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1.1    Introduction

Carbon (C) is a nonmetallic element of period 2, group 14 (group IVA) of the periodic table, 
and the fourth most abundant element in the universe [1]. There are four valence electrons 
(2s22p2) outside the carbon atom, meaning that all three types (sp, sp2, sp3) of hybridization 
between s- and p-orbitals could occur in carbon atoms during the formation of chemical 
bonds. Due to the bonding characteristics, millions of organic compounds in which carbon 
atoms usually bond with other nonmetallic atoms (e.g. hydrogen, oxygen, nitrogen, etc.) or 
the C atom itself (forming carbon chain, branch, or ring structures) have been discovered 
in nature or synthesized artificially.

For elementary substances of carbon (not regarded as organic molecules but inorganic 
ones), different hybridization modes between carbon atoms lead to the diversity of struc-
ture and properties of its allotropes. Consider two typical types of carbon bulk materials: 
diamond is a three-dimensional (3D) network composed of sp3-hybridized carbon, known 
as the hardest natural material, while graphite is a 3D structure stacked by a sp2-hybridized 
carbon monolayer with a low degree of hardness but good lubricity. Carbon nanomateri-
als include diverse low-dimensional allotropes of carbon, such as graphene [2], graphene 
nanoribbons (GNRs) [3], carbon nanotubes (CNTs) [4], graphyne (GY) [5], fullerenes [6], 
and carbon dots (CDs) [7]. In contrast to natural bulk materials, theoretical research, prac-
tical preparation, and potential applications of carbon nanomaterials have only been in 
development for about one century. Nevertheless, numerous studies have demonstrated 
these carbon nanomaterials’ unlimited promise with retained properties of bulk materials 
and unique properties of low-dimensional materials. In particular, the primary fabrication 
of two-dimensional (2D) graphene monolayers triggered an unprecedented graphene “gold 
rush” while opening the door to the two-dimensional materials (2DM) system, which is a 
historic step for the carbon nanomaterial system [8].

In this chapter, we will take graphene, CNTs, and GY as representative carbon nano-
materials and illustrate their fabrication methods, essential properties, and applications 
through recent frontier research findings.
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1.2    Fabrication of Carbon Nanomaterials

1.2.1    Graphene

Graphene is a 2D building material for all other dimensions of sp2-hybridized carbon 
materials, which can be transferred to zero-dimensional buckyballs (fullerenes), one- 
dimensional (1D) nanotubes, and 3D graphite (Figure 1.1) [8]. Although it was not until 
the early twenty-first century that graphene was isolated from bulk graphite, the concept 
of “graphene” or “monolayer graphite” had been proposed in the mid-twentieth century 
but initially used as a theoretical model that did not exist in a free state. This concept was 
derived from the conventional perspective proposed by Landau [9] and Peierls [10], who 
argued that 2D crystals could not exist independently because of their thermodynamic 
instability. For a long time afterward, atomic monolayer was considered to be obtained 
only by epitaxy on a 3D substrate. However, due to the interaction between the substrate 
and 2DM, epitaxial graphene may not entirely reflect the characteristics of “monolayer 
graphite.” Hence, researchers are still looking for methods to prepare independent gra-
phene [11–13].

In fact, since the groundbreaking isolation of graphene monolayer [2], various 
top-down methods, such as micromechanical cleavage, liquid-phase exfoliation, and 
graphene oxide (GO) reduction, have successfully proved the independent existence of 
2D crystals. Furthermore, aiming for the scalable application for the post-Moore era, 
bottom-up methods, such as confinement-controlled sublimation (CCS) and chemi-
cal vapor deposition (CVD), are actively used in large-scale, high-quality synthesis of 
graphene.

Figure 1.1    The relationship between graphene and other carbon nanostructures. Source: 
Reprinted with permission from Ref. [8]. Copyright 2007, Springer Nature Limited.
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1.2.1.1    Top-down Methods

1.2.1.1.1    Dry Exfoliation of Graphene
In 2004, Novoselov et al. demonstrated the preparation of few-layer graphene (FLG)  
consisting of monolayer by micromechanical cleavage (repeated peeling by scotch tape) of 
highly oriented pyrolytic graphite [2]. This surprisingly simple method produced FLG films 
up to 10 μm in size with stability and reliability (Figure 1.2a), and the properties of FLG are 
almost identical to those of theoretical studies. With convenience but low yield, the original 
cleavage method is suitable for research or proof of concept but not practical for large-scale 
applications. A layer-engineered exfoliation (LEE) technique was introduced by Moon  
et al. for large-area, layer-controlled graphene exfoliation (Figure 1.2b) [14]. In the LEE pro-
cess, bulk natural graphite was firstly cleaved on adhesive tape, and then a selective metal 
film was directly deposited on the graphite by e-beam evaporation. The lattice mismatch 
between metal and graphite produced tensile stress at the interface, which created a crack 
at the boundaries of graphite induced by external bending and eventually led to large-area 
exfoliation of graphene [15]. The thickness of exfoliated graphene was determined by the 
difference between the metal–graphene binding energy (γmetal-Gr) and interlayer binding 
energy of graphite (γGr-Gr), resulting in a thicker layer with a higher difference (Figure 1.2b,c)  
[15, 16]. Due to the slight difference between γAu-Gr and γGr-Gr, Au-assisted LEE graphene 
showed a defect-free monolayer with a large lateral size of 1 mm and could be repeatedly 
exfoliated from the same bulk graphite (Figure 1.2d,e). The large-area exfoliation strategy 
controlled by interface binding energy between metal and 2DM is also applicable in other 
2DM systems, such as transition metal dichalcogenides [17].
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Figure 1.2    (a) OM image of FLG produced using original micromechanical cleavage method. 
Source: Reprinted with permission from Ref. [2]. Copyright 2004, The American Association for the 
Advancement of Science. (b) Schematic of LEE process and the relation between γmetal-Gr and γGr-Gr. 
(c) AFM profile of Co-, Ni-, and Pd-LEE graphene with the relation ​​γ​ Pd−Gr​​ < ​γ​ Ni−Gr​​ < ​γ​ Co−Gr​​​.  
(d) Low-magnification OM image of LEE graphene with millimeter-size monolayer. (e) OM images 
of repeated LEE graphene. Source: Reprinted with permission from Ref. [14]. Copyright 2020,  
The American Association for the Advancement of Science.
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1.2.1.1.2    Liquid-phase Exfoliation of Graphene
Compared with air ambience, liquid immersion can significantly reduce the van der Waals 
(vdW) interaction between neighboring layers of graphite. With external forces induced 
by sonication [18], ball milling [19], or shear mixing [20], graphene nanosheets could be 
easily exfoliated in the liquid phase, generally provided by water or organic solvents. High 
tension at the solid/liquid interface hurts solid dispersion in a liquid medium. Therefore, 
the selection of a liquid medium can directly determine the quality of liquid-exfoliated gra-
phene, and solvents with a lower surface tension (γ ~40 mN·m−2 [18]) could minimize the 
tension at the graphene/solvent interface [21]. Furthermore, adding surfactants or interca-
lation particles can also weaken the vdW interaction of graphite.

Supercritical fluid (SCF) is a special substance with a temperature and pressure above 
the critical point (Tc, pc), where liquid and gas phases cannot be distinct (Figure 1.3a). SCFs 
have specific intermediate properties between liquid and gas, such as gas-like diffusivity, 
liquid-like solubility, and adjustable density and viscosity controlled by temperature and 
pressure [22, 23]. Supercritical carbon dioxide (SCCO2), with an easily accessible critical 
point (​​T​ c​​ = 31.1° C​, ​​p​ c​​ = 7.38MPa​ [24]), is a suitable medium for graphene exfoliation owing 
to extremely low surface tension, shearing effect produced by complex hydrodynamics, and 
intercalation of CO2 molecules. Zhu et al. characterized the SCCO2-exfoliated graphene 
and explained the stress mechanism in SCCO2 applying on graphite (Figure 1.3b) [25]. 
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Figure 1.3    (a) Schematic of a pressure–temperature phase diagram showing the supercritical 
region. Source: Reprinted with permission from Ref. [22]. Copyright 2023, Wiley-VCH GmbH.  
(b) Demonstration of SCCO2-assisted graphene exfoliation mechanism. (c) AFM image of graphene 
nanosheets with centrifugation posttreatment and corresponding height profiles along different 
labels. Source: Reprinted with permission from Ref. [25]. Copyright 2021, Elsevier Ltd.
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Tangential stress could enhance the intercalation effect of SCCO2 on graphite’s vdW gap, 
while the direct impact of normal stress on the graphene surface could break ​C─C​ bonds 
and reduce the size of graphene. The increasing pressure makes SCCO2 denser, enhancing 
the stress mechanism and leading to more efficient exfoliation. Longer processing time also 
contributes to complete exfoliation, but excessive processing will cause the agglomeration 
of graphene. Under the same posttreatment condition, graphene obtained at 45 MPa, 48 h 
showed the highest concentration with an average thickness of ~1.272 nm, which could be 
regarded as two or three layers (Figure 1.3c).

1.2.1.1.3    Electrochemical Exfoliation
Electrochemical exfoliation (ECE) is still a liquid-phase intercalation method. 
However, the strong electric field generated by the ECE device allows the intercala-
tion of larger ions or molecules, resulting in fast expansion and exfoliation of 2DM. A 
typical dual-electrode ECE device (Figure 1.4a) consists of a working electrode (usually 
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Figure 1.4    (a) Schematic of a typical dual-electrode ECE setup. Source: Reprinted with permission 
from Ref. [26]. Copyright 2024, The Royal Society of Chemistry. (b) Thickness and (c) sheet resistance 
of electrochemically exfoliated graphene (EEG) and reduced graphene (rG) by HI, thermal (Th), 
and microwave (MW) treatment. Source: Reprinted with permission from Ref. [27]. Copyright 2021, 
American Chemical Society.
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bulk materials for exfoliation such as graphite), a counter electrode (usually a metal 
plate), an electrolyte, and a power source [26]. According to charge characteristics of 
ions involved in intercalation, ECE can be classified into two types: anodic exfoliation, 
in which graphite acts as an anode to attract anions, and cathodic exfoliation, in which 
graphite acts as a cathode to attract cations. Anodic exfoliation is usually generated in 
an aqueous electrolyte containing anions such as SO4

2−, ClO4
−, PO4

3−, OH−, and halide 
(Cl−, Br−, I−). Due to the positive voltage applied to graphite, anodic exfoliation pro-
vides higher productivity but inevitably leads to oxidation and defects in the exfoliated 
graphene [26, 27]. Mirkhani et al. proposed a high-temperature vapor reduction process 
to improve the morphology and electrical properties of graphene produced by anodic 
exfoliation [28]. Compared with thermal and microwave treatment, graphene with HI 
vapor treatment indicated a more compacted structure with more metallic luster and 
lower sheet resistance (Figure 1.4b,c). Cathodic exfoliation is a relatively mild process 
since the applied negative voltage could prevent graphene’s oxidation, preserving its 
intrinsic properties. Nonaqueous media (e.g. N-methyl-2-pyrrolidone, dimethylfor-
mamide) containing cations such as alkali ions (Li+, K+, Na+) and quaternary ammo-
nium ions (e.g. tetrapropylammonium, tetrabutylammonium) are commonly used for 
cathodic exfoliation of graphene. Most primary, secondary, and tertiary alkylammo-
nium cations are unsuitable for cathodic exfoliation because of the instability under 
electrochemical potential. On the contrary, fully substituted quaternary ammonium 
ions can remain stable in this process [29]. However, limited by intercalation efficiency, 
the rate of the cathodic exfoliation process tends to be lower than that of the anodic 
exfoliation process [30, 31].

1.2.1.1.4    Reduced Graphene Oxide
Reduced graphene oxide (rGO) is graphene obtained through the chemical oxidation of 
bulk graphite and subsequent reduction of GO. GO is typically synthesized by Brodie 
[32], Staudenmaier [33], or Hummers [34] method, which treats the graphite with a 
potent oxidizing agent (potassium chlorate or permanganate) in a robust acid environ-
ment (nitric acid or sulfuric acid) to promote interlayer spacing enlargement and con-
version to GO. GO can be easily reduced to rGO by reaction with hydrazine or thermal 
annealing. However, using strong acids and oxidizing agents is undesirable for the mass 
production of rGO but also causes considerable structural defects and much residual oxy-
gen in rGO [13, 35]. Tao et al. developed a novel catalyst-assisted exfoliation method for 
high-conductivity–dispersibility graphene (HCDG) with large lateral size (Figure 1.5a) [36].  
The edge-oxidized graphite flake (eoGF) was produced through controllable oxida-
tion, which differs from the conventional oxidization process. After the intercalation of 
the Fe3+ ion, eoGF was finally immersed in an H2O2 solution and exfoliated into gra-
phene sheets by the Fe3+-catalyzed decomposition of H2O2. The generated O2 weakened 
the vdW interaction between eoGF layers without interior oxidization, which can be 
demonstrated in (002) characteristics of graphene determined using X-ray Diffraction 
(XRD), high-resolution transmission electron microscopy (Figure 1.5b,c), and local-
ized, low-level oxidization determined using Raman spectra and X-ray Photoelectron 
Spectroscopy (XPS) (Figure 1.5d,e).
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Figure 1.5    (a) Schematics of catalyst-assisted exfoliation of HCDG. (b) XRD patterns of HCDG, 
FeCl3-eoGIC, eoGF, and pristine graphite. (c) Transmission electron microscopy (TEM) image and 
selected area electron diffraction (SAED) pattern of the HCDG basal plane. (d) Raman spectra 
of HCDG and pristine graphite. (e) C1s spectra of XPS and deconvoluted peaks of HCDG. Source: 
Reprinted with permission from Ref. [36]. Copyright 2020, Wiley-VCH GmbH.
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1.2.1.2    Bottom-up Methods

1.2.1.2.1    Epitaxial Graphene on Silicon Carbide
As early as 1975, van Bommel et al. discovered the sublimation of silicon from SiC lat-
tice and nucleation of a graphene layer in ultrahigh vacuum at ~800°C [37]. Since the 
graphene layer was proved to be decoupled from SiC [38], graphene prepared using SiC 
high-temperature sublimation process was also called epitaxial graphene (epigraphene, 
EG). Zhao et al. demonstrated a quasi-equilibrium annealing method in which semi-
conductor epigraphene (SEG) is grown on macroscopic, atomically flat SiC terraces [39].  
A CCS furnace with a small leak was designed for SEG growth (Figure 1.6a) [39, 40], in 
which graphene’s growth rate depended on silicon atoms’ escape rate. When the Si face of 
one SiC chip (acting as the seed) was placed oppositely to the C face of the other (acting as 
the source) in a CCS furnace at high temperature (>1600°C), due to the quasi-equilibrium 
between source and seed, subsequent step flow and step bunching occurred and eventually 
formed large SEG-coated (0001) facets on Si face (Figure 1.6b,c) [41]. This process differed 
from the depletion of the Si face in the conventional CCS process, with two Si faces placed 
oppositely. In addition, the SEG-covered (0001) facets were more stable than any other SiC 
facets, implying that wafer-level growth of single-crystal SEG should be possible in prin-
ciple. Characterization of SEG showed a bandgap of 0.6 eV and ordered covalent bonds to 
SiC substrate, while there was no evidence of graphene on SiC (“SEG” and “graphene” can-
not be equated). The electrical properties of SEG are described in Section 1.3.1.1.
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Figure 1.6    (a) Schematic of a CCS furnace with two SiC chips inside a graphite crucible.  
(b) Schematic of two SiC chips stacked with the C face of the source chip facing the Si face of the 
seed chip. (c) Composite electron microscope image of a ​3.5 mm × 4.5 mm​ SiC wafer with 80% 
SEG coverage. The localized area shows the contrast between SiC and SEG. Source: Reprinted with 
permission from Ref. [39]. Copyright 2024, Springer Nature Limited.
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1.2.1.2.2    Chemical Vapor Deposition
CVD is a widely used process for the deposition of various kinds of material in microelec-
tronics, such as metals, elemental or compound semiconductors, gate oxides, dielectrics, 
etc. In the graphene CVD process, gaseous precursors like hydrocarbons are primar-
ily used for deposition, while solid [42, 43] and liquid [44] precursors are also feasible. 
Transition metal is a well-known substrate for graphene CVD, acting as a catalyst for 
dehydrogenating hydrocarbon precursors. Nucleation and growth of graphene ensue 
after the dehydrogenation process, and growth mechanisms on metal substrates can be 
divided into two categories according to the solubility of carbon in a specific metal. Ni 
and Cu are the two most commonly used metal substrates for graphene CVD, correspond-
ing to the segregation growth mechanism on metals with higher carbon solubility and 
the surface growth mechanism on metals with lower carbon solubility. The segregation 
mechanism on Ni tends to grow into multilayer graphene, in which the thickness, crystal-
line state, and defect of Ni substrate will influence the morphology of graphene [45, 46]. 
The surface mechanism on Cu refers to a self-limiting and robust reaction process, which 
is more favorable for monolayer graphene growth [47]. However, due to the misorienta-
tion among different initial nuclei, the merging of crystal domains originating from these 
nuclei can only finally form polycrystalline graphene. Two strategies have been derived 
from this issue for the growth of large-scale, monocrystalline graphene on Cu: one is to 
reduce the nucleation density and maximize the expansion of a single nucleus, and the 
other is to achieve the perfect coalescence of domains by controlling the consistent ori-
entation of multiple nuclei.

Through elaborate condition control and optimization, bilayer graphene (BLG) with 
AB (Bernal) stacking can be further produced on Cu. Zhang et al. achieved rapid CVD 
growth of large-area continuous BLG on Cu foil by introducing trace CO2 (Figure 1.7a) 
[48]. With the assistance of CO2, ~50% BLG coverage could be achieved within 10 min 
based on the whole-covered monolayer graphene (MLG), and continuous BLG was 
obtained within 20  min. The growth mechanism of BLG was investigated by isotopic 
labeling with alternating introduction of 13CH4 and 12CH4, which demonstrated that 
the second-layer graphene grew below the first layer and showed concentric rings com-
posed of alternating 12C and 13C under Raman intensity mapping (Figure 1.7b–d). The 
introduced CO2 etched the first-layer graphene to form point defects, providing diffusion 
sites for the carbon source to form the second layer (Figure 1.7a), which differs from 
the conventional self-limiting growth mechanism on Cu. The AB-stacking structure was 
dominant in BLG, accounting for as high as 61% on Cu (100)-dominated polycrystalline 
Cu foils and 100% on super flat epitaxial single-crystal Cu (111) on annealed c-surface 
sapphire (Figure 1.7e,f). The CO2-assisted strategy also showed high compatibility in 
submeter-scale (​0.3  m × 0.1  m​) substrates and roll-to-roll mass production, achieving 
more than 90% coverage of BLG.

1.2.2    Carbon Nanotubes

CNT is a type of seamless tubular graphite structure first prepared by Iijima in 1991 [4]. 
Although such 1D cylindrical tubular structure was rare in inorganic crystals at that 
time, Iijima predicted that structure engineering of carbon nanomaterials would be 
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possible at much larger scales than fullerenes, which was confirmed by the first isola-
tion of graphene in 2004 [2, 4]. According to the thickness of walls, CNTs can be classi-
fied into single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes 
(MWCNTs). A SWCNT with a specific diameter can be regarded as the structure formed 
by the rotation and enclosure of a GNR monolayer around a particular vector, which can 
be described by a pair of chiral indices (n, m) (Figure 1.8) [49]. The relationship between 
n and m values reflects the configuration of SWCNTs [50, 51]. To be specific, SWCNTs 
with indices (n, 0) and (n, n) are called zigzag and armchair, which are two types with 
high symmetry. For ​n > m > 0​, the indices (n, m) refer to a type of SWCNTs with chiral 
isomers. Chirality has an essential influence on the electrical properties of SWCNTs [52], 
which will be discussed in Section 1.3.2.

The main synthetic methods of CNTs are arc discharge (AD), laser ablation (LA), CVD, 
etc., which allow controlling and adjusting the morphology and parameters of CNTs by 
optimizing the growth conditions. In addition, since transition metal catalysts are neces-
sary for the methods mentioned previously, the rational design of catalysts is also an effec-
tive strategy for controlled synthesis of CNTs [53].
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1.2.2.1    Arc Discharge
The phenomenon of ADis usually generated by the approach of two electrodes under an 
inert ambiance. This principle was initially applied for the preparation of fullerenes, while 
CNTs were occasionally synthesized in this way by Iijima [4]. For AD synthesis of CNTs, 
graphite is used as both electrodes and high-temperature (above 1500°C) plasma is gen-
erated by the arc under a large current, which causes the sublimation of carbon atoms 
from the anode and coagulation into CNTs on the cathode (Figure 1.9a) [54]. Therefore, 
the anode graphite is continuously consumed and designed to be mobile to maintain the 
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Reprinted with permission from Ref. [49]. Copyright 1992, American Institute of Physics.
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Figure 1.9    (a) Schematic of CNT synthesis using AD. (b) High-resolution TEM image of MWCNTs 
synthesized using AD. Source: Reprinted with permission from Ref. [54]. Copyright 2022, Elsevier Ltd 
and Techna Group S.r.l.
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optimum distance between two electrodes. However, AD-CNTs are often mixed with 
carbon-based by-products (e.g. amorphous carbon, fullerenes) and residual catalyst parti-
cles, which require further purification. Ribeiro et al. proposed a cyclic protocol of thermal 
oxidation and HCl solution reflux to purify AD-CNTs [55]. Each cycle was designed to oxi-
dize and dissolve metal particles on the walls of CNTs and remove disordered or defect-rich 
carbon nanostructures, achieving an impurity removal efficiency of 66−75%. Moreover, 
due to the high ambient temperature, AD-CNTs always reveal an excellent crystallinity and 
straight morphology (Figure 1.9b) [54]; yet, elaborate control on parameters of CNTs, such 
as diameter, length, and chirality, is challenging to achieve by this method.

1.2.2.2    Laser Ablation
Similar to AD, the LA method for the synthesis of CNTs also involves the sublimation pro-
cess of carbon atoms, which is dominated by a high-power laser under a high temperature 
(~1200°C) (Figure 1.10a) [56]. Unlike the intermittent discharge process of AD, LA ena-
bles a continuous and efficient synthesis of CNTs with no requirement for the conductiv-
ity of carbon targets [56, 57]. Conventional LA process of CNTs used graphite target as a 
carbon source, while Chen et al. recently reported high-yield synthesis of SWCNT bundles 
using low-graphitized coal as a carbon source (Figure 1.10b) [57]. Despite complex carbon 
components and various impurity elements in coal, it is more easily ablated than graphite 
under the same LA conditions, resulting in a higher carbon evaporation rate. LA-SWCNTs 
synthesized from coal present an ideal distribution of diameter (~1.1–1.3 nm at 1198 K) 
for electronic applications, which can be fabricated as the active layer of carbon nanotubes 
field effect transistors (CNT-FETs) (Figure 1.10c). However, it should be pointed out that the 
high-power laser in the LA setup prohibits its large-scale application to CNT synthesis [53].

1.2.2.3    Chemical Vapor Deposition
Due to the unacceptable condition of high temperatures in the AD and LA process, CVD is 
a suitable and mature alternative for synthesizing CNTs. On the one hand, according to the 
physical state of metal catalysts, typical substrate-supported catalyst CVD (SCCVD) mech-
anisms of CNTs can be classified into either vapor–solid–solid (VSS) or gas–liquid–solid 
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2,7-diyl]). Source: Reprinted with permission from Ref. [57]. Copyright 2023, The Royal Society of 
Chemistry.
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(VLS). In the VSS growth mechanism, the solid catalyst usually maintains a relatively 
stable morphology, and the precipitation of carbon atoms only happens on the catalyst’s 
surface. The structure and components of the catalyst can be manipulated to narrow the 
diameter and chirality distribution of CNTs [58, 59]. In the VLS mechanism, the liquid 
state of the catalyst will lead to the dissolution of carbon and the movement of the catalyst 
droplet. Hence, the chirality of the synthesized CNT is randomly distributed.

On the other hand, as CVD growth progresses, the catalyst may eventually be located 
at the base or the tip of CNTs. VSS growth of CNTs may follow a base- or tip-growth 
mechanism, which is related to the strength of the interaction between catalyst metal 
and substrate, and the growth direction (vertical or parallel to substrates) of CNTs can 
be adjusted by plasma or airflow [60, 61]. VLS growth of CNTs is generally regarded as 
a tip-growth mechanism [62], as carbon atoms are only precipitated at the migrating 
catalyst droplet.

Different from metal catalyst pre-deposition in SCCVD methods, floating catalyst CVD 
(FCCVD) introduces catalyst precursor and gaseous carbon source together into the reac-
tion chamber, followed by catalyst formation, carbon nucleation, and CNT growth [63, 64]. 
FCCVD-CNTs are usually floating in the chamber, which can be blown out with airflow and 
collected easily [65]. However, due to the short reaction time in the flowing atmosphere, 
CNTs are blown out without sufficient growth, exhibiting short lengths and random align-
ment. Jiang et al. proposed a substrate interception and orientation strategy (SIDS) to fabricate 
high-density ultralong CNT arrays by combining the so-called “kite-mechanism” (tip-growth 
mechanism) of ultralong CNTs with an improvement of FCCVD (Figure 1.11a,b) [66]. A sub-
strate was placed horizontally into the center of the FCCVD chamber and used to intercept 
and reorient the floating short CNTs, which is absent in conventional FCCVD (Figure 1.11c,d). 
Local turbulence at the edge of the substrate caused one end of the CNTs to be anchored to 
the vertical step of the substrate, which sequentially followed the kite-like growth mechanism 
with an adequate flowing supply of carbon source (Figure 1.11e–g). Conventional growth of 
ultralong CNTs was based on VSS methods. In this case, the tip-growing CNTs initially need to 
overcome external forces such as vdW and drag forces to grow vertically without lying on the 
substrate [61, 67]. Actually, these dead CNTs account for a considerable portion of the total, 
resulting in a low catalyst utilization rate and CNT density [67].

1.2.3    Graphyne

GY is a type of 2D carbon nanostructure predicted by Baughman et al. in 1987, in which 
sp- and sp2-hybridized carbon atoms coexist [68]. In GY structures, benzene rings are 
connected by acetylene bonds and form a hexagonal symmetric network, resulting in 
four types of chemical bonds with different lengths between carbon atoms: (i) ​​C​ sp2​​─ ​C​ sp2​​​ 
bonds in benzene rings; (ii) ​​C​ sp​​ ≡ ​C​ sp​​​ acetylene bonds; (iii) ​​C​ sp2​​─ ​C​ sp​​​ bonds between ben-
zene ring and acetylene bond; and (iv) ​​C​ sp​​─ ​C​ sp​​​ bonds between two acetylene bonds [69]. 
According to the number (n) of acetylene bonds between two benzene rings, GY family 
can be typically classified into GY (​n = 1​), graphdiyne (GDY) (​n = 2​), graphtriyne (​n = 3​),  
and graphtetrayne (​n = 4​), or uniformly indicated by GY-n (Figure 1.12) [70]. Among 
them, GDY is one of the most widely studied GY structures, which was first synthesized 
by Li et al. in 2010 [5].
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GDY synthesis largely depends on the formation of diacetylene bonds, which can be 
achieved through an alkyne coupling reaction between two aryl monomers. In the early 
stages of exploring the synthesis of GDY, studies mainly focused on synthesizing several 
substructures of GDY or nanoGDY due to the difficulty in controlling the conditions for 
large ordered couplings [71]. The large-area synthesis of GDY was not extensively studied 
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Figure 1.11    (a) Schematic of ultralong CNT synthesis using SIDS. (b) CFD simulation of the 
velocity distribution and streamlines adjacent to the substrate. (c–e) Schematics of (c) interception, 
(d) reorientation and growth, and (e) the resultant array of ultralong CNTs during the FCCVD 
process with SIDS. (f, g) Scanning electron microscopy (SEM) image of the high-density ultralong 
CNT arrays with different scale bars. Source: Reprinted with permission from Ref. [66]. Copyright 
2023, American Chemical Society.
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Figure 1.12    GY containing different numbers (​n = 1,  2,  3,  4​) of inserted acetylene bonds. Source: 
Reprinted with permission from Ref. [70]. Copyright 2023, American Chemical Society.
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until Li et al. introduced the cross-coupling reaction of hexaethylbenzene (HEB) and dem-
onstrated the obtained nanoscale GDY films [5]. According to the physical state of the sub-
strate, GDY synthesis can be mainly classified into liquid-phase and solid-phase synthesis.

1.2.3.1    Liquid-phase Synthesis
The initial synthesis of GDY developed by Li et al. was carried out in a liquid-phase environ-
ment provided by tetrahydrofuran [5]. The cross-coupling reaction of HEB was driven by 
the release of trace Cu(II) ions from the Cu foil in an alkaline environment provided by pyr-
idine, which ultimately formed a GDY thin film on Cu. Hence, the Cu foil served a dual role 
as catalyst and substrate [72]. Li et al. synthesized crystalline GDY (6L, ~2.19 nm) through 
a modified Glaser–Hay coupling reaction of HEB and directly observed the rhombohe-
dral (ABC) stacking in GDY by low-voltage TEM (Figure 1.13a,b) [73]. Direct characteriza-
tion of few-layered GDY crystals is difficult due to structural fragility. Apart from growth 
at the liquid/solid interface, GDY can also grow at liquid/liquid and liquid/gas interfaces  
[74, 75]. Liquid/liquid interface is usually provided by water and water-immiscible organic 
solvents. During the reaction process, the catalyst in the aqueous phase and monomers in 
the organic phase undergo a coupling reaction at the interface and gradually grow into a 
suspended GDY layer, which can be easily transferred to other substrates using Langmuir–
Schäfer method (Figure 1.13c,d). The stability of the liquid/liquid interface can effectively 
avoid the random interaction between monomer and catalyst [74]. The thickness of GDY 
can be adjusted by changing the concentrations of monomer and catalyst. GDY modifica-
tion can be achieved by adding metal ions to the aqueous phase to form metal-GDY com-
posite structures [76].

Besides interface-mediated synthesis, GDY can be synthesized directly in the liquid 
phase through coupling reaction. He et al. proposed a mild, convenient, and tunable 
one-pot method for the synthesis of GDY through Pd-catalyzed decarboxylation cou-
pling reaction (Figure 1.14a) [77]. The synthesized GDY was characterized by typical 
2D structure, high degree of crystallinity, and exhibited localized folding behaviors 
(Figure 1.14b,c). Li et al. proposed a space-confined synthesis method using MXene as a 
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Figure 1.13    (a) Experimental SAED pattern and (b) schematic stacking mode of ABC-stacked GDY. 
Source: Reprinted with permission from Ref. [73]. Copyright 2018, Tsinghua University Press and 
Springer-Verlag GmbH Germany. (c, d) Multilayer HgL1 (L1=tris(4-ethynylphenyl)amine) nanosheets 
(c) at the liquid/liquid interface and (d) on a slide glass. Source: Reprinted with permission from  
Ref. [75]. Copyright 2021, Wiley-VCH GmbH.)
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template for precise control of GDY’s thickness and long-range ordering (Figure 1.14d) 
[78]. The sub-nanometer-sized gap between MXene layers allows monomers to be inter-
calated and coupled in situ and effectively constrains the out-of-plane growth or vertical 
stacking of GDY, ultimately yielding ML-GDY within MXene layers (Figure 1.14e). By 
liquid-phase exfoliation, 2DM mixtures containing free-standing ML-GDY with a lateral 
size distribution of 0.3–2.4  μm could be obtained, in which the monolayer thickness 
and ordered in-plane structure of GDY were preserved (Figure 1.14f). Yan et al. directly 
exfoliated GDY bulk materials into monolayer or multilayer sheets by the assistance of 
Li2SiF6 inorganic salt (Figure 1.14g) [79]. The most challenging aspect of GDY exfolia-
tion is the potential introduction of structural defects or internal oxidation, which may 
affect the properties and application value of the eGDY. The noncovalent interactions 
generated by SiF6

2− and the intercalation of small-radius Li+ together contributed to 
the efficient exfoliation and the preservation of GDY’s original crystal structure without 
generating additional oxides (Figure 1.14h,i).
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Figure 1.14    (a) Schematic of GDY synthesis by decarboxylation coupling reaction. (b) The SEM 
image and (c) SAED pattern of GDY. Source: Reprinted with permission from Ref. [77]. Copyright 
2023, The Royal Society of Chemistry. (d) Schematics of MXene template strategy for multilayer 
graphdiyne (MLGDY) synthesis. (e) High Angle Angular Dark Field-Scanning Transmission Electron 
Microscopy (HAADF-STEM) and Integrated Differential Phase Contrast Transmission Electron 
Microscopy (iDPC-STEM) of GDY-MXene structure along the [001] axis. The image intensity profile 
from the marked area is shown below. (f) TEM image and SAED pattern (inset) of free-standing 
monolayer GDY (ML-GDY). Source: Reprinted with permission from Ref. [78]. Copyright 2023, Wiley-
VCH GmbH. (g) Salt-assisted exfoliation mechanism of GDY by three steps. Step I: adsorption of 
anions and cations on GDY; Step II: intercalation of cations into the charged interlayer; Step III: 
dispersed GDY in salt solution. (h) Wide-range XPS and (i) C1s spectra of bulk GDY powder and 
exfoliated GDY (eGDY). Source: Reprinted with permission from Ref. [79]. Copyright 2019, Wiley-VCH 
Verlag GmbH & Co. KGaA, Weinheim.
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1.2.3.2    Solid-phase Synthesis
Metal-catalyzed, self-limited CVD is also suitable for GDY synthesis (Figure 1.15a,b). 
Although Cu maintains a high catalytic activity in the liquid-phase synthesis of GDY, in the 
case of CVD, Ag is more advisable than Cu as a catalyst and substrate for coupling. Unlike 
graphene CVD using gaseous carbon precursors such as CH4, the CVD process of GDY 
must be kept at a low temperature to prevent the destruction of the aryl precursor [80].  
Liu et al. obtained large ML-GDY films on Ag foils with hexaethynylbenzene (HEB) or 
1,3,5-triethynylbenzene (TEB) as precursor at 150°C, which could be transferred by a stand-
ard PMMA process for further characterization (Figure 1.15c,d) [80]. Mechanical forces 
such as ball milling have also been proven to be an effective option for driving solvent-free, 
alkyne-based coupling reactions without catalyst assistance. Li et al. prepared pure GDY 
by ball-milling-driven reaction of calcium carbide (CaC2) and hexabromobenzene and con-
firmed the 1 : 1 sp/sp2-hybridized carbon ratio of GDY by characterization (Figure 1.15e,f) 
[81]. Previously, the group had successfully prepared hydrogen-substituted GDY by mecha-
nochemical coupling of CaC2 and 1,3,5-tribromobenzene [82].

1.3    Properties and Applications of Carbon Nanomaterials

1.3.1    Graphene

According to the 1995 IUPAC Recommended Terminology, the term “graphene” was initially 
used to describe a single carbon layer with a graphitic structure, which should be used only 
when discussing the reactions, structural relations, or other properties of individual layers 
[83, 84]. In fact, with the increase in the number of stacked graphene monolayers, band 
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Figure 1.15    (a, b) Schematics of (a) CVD system for GDY growth on Ag and (b) the surface growth 
process using HEB as a precursor. (c) Opticalmicroscopy (OM) and (d) Atomic force microscopy (AFM) 
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preparation. (f) SAED pattern of as-prepared GDY. Source: Reprinted with permission from Ref. [81]. 
Copyright 2018, Elsevier Ltd.
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structure evolves rapidly and approaches the 3D limit of graphite at 10 layers [8, 85]. Thus, 
the meaning of “graphene” extends from monolayer to 2D stacked systems of up to 10 lay-
ers, and it is crucial to make a distinction when focusing on such materials. When discuss-
ing specific properties, especially electrical properties, it is necessary to classify graphene 
into MLG, BLG, trilayer (TLG), and multilayer (<10 layers), as the difference in properties 
due to the variation in the number of layers will lead to different applications for these 
graphene structures.

1.3.1.1    Electrical Properties and Applications
Under the tight-binding approximation, intrinsic MLG shows a linear dispersion relation 
in its Brillouin zone at the K and K′ points (Dirac points) [86, 87]. MLG’s conduction and 
valence bands intersect at Dirac points; hence, it behaves as a zero-bandgap semimetal. 
Due to the ballistic transport properties of carriers, graphene can exhibit high mobility 
(theoretical maximum of ~200 000 cm2/(V·s) at room temperature (RT) [88]), while the 
lack of bandgap becomes a major stumbling block for carrier modulation, which cre-
ates difficulties in the application of graphene field effect transistors (GFETs). Therefore, 
effective carrier modulation methods can significantly improve the performance of 
GFETs and highlight the advantage of high mobility. Zheng et al. introduced a graphene 
strain-effect transistor (GSET), which restricts and recovers current conduction through 
reversible nanocrack in the source/drain metal contacts (Figure 1.16a,b), resulting in a vast 
ION/IOFF ratio of over 107 [89]. When a back-gate voltage exceeding the switching threshold  
(​​​|​​​V​ BG​​​|​​ > ​|​​​V​ ST​​​|​​​​) was applied to GSET, the piezoelectric lead zirconate titanate back-gate 
dielectric strained on the Ni/Au contacts and eventually switched off the GSET. The con-
trary ambipolar characteristics (OFF–ON–OFF) of GSET were quite different from the 
conventional ambipolar characteristics (ON–OFF–ON) (Figure 1.16c). Furthermore, the 
switching threshold voltages (VST, P and VST, N) of GSET tended to stabilize after a 17-strain 
cycling process (Figure 1.16d), suggesting a reversible strain mechanism. In the ON-state  
(​​​|​V​ BG​​|​ < ​|​​​V​ ST, N​​​|​​​​ and |​​​|​V​ BG​​|​ < ​|​​​V​ ST, P​​​|​​​​), GSET exhibited linear output characteristics, indicat-
ing the semimetallic nature of graphene.

vdW heterostructure combines different 2DM through vdW interactions, offering prep-
aration flexibility and good interfacial contacts [91]. Bai et al. achieved complementary 
properties between graphene and WS2 by preparing highly tunable field-effect tunneling 
transistors (FETTs) with vertically stacked graphene-hBN-graphene-WS2-graphene hetero-
structure (Figure 1.16h) [90]. Multilayer WS2 has a suitable indirect bandgap of 1.4 eV [92], 
which enables the alignment between the Fermi level of graphene and the conduction band 
minimum of WS2 and contributes to efficient carrier tunneling. In graphene-WS2-graphene 
(GWG) heterostructure, the barrier shape was modulated by the bias voltage (Vb) between 
the bottom (B-Gr) and top graphene layer (T-Gr), which switched the tunneling mechanism 
between direct tunneling under a small Vb and Fowler–Nordheim tunneling under a large Vb 
(Figure 1.16i–k). GWG-FETTs also changed the operating states through Vb between n-type 
and bipolar complementary metal oxide semiconductor-like tunneling devices (Figure 1.16). 
Moreover, the thermionic emission mechanism was proved to contribute significantly to the 
on-current of FETTs (Figure 1.16l), as evidenced by high ION/IOFF ratios of ​1.5 × ​10​​ 6​​ and  
​5 × ​10​​ 8​​ at RT (300 K) and low temperature (5 K), respectively, under small Vb.
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The switching performance of GFETs can also be improved by modifying the band struc-
ture of graphene. In the pioneering report by Novoselov et al., the degree of energy band 
overlap (δε) varied in FLGs with different thicknesses, and the thinnest FLG sample was con-
sidered to possess a zero bandgap [2]. The δε overlap could be used to account for the inver-
sion of Hall coefficients (RH) in FLG with the variation of gate voltage (VG) (Figure 1.17a), 
suggesting that FLG could be transformed from mixed-carrier material to either fully elec-
tronic or entirely hole conductor. Li et al. introduced a bandgap by changing the hybridization 
form of carbon atoms in graphene (Figure 1.17b) [93]. A reversible hydrogenation process 
realized this transition in a highly concentrated hydrogen-ion electrolyte, in which the elec-
tric field generated by VG induced the hydrogen adsorption and desorption on GFETs. When 
the positive VG increased above the hydrogenation potential, the graphene lattice became 
highly activated and transformed into sp3-hybridized insulating hydrogenated graphene. As 
VG was swept back to negative, the gradual increase in IDS indicated the recovery of graphene 
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strain-induced nanogap across Ni/Au contact. (c) Transfer characteristics of GSET at the 17th strain 
cycle. (d) Switching threshold voltages (VST, P and VST, N) of GSET in 17 strain cycles. Source: Reprinted 
with permission from Ref. [89]. Copyright 2023, American Chemical Society. (e) Schematics of GWG-
FETT with the crystalline structure of each layer shown in the enlarged view. (f) OM image of GWG-
FETT. (g, h) Corresponding transfer curves of GWG-FETT at (g) ​​V​ b​​ = 0.3V​ and (h) ​​V​ b​​ = 3V​. (i–l) Energy 
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Reprinted with permission from Ref. [90]. Copyright 2022, American Chemical Society.
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properties due to dehydrogenation. This reversible, hydrogen-induced conductor–insulator 
transition was completely observed in MLG (Figure 1.17d), BLG, and TLG with stable IDS-VG 
curves. The hydrogenation strategy of graphene showed reliable gate-controlled switching 
capability, remaining operative without any degradation of VDS after 1 million (1M) switching 
cycles of MLG-FETs (Figure 1.17c). Zhao et al. p-doped the SEG devices by charge transfer 
of adsorbed oxygen to exhibit the intrinsic transport properties of SEG on SiC (Figure 1.17e; 
see Section 1.2.1.2 for SEG growth method) [39]. With the gradual temperature increase 
in the 100–300 K range, the conductivity and Hall mobility of the samples also showed an 
increasing trend with maximum mobility of 5500 cm2/(V·s) (Figure 1.17f). The mobilities of 
S2, S3, and S4 increased rapidly and then tended to saturate with the temperature increase, 
which reflected the transition of the transport mechanism from localized defect states in the 
bandgap to high-mobility band transport, confirming the semiconductor nature of SEG. The 
ION/IOFF ratio of ~106 and SS of ~60 mV/dec obtained by the density of states calculations 
demonstrated that the properties of SEG were sufficient for digital electronic applications.

1.3.1.2    Optoelectronic Properties and Applications
The unique properties of graphene have likewise attracted extensive interest in opto-
electronics, prompting the construction of a range of graphene-based optoelectronic 
devices such as photodetectors (PDs), modulators, and hybrids. However, a number of 
factors, such as low light absorption (~2.3%), large dark currents arising from zero band-
gap, and difficulty of separation and collection of ultrafast photocarriers, have limited 
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further development of graphene in optoelectronics [94]. Koepfli et al. adopted a meta-
material integration strategy to maximize light absorption and photogenerated carrier 
extraction and realized high bandwidth (>500 GHz) and wide operating window (from 
<1400 nm to >4200 nm) for metamaterial graphene PD [95]. The metamaterial absorber 
consisted of a relatively simple stack of metal-insulator-MLG-metal-insulator layers to 
achieve an almost perfect light absorption (Figure 1.18a–e) [96–98]. The dipole resona-
tors were connected with interdigitated metal contacts, and a thin silver layer was added 
underneath the thicker gold contact layer on every other line, which is the key to more 
efficient carrier extraction (Figure 1.18f). Under 1550-nm illumination, despite the low 
responsivity of PD (​​R​ ext​​ = 0.75  mA / W​ and ​​R​ int​​ = 1.57  mA / W​), the linear behavior of 
response allowed the PD to maximize the input power up to 100 mW (Figure 1.18), giv-
ing rise to high photocurrent and the highest graphene data rate of 132 Gbit/s so far. The 
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high bandwidth of >500 GHz was mainly attributed to shorter carrier transit time (τtr) 
(Figure 1.18), which was related to the structure design of the metamaterial. Through 
the direct alteration of dipole resonator length, the absorption spectra of PD revealed a 
tunable range of >3000 nm (Figure 1.18), having potential in both sensing and telecom-
munication applications.

Stacking of monolayers enriches the optoelectronic applications of graphene. 
Construction of a homogeneous p-n junction is a common strategy to enhance the 
performance of graphene PDs since the bandgap of BLG could yield some optoelec-
tronic properties beyond MLG [99]. Titova et al. demonstrated the enhancement of the 
sub-terahertz (​f = 130 GHz​) response of split-gate BLG p-n junction PDs by an electri-
cally induced bandgap (Figure 1.19a,b) [100, 101]. Bandgap induction at cryogenic tem-
perature (~25 K) could improve the responsivity by enhancing the photo thermoelectric 
effect and emergence of tunneling rectification [102]. A larger bandgap was conducive 
to a higher thermoelectric optovoltage by increasing Seebeck coefficient S (Figure 1.19c), 
decreasing electronic heat conductance χe, and decreasing hot carrier energy relaxation 
rate τε−1. Bandgap induction also significantly optimized the noise equivalent power 
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(NEP) of BLG p-n junctions from 100  fW/Hz1/2 at zero bandgap down to 36  fW/Hz1/2 
at the maximum bandgap (~25 meV) (Figure 1.19d). The NEP achieved a comparable 
level to commercially available detectors at a much lower degree of bandgap [103]. 
Furthermore, when two graphene layers are stacked with a twist angle θ, the overlap 
and reconstruction of the Dirac cones produce van Hove singularities (vHS), which is 
quite different from the case of AB-stacked BLG [104]. The introduction of the vHS sig-
nificantly enhances the light-matter interactions in twisted bilayer graphene (tBLG), and 
the energy gap between vHS (∆EvHS) can be tuned with the change of θ [105]. Wu et al. 
demonstrated the potential of tBLG for applications of optical communications utiliz-
ing heterogeneous integration with silicon photonics (Figure 1.19e) [106]. Large-area 
controllable tBLG growth yielded a twist angle of ~4.1° demonstrated by ∆EvHS-induced 
photoconductivity transition (Figure 1.19f). The incident electric field distribution simu-
lation showed a strong localization at the electrode/tBLG interface, which is favorable for 
tBLG absorption (Figure 1.19g). Under 1550 nm incident wavelength, tBLG-integrated 
PD exhibited a high responsivity of 0.65 A/W, which was superior to that of AB-stacked 
BLG and MLG (Figure 1.19h), and showed uniform performance across eight individual 
devices and an 8-device array on silicon waveguide (Figure 1.19i,j). The bandwidth anal-
ysis showed a bandwidth of over 65 GHz and a high data rate of 50 Gbit/s, indicating the 
high sensitivity of tBLG PD.

1.3.1.3    Spintronic Properties
Unlike the parabolic E-k relationship in conventional semiconductors such as Si, the linear 
E-k relationship in graphene enables its carriers to exhibit Dirac fermion-like behavior with 
near-zero mass and high Fermi velocity (vF ~106 m/s) [86, 107]. Spin-orbit coupling (SOC) 
in graphene triggers many novel physical effects, such as the quantum Hall effect, spin 
Hall effect, spin quantum Hall effect, and quantum anomalous Hall effect (QAHE) [108]. 
Recently, Sha et al. observed the ferromagnetic state in rhombohedral (ABCA)-stacked 
tetralayer graphene (4LG) through graphene/WSe2 heterostructure (Figure 1.20a) [109]. 
The proximity-induced SOC by WSe2 and spontaneous time-reversal symmetry breaking in 
ABCA-stacked 4LG led to the observation of QAHE in graphene. At a vertical displacement 
field of ​D = − 0.1 V / nm​, transport measurements on ABCA-4LG/WSe2 showed ferromag-
netism and Hall resistance quantization (Figure 1.20b,c), which was further demonstrated 
as a Chern insulator with Chern number of four. Besides, ABCA-4LG with WSe2 exhibited 
a sequential transition of layer-antiferromagnetic (LAF) insulator, Chern insulator (CI), 
and layer-polarized insulator (LPI) states when |D| was increased from zero. In contrast, 
the intermediate CI state was not observed in 4LG without WSe2, suggesting that the 
WSe2-induced SOC had a crucial role in the ferromagnetism generation of 4LG (Figure 
1.20d,e). More interestingly, the ferromagnetism in ABCA-4LG/WSe2 heterostructure 
could be modulated not only by magnetic field but also by displacement field and carrier 
concentration.

1.3.1.4    Superconductive Properties
The unconventional superconductivity of graphene was experimentally observed by 
Cao et al. in a tBG system near a slight “magic angle” (θ ~1.1°) (Figure 1.21a) [110, 
111]. Previously, Bistritzer et al. had predicted the electronic structure of tBG varying 
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with periodic Moiré pattern, in which strong interlayer coupling leads to a flat energy 
band structure as θ approaches the “magic angle” [112]. The vF of electrons in these 
flat bands is significantly reduced and macroscopically manifests as a Mott-like insu-
lating state of tBG, as confirmed in the experiments of Cao et al. (Figure 1.21c) [111]. 
Moreover, measurements of the conductance of magic-angle tBG (MATBG) at 70 mK 
showed a typical V-shaped conductance caused by the renormalized Dirac cones near 
the charge neutrality point (​n = 0​). However, they indicated the suppression of a super-
conducting state by a magnetic field in the vicinity of −2 electrons per Moiré unit cell 
(Figure 1.21b). In Figure 1.21c, a superconducting region was also observed near the 
Mott state with the highest critical temperature Tc ~1.7  K. More peculiarly, the car-
rier concentration leading to this Tc was merely ​1.5 × ​10​​ 11​  ​cm​​ −2​​, which could be only 
explained by strong electron–electron interactions. Besides tBLG, the superconductivity 
can be realized in other stacked systems of graphene as well, such as ABC-TLG/h-BN 
heterostructure [113].

Researchers have been actively exploring applications of superconductivity in MATBG. 
An example given by Klein et al. is the reproducible bistability switching of MATBG 
between superconductor, metal, and correlated insulator states (Figure 1.21d,e) [114]. 
This bistability was accomplished through the gate hysteresis in the top-BN/MATBG/
bottom-BN dual-gate structure [115], which could be readily controlled by gate voltage reg-
ulation (Figure 1.21 f,g). Characterization of the superconducting state with filling factor ​
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ν = ± (2 + δ)​ demonstrated its robustness on both electron and hole sides, leading to highly 
tunable MATBG superconducting devices.

1.3.2    Carbon Nanotubes

Since CNTs can be considered as rolled-up graphene layers, the carrier transport properties 
of CNTs are similar to those of graphene. However, unlike the zero-bandgap characteristics 
of graphene, the metallic or semiconductive properties of CNTs are determined by whether 
or not the chiral vector (n, m) crosses the Dirac K-points [49], which is equivalent to judge 
whether mod (2n + m, 3) is equal to zero. Metallic CNTs are satisfied with the relation 
mod ​(2n + m,  3) = 0​, while semiconductive CNTs are not (Figure 1.8b). Therefore, CNTs 
exhibiting metallic and semiconductive properties should account for 1/3 and 2/3 of the 
total [49, 116].

Semiconductive SWCNTs can also be grouped into Type I or II with mod ​(2n + m,  3) = 1​ 
or 2, and those with the same 2n + m value are classified as the same family [117]. 
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sweep directions up and down. Source: Reprinted with permission from Ref. [114]. Copyright 2023, 
Springer Nature Limited.
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Su et al. prepared 11 different types of single-chirality SWCNTs for electrical measure-
ments by effective separation and purification (Figure 1.22a,b) [118, 119]. Electrical 
measurements, along with resistance analysis of SWCNTs, were carried out based on 
density-controlled SWCNT thin film transistors. Different types of semiconductive 
SWCNTs showed opposite trends of transport properties as the chiral angle increased. 
Specifically, for Type II SWCNTs, the on-current and mobility of both p- and n-branch 
within the same family decreased with increasing chiral angle, while it was contrary 
for Type I (Figure 1.22c,d). Measurements of various resistance components in SWCNT 
films, such as contact resistance (RC) and channel resistance (RL), also showed a simi-
lar dependence on the chiral angle (Figure 1.22e,f). By further analysis, RC and RL 
can be respectively attributed to the first bandgap (S11) and relative junction conduct-
ance ​​G​ ij​ N​T ′ ​​ = ​A​​ 2​exp  [ (− 3​S​ 11​​) / 2​k​ B​​T]​ of SWCNTs, showing a chiral dependence consist-
ent with RC and RL (Figure 1.22g,h). However, experimental results in the p-branch 
of ​2n + m = 19​ family were not by theoretical predictions, possibly due to interference 
from impurities or interfacial states. The systematic study on the relationship between 
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Figure 1.22    (a) Photograph of single-chirality SWCNT solutions. (b) SWCNTs with different types 
and families are on the chiral map. (c) On-current, (d) mobility, (e) 2RC, and (f) RL of both p- and 
n-branch of SWCNTs as a function of diameter from statistical data. (g) S11 and (h) ​​A​​ 2​​e​​ −3​s​ 11​​/2​k​ B​​T​​ of 
SWCNTs as a function of diameter from further analysis. Source: Reprinted with permission from 
Ref. [118]. Copyright 2023, Springer Nature Limited.
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chirality and electrical properties of semiconductive SWCNTs is instructive for the 
design of SWCNT devices.

The 1D morphology of CNTs facilitates the assembly of high-density, highly aligned 
arrays, which is a significant advantage for high-performance CNT-FETs, especially in the 
post-Moore era with shrinking feature sizes. Lin et al. reported aligned CNT-FETs with 
promising applications when scaled down to a sub-10 nm node [120]. With a contact gate 
pitch (CGP) of 175  nm (Figure 1.23a), CNT-FETs showed excellent p-type performance 
with an on current (ION) of 2.24 mA/μm and a peak transconductance (gm) of 1.64 mS/μm, 
which is superior to the 45 nm silicon technology node (​CGP = 160 nm​). A CNT-FET-based 
six-transistor (6T) static random access memory (SRAM) was also fabricated at 175 nm CGP 
with an area of 0.976 μm2 (Figure 1.23b), which improved the integration density while 
avoiding complex silicon-based back-end interconnections. To further scale down to a 
10 nm node (CGP ~54 nm), a full-contact structure was employed for CNT-FETs, which sig-
nificantly reduced the contact resistance while combining the benefits of side-contact and 
end-contact structures (Figure 1.23c,d). By scaling the gate length (Lg) and contact length 
(Lcon) down to 35 nm and 20 nm (CGP ~61 nm), an ION of 2.43 mA/μm and a gm of 2.45 mS/μm  
were achieved, which are comparable to the performance of Si- P-Channel Metal Oxide 
Semiconductor Field Effect Transistors (PMOSFETs) at 10 nm node (Figure 1.23e) [121]. 
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More attractively, the mobility of CNT-FETs is at least four times higher than the electron or 
hole mobility of Si transistors at any gate length (Figure 1.23f), highlighting the great value 
for applications in digital integrated circuits.

Unlike 2D graphene, 1D CNT has a direct bandgap that is inversely proportional to 
its diameter (Eg ~0.7 eV/d (nm) [122, 123]), which enables arrays or thin films of CNTs 
with different diameters to cover a wide spectrum for photodetection [124]. Also, photo-
excited electron-hole pairs interact strongly in the confined space of 1D CNTs, leading 
to large exciton binding energies. Hence, exciton behavior significantly impacts the per-
formance of CNT optoelectronic devices [125]. Wu et al. demonstrated a high-density 
array CNT PD operational in 2-μm band photodetection, which provides a viable solu-
tion for high-speed optical communications (Figure 1.24a,b) [122]. The CNT arrays 
showed high alignment with the degree of polarization P ~89%, and the estimated  
Eg ~0.48  eV of CNTs demonstrated the ability for 2-μm band communications. To 
reduce the bandwidth limitation by resistance−conductance time constant, quartz was 
selected as the substrate of CNT PD, which effectively reduced parasitic capacitance and 
achieved a low total capacitance of ~12 fF(Figure 1.24c). At an incident wavelength of 
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2 μm, CNT PD achieved a current responsivity of up to 0.62 A/W (Figure 1.24d), an NEP 
of <10 pW/Hz1/2, and a bandwidth of >40 GHz, which is higher than any other state-of-
the-art high-speed PDs in recent years (Figure 1.24e,f). In the commonly used band of 
1.55 μm, CNT PD also achieved an outstanding performance of >67 GHz bandwidth 
and 0.78 A/W responsivity (Figure 1.24g), revealing the great potential of CNT-based 
optoelectronic devices for high-speed, low-power optical applications.
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under various Vg from −20 V to 20 V. Source: Reprinted with permission from Ref. [78]. Copyright 
2023, Wiley-VCH GmbH. (b) Strain-dependent transfer characteristics of GDY-FET with a channel 
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versus strain. Source: Reprinted with permission from Ref. [127]. Copyright 2020, Elsevier B.V.  
(d) Digital macrograph and SEM image of the PD with GDY thickness of 15μm. (e) UV–vis 
absorption spectra of GDY PD. (f) Band structures of OH− and H+ chemically adsorbed GDY.  
(g) Comparison of the absorption spectra between pristine GDY and GDY with OH− and H+ 
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Ref. [128]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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1.3.3    Graphyne

Unlike graphene, GDY has a bandgap of ~1.04 eV, which is close to the bandgap value 
of silicon. However, the direct nature of bandgap may allow GDY to yield superior elec-
tronic and optoelectronic performance to silicon [78, 126]. Li et al. applied the prepared 
ML-GDY (see Section 1.2.3.1 for synthesis method) to FETs and measured an average 
mobility of 231.4 cm2/(V·s) and a switching ratio of ​1.2 × ​10​​ 3​​ (Figure 1.25a), indicating 
potential FET applications [78]. Previously, most electrical characterizations were per-
formed based on multilayer GDY due to the difficulty of preparing high-quality ML-GDY. 
The bandgap of GDY can be modified in several approaches, such as the strain-engineering 
strategy introduced in GDY-FETs by Sang et al. [127]. Biaxial tensile strain significantly 
increased the bandgap of GDY, which suppressed the leakage current in GDY-FETs and 
optimized the subthreshold swing (SS) (Figure 1.25b,c). Due to the sub-10 nm scaling 
of the channel, the increased bandgap significantly reduced the off-state tunneling cur-
rent by increasing the potential barrier φB between source and drain, which inhibited 
scaling-induced performance degradation and drastically improved the performance of 
GDY-FETs.

Moreover, various C−C bond composition and highly conjugated 2D planar system 
of GDY enable great structural flexibility [129]. Zhang et al. prepared a flexible PD by 
spin-coating GDY onto flexible polyethylene terephthalate substrates (Figure 1.25d) [128]. 
GDY PD possessed a long-term stable light absorption in the short-wavelength range of 
300–800 μm (Figure 1.25e), which is enhanced by the alkaline environment provided by 
the KOH electrolyte. GDY with a hollow triangle configuration can adsorb exotic H+ or 
OH− ions, where smaller H+ is easily trapped by the porous structure, leading to more sig-
nificant ab in-plane distortions of GDY. In contrast, low-concentration OH− can be distrib-
uted on the GDY surface, inducing out-of-plane distortion without affecting the ab in-plane 
GDY framework, which leads to a larger bandgap and stronger absorption of GDY (Figure 
1.25f,g). GDY PD measured in the KOH environment showed the highest responsivity of 
1086.96 µA·W−1 at 380 nm wavelength and maintained a stable absorption performance 
after 1000 cycles of bending and twisting tests (Figure 1.25h–j).

1.4    Conclusion

This chapter briefly reviews the fabrication, properties, and applications of the represent-
ative carbon nanomaterials graphene, CNTs, and GY. Relevant research advances dem-
onstrate the impressive properties and prospects of carbon nanomaterials. Represented 
by graphene, carbon nanomaterials are considered to be one of the candidates for 
replacing silicon and perpetuating Moore’s law in transistor-based microelectronics. 
However, these materials do not yet have the mass production capability comparable 
to silicon-based technology. As graphene celebrates its 20th anniversary, while research-
ers continue to explore the novel phenomena induced by carbon-based nanomaterials, 
it is still necessary to keep looking for ways to build a bridge from proof-of-concept to 
large-scale applications.
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