D. Ferry, Am. Chem. Soc., 77, 3701–3707 (1955).
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1.8  Miniaturization, Scaling, and System Constraints 51

As we are interested in the power density, i.e., the power per unit volume ​P / V​, we have 
to include the dimensional scaling of the volume, ​V  ∼  ​L​​ 3​​, which results in the following 
scaling law

​​ P _ V ​ ∼ ​ ​L​​ 2​ _ 
​L​​ 3​

 ​ = ​ 1 _ L ​​� (1.68)

for the power density. As the length dimension, ​L​, of a single small engine is ​​  3 √ 
_

 1000​ = 10-fold​ 
smaller than the one of the large engine, the power density of 1000 small engines is

​​  P _ V / 1000 ​ ∼ ​  1 _ L / 10 ​ = ​ 10 _ L ​​

10-fold the power density of a large engine. Thus, while conventional engines cannot be 
scaled down substantially, motors based on electrostatic forces are likely systems that could 
be miniaturized to produce ultrahigh power densities.

It is important to note that with the example above, we

	 •	 treated the material properties (i.e., the mass ​m​, or more specifically, the material 
density ​ρ  ∼  ​L​​ o​​), as size-independent, and

	 •	 assumed that there are no other parameters affected by the change in volume.

Shrinking a system to the nanoscale, however, will, as we will see, impact the material 
properties and, thus, lead to changes in the scaling law upon miniaturization.

1.8.1    Phenomenological Shortcoming of the Scaling Analysis

1.8.1.1    Terminal Velocity of Liquid Droplets and Solid Particles
Let us briefly discuss an example that illustrates how changes in properties assumed to 
be constant can spoil the scaling analysis. We consider a rainwater droplet of radius ​r​ 
and density ​​ρ​ ​H​2​​O​​​ in the earth’s gravitational field. Due to drag forces caused by the air, its 
velocity falling from a cloud quickly reaches a terminal velocity ​​𝘷​ t​​​. We shall assume, as per 
Stokes’ law,28 the terminal velocity can be obtained from

​​𝘷​ t​ st​ = ​ 
2g​r​​ 2​​(​ρ​ ​H​2​​O​​ − ​ρ​ air​​)​

  _____________________________________ 9​μ​ air​​
  ​​� (1.69)

where ​g = 9.81 m / ​s​​2​​ stands for the gravitational constant, and ​​μ​ air​​​ and ​​ρ​ air​​​ represent the 
dynamic viscosity and density of air, respectively. As we shall only be concerned with the 
size of the droplet that is captured by its radius, the terminal velocity scales as ​​𝘷​ t​​ st  ∼  ​L​​ 2​​. 
Hence, if we compare a ​r = 10 μm​ droplet with an agglomerate of a thousand microdroplets 
of radius ​​r​ a​​ = 100 μm​, the ratio of the terminal velocity

​​ 
​𝘷​ t,a​ st ​

 _ 
​𝘷​ t​ st​

 ​ = ​ 
​r​ a​ 2​

 _ 
​r​​ 2​

 ​ = ​​(​ 100 _ 10 ​)​​​
2
​ = 100​

The comparison yields a 1000-fold increase in the terminal velocity for the droplet agglom-
erate compared to the microdroplet, which is further discussed in the Worked Problem below.

28  The Stokes’ law is an empirical observation for the frictional drag of a rigid object moving through a 
fluid.
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Worked Problem 1.8.1

Problem: We compare the terminal velocity of microdroplets of ​r = 10 μm​ with that of 
rain droplets of ​​r​ a​​ = 100 μm​ at 20 °C, assuming creeping flow.

Solution: Based on Stokes’ Law, Eq. (1.69), with ​​ρ​ ​H​2​​O​​ = 998.2 kg / ​m​​3​​ and ​​μ​ air​​ = 1.825 × ​
10​​−5​ Pa · s​ and ​​ρ​ air​​ = 1.02 kg / ​m​​3​​, respectively, the terminal velocities are

​​𝘷​ t​ st​ = ​{​
0.012 m/s (microdroplet) 

​   
    1.2 m/s (rain droplet)

  ​​​

The average cloud droplet in heavy clouds has a terminal velocity of around 0.013 m/s.  
Without updraft, it would take such a droplet approximately 10 hours to reach the 
ground, assuming a typical low cloud base of 500 meters. With ascending air currents, 
microdroplets can stay for a very long time in clouds without producing rain.

The first assumption we made for our scaling law of the terminal velocity of raindrops is 
that we assumed that the streamlines that form in the air in the course of a falling raindrop 
are symmetrically surrounding (engulfing) the drop, as illustrated in Figure 1.21(a). This 
assumption holds for very slow velocities, known as creeping flow. At higher, more realistic 
velocities, we find a separation of the streamlines from the raindrop at the downstream 
region of airflow (i.e., after the equator toward the top of the raindrop) that results in the 
generation of two vortices at this location, Figure 1.21(b). The critical velocity at which 
streamline separation is obtained from the critical Reynolds number of ​Re = 8 / 5​. The dimen-
sionless Reynolds number is obtained from:

​Re ≡ ​ 
​ρ​ air​​​v​ t​​D _________________ ​μ​ air​​  ​​� (1.70)

where ​D​ is the drop diameter, and ​​𝘷​ t​​​, the moving drop velocity observed from far away of 
the drop.

(a) (b)

r θr

�t �t

θ

Figure 1.21    (a) Re < ~0.1: Stokes’ potential flow around a sphere in a gravitational field passing 
through a fluid (air) at rest. The streamlines engulf the sphere in symmetric perfect alignment. 
(b) ​Re  ∈  (10, 100)​: In the Oseen regime, the streamlines separate at an angle ​θ​ at the top of the 
sphere in the air fluid downstream region. Two symmetrical vortices form on top of the spheres 
that reduce the kinetic energy of the sphere and, with it, the terminal velocity.
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For a microdroplet of ​10 μm​ radius, we are in the limit of Stokes limit of ​Re < 0.1​, in the 
creep flow regime. However, for a droplet with a ​100 μm​ radius and a roughly determined ​​
𝘷​ t​​​ of 1.2 m/s (based on Stokes), we are with ​Re  ∼  10​, far exceeding the creep flow regime, 
as well as the streamline separation limit of ​Re = 8 / 5​. Taking streamline separation into 
account for larger droplets, which results in the generation of vortices, Figure 1.21(b), 
the terminal velocity has to be reevaluated. Based on Oseen’s law, which is an extension 
of Stokes’ law valid for ​Re > 1​, the following expression for the terminal velocity ​​𝘷​ t​​​ was 
developed:29

​​

​ 
​𝘷​ t​​ _ 
​𝘷​ t​ st​

 ​ = 1 + ​ Ar _ 96 ​ ​​(1 + 0.079A​r​​ 0.749​)​​​−0.755​

​   
with Ar ≡ ​ 

​D​​ 3​gρΔρ
 _____________________________ 

​μ​​ 2​
  ​

  ​​� (1.71)

The dimensionless number Ar is known as the Archimedes number. Oseen’s expres-
sion above spans from 1.68 < Re < 65. Recent efforts30 that considered a wide range of 
correlations covering solid spherical particles brought forward an explicit equation for the 
terminal velocity, applicable to micrometer and millimeter-scale particles in Newtonian 
fluids, as well as non-Newtonian fluids. In dimensionless form, the explicit expression of 
the terminal velocity31 is:

​​

​𝘷​ t​ *​

​ 

=

​ 

​​
[

​​
(

​  18 _ 
​​(​D​​ *​)​​​

1+n
​
 ​
)

​​​
​0.824 _ n  ​

​ + ​​(​ 0.321 _ 
​D​​ *​

  ​)​​​
0.412

​
]

 ​​​
−1.214

​

​    ​​  ​​  n = 1 for Newtonian fluids (e.g., air)​    

​𝘷​ t​ *​

​ 

≡

​ 

​v​ t​​ ​​(​ 
​ρ​ air​ 2  ​

 ___________________________ gμΔρ ​)​​​
​1 _ 3​

​ and ​D​​ *​ ≡ D ​​(​ 
gρΔρ

 ___________________________ 
​μ​​ 2​

  ​)​​​
​1 _ 3​

​

  ​​� (1.72)

Thus, while the expression above captures the complexity of the raindrop surrounding 
airflow, there is still another shortcoming of Stokes’ scaling law that has to be addressed. 
It lays in our assumption that the water droplet’s spherical shape is considered invariant at 
even fast flow velocities. In other words, we assumed water droplets to be non-deformable. 
Based on wind tunnel experiments, this assumption was shown to be far from valid when 
droplets reach millimeter size dimensions. Up to about 0.8 mm, the droplets are spherical. 
But for larger drops, the bottoms of the drops flatten out due to the air inertial resistance, 
which in turn increases the air frictional drag resistance that reduces the terminal velocity. 
This has been accurately recorded empirically with experiments by Ross Gunn and Gilbert 
Kinzer in 1948.32 A fit to Gunn and Kinzer’s data is plotted in Figure 1.22 and contrasted 
to both the terminal velocity of Stokes assuming potential flow around a sphere without 
streamline separation, Eq. (1.69), and for flow around non-deformable solid particles of 
spherical shape, Eq. (1.72).

29  A.V. Nuyen et al., Int. J. Miner. Process, 50, 53 (1997).
30  V.C. Kelessidis, Chem. Eng. Sci, 59, 4437 (2004).
31  We express dimensionless quantity of the terminal velocity and the particle diameter with the * symbol.
32  R. Gunn and G.D. Kinzer, 6, 243 (1949).
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Beyond rain droplets, it shall be pointed out that the knowledge of the terminal settling 
velocity of solids in liquids plays an important role in many industrial applications, for 
instance, for fluidization processes, mineral processing, and mixing. Concerning mixing, 
the settling velocity plays an important role in the break-up of agglomerated nanoparticles 
and their phase dispersion. Further parameters that affect the terminal viscosity are par-
ticle coatings with respect to the passing fluid, as well as the shape of the particles. If it 
involves nanoparticles and tailored organics coatings, both nanotechnology and molecular 
engineering come into play.

1.8.1.2    Interfacial Constraints and Nanocomposite Membrane Permeability
When and how exactly a scaling law fails is sometimes hard to predict. Let us look at the 
example of small particles, or the inverted equivalent, the material matrix surrounding 
small particles. In the case of spherical silver metal particles, the atomistic structure remains 
bulk-like down to a diameter of ​D  ∼  1 nm​. Thus, we can expect the size-dependent prop-
erties of silver, for instance, to scale with a scaling law perceived from classical phenomeno-
logical laws and theories. For instance, the mechanical strain-stress relationship, given by 
the strain expression

​ε = − ​ 
4f

 _ 3K ​ ​ 1 _ D ​​� (1.73)

where ​f​ is the free surface stress and ​K​ the bulk modulus, is valid for silver nanoparticles 
down to the nanometer scale.

Taking an inverted view of nanoparticles by focusing on the change in the surrounding 
property, we consider silica (SiOx) nanoparticles embedded in a dense polymer matrix. 
A thin SiOx/polymer film that is open to both sides manifests a nanocomposite that, if 
exposed to a gas stream in crossflow, will exhibit membrane properties by allowing some 
of the gas molecules to sorb into the polymer phase and diffuse through it. Molecular 
sorption, as well as adhesion into polymers, is assisted by the free volume in polymers. 
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Figure 1.22    Terminal velocities for creeping flow (Stokes, Eq. (1.69)), and faster flow velocities 
for solid spheres (solid line, Eq. (1.72)) and rain droplets (dashed line fit to Gunn–Kinzer data) as a 
function of the droplet diameter. Deformations of droplets become effective for sizes above ~3 mm.
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The gas mass transport through dense polymers is statistical, that is, driven mainly by 
concentration differences at two membrane sides. If we now consider that the embedded 
nanoparticles are non-permeable by the gas, the permeability of a homogeneous polymer 
matrix will depend on the volume or mass fraction ​φ​ of the implanted particles. This 
invites a scaling law for the permeability, with the scaling parameter ​φ​. Based on a more 
detailed discussion in the Worked Problem below, the gas permeation flux ​​J​ A​​​ of the per-
meate ​A​ through a polymer-particle composite can be expressed, based on Fick’s first law 
of diffusion, as

​​

​J​ A​​

​ 

=

​ 

− D ​ 
d​C​ A​​

 _ dx  ​

​ ​​  ≈​  − D ​ 
​C​ A,1​​ − ​C​ A,2​​

 _ ​L​ eff​​
  ​​​|​​​L​ eff​​ = L​​(​​1 + ​ 

φ
 _____________ 2 ​​)​​​​​   

​

​ 

≈

​ 

− DS ​ 
​p​ A,1​​ − ​p​ A,2​​

 _ ​L​ eff​​
  ​​​|​​​  ​C​ A​​ = S​​(​​p,T​)​​​​p​ A​​

​  
S ≈ const. (Henryʼs law)

​​

​​� (1.74)

The two material-specific coefficients, ​D​ and ​S​, stand for the diffusion and the sorption 
coefficient, respectively. The product ​P = DS​ with mass units [kg · m−1 · s−1 · Pa−1] is also 
known as the gas permeability of the membrane.33 More details on the Fick’s law expres-
sion of the permeation flux in terms of the gas partial pressures ​​p​ A​​​, and the scaling law of 
the effective diffusion length ​​L​ eff​​​ through the membrane of thickness ​L​, are provided next.

Worked Problem 1.8.2

Problem: We shall estimate the effective distance it takes for a gas molecule to travel 
through a thin nanocomposite membrane in terms of the filler (nanoparticle) volume or 
mass fraction ​φ​. Thereby, we consider spherical nanoparticles of diameter ​D​, a membrane 
thickness ​L​ much smaller than any of its two plane dimensions allowing us to consider a 
1D mass transfer system, as depicted here. Furthermore, we assume uniformly distributed 
particles in the membrane, as shown, and an expected value for the number of filler parti-
cles that a penetrating gas molecule ​A​ encounters, as34

​​⟨N⟩ ​ = ​(​ L _ D ​)​φ​

Solution: Based on Fick’s first law, the mass flux is given by the concentration gradient of ​
A​, ​∇ CA​, as

​​J​ A​​ = − D∇​C​ A​​​

33  On a molar basis, the permeability of a single gas species ​A​ is obtained from ​​P​ A​​ = ​ 
​V​ A​​

 _ RT ​​ 
∆ ​p​ A​​
 ______________  

∆tA​(​p​ F​​ − ∆p / 2)​
 ​l​, 

  
where ​​V​ A​​​ is the constant permeate volume [m2], ​R​ and ​T​ the gas constant (8.314 Pa·m3·mol−1·K−1) and 
absolute temperature, respectively, ​Δt​ is the time for the permeate partial pressure to increase in the 
membrane from ​​p​ A,1​​​ to ​​p​ A,2​​​, ​Δ ​p​ A​​ = ​p​ A,1​​ − ​p​ A,2​​​ is the partial pressure change from the start to the end of 
the pressure increase, ​​p​ F​​​ is the feed pressure and ​l​ and ​A​ are the thickness (direct transport length for 
permeation flux) and area of the membrane, respectively.
34  J. Macher et al., Polymers, 14, 3327 (2022).
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where ​D​ is the diffusion coefficient or diffusivity. The 
concentration can be expressed in terms of the local partial gas 
pressure ​​p​ A​​​ and the sorption coefficient ​S(p,T)​, as ​C = S​​(​​p,T​)​​​   ​p​ A​​​.  
The sorption coefficient ​S​ can be assumed constant (Henry’s 
law) if we limit ourselves to dense polymers with high free 
volume (such as poly(1-trimethylsilyl-1-propyne) (PTMSP) or 
polymers above the glass transition temperature), which lets us 
write for the permeation flux of ​A​,

​​J​ A​​ = − DS∇​p​ A​​ ≈ − DS​​(​​​ 
​p​ 1​​ − ​p​ 2​​

 _ L  ​​)​​​ ≡ − P​​(​​​ 
​p​ 1​​ − ​p​ 2​​

 _ L  ​​)​​​​

in our 1D approximation. Note that we introduced the 
partial pressure at the upstream and downstream side of 
the membrane, ​​p​ 1​​​ and ​​p​ 2​​​, respectively, and the permeability ​
P = DS​. With the introduction of flux impermeable particles, 
the diffusion path ​​L​ eff​​​ is extended by the path tortuosity ​τ​, as ​​
L​ eff​​ = τL​. The tortuosity ​τ​ is dependent on the filler volume 
or mass fraction ​φ​. We can express the effective diffusion 
length through the membrane, as

​​L​ eff​​ = L + ​⟨N⟩ ​ ​ D _ 2 ​​

by adding the evading distance of the particle radius times the number of encounters to 
the membrane thickness. We can rewrite this expression, as

​​L​ eff​​ = L + ​(​ L _ D ​)​φ ​ D _ 2 ​ = L​(1 + ​ 
φ

 _____________ 2 ​)​​

With this, we can express the tortuosity as follows:

​τ   ​​(​​φ​)​​​ = ​​(​​1 + ​ 
φ

 _____________ 2 ​​)​​​​

It is common to leave the external membrane parameters, as well as the partial pressures 
at the upstream and downstream regions of the membrane, untouched. The effect of tortu-
osity of the permeation flow due to the incorporated impermeable particles is incorporated 
into the diffusivity and sorption properties, i.e.,

​​
​D​ eff​​ = ​ 

​D​ o​​
 ________________ 1 + φ ​

​ 
​S​ eff​​ = ​S​ o​​​(1 − φ)​

​​� (1.75)

where ​​D​ o​​​ and ​​S​ o​​​ reflect the diffusion and sorption properties for the particle-free (virgin) 
polymer membrane. The relative change in flux between a composite membrane and the 
homogeneous polymer membrane, ​​J​ eff​​ / ​J​ o​​​, is given accordingly by the ratio of permeabil-
ities, i.e.,

​​​(​ 
​P​ eff​​ _ ​P​ o​​ ​)​​

Maxwell

​​ = ​ 
1 − φ

 ________________ 
1 + ​φ _ 2 ​

 ​​� (1.76)
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Figure P1.8.2    1D Mass 
flux through a polymer 
composite membrane.
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where ​​P​ eff​​ ≡ ​D​ eff​​​S​ eff​​​. This is one of several scaling laws employed for gas permeation in 
polymer composites and has been introduced by Nielsen (1967), partially motivated by 
Maxwell’s treatise on electricity and magnetism.35 It is for this reason, the scaling law 
is referred to as Maxwell’s model for gas permeation. The Maxwell model yields, as per  
Eq. (1.76), a decreasing gas permeability with increasing volume fraction ​φ​ of particles 
in the polymer composite, as shown in Figure 1.23.

We will now come to the shortcoming of the above scaling model. With Maxwell’s model, 
we assume that the particles only displace the polymer molecules but do not affect the 
polymer phase in the vicinity of the particle. This assumption is challenged by experimental 
permeation results involving fumed silica (SiOx) nanoparticles of 12 nm diameter that show 
strong deviations from the Maxwell model for PTMSP nanocomposites, Figure 1.23, for 
nitrogen, hydrogen, and propane.36

35  L.E. Nielsen, J. Macromol. Sci. Part A Chem., 1, 929 (1967). J.C. Maxwell, A. Treatise on Electricity and 
Magnetism, Oxford Univ. (Clarendon Press Series), Oxford, UK, 1 (1873).
36  De Sitter et al., J. Memb. Sci., 278 (2006).
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The data presented in Figure 1.23 are based on experimental permeation ​​P​ A​​​ results36 
involving the permeate ​A​ that, in relative notation, normalized by the permeability of 
nitrogen through the virgin homogeneous phase of PMTS, ​​​​P​ ​N​ 2​​​​|​​φ=0

​​​, defines the relative 

permeability, ​​P​ rel​​ ≡ ​P​ A​​ / ​​​P​ ​N​ 2​​​​|​​φ=0
​​​. By subtracting the effect of gas transport screening silica 

particles, we obtain the reduced relative gas permeability of gas ​A​, as

​​P​ r,A​​ ≡ ​P​ r,A​​ − ​​(​​​ 
​P​ eff,   A​​

 _ ​P​ o,   A​​ ​​)​​​
Maxwell

​​ = ​ 
​P​ A​​
 ______________ 

​​P​ ​N​ 2​​​​​|​​​φ=0
​​
 ​ − ​ 

1 − φ
 ________________ 

1 + ​φ _ 2 ​
 ​​� (1.77)

that is presented in Figure 1.23 for N2, H2 and C2H6. The plot shows that there is a drop 
in permeation at low loading densities up to ~10 wt%, followed by a linear increase in the 
reduced permeability for ​φ > 10 wt%​, i.e.,

​​P​ r,A​​​(φ)​ ≈ ​a​ A​​φ + ​b​ A​​ + ​​​ 
​P​ A​​​(φ)​

 ________________ 
​P​ ​N​ 2​​​​​(φ)​

 ​|​​φ=0

​​ ​​
(

​ 
1 − ​φ​​ *​

 _________________ 
1 + ​​φ​​ *​ _ 2 ​

 ​
)

​​​
−1

​​� (1.78)

with the gas and membrane-specific constants ​​a​ A​​​ and ​​b​ A​​​, provided for N2, H2, and C2H6 in 
the table inset of Figure 1.23. The lengthy second offset in Eq. (1.78) originates from the 
initial drop of the permeability in Figure 1.23 up to a particle filler concentration of 10 wt%. 
The expression contains the inverted Maxwell function with filler content ​​φ​​ *​​. By inspection 
of the data, we find that ​​φ​​ *​​ is around 25 wt%, i.e., significantly exceeding the 10 wt% for 
both hydrogen and propane. This is an indication of a complex composite system in the low 
filler content regime, with inhomogeneities of different sorts.

Thus, based on the gas permeation results presented in Figure 1.23, Maxwell’s scaling 
law is not only off in magnitude, but also qualitatively, with an increase in gas permit-
tivities above a critical particle loading weight percentage. Another interesting feature 
is that the permittivity of the heavier element, propane, surpasses that of nitrogen and 
even hydrogen. This surprising observation cannot be explained by diffusion – a mech-
anism that is molecule size-selective, but it can be explained by changing the sorption 
properties of the nanocomposite membrane with increasing particle loading density. 
Inspecting the case of SiOx/PTMSP (Figure 1.23) closer, the permeation flux first 
decreases before it increases above ~10 wt% of the filler content. If we assume constant 
diffusivity ​(D ≠ f(φ))​, the increase in the permeability can be attributed to a change in 
the sorption coefficient ​S​.37 The question is how? We should consider that an interface 
between two solid/condensed substances can affect the bulk properties of each phase 
over a specific penetration depth ​δ​, measured from the interface. This is illustrated in 
the sketch of Figure 1.24.

In Figure 1.24(a, b), a planar interface is contrasted to a spherical interface in that each 
affects the polymer bulk phase within a vicinity measured by the length scale ​δ​. As a side 
note, not shown in the sketch, it shall be noted that high curvatures imposed by small 
particles can increase ​δ​ substantially, and thus, any interfacial effects would be even more 

37  We assume that there are no other effects, such as particle aggregation within the membrane or 
membrane crack formations by increasing the filler content in the membrane.
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impactful. The polymer regime altered by the interface, labeled as ​​P​ int​​​, varies locally from 
the bulk material and transport properties. Typically, the free volume in the polymer is 
increased, particularly for polymers with rigid backbones, such as PTMSP, which in turn 
can impact both the diffusion, as well as the sorption properties.38 In regards to the perme-
ation flux through nanocomposite membranes, the interfacial distorting impact is further 
enhanced with increasing filler content, as a more prominent portion of the transfer 
medium exhibits altered transport properties, illustrated in Figure 1.24(c, d).

In the case of PTMSP, a lower limit estimate of 
the range, ​δ​, over which the bulk phase is altered by 
the presence of a SiOx interface is ~100 nm. This is 
based on ultrathin film studies involving significantly 
more flexible polymer chains, such as polystyrene.39 
Thermally assisted, interfacial debonding studies of 
SiOx nanoparticles from PTMSP revealed the presence 
of mobile polymer chains at the particle interface, 
which is an indication of enhanced free volume in the 
interfacial region and explains the bulk deviating per-
meation properties in PTMSP-silica composites.

PTMSP, depicted in Figure 1.25, is a high free 
volume glassy polymer. It exhibits extraordinarily high 
gas permeability coefficients and high organic-vapor/
permanent-gas selectivities. These unusual transport 

38  I. Pinnau and L.G. Toy, J. Membr. Sci., 116, 199 (1996); T.C. Merkel et al., Science, 296, 519 (2002);  
L.S. Kocherlakota et al., Polymer, 54, 5986 (2013).
39  S. Sills et al., J. Chem. Phys., 120, 5334 (2004).
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properties in PTMSP are attributed to its high fractional free volume of about 0.34, caused 
by the inefficient chain packing involving rigid carbon-carbon double bonds, bulky tri-
methylsilyl, and methyl constituent groups, coupled with poor inter-chain cohesion. 
Comparing hydrogen with propene, we see that PTMSP can exhibit an inverted transfer 
rate if compared to the size of the molecules involved. This sorption-dominated selective 
transport behavior is often referred to as reverse selective.

Besides the generation of free volume, also local intrachain and sidechain mobilities 
have to be considered. Of the three rotational modes in PTMSP, depicted in Figure 1.25, 
the thermally active mode at room temperature is the rotation of methyl groups along the 
PTMSP backbone.40 For PTMSP, interfacial constraints on local mobilities were, however, 
found to be insignificant compared to the free volume effect on the permeability.40

Typically, based on our common perception, we assume that the selective component 
transport of a gas mixture of ​A​ and ​B​, where ​A​ shall be the smaller constituent, dictates 
that ​A​ transports faster through the membrane than ​B​. In other words, we imply for the 
membrane’s selectivity ​​α​ A/B​​​ follows the diffusivity ratio ​​D​ A​​ / ​D​ B​​​, which, as we set it, exceeds 
unity. It is, however, important to note that the selectivity is not given by the diffusivities 
alone but determined by the permeability ratio, which also contains the ratio of the sorption 
properties, i.e.,

​​α​ A/B​​ = ​ 
​P​ A​​

 _ ​P​ B​​ ​ = ​(​ 
​D​ A​​

 _ ​D​ B​​ ​)​​(​ 
​S​ A​​

 _ ​S​ B​​ ​)​​� (1.79)

In the case of PTMSP and the binary mixture H2/C3O6 that yields reverse selectivity, we 
find that the sorption properties dominate the diffusion properties that is ​​P​ A​​ / ​P​ B​​ < 1​, and 
thus, favor the larger constituent to flow faster through the membrane.

The example discussed here highlights the origin of the failure of Maxwell’s classical 
scaling law for nanocomposite membranes, where the bulk phase is significantly altered 
due to interfacial effects. It illustrates the challenges in anticipating the shortcomings a 
scaling law can bear, as well as the complexity of pinpointing the specific origin for failure. 
The situation, particularly for PTMSP, is even more challenging than illustrated. We omit-
ted the fact that PTMSP spontaneously degrades, shows swelling if exposed to some gases, 
such as carbon dioxide, and can exhibit a change in transport mechanism toward Knudsen 
diffusion and pressure-driven transport by forming pinholes.

1.8.2    Dimensional Constraints and Thermal Conductivity

As discussed, in heat transfer through solid materials, the bulk intrinsic property is the 
thermal conductivity, ​​k​ c​​​. It determines how fast thermal energy can conduct through 
a material. Assuming isotropy and diffusive heat transfer with a constant thermal 

40  D.B. Knorr et al., J. Membr Sci., 346, 302 (2010).
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conduction coefficient ​​k​ c​​​ (i.e., ​​k​ c​​  ∼  ​L​​ o​​), Fourier’s law provides us for macroscopic systems 
with the following scaling law for the rate of heat conduction ​Q = qA​ through area ​A​:

​Q = − ​k​ c​​   A ​ ΔT _ Δx ​ ∼ ​L​​ o​​L​​ 2​ ​ ​L​​ o​ _ 
​L​​ 1​

 ​ = L​� (1.80)

This scaling law breaks down, however, on the micrometer scale, as the intrinsic 
material property, ​​k​ c​​​, becomes size-dependent. For 1D systems (quantum wires), with two 
of the dimensions confined to the nanoscale, the thermal conductivity is found to be well 
described by a power law of the form ​​k​ c​​  ∼  ​L​​ β​​ with ​0 ≧ β < 1​, where for ​β = 0​, we observe 
normal diffusion, and for ​0 < β < 1​ anomalous diffusion. Consequently, the scaling law 
for heat conduction, introduced above with Eq. (1.80) for 3D bulk systems, changes from ​
Q  ∼  L​ to

​Q ∼ ​L​​ β+1​​� (1.81)

for 1D systems.
The power law exponent ​β​ for anomalous diffusion heat transfer has been theoretically 

estimated as 0.45 for a 1D chain of nonlinear oscillators (molecules or atoms).41 ​β​ is found 
to be strongly dependent on the material and the conduction direction. For single-walled 
armchaired carbon nanotubes (CNT) with predominant heat transfer in the longitudinal 
direction at room temperature, Figure 1.26, values for ​β​ were found theoretically to be 
between 0.3 and 0.4.

41  S. Lepri et al., Phys. Rev. Lett., 78, 1896 (1997).
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Figure 1.26    Single-walled (5,5) CNT with longitudinal heat conduction, as depicted with heat 
flow rate Q along the tube. ​​k​ c​​  ∼  ​L​​ β​​ with ​β ≈ 0.3–0.4​. The armchair (5,5) structure is explained with 
the graphene sheet in the inset. From the set of values ​(n,m) = (5,5)​, we can determine the tube 

diameter ​d = ​ ​
√ 

_
 3​ _____________ π  ​​a​ cc​​​√ 

___
  ​n​​ 2​ + nm + ​m​​ 2​​​, which yields for (5,5), 0.67 nm, based on a carbon-carbon bond 

length ​​a​ cc​​ = 0.14 nm​.
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A nanotube is a hexagonal network of carbon atoms that has been rolled up to make a 
seamless cylinder. Its structure and diameter are characterized by two integers, ​n​ and ​m​.  
The integer pair ​(n,m)​, which is (5,5) in Figure 1.26, denotes the number of vectors ​​​ → a ​​1​​​ 
and ​​​ → a ​​2​​​ along two main directions in the honeycomb crystal lattice of graphene. For ​m = 0​ 
and ​n = m​, the nanotubes are called zigzag or armchair nanotubes, respectively. Otherwise, 
they are referred to as chiral. The diameter of a nanotube can be calculated from ​(n,m)​, 
according to

​d = ​ ​
√ 

_
 3​ _____________ π  ​​a​ cc​​​√ 

___
  ​n​​ 2​ + nm + ​m​​ 2​​​� (1.82)

Figure 1.27 provides one of the many (often disparate) simulation plots for the heat 
conduction coefficient as a function of the length of single-walled (10/10) CNT. If com-
pared to the current literature, its extrapolated ​​k​ c​​​ value of around 6500 W/m · K for a 
nanotube of length ​L = 1  mm​ with ​β = 0.3515​ (and prefactor 573.24) fits well with 
quantum mechanical theoretical work,43 and the correction to data based on experi-
mental work.44 Based on these findings and in comparison with the macroscopic graphite 
(HOPG) ​​k​ c​​​ value of 1700 W/m · K, the heat conductivity for long CNTs exceeds the bulk 
value multiple times. An estimate for the determination of ​β​ is discussed in the Worked 
Problem below.

42  D. Bruns et al., Phys. Rev. B, 101, 195408 (2020).
43  X. Zhang et al., Phys. Rev. Lett., 119, 179601 (2017).
44  G. Zhang et al., J. Chem. Phys., 123, 114714 (2005).
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Figure 1.27    (5,5) Thermal conduction coefficient as function of the length of a single-walled 
(10,10) CNT. ​​k​ c​​    ∼    ​L​​ β​​ with ​β ≈ 0.35.​44
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1.8  Miniaturization, Scaling, and System Constraints 63

The reason for the substantial increase in ​​k​ c​​​ in lower dimensions compared to the bulk is 
due to a decrease in the phonon scattering sites, and with it, a reduction in energy fluctu-
ations. As some of the phonon scattering processes found in 3D are suppressed in 1D, the 
resistance to phonon motion is reduced, and heat conduction increases. For short tubes, 
however, prominent scattering at the tube ends results in an increase in the scattering sites 
and, thus, can yield a lower thermal conductivity compared to the bulk. At exactly what 
critical tube size ​L​, ​​k​ c​​​ of the tube falls below the bulk value is still debated. Based on the ​​k​ c​​(L)​ 
plot in Figure 1.27, it appears to occur around 20 μm. However, as per a recent more involved 
theoretical treatment42 that yields a power law distorted thermal conductivity of the form

​​k​ c​​ = ​k​ c​ ∞​ / ​(1 + ​λ​ eff​​ / L)​,​� (1.83)

the critical tube length is found at around 100 nm.
Another parameter that affects heat transfer in CNT is the tube diameter ​D​ and the 

temperature. In both cases, the thermal conductivity decreases when either of the two 
parameters is increased. Lastly, it shall be noted that a similar discussion on scaling for 
2D systems (such as graphene), yields a thermal conductivity that exhibits a logarithmic 
dependence with size.

Worked Problem 1.8.3

Background: The chirality ​​ → c ​ = ​n​ → a ​​1​​ + m ​​ → a ​​2​​​ of the rolled-up sheet that results in a CNT is 
expressed by the pair ​(n,m)​, and the basis vectors ​​​ → a ​​1​​​ and ​​​ → a ​​2​​​. It is depicted here as well as 
in Figure 1.26 for ​(n,m) = (5,5)​. In a Cartesian system ​(​​ → e ​​x​​, ​​ 

→ e ​​y​​)​, the two basis vectors can be 
expressed as

​​​ → a ​​1​​ = a​(​√ 
_

 3​a / 2,− 1 / 2)​ and  ​​ → a ​​2​​ = a​(​√ 
_

 3​a / 2,1 / 2)​​
whereby we introduced and defined ​a ≡ ​√ 

_
 3​​a​ c−c​​​ with ​​a​ c−c​​ = 1.421 Å​, the shortest carbon-

carbon distance. The diameter ​d​ of the CNT can be simply obtained from the chirality, as ​
d = ​|​ → c ​| ​ / π​, and thus,

​d = ​ a _____________ π ​ ​√ 
___

  ​n​​ 2​ + nm + ​m​​ 2​​​

Problem: We shall estimate the thermal conductivity from the two limiting boundary 
cases, i.e., the 1D atom chain with ​d = 0​ ​(β = 0.45)​ and the 
graphene sheet with ​D = ∞​ ​(​k​ c​​ = 3500–5000 W / m · K)​, and 
use the value of ​β​ for the (10,10) single wall CNT, discussed 
in the text.

Solution: For the armchair (10,10) CNT for which a power 
law exponent of ​β = 0.3515​ was determined (see text), the 
diameter is obtained from the equation above, as

​​d​ (n,n)​​ = ​ ​√ 
_

 3​n _____________ π  ​a = ​ 3n _____________ π  ​​a​ c−c​​ ​    ⎯ → 
n=10

​​d​ ​(10,10)​​​ = 1.36 nm​

An upper bound for ​β (d)​ is obtained from the 1D atom 
chain as ​​β​ 1D​​ ≈ 0.45​.

a1

a2
e

y

ex

ac–c

Figure P1.8.3a    Graphene 
structural elements.
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1  The Realm of Nanoscience and Molecular Engineering64

Next, we consider that for ​d → ∞​, the nanotube is converging into a graphene sheet, for 
which kc is 3500–5000 W/m · K, i.e., lower than the one found for a long carbon nanowire 
(>6500 W/m · K). Hence, we can expect for ​β​ a lower bound value, which we shall denote as ​​
β​ 2D​​​. A typical function in nature that smoothly connects limiting boundaries of that sort is

​β = ​β​ 2D​​ + ​ 
​β​ 1D​​ − ​β​ 2D​​

 ______________________________ 
1 + ​​(​ d _ ​d​ 50​​​)​​​

n
​
 ​​

where ​d​ is the CNT diameter, and ​n​ and D50 are two fitting parameters. At d50, ​β​ is in the 
middle of the two bound values, i.e., ​β​(​d​ 50​​)​ = ​(​β​ 1D​​ − ​β​ 2D​​)​ / 2​. We set ​n = 1​, as we have no 
justification to do otherwise in our rough estimate of ​β (d)​. We use the (10,10) CNT tube 
diameter of 1.36 nm for d50, which yields for ​​β​ 2D​​​ a value of 0.26. This value accommo-
dates the thermal conductivity range provided for graphene. Also, the relative ​β​ value 
differences (see figure) between (5,5), (8.8), and (10,10) diameter CNTs are approximately 
matched by observation in the literature.

1.9    Organization and Outlook for Nanoscience and 
Nanotechnology

We commenced this introductory chapter on nanoscience and molecular engineering 
by exploring commonly held perceptions of our world and expressing opinions on the 
potential benefits of the nanoscale. Likewise, we recognized that a majority of mankind’s 
technological progress involving molecules has been based on trial-and-error approaches, 
lacking, in many cases, a deductive rational approach toward engineering.

0.4

0.375

0.35

β

0.3
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Figure P1.8.3b    Power law coefficient 
as a function of the CNT length.
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1.9  Organization and Outlook for Nanoscience and Nanotechnology 65

Following these inaugural observations, we meandered through the unique realm of 
lower dimensionalities and explored the mechanical, acoustic, thermal, and electronic 
properties of materials under constraints. In so doing, we differentiated between size 
constraints, interfacial constraints, and dimensional constraints, all of which, we found 
to impact our current perception of transport properties often expressed by empirically 
derived laws describing 3D bulk system responses. We critically assessed the scaling laws 
derived from bulk phenomenological observations and found them to be inadequate 
under the mentioned constraints. Specifically, we contrasted scaling law expectations 
with nanoscale observations and provided some background and explanations of why 
bulk perceptions of the world break down on the nanoscale.

In this final section of the chapter, we will provide a concise exploration of how the 
expansive field of nanoscience and its associated technologies can be classified, as well 
as the areas they currently impact or are expected to influence in the near future. We will 
refrain from revisiting the topic of molecular engineering, which we previously discussed 
in the first section of this chapter, where we emphasized the advantages of a deductive, 
rational approach over trial-and-error methods.

1.9.1    Classification of Nanoscience and Nanotechnology

A proper classification of aspects and fundamentals within science and technological dis-
ciplines is pivotal for streamlining a discipline toward education as well as integrating new 
findings into an existing framework so that its implications are most effective. Before we 
address the subclassification of nanoscience, it is essential to first examine its position 
within the current scientific landscape. Evidently, nanoscience is an interdisciplinary field 
that encompasses the three principal science disciplines: physics, chemistry, and biology. 
Given that physics serves as the foundational driver of nanoscience, we will begin by 
exploring its role within the expansive domain of physics.

Physics has been characterized within the first quarter of the 20th century by its under-
lying theories into classical mechanics, thermodynamics and statistical mechanics, elec-
trodynamics, relativistic physics, and, quantum mechanics. Older branches of physics, 
such as optics and acoustics, were incorporated within these five principal branches. 
Considering the makeup of matter, another classification emerged over the past 50 years 
that differentiates between atomistic physics, nuclear physics, quantum physics, relativistic 
physics, and cosmology.

Atomistic physics focuses on the structure of atoms, electronic energy states, atom-atom 
interactions, and the interplay involving electric and magnetic fields. By extension consid-
ering the molecule, i.e., covalently bound atoms, molecular physics focuses on the physical 
properties of molecules and molecular dynamics. The solely microscopic perspective of 
matter taken by atomistic and molecular physics is expanded to the macroscopic world via 
solid-state physics or, more general, condensed matter physics.

Condensed matter physics explores the connection between the atomistic structure of 
matter and its macroscopic phase (solid, liquid, and gas) properties. The forces that are of 
foremost interest in condensed matter physics and that differentiate it from particle physics 
and astrophysics are generally of EM nature found between atoms, when forming mol-
ecules, and between molecules in particle condensed phase systems. A subdiscipline of 
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1  The Realm of Nanoscience and Molecular Engineering66

condensed matter physics is the field of mesoscopic physics, which considers predominantly 
phase systems on the submicrometer scale and includes aspects of nanoscience below the 
100 nm scale.

While mesoscopic physics is loosely defined as addressing size-related issues that 
deviate from bulk phenomenological descriptions, it has focused since Rolf Landauer and 
Markus Büttiker in 1957 and 1990,45 respectively, primarily on electronic properties of 
size and dimensionally confined metals and semiconductors. Taking a more general per-
spective, mesoscopic physics considers transport phenomena with classically modified 
or exchanged fluctuations underlying particle propagation. For instance, in the case of 
electron transport through a conductive media composed of quantum particles (artificial 
atoms), sintered together, quantum fluctuations dominate thermal fluctuations. Thus, 
quantum effects can bring forward the phase characteristics of electrons and, with it, 
invite phase coherence. Classically, in a macroscopic system, electron scattering at the 
crystal lattice (electron-phonon scattering), between electrons and impurities and defects 
within the crystal lattice, makes the electrons behave like incoherently moving parti-
cles. By considering, however, a system in which electronic energy levels exceed thermal 
noise ​(​k​ B​​T)​, the electron wave character emerges allowing electrons to move coherently. 
Such mesoscopic behavior comes into play when critical dimensions (e.g., system particle 
dimensions) are on the order of or smaller than the relevant effective length scale (e.g., the 
distance between scattering events).

Nanoscience significantly expanded the scope of mesoscopic physics on the sub-100-nm 
scale, not only by encompassing molecular condensed systems and expanding to organic 
and biological materials but also by incorporating aspects of surface and interfacial sci-
ences. Entropic transport aspects, as well as unique phase behavior and transitions 
involving molecules under confinement, became the cornerstones of this new science 
field that found traction toward the end of the 20th century and has shown a substantial 
impact on emerging technologies within the first two decades of this century. This was 
elucidated at the beginning of this chapter when we addressed the combined deductive 
rational nanoscience and molecular engineering approach to combat COVID-19 with a 
heterogeneous molecular nanosystem. This fourth generational stage of nanotechnologi-
cal product development followed by the development of first passive nanostructures (e.g., 
nanoparticles), second active nanostructures (e.g., amplifiers), and third 3D nanosystems 
(e.g., guided self-assembly), marks the beginning of the diffusion of this new technology 
into emerging industries and services.46

Having pinpointed the area in which nanoscience can be placed within physical sciences, 
we are now equipped to attempt a classification of this multidisciplinary field. We recog-
nize the importance of external physical constraints, as well as the prominent properties 
that are affected. We can differentiate between two principle classes of constraints, namely

	 i.	external constraints that include dimensional constraints and interfacial constraints and
	 ii.	internal constraints comprised of atomistic and molecular structural constraints and 

entropic constraints.

45  R. Landauer, IBM J. Res. Develop., 1, 223 (1957); M. Büttiker, Phys. Rev. B, 41, 7906 (1990).
46  M.C. Roco, J. Nanopart. Res., 25, 197 (2023).
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The prominent properties affected by the mentioned constraints belong to the five 
transport phenomena, namely, acoustic, electronic, energetic (heat), mass, and momentum 
transport. In Table 1.6, the four subclasses of constraints are contrasted to the five trans-
port phenomena with some specific input on critical size and impact.

Some of the aspects that Table 1.6 eludes to, have been addressed in this chapter, such 
as critical size considerations, when we compared the electron wavelength to the object 
size in electronic systems, dimensional constraints, when we discussed the thermal con-
ductivity increase in carbon nanotubes and the decrease in scattering sites, and, interfacial 
effects, in our discussion of polymer confinement in nanocomposites in reference to gas 
diffusive mass transport, and our discussion of shear momentum transport within liquid 
boundary layers. Discussions on aspects related to structural and entropic confinements 
are still outstanding and will be picked up in later chapters. In particular, the electronic 
nature of matter will be investigated over several chapters, starting with the building 
block, the atom, the wave characteristics of particles, and the effect of dimensionality of 
electronic transport that will finally culminate in a physical understanding of modern tech-
nological applications, such as diodes and solar cells. We will explore the electronic struc-
ture of molecules, their degrees of freedom, and their interactions, which brings forward 
the aspect of entropy. Entropic constraints are found to affect the collective behavior of the 
transport “intrinsic elements.” We shall see that the term entropy is not always used in an 

Transport 
phenomena

Constraints

Internal External

Dimensional Interfacial Structural Entropic

Acoustic wavelength vs. 
object size

phonon 
vibrations

wave 
modification

entanglement 
entropy, 
phonon-phonon 
scattering

Electronic scattering length 
vs. object size

electronic band 
structure

wave 
modification

spin coupling, 
quantum 
entanglement, 
quantum 
fluctuation

Energetic fluctuations vs. 
object size

vibrational modes resistance mode coupling, 
thermal 
fluctuation

Mass permeate size 
vs. transport 
dimension

concentration 
gradient

resistance permeate 
clustering

Momentum mean free path 
vs. system 
dimension

pressure 
fluctuations

boundary layer 
dominance

cooperative 
motion 
(“structuring”)

Table 1.6    Topics related to transport phenomena under nanoconstraints.
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1  The Realm of Nanoscience and Molecular Engineering68

energy dissipative context but also as structural force when we discuss cooperative entropy 
or entanglement entropy.

Today, nanoscience and nanotechnology manifest the culminating interface, where 
industrial needs converge with fundamental sciences involving the mesoscale between 
atomistic and phenomenological theories. As illustrated in Figure 1.28, nanoscience 
research, starting from physics, chemistry, and biology, provides an important and improved 
understanding of nature on the mesoscale that has benefitted emerging technologies in elec-
tronics, biotechnology, pharmaceuticals, and energy-related disciplines since the beginning 
of this millennium.

Study Problems to Chapter 1

	1.1	 Nanometer Scale
The length of a ​C─C​ single bond in graphene is 1.42 Å ​(1 Å = ​10​​−10​  m)​. Determine

	 a.	 the area of a ​C─C​ hexagon in graphene in nm2,
	 b.	 the number density of carbon atoms in a graphene layer in nm−2,
	 c.	 the surface density of a single graphene layer in ng/cm2 ​(1 ng = ​10​​−9​ g)​, and
	 d.	 the density of bilayer graphene in g/cm3, assuming a layer distance of 0.335 nm.

	1.2	 Molecular Engineering
	 a.	 Briefly describe the difference between trial-and-error-based engineering and 

deductive rational molecular engineering.
	 b.	 List at least two pros and cons for each of the two engineering approaches men-

tioned in (a).
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Figure 1.28    Technologies meet fundamental sciences on the nanoscale.
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	 c.	 The rubber vulcanization process by Charles Goodyear belongs to which one of 
the two named engineering approaches? What is the fundamental aspect of it?

	 d.	 Provide from your knowledge or the literature one or more examples of success-
ful trial-and-error approaches.

	 e.	 Name one of the most striking examples of molecular engineering that was 
paired with nanotechnology.

	1.3	 Apparent Material Behavior
What do we understand under the term apparent material behavior and why is it 
important for nanoscience and nanotechnology?

	1.4	 Dimensionality
Provide examples of the following dimensionalities: 0D, 1D, 2D.

	1.5	 Dimensionality and Transport Effects
How can constrained dimensions affect the transport properties? Offer a few 
examples.

	1.6	 Perfect Liquids and Solids
When describing rheological material behavior, we typically classify the possible 
responses to external forces. In that context, rheological solid-like and liquid-like 
behaviors should neither be confused with the thermodynamically described intrinsic 
solid nor be confused with the liquid phase. How would you formally describe 
solid-like and liquid-like behavior, and why do you think it is of greater importance 
when moving to the nanoscale?

	1.7	 Atomic Force Microscopy – Solid-like Deflective Response
An AFM, also known as scanning force microscope, is a nanoscopic imaging and 
force-measuring tool widely used in nanoscience-related research and quality con-
trol in nanotechnological applications. It consists of a cantilever with an integrated 
“atomically” sharp conical or pyramidal tip, as depicted. The lever material is either 
silicon or silicon nitride with typical length dimensions of a bar-shaped lever of ​
100 × 10 × 0.5 μm​ (length, ​l​, width, ​w​, thickness, ​d​). The deflection of the lever is 
measured with a focused light (low-power laser) beam. The AFM force sensitivity is 
on the order of 0.1 nN. The lever spring constants can be determined from

​​

normal z-bending :  ​k​ z​​ = ​ Ew​d​​ 3​ _ 
4​l​​ 3​

  ​

​   lateral x-bending :  ​k​ x​​ = ​ E​w​​ 3​d _ 
4​l​​ 3​

  ​​   

torsional bending :  ​k​ t​​ = ​ Gwd _ 
3l​r​​ 2​

 ​

  ​​

based on the dimensions and the elastic material properties (​E​ Young’s modulus, ​G​ 
shear modulus) of a bar-shaped cantilever. The corresponding forces are obtained as ​​
F​ ξ​​ = ​k​ ξ​​ Δξ (ξ = z, x, t)​.
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1  The Realm of Nanoscience and Molecular Engineering70

Determine the three spring 
constants for a lever of dimension, ​
100 × 10 × 0.6  μm​, for a silicon 
lever with ​E = 1.65 × ​10​​11​  Pa​ and a 
Poisson ratio ​ν​ of 0.65. The integrated 
tip shall have a length (radius) ​r​ of ​
12.5 μm​.

	1.8	 Activation Energy for Viscous 
Flow of Simple Fluids
Determine the activation energy 
for viscous flow of water between 
1 °C and 90 °C at the normal atmo-
spheric pressure (101.3 kPa) using the NIST database and compare your result to 
the hydrogen bond strength in bulk water of 7.95 kJ/mol, as per K. A. T. Silverstein, 
A. D. J. Haymet, and Ken A. Dill, J. Am. Chem. Soc., 122, 8037–8041 (2000).

	1.9	 Activation Energy in Polymer Melts of High Molecular Weight
Investigate the viscous response in high molecular weight polystyrene (MW: 135k) 
close to the glass transition at ​​T​ g​​ ≈ 100 ° C​ and the melting transition at ​​T​m​​ ≈ 240 ° C​, 
given (Table 1.7 below) viscosities values at and between the two transition values, by 
answering the following question:

	 a.	 Does the viscosity follow an Arrhenius behavior if plotted versus the inverse 
absolute temperature?

	 b.	 Determine the activation energy in kcal/mol at ​​T​ 1​​ = 100 ° C​ and ​​T​ 2​​ = 240 ° C​ from 
an Arrhenius-like data plot, i.e., ​ln  η   (1/T [K ] )​.

	 c.	 Discuss your result in light of the following molecule-specific energies:47

	 ○	 ​γ​-relaxation: ~8 kcal/mol (phenyl rotation)
	 ○	 ​β​-relaxation: ~18 kcal/mol (isolated crankshaft motion in backbones)
	 ○	 ​α​-relaxation: ~90 kcal/mol (cooperative crankshaft motion)

47  J. Knorr et al., J. Chem Phys., 129, 074504 (2008).

Sample

AFM lever

Fx

FtFz

AFM base
z

x

Figure SP1-1    Cantilever and forces

Temperature, ​T​  
[°C]

Viscosity, ​𝜼​  
[Pa · s]

Temperature, ​T​  
[°C]

Viscosity, ​𝜼​  
[Pa · s]

100 19,131.797 180 46.074

120 1822.381 200 24.019

140 354.328 220 14.562

160 109.427 240 9.846

Table 1.7    Viscosity values in the melt phase of polystyrene (MW 135k).

c01.indd   70c01.indd   70 8/7/25   10:01 AM8/7/25   10:01 AM



71Study Problems to Chapter 1

	1.10	 Melting Temperature of Low Molecular Weight Polystyrene
Estimate the melting temperature in °C of low molecular weight polystyrene (MW 35k), 
based on the averaged viscosity-temperature fit

​ln η = 0.0059​e​​ 3075.5​(1/T)​​  with η [Pa · s ]  and T[K]​

to a wide variety of experimental viscosity data provided above 110 °C. Assume that 
the activation energy at the melting point is 20 kcal/mol, i.e., matched approximately 
by the backbone crankshaft rotational energy of polystyrene.

	1.11	 Electrical Conductance and Resistance
Provide the definitions for electrical conductance, resistance, and conductivity as 
well as the electric resistivity.

	1.12	 Heat Transfer of Molecular Gases
Comparing the relevant heat transfer coefficients of two quiescent gases at standard 
ambient conditions based on their molecular weight and size, which one is more effi-
cient in conducting heat – the gas composed of smaller or larger molecules? Support 
your answer by calculating and comparing ​​k​ c​​​ at 300 K for

	 a.	 argon (Ar) and helium (He), and,
	 b.	 carbon dioxide (CO2) and ammonia (NH3).

Use appropriate equations to solve these problems and compare your results to lit-
erature data found in Table 1.3. Discuss your findings and address with appropriate 
disagreements.

	1.13	 Molecular Velocities in Gases
Derive analytically the

	 a.	 Maximum velocity, ​​𝘷​ max​​​ (Ans.: ​​𝘷​ max​​ = ​√ 
_

 2​k​ B​​T / m​​)
	 b.	 Average velocity, ​​​⟨​​𝘷​⟩​​​​ (Ans.: ​​⟨𝘷⟩ ​ = ​√ 

____
 8​k​ B​​T / πm​​)

	 c.	 The rms velocity, ​​𝘷​ rms​​​ (Ans.: ​​𝘷​ rms​​ = ​√ 
_

 3​k​ B​​T / m​​)
for a gas system based on the Maxwell-Boltzmann velocity distribution ​f(𝘷)​.

	 d.	 Plot the Maxwell-Boltzmann velocity distribution at 300 K for CO2 and CO, and 
include graphically the probability density functions ​f   (𝘷)​ according to the three 
velocities.

	 e.	 Lastly, determine the fractions of CO gas molecules moving with ​​𝘷​ max​​​ ​​​⟨​​𝘷​⟩​​​​, or ​​𝘷​ rms​​​,  
and, the corresponding numbers of molecules for three velocities for 1 mole of 
gas.

Background:
The maximum velocity ​​𝘷​ max​​​ stands for the most probable velocity magnitude of all 
system gas molecules. It is obtained from

​​​​ 
df ​(𝘷)​

 _ d𝘷  ​|​​​𝘷​ max​​
​​ = 0​
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The average velocity ​​​⟨​​𝘷​⟩​​​​ reflects the mean velocity magnitude for all molecules in the 
gas. It is computed as

​​​⟨​​𝘷​⟩​​​ = ​ ∫ 
0
​ 
∞

​​𝘷f​​(​​𝘷​)​​​   d𝘷​

The rms velocity ​​𝘷​ rms​​​ measures the speed at which all the molecules have the same 
total kinetic energy compared to their actual speed. It is obtained from

​​𝘷​ rms​ 2  ​ = ​ ∫ 
0
​ 
∞

​​​𝘷​​ 2​f​​(​​𝘷​)​​​   d𝘷​

Hint: Use for the determination of ​​𝘷​ rms​​​ the following identity:

​​ ∫ 
0
​ 

∞
​​x​​ 2n​​e​​−​x​​ 2​/​a​​ 2​​dx =​ ​√ 

___
 π​ ​ 
​(2n)​ !

 _ n !  ​ ​​(​ a _ 2 ​)​​​
2n+1

​​

	1.14	 Average Relative Velocity in a Gas
A quantity of great importance in determining the mean free path of molecules in a 
gas is the average relative velocity ​​​⟨​𝘷​ rel​​⟩ ​ = ​|​​​⟨​​ → 𝘷 ​​rel​​⟩ ​​|​​​​. For the determination of the mean 
free path, one has to take into account that the system velocity to which the molecular 
speed is compared is not given by the boundary (i.e., contrasted to the perspective of a 
stationary observer) but the average speed of the molecular counterparts (i.e., related 
to the reference frame of a moving observer). That said, consider the relative velocity 
between a molecule of speed ​​ → 𝘷 ​​, with an arbitrarily unrelated molecule of velocity ​​ → 𝘷 ​′​, 
both speeds are from the perspective of the system boundary, and thus,

​​​ → 𝘷 ​​rel​​ = ​ → 𝘷 ​ − ​ → 𝘷 ​′​

and determine the average relative velocity. (Ans.: ​​⟨​𝘷​ rel​​⟩ ​ = ​√ 
_

 2​​⟨𝘷⟩ ​​)

Hint: Note that for uncoordinated arbitrary motions of particles, ​​⟨​ → 𝘷 ​ · ​​ → 𝘷 ​ ′ ​⟩ ​ = 0​.

	1.15	 Mean Free Path
As per definition, the mean free path ​λ​ manifests the average distance between col-
lisions for a gas molecule in a gas system. In an ideal gas, these collisions are elastic, 
and thus, there is no energy dissipated. This allows us to picture molecules as rigid 
particles. For simplicity, they shall be spherical with diameter ​d​. For two molecules 
to collide, they have to be a distance ​d​ apart, measured from their centers of mass. 
Hence, at the collision distance ​d​, we can infer an effective collision area of ​A = π​d​​ 2​​. 
Consider now a corridor (“cylinder”) of cross-sectional area ​A​ with molecules distrib-
uted within the corridor given by the molecular number density ​​ρ​ N​​​ of the gas under 
given temperature and pressure conditions. The molecules are only represented by 
their position without size, as the size is already captured by the conduit dimension. 
Now the cross-section shall move over time ​t​ with the average relative velocity ​​⟨​𝘷​ rel​​⟩ ​​. 
Determine analytically with the parameters provided

	 a.	 the distance traveled in terms of the average velocity ​​⟨𝘷⟩ ​​,
	 b.	 the volume of interaction, in terms of the average relative velocity, and

	 c.	 the mean free path. (Ans.: ​λ = ​  1 _______________________________ 
​√ 

_
 2​​ρ​ N​​π​d​​ 2​

 ​​).
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	1.16	 Bulk Behavioral Limitation Based on System Size
Consider a system size ​L​ of 100 nm filled with oxygen gas at ambient standard con-
ditions (25  °C and 101 kPa). (a) Determine if, under these confining conditions, 
oxygen still behaves bulk-like. (b) Calculate the thermal conductivity. In the case of a 
necessary Knudsen correction, consider ​β = 1.5​.

	1.17	 Electron Number Density
With knowledge of the mass number ​A​ and the valency of the atoms making up a 
pure metal, derive the following analytical expression

​n = ​ 
​N​ A​​(atoms) ​​(​​Z − ​Z​ core​​​)​​​   ρ  ______________________________  

A × ​​[​​g/mol​]​​​
  ​​

for the electron number density ​n​.

	1.18	 Electron Number Density of Selected Metals
Calculate the electron number densities for Ag, Au, and Al based on their valencies, 
mass densities, and mass numbers.

	1.19	 Electron Mobility and Electrical Conductivity of Gold
	 i.	 Based on gold’s (Au) electron relaxation time ​​τ​ m​​ = 36.8  fs​ (femtoseconds) at 

an unknown temperature and effective mass ratio ​​m​​ *​ = m / ​m​ e​​ = 1.1​, where ​​m​ e​​​ 
stands for the electron rest mass, and the following expression

​​μ​ e​​ = ​ e _ m ​   ​τ​ m​​​

determine the value for the electron mobility, ​​μ​ e​​​.
	 ii.	 The electron mobility is typically defined by

​​𝘷​ d​​ ≡ ​μ​ e​​   E​

where ​​𝘷​ d​​​ stands for the electron drift velocity in an electric field ​E​. Show with 
physical unit matching that the two expressions in (i) and (ii) are equivalent, 
regarding the electron mobility.

	 iii.	 With the electron mobility value from (i) and the electron number density ​​
n​ e​​​ from the prior problem determine the electrical conductivity ​​σ​ e​​​ in units of 
Siemens per meter.

	 iv.	 The electric resistivity ​​ρ​ e​​​ of Au can be linearly fit to the temperature ​T​, within 
200 K and 500 K,

​​ρ​ e​​​[​10​​−8​ Ω ⋅ m] ​ = 0.0084​[​ Ω ⋅ m _ K  ​] ​T ​[K] ​ − 0.2343​[​10​​−8​ Ω ⋅ m] ​​

Use this fit to determine the temperature for which the electrical conductivity in (iii) 
was determined.

	1.20	 Backscattering in Carbon Nanotubes
The mean free path of backscattering ​​λ​ B​​​ in a SWCNT of length ​L = 1 μm​ shall be 
investigated based on the provided current-voltage (I-V) characteristics (see plot 
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below) at high fields (low resistant contacts to the electron reservoirs). Consider the 
scattering probability to be constant (i.e., independent on ​V​). Furthermore, the trans-
port shall be assumed ballistic for ​L ≫ ​λ​ B​​​ within 0.3 V.

	 a.	 We start the problem with some general questions:
	 i.	 Is the temperature within the SWCNT constant during current flow for an 

applied voltage within the linear regime of the I-V curve?
	 ii.	 Within the linear regime of the I-V curve, the electrical resistance along the 

SWCNT originates from energy dissipations within the wire or within the 
connected electron reservoirs? This question is related to (i).

	 iii.	 If we assume ideal contacts, what could be the reason for the current satura-
tion for large voltages (>5 V)?

	 b.	 Determine the backscattering length ​​λ​ B​​​ according to the linear regime obtainable 
from the presented I-V curve. Note that SWCNT possess two subbands.

	1.21	 Phase Discrepancy Between Waves
Consider two electron waves entering a system with intensities ​​I​ 1​​​ and ​​I​ 2​​​. At the exit 
of the system, their superimposed intensity is measured at a particular location on 
a screen. Originally, the two superimposed waves leaving the system are uncorre-
lated (​δ = 90 deg.​, or more general: ​​𝛿 = ​​(​​2n + 1​)​​​𝜋 / 2, n = 0, ± 1, ± 2,… , ​)​​​​. After the path 
(relative distance to screen) of one wave has been altered, the measured superposi-
tion intensity on the screen is altered by a factor ​1 / ξ​ from its original value.
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Figure SP1-2    I-V characteristic of multiwall CNT fit to literature data.4849

48  Z. Yao et al., Phys. Rev. Lett., 84, 2941 (2000).
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	 i.	 Describe analytically the phase lag situation described here using the intensities ​​
I​ 1​​​ and ​​I​ 2​​​ of the single beams, as well as the factor ​ξ​.

	 ii.	 Determine the induced phase shift in degrees, having altered the original path, 
for ​ξ = 2​, and ​​I​ 1​​ / ​I​ 2​​ = 1 / 3​.

	 iii.	 Assume that ​​I​ 1​​ = ​I​ 2​​​, and a change to the path so that the two waves are in-phase 
(perfectly correlated). How big is ​1 / ξ​?

	1.22	 Quantum Conductance
A 1D quantum wire exhibits a conductance of 29.8 mS. Determine the number of 
modes of perfect transmission probability through which electrons can travel.

	1.23	 Charging of a Quantum Dot
Estimate in electron volts the required energy for charging an arsenide QD that carries ​
n = 5​ electrons with an additional electron. Given is a charge polarization toward the 
gate of ​~​10​​−19​  C​, caused by the existing charges on the QD, and the material and 
geometry-specific QD capacitance of ​7 × ​10​​−18​ F​.

	1.24	 2D vs. 3D Acoustic Waves
What is one of the main challenges for acoustic wave pulse submissions in 2D?

	1.25	 1D Acoustic Wave
The displacement of a string of length ​L​ follows the 1D acoustic wave equation with 
the fixed-end boundary condition ​y​(0,t)​ = 0​ and ​y​(L,t)​ = 0​ and the initial condition

​y​(x,0)​ = sin​(​ 2π ______________ L  ​x)​cos​(​ 2π ______________ L  ​x)​​

with ​​ 
∂ y​(x,0)​

 _ ∂ t  ​ = 0​. Derive the resulting displacement of

​y(x,t) = ​ 1 _ 2 ​ sin​(​ 4π ______________ L  ​x)​cos​(​ 4π ______________ L  ​vt)​​.

	1.26	 Electromagnetic Planar Wave and Phonon Dispersion Relation
Consider the 1D wave equation with the phase velocity ​c​ (speed of light) for the EM 

planar wave ​​ 
→

 E ​​(z,t)​​

​​ 
→

 E ​​(z,t)​ = ​​ 
→

 E ​​o​​​e​​ i​(kz−ωt)​​​

where ​k = 2π / λ​ is the wave number, and ​ω = 2πν​ is the circular frequency. Find the 
relationship between the ​ω​ and ​k​, also known as the phonon dispersion relation.
Details about the 1D wave equation are provided in Appendix A.3.

	1.27	 Electron Particle Wave
To extend the wave equation to particle waves, we have to add an energy term to the 
wave equation that considers the nonzero rest mass ​​m​ o​​​ of the particle (electron), i.e.,

​​  ​∂​​2​ _ 
∂ ​x​​ 2​

 ​ψ ​(x,t)​ = ​ 1 _ 
​c​​ 2​

 ​ ​ ​∂​​2​ _ 
d​t​​ 2​

 ​ψ ​(x,t)​ + ​ 
​m​ o​​​c​​ 2​

 _ 
​ℏ​​2​

  ​ψ ​(x,t)​​
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where ​c​ and ​ℏ​ stand for the speed of light and the Planck constant divided by ​2π​, 
respectively. We again assume a planar wave moving in the x-direction, i.e.,

​ψ ​(z,t)​ = A​e​​ ​ 
i _ ℏ​​(pz−Et)​​​

where ​A​ is a constant, ​p​ is the linear momentum, and ​E​ is the particle energy. The 
momentum and energy of the particle are related to the wave number ​k​ and the 
circular frequency ​ω​ via

​​p = ℏk​ 
E = ℏω

​​

Determine the relationship between the ​ω​ and ​k​, also known as the particle dispersion 
relation. Provide a comparative sketch of ​ω(k)​ for photon waves and particle waves. 
For the photon wave, consider the earlier EM wave problem.

	1.28	 Volume Fraction and Polymer Nanocomposite of Cuboidal Impermeable 
Particles
Consider instead of spherical particles, cuboidal particles of aspect ratio ​α = w/l​, 
where ​w​ represents the width of the square particle surface that is oriented perpen-
dicular to the flux direction, and ​l​ is the cuboidal length along the flux direction.

	 a.	 Derive the Niessen extension of the Maxwell equation for nonspherical particles, 
which is

​​ 
​P​ eff​​ _ ​P​ o​​ ​ = ​ 

1 − φ
 __________________________ 

1 + α​(​φ _ 2 ​)​
 ​ .​

	 b.	 Plot the Niessen extension for ​a = 0.5, 1, 2 and 7​.

	1.29	 Volume Fraction and Polymer Composites with Permeable Dispersed Phases
A further extension of Maxwell’s model is required if the dispersed phases are perme-
able to the permeates. We shall label the permeability of the dispersed phases as ​​P​ d​​​.  
The following equation that addresses the permeability of the dispersed phases has 
been introduced by Lewis and Nielsen, as

​​ 
​P​ eff​​ _ ​P​ o​​ ​ = ​ 

1 + ​2φ​(​P​ d​​ − ​P​ o​​)​ _______________ ​P​ d​​ + 2​P​ o​​  ​
 __________________________ 

1 − ​ψφ​(​P​ d​​ − ​P​ o​​)​ ______________________ ​P​ d​​ + 2​P​ o​​  ​
 ​;  with ψ ≡ 1+​(​ 

1 − ​φ​ m​​
 _________________ 

​φ​ m​ 2 ​
  ​)​φ.​

The additional volume fraction parameter ​​φ​ m​​​ stands for the maximum packing 
fraction, which is unity for a system that can pack void-free.

Show that the Lewis–Nielsen equation reduces to Maxwell’s equation if we assume 
perfect packing of impermeable dispersed phases.
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	1.30	 Permeability of Hydrogen Through Nanocomposite PTMSP Membrane
Provided are the reduced gas parameters ​​a​ A​​ = 0.120​ and ​​b​ A​​ = − 0.3103​ of ​A = ​H​2​​​ 
(hydrogen) that determine the reduced gas permeability ​​P​ r​​​ through PTMSP/SiOx, as 
a function of the particle wt %, and, the permeability values of nitrogen (N2) of 3800 
barrer and hydrogen (H2) of 10300 barrer through a virgin (particle-free) PTMSP 
membrane. Determine the permeability of H2 though PTMSP/SiOx for ​φ = 30 wt %​.  
As an estimate, you may assume that the original drop in permeability from zero to 
10 % filler content, follows the Maxwell equation.

​1 barrer = 1 mol/(m s Pa)  in SI units.​
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