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Abstract
Colors of the sky and colored displays in the sky are mostly a consequence of selective
scattering by molecules or particles, absorption usually being irrelevant. Molecular
scattering selective by wavelength – incident sunlight of some wavelengths being
scattered more than others – but the same in any direction at all wavelengths gives
rise to the blue of the sky and the red of sunsets and sunrises. Scattering by particles
selective by direction – different in different directions at a given wavelength – gives rise
to rainbows, coronas, iridescent clouds, the glory, sun dogs, halos, and other ice-crystal
displays. The size distribution of these particles and their shapes determine what is
observed, water droplets and ice crystals, for example, resulting in distinct displays.

To understand the variation and color and brightness of the sky as well as the
brightness of clouds requires coming to grips with multiple scattering: scatterers in
an ensemble are illuminated by incident sunlight and by the scattered light from
each other. The optical properties of an ensemble are not necessarily those of its
individual members.

Mirages are a consequence of the spatial variation of coherent scattering (refraction)
by air molecules, whereas the green flash owes its existence to both coherent scattering
by molecules and incoherent scattering by molecules and particles.
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1
Introduction

Atmospheric optics is nearly synonymous
with light scattering, the only restrictions
being that the scatterers inhabit the

atmosphere and the primary source of
their illumination is the sun. Essentially
all light we see is scattered light, even that
directly from the sun. When we say that
such light is unscattered we really mean
that it is scattered in the forward direction;
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hence it is as if it were unscattered.
Scattered light is radiation from matter
excited by an external source. When the
source vanishes, so does the scattered light,
as distinguished from light emitted by
matter, which persists in the absence of
external sources.

Atmospheric scatterers are either mole-
cules or particles. A particle is an aggrega-
tion of sufficiently many molecules that
it can be ascribed macroscopic proper-
ties such as temperature and refractive
index. There is no canonical number of
molecules that must unite to form a
bona fide particle. Two molecules clearly
do not a quorum make, but what about
10, 100, 1000? The particle size corre-
sponding to the largest of these numbers
is about 10−3 µm. Particles this small
of water substance would evaporate so
rapidly that they could not exist long under
conditions normally found in the atmo-
sphere. As a practical matter, therefore,
we need not worry unduly about scatterers
in the shadow region between molecule
and particle.

A property of great relevance to scat-
tering problems is coherence, both of the
array of scatterers and of the incident light.
At visible wavelengths, air is an array of
incoherent scatterers: the radiant power
scattered by N molecules is N times that
scattered by one (except in the forward
direction). But when water vapor in air
condenses, an incoherent array is trans-
formed into a coherent array: uncorrelated
water molecules become part of a single
entity. Although a single droplet is a coher-
ent array, a cloud of droplets taken together
is incoherent.

Sunlight is incoherent but not in an
absolute sense. Its lateral coherence length
is tens of micrometers, which is why
we can observe what are essentially
interference patterns (e.g., coronas and

glories) resulting from illumination of
cloud droplets by sunlight.

This article begins with the color
and brightness of a purely molecu-
lar atmosphere, including their variation
across the vault of the sky. This nat-
urally leads to the state of polarization
of skylight. Because the atmosphere is
rarely, if ever, entirely free of particles,
the general characteristics of scattering
by particles follow, setting the stage
for a discussion of atmospheric visibil-
ity.

Atmospheric refraction usually sits by
itself, unjustly isolated from all those at-
mospheric phenomena embraced by the
term scattering. Yet refraction is another
manifestation of scattering, coherent scat-
tering in the sense that phase differences
cannot be ignored.

Scattering by single water droplets and
ice crystals, each discussed in turn, yields
feasts for the eye as well as the mind. The
curtain closes on the optical properties
of clouds.

2
Color and Brightness of Molecular
Atmosphere

2.1
A Brief History

Edward Nichols began his 1908 presiden-
tial address to the New York meeting of the
American Physical Society as follows: ‘‘In
asking your attention to-day, even briefly,
to the consideration of the present state of
our knowledge concerning the color of the
sky it may be truly said that I am inviting
you to leave the thronged thoroughfares
of our science for some quiet side street
where little is going on and you may even
suspect that I am coaxing you into some
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blind alley, the inhabitants of which belong
to the dead past.’’

Despite this depreciatory statement,
hoary with age, correct and complete
explanations of the color of the sky still
are hard to find. Indeed, all the faulty
explanations lead active lives: the blue
sky is the reflection of the blue sea;
it is caused by water, either vapor or
droplets or both; it is caused by dust.
The true cause of the blue sky is not
difficult to understand, requiring only a
bit of critical thought stimulated by belief
in the inherent fascination of all natural
phenomena, even those made familiar by
everyday occurrence.

Our contemplative prehistoric ancestors
no doubt speculated on the origin of the
blue sky, their musings having vanished
into it. Yet it is curious that Aristotle, the
most prolific speculator of early recorded
history, makes no mention of it in his
Meteorologica even though he delivered
pronouncements on rainbows, halos, and
mock suns and realized that ‘‘the sun
looks red when seen through mist or
smoke.’’ Historical discussions of the blue
sky sometimes cite Leonardo as the first to
comment intelligently on the blue of the
sky, although this reflects a European bias.
If history were to be written by a supremely
disinterested observer, Arab philosophers
would likely be given more credit for
having had profound insights into the
workings of nature many centuries before
their European counterparts descended
from the trees. Indeed, Möller [1] begins
his brief history of the blue sky with
Jakub Ibn Ishak Al Kindi (800–870), who
explained it as ‘‘a mixture of the darkness
of the night with the light of the dust and
haze particles in the air illuminated by
the sun.’’

Leonardo was a keen observer of light in
nature even if his explanations sometimes

fell short of the mark. Yet his hypothesis
that ‘‘the blueness we see in the atmo-
sphere is not intrinsic color, but is caused
by warm vapor evaporated in minute and
insensible atoms on which the solar rays
fall, rendering them luminous against the
infinite darkness of the fiery sphere which
lies beyond and includes it’’ would, with
minor changes, stand critical scrutiny to-
day. If we set aside Leonardo as sui generis,
scientific attempts to unravel the origins of
the blue sky may be said to have begun with
Newton, that towering pioneer of optics,
who, in time-honored fashion, reduced it
to what he already had considered: inter-
ference colors in thin films. Almost two
centuries elapsed before more pieces in
the puzzle were contributed by the exper-
imental investigations of von Brücke and
Tyndall on light scattering by suspensions
of particles. Around the same time Clau-
sius added his bit in the form of a theory
that scattering by minute bubbles causes
the blueness of the sky. A better theory
was not long in coming. It is associated
with a man known to the world as Lord
Rayleigh even though he was born John
William Strutt.

Rayleigh’s paper of 1871 marks the
beginning of a satisfactory explanation
of the blue sky. His scattering law, the
key to the blue sky, is perhaps the
most famous result ever obtained by
dimensional analysis. Rayleigh argued that
the field Es scattered by a particle small
compared with the light illuminating it
is proportional to its volume V and
to the incident field Ei. Radiant energy
conservation requires that the scattered
field diminish inversely as the distance
r from the particle so that the scattered
power diminishes as the square of r. To
make this proportionality dimensionally
homogeneous requires the inverse square
of a quantity with the dimensions of
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length. The only plausible physical variable
at hand is the wavelength of the incident
light, which leads to

Es ∝ EiV

rλ2 . (1)

When the field is squared to ob-
tain the scattered power, the result is
Rayleigh’s inverse fourth-power law. This
law is really only an often – but not
always – very good approximation. Miss-
ing from it are dimensionless proper-
ties of the particle such as its refractive
index, which itself depends on wave-
length. Because of this dispersion, there-
fore, nothing scatters exactly as the inverse
fourth power.

Rayleigh’s 1871 paper did not give the
complete explanation of the color and
polarization of skylight. What he did that
was not done by his predecessors was to
give a law of scattering, which could be
used to test quantitatively the hypothesis
that selective scattering by atmospheric
particles could transform white sunlight
into blue skylight. But as far as giving
the agent responsible for the blue sky is
concerned, Rayleigh did not go essentially
beyond Newton and Tyndall, who invoked
particles. Rayleigh was circumspect about
the nature of these particles, settling on
salt as the most likely candidate. It was not
until 1899 that he published the capstone
to his work on skylight, arguing that air
molecules themselves were the source of
the blue sky. Tyndall cannot be given
the credit for this because he considered
air to be optically empty: when purged
of all particles it scatters no light. This
erroneous conclusion was a result of the
small scale of his laboratory experiments.
On the scale of the atmosphere, sufficient
light is scattered by air molecules to be
readily observable.

2.2
Molecular Scattering and the Blue of the Sky

Our illustrious predecessors all gave ex-
planations of the blue sky requiring the
presence of water in the atmosphere:
Leonardo’s ‘‘evaporated warm vapor,’’
Newton’s ‘‘Globules of water,’’ Clausius’s
bubbles. Small wonder, then, that water
still is invoked as the cause of the blue
sky. Yet a cause of something is that with-
out which it would not occur, and the sky
would be no less blue if the atmosphere
were free of water.

A possible physical reason for attributing
the blue sky to water vapor is that, because
of selective absorption, liquid water (and
ice) is blue upon transmission of white
light over distances of order meters. Yet
if all the water in the atmosphere at any
instant were to be compressed into a liquid,
the result would be a layer about 1 cm thick,
which is not sufficient to transform white
light into blue by selective absorption.

Water vapor does not compensate for
its hundredfold lower abundance than
nitrogen and oxygen by greater scattering
per molecule. Indeed, scattering of visible
light by a water molecule is slightly less
than that by either nitrogen or oxygen.

Scattering by atmospheric molecules
does not obey Rayleigh’s inverse fourth-
power law exactly. A least-squares fit over
the visible spectrum from 400 to 700 nm
of the molecular scattering coefficient of sea-
level air tabulated by Penndorf [2] yields an
inverse 4.089th-power scattering law.

The molecular scattering coefficient β,
which plays important roles in following
sections, may be written

β = Nσs, (2)

where N is the number of molecules
per unit volume and σs, the scattering
cross section (an average because air is
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a mixture) per molecule, approximately
obeys Rayleigh’s law. The form of this
expression betrays the incoherence of
scattering by atmospheric molecules. The
inverse of β is interpreted as the scattering
mean free path, the average distance a
photon must travel before being scattered.

To say that the sky is blue because
of Rayleigh scattering, as is sometimes
done, is to confuse an agent with a
law. Moreover, as Young [3] pointed out,
the term Rayleigh scattering has many
meanings. Particles small compared with
the wavelength scatter according to the
same law as do molecules. Both can
be said to be Rayleigh scatterers, but
only molecules are necessary for the blue
sky. Particles, even small ones, generally
diminish the vividness of the blue sky.

Fluctuations are sometimes trumpeted
as the ‘‘real’’ cause of the blue sky. Pre-
sumably, this stems from the fluctuation
theory of light scattering by media in which
the scatterers are separated by distances
small compared with the wavelength. In
this theory, which is associated with Ein-
stein and Smoluchowski, matter is taken
to be continuous but characterized by a
refractive index that is a random function
of position. Einstein [4] stated that ‘‘it is
remarkable that our theory does not make
direct use of the assumption of a discrete
distribution of matter.’’ That is, he cir-
cumvented a difficulty but realized it could
have been met head on, as Zimm [5] did
years later.

The blue sky is really caused by scat-
tering by molecules – to be more precise,
scattering by bound electrons: free elec-
trons do not scatter selectively. Because air
molecules are separated by distances small
compared with the wavelengths of visible
light, it is not obvious that the power scat-
tered by such molecules can be added. Yet
if they are completely uncorrelated, as in

an ideal gas (to good approximation the
atmosphere is an ideal gas), scattering by
N molecules is N times scattering by one.
This is the only sense in which the blue sky
can be attributed to scattering by fluctua-
tions. Perfectly homogeneous matter does
not exist. As stated pithily by Planck, ‘‘a
chemically pure substance may be spo-
ken of as a vacuum made turbid by the
presence of molecules.’’

2.3
Spectrum and Color of Skylight

What is the spectrum of skylight? What is
its color? These are two different questions.
Answering the first answers the second
but not the reverse. Knowing the color of
skylight we cannot uniquely determine its
spectrum because of metamerism: A given
perceived color can in general be obtained
in an indefinite number of ways.

Skylight is not blue (itself an impre-
cise term) in an absolute sense. When
the visible spectrum of sunlight outside
the earth’s atmosphere is modulated by
Rayleigh’s scattering law, the result is a
spectrum of scattered light that is nei-
ther solely blue nor even peaked in the
blue (Fig. 1). Although blue does not pre-
dominate spectrally, it does predominate
perceptually. We perceive the sky to be
blue even though skylight contains light of
all wavelengths.

Any source of light may be looked upon
as a mixture of white light and light of
a single wavelength called the dominant
wavelength. The purity of the source is
the relative amount of the monochromatic
component in the mixture. The dominant
wavelength of sunlight scattered according
to Rayleigh’s law is about 475 nm, which
lies solidly in the blue if we take this
to mean light with wavelengths between
450 and 490 nm. The purity of this
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Fig. 1 Rayleigh’s scattering law (dots), the
spectrum of sunlight outside the Earth’s
atmosphere (dashes), and the product of the two
(solid curve). The solar spectrum is taken from
Thekaekara, M. P., Drummond, A. J. (1971), Nat.
Phys. Sci. 229, 6–9 [6]

scattered light, about 42%, is the upper
limit for skylight. Blues of real skies are
less pure.

Another way of conveying the color of a
source of light is by its color temperature,
the temperature of a blackbody having the
same perceived color as the source. Since
blackbodies do not span the entire gamut
of colors, not all sources of light can be
assigned color temperatures. But many
natural sources of light can. The color
temperature of light scattered according
to Rayleigh’s law is infinite. This follows
from Planck’s spectral emission function
ebλ in the limit of high temperature,

ebλ ≈ 2πckT

λ4 ,
hc

λ
� kT, (3)

where h is Planck’s constant, k is Boltz-
mann’s constant, c is the speed of light
in vacuo, and T is absolute temperature.
Thus, the emission spectrum of a black-
body with an infinite temperature has the
same functional form as Rayleigh’s scat-
tering law.

2.4
Variation of Sky Color and Brightness

Not only is skylight not pure blue,
but its color and brightness vary across
the vault of the sky, with the best
blues at zenith. Near the astronomical
horizon the sky is brighter than overhead
but of considerably lower purity. That
this variation can be observed from an
airplane flying at 10 km, well above
most particles, suggests that the sky
is inherently nonuniform in color and
brightness (Fig. 2). To understand why
requires invoking multiple scattering.

Multiple scattering gives rise to observ-
able phenomena that cannot be explained
solely by single-scattering arguments. This
is easily demonstrated. Fill a blackened pan

Fig. 2 Even at an altitude of 10 km, well above
most particles, the sky brightness increases
markedly from the zenith to the
astronomical horizon
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with clean water, then add a few drops of
milk. The resulting dilute suspension il-
luminated by sunlight has a bluish cast.
But when more milk is added, the suspen-
sion turns white. Yet the properties of the
scatterers (fat globules) have not changed,
only their optical thickness: the blue suspen-
sion being optically thin, the white being
optically thick.

Optical thickness is physical thickness
in units of scattering mean free path, and
hence is dimensionless. The optical thick-
ness τ between any two points connected
by an arbitrary path in a medium populated
by (incoherent) scatterers is an integral
over the path:

τ =
∫ 2

1
β ds. (4)

The normal optical thickness τn of the
atmosphere is that along a radial path
extending from the surface of the Earth
to infinity. Figure 3 shows τn over the
visible spectrum for a purely molecular
atmosphere. Because τn is generally small
compared with unity, a photon from
the sun traversing a radial path in the
atmosphere is unlikely to be scattered
more than once. But along a tangential

Fig. 3 Normal optical thickness of a pure
molecular atmosphere

path, the optical thickness is about 35 times
greater (Fig. 4), which leads to several
observable phenomena.

Even an intrinsically black object is
luminous to an observer because of
airlight, light scattered by all the molecules
and particles along the line of sight
from observer to object. Provided that
this is uniformly illuminated by sunlight
and that ground reflection is negligi-
ble, the airlight radiance L is approxi-
mately

L = GL0(1 − e−τ ), (5)

where L0 is the radiance of incident
sunlight along the line of sight with optical
thickness τ . The term G accounts for
geometric reduction of radiance because
of scattering of nearly monodirectional
sunlight in all directions. If the line of
sight is uniform in composition, τ = βd,
where β is the scattering coefficient and d
is the physical distance to the black object.

If τ is small (�1), L ≈ GL0τ . In a
purely molecular atmosphere, τ varies
with wavelength according to Rayleigh’s
law; hence the distant black object in
such an atmosphere is perceived to be

Fig. 4 Optical thickness (relative to the normal
optical thickness) of a molecular atmosphere
along various paths with zenith angles between
0◦ (normal) and 90◦ (tangential)
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bluish. As τ increases so does L but not
proportionally. Its limit is GL0: The airlight
radiance spectrum is that of the source of
illumination. Only in the limit d = 0 is
L = 0 and the black object truly black.

Variation of the brightness and color of
dark objects with distance was called aerial
perspective by Leonardo. By means of it we
estimate distances to objects of unknown
size such as mountains.

Aerial perspective belongs to the same
family as the variation of color and
brightness of the sky with zenith angle.
Although the optical thickness along a path
tangent to the Earth is not infinite, it is
sufficiently large (Figs. 3 and 4) that GL0

is a good approximation for the radiance of
the horizon sky. For isotropic scattering (a
condition almost satisfied by molecules),
G is around 10−5, the ratio of the solid
angle subtended by the sun to the solid
angle of all directions (4π ). Thus, the
horizon sky is not nearly so bright as
direct sunlight.

Unlike in the milk experiment, what
is observed when looking at the hori-
zon sky is not multiply scattered light.
Both have their origins in multiple scat-
tering but manifested in different ways.
Milk is white because it is weakly ab-
sorbing and optically thick, and hence all
components of incident white light are
multiply scattered to the observer even
though the blue component traverses a
shorter average path in the suspension
than the red component. White horizon
light has escaped being multiply scat-
tered, although multiple scattering is why
this light is white (strictly, has the spec-
trum of the source). More light at the
short-wavelength end of the spectrum is
scattered toward the observer than at the
long-wavelength end. But long-wavelength
light has the greater likelihood of being

transmitted to the observer without be-
ing scattered out of the line of sight.
For a long optical path, these two pro-
cesses compensate, resulting in a hori-
zon radiance spectrum which is that of
the source.

Selective scattering by molecules is not
sufficient for a blue sky. The atmosphere
also must be optically thin, at least for
most zenith angles (Fig. 4) (the black-
ness of space as a backdrop is taken
for granted but also is necessary, as
Leonardo recognized). A corollary of this
is that the blue sky is not inevitable: an
atmosphere composed entirely of nonab-
sorbing, selectively scattering molecules
overlying a nonselectively reflecting earth
need not be blue. Figure 5 shows calcu-
lated spectra of the zenith sky over black
ground for a molecular atmosphere with
the present normal optical thickness as
well as for hypothetical atmospheres 10
and 40 times thicker. What we take to
be inevitable is accidental: If our atmo-
sphere were much thicker, but identical
in composition, the color of the sky
would be quite different from what it
is now.

Fig. 5 Spectrum of overhead skylight for the
present molecular atmosphere (solid curve), as
well as for hypothetical atmospheres 10 (dashes)
and 40 (dots) times thicker
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2.5
Sunrise and Sunset

If short-wavelength light is preferentially
scattered out of direct sunlight, long-
wavelength light is preferentially trans-
mitted in the direction of sunlight.
Transmission is described by an expo-
nential law (if light multiply scattered
back into the direction of the sunlight
is negligible):

L = L0e−τ , (6)

where L is the radiance at the observer
in the direction of the sun, L0 is the
radiance of sunlight outside the atmo-
sphere, and τ is the optical thickness along
this path.

If the wavelength dependence of τ is
given by Rayleigh’s law, sunlight is red-
dened upon transmission: The spectrum
of the transmitted light is comparatively
richer than the incident spectrum in
light at the long-wavelength end of the
visible spectrum. But to say that trans-
mitted sunlight is reddened is not the
same as saying it is red. The perceived
color can be yellow, orange, or red, de-
pending on the magnitude of the optical
thickness. In a molecular atmosphere,
the optical thickness along a path from
the sun, even on or below the horizon,
is not sufficient to give red light upon
transmission. Although selective scatter-
ing by molecules yields a blue sky, reds
are not possible in a molecular atmo-
sphere, only yellows and oranges. This
can be observed on clear days, when the
horizon sky at sunset becomes succes-
sively tinged with yellow, then orange, but
not red.

Equation (6) applies to the radiance only
in the direction of the sun. Oranges and
reds can be seen in other directions
because reddened sunlight illuminates

scatterers not lying along the line of
sight to the sun. A striking example
of this is a horizon sky tinged with
oranges and pinks in the direction opposite
the sun.

The color and brightness of the sun
changes as it arcs across the sky because
the optical thickness along the line of sight
changes with solar zenith angle �. If the
Earth were flat (as some still aver), the
transmitted solar radiance would be

L = L0eτn/ cos �. (7)

This equation is a good approximation
except near the horizon. On a flat earth,
the optical thickness is infinite for horizon
paths. On a spherical earth, optical thick-
nesses are finite although much larger for
horizon than for radial paths.

The normal optical thickness of an
atmosphere in which the number density
of scatterers decreases exponentially with
height z above the surface, exp(−z/H), is
the same as that for a uniform atmosphere
of finite thickness:

τn =
∫ ∞

0
β dz = β0H, (8)

where H is the scale height and β0 is
the scattering coefficient at sea level.
This equivalence yields a good approx-
imation even for the tangential opti-
cal thickness. For any zenith angle,
the optical thickness is given approxi-
mately by

τ

τn
=

√
R2

e

H2 cos2 � + 2Re

H
+ 1

− Re

H
cos �, (9)

where Re is the radius of the Earth.
A flat earth is one for which Re is
infinite, in which instance Eq. (9) yields
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the expected relation

lim
Re→∞

τ

τn
= 1

cos �
. (10)

For Earth’s atmosphere, the molecular
scale height is about 8 km. According to
the approximate relation Eq. (9), therefore,
the horizon optical thickness is about
39 times greater than the normal optical
thickness. Taking the exponential decrease
of molecular number density into account
yields a value about 10% lower.

Variations on the theme of reds and
oranges at sunrise and sunset can be
seen even when the sun is overhead. The
radiance at an observer an optical distance
τ from a (horizon) cloud is the sum
of cloudlight transmitted to the observer
and airlight:

L = L0G(1 − e−τ ) + L0Gce−τ , (11)

where Gc is a geometrical factor that
accounts for scattering of nearly monodi-
rectional sunlight into a hemisphere of
directions by the cloud. If the cloud
is approximated as an isotropic reflec-
tor with reflectance R and illuminated
at an angle �, the geometrical factor
Gc is �sR cos�/π , where �s is the
solid angle subtended by the sun at
the Earth. If Gc > G, the observed ra-
diance is redder (i.e., enriched in light
of longer wavelengths) than the incident
radiance. If Gc < G, the observed radi-
ance is bluer than the incident radiance.
Thus, distant horizon clouds can be red-
dish if they are bright or bluish if they
are dark.

Underlying Eq. (11) is the implicit as-
sumption that the line of sight is uniformly
illuminated by sunlight. The first term
in this equation is airlight; the second
is transmitted cloudlight. Suppose, how-
ever, that the line of sight is shadowed

from direct sunlight by clouds (that do
not, of course, occlude the distant cloud
of interest). This may reduce the first
term in Eq. (11) so that the second term
dominates. Thus, under a partly over-
cast sky, distant horizon clouds may be
reddish even when the sun is high in
the sky.

The zenith sky at sunset and twilight
is the exception to the general rule that
molecular scattering is sufficient to ac-
count for the color of the sky. In the
absence of molecular absorption, the spec-
trum of the zenith sky would be essentially
that of the zenith sun (although greatly
reduced in radiance), hence would not
be the blue that is observed. This was
pointed out by Hulburt [7], who showed
that absorption by ozone profoundly af-
fects the color of the zenith sky when the
sun is near the horizon. The Chappuis
band of ozone extends from about 450 to
700 nm and peaks at around 600 nm. Pref-
erential absorption of sunlight by ozone
over long horizon paths gives the zenith
sky its blueness when the sun is near
the horizon. With the sun more than
about 10◦ above the horizon, however,
ozone has little effect on the color of
the sky.

3
Polarization of Light in a Molecular
Atmosphere

3.1
The Nature of Polarized Light

Unlike sound, light is a vector wave, an
electromagnetic field lying in a plane nor-
mal to the propagation direction. The
polarization state of such a wave is deter-
mined by the degree of correlation of any



64 Atmospheric Optics

two orthogonal components into which
its electric (or magnetic) field is resolved.
Completely polarized light corresponds to
complete correlation; completely unpolar-
ized light corresponds to no correlation;
partially polarized light corresponds to par-
tial correlation.

If an electromagnetic wave is completely
polarized, the tip of its oscillating electric
field traces out a definite elliptical curve,
the vibration ellipse. Lines and circles are
special ellipses, the light being said to
be linearly or circularly polarized, respec-
tively. The general state of polarization is
elliptical.

Any beam of light can be consid-
ered an incoherent superposition of two
collinear beams, one unpolarized, the
other completely polarized. The radiance
of the polarized component relative to
the total is defined as the degree of po-
larization (often multiplied by 100 and
expressed as a percentage). This can be
measured for a source of light (e.g., light
from different sky directions) by rotat-
ing a (linear) polarizing filter and noting
the minimum and maximum radiances
transmitted by it. The degree of (linear)
polarization is defined as the difference
between these two radiances divided by
their sum.

3.2
Polarization by Molecular Scattering

Unpolarized light can be transformed into
partially polarized light upon interaction
with matter because of different changes in
amplitude of the two orthogonal field com-
ponents. An example of this is the partial
polarization of sunlight upon scattering
by atmospheric molecules, which can be
detected by looking at the sky through a po-
larizing filter (e.g., polarizing sunglasses)
while rotating it. Waxing and waning of the

observed brightness indicates some degree
of partial polarization.

In the analysis of any scattering prob-
lem, a plane of reference is required. This
is usually the scattering plane, determined
by the directions of the incident and scat-
tered waves, the angle between them being
the scattering angle. Light polarized perpen-
dicular (parallel) to the scattering plane is
sometimes said to be vertically (horizon-
tally) polarized. Vertical and horizontal in
this context, however, are arbitrary terms
indicating orthogonality and bear no rela-
tion, except by accident, to the direction
of gravity.

The degree of polarization P of light
scattered by a tiny sphere illuminated by
unpolarized light is (Fig. 6)

P = 1 − cos2 θ

1 + cos2 θ
, (12)

where the scattering angle θ ranges from
0◦ (forward direction) to 180◦ (backward
direction); the scattered light is partially
linearly polarized perpendicular to the
scattering plane. Although this equation

Fig. 6 Degree of polarization of the light
scattered by a small (compared with the
wavelength) sphere for incident unpolarized
light (solid curve). The dashed curve is for a
small spheroid chosen such that the degree of
polarization at 90◦ is that for air



Atmospheric Optics 65

is a first step toward understanding
polarization of skylight, more often than
not it also has been a false step, having led
countless authors to assert that skylight is
completely polarized at 90◦ from the sun.
Although P = 1 at θ = 90◦ according to
Eq. (12), skylight is never 100% polarized
at this or any other angle, and for
several reasons.

Although air molecules are very small
compared with the wavelengths of visible
light, a requirement underlying Eq. (12),
the dominant constituents of air are not
spherically symmetric.

The simplest model of an asymmetric
molecule is a small spheroid. Although
it is indeed possible to find a direction
in which the light scattered by such a
spheroid is 100% polarized, this direction
depends on the spheroid’s orientation.
In an ensemble of randomly oriented
spheroids, each contributes its mite to the
total radiance in a given direction, but
each contribution is partially polarized to
varying degrees between 0 and 100%. It
is impossible for beams of light to be
incoherently superposed in such a way that
the degree of polarization of the resultant
is greater than the degree of polarization
of the most highly polarized beam.

Because air is an ensemble of randomly
oriented asymmetric molecules, sunlight
scattered by air never is 100% polarized.
The intrinsic departure from perfection is
about 6%. Figure 6 also includes a curve
for light scattered by randomly oriented
spheroids chosen to yield 94% polarization
at 90◦. This angle is so often singled
out that it may deflect attention from
nearby scattering angles. Yet, the degree of
polarization is greater than 50% for a range
of scattering angles 70◦ wide centered
about 90◦.

Equation (12) applies to air, not to
the atmosphere, the distinction being

that in the atmosphere, as opposed to
the laboratory, multiple scattering is not
negligible. Also, atmospheric air is almost
never free of particles and is illuminated
by light reflected by the ground. We must
take the atmosphere as it is, whereas
in the laboratory we often can eliminate
everything we consider extraneous.

Because of both multiple scattering
and ground reflection, light from any
direction in the sky is not, in general,
made up solely of light scattered in a
single direction relative to the incident
sunlight but is a superposition of beams
with different scattering histories, hence
different degrees of polarization. As a
consequence, even if air molecules were
perfect spheres and the atmosphere were
completely free of particles, skylight would
not be 100% polarized at 90◦ to the sun or
at any other angle.

Reduction of the maximum degree of
polarization is not the only consequence
of multiple scattering. According to Fig. 6,
there should be two neutral points in the
sky, directions in which skylight is unpo-
larized: directly toward and away from the
sun. Because of multiple scattering, how-
ever, there are three such points. When
the sun is higher than about 20◦ above the
horizon there are neutral points within 20◦
of the sun, the Babinet point above it, the
Brewster point below. They coincide when
the sun is directly overhead and move
apart as the sun descends. When the sun
is lower than 20◦, the Arago point is about
20◦ above the antisolar point, the direction
opposite the sun.

One consequence of the partial polar-
ization of skylight is that the colors of
distant objects may change when viewed
through a rotated polarizing filter. If the
sun is high in the sky, horizontal airlight
will have a fairly high degree of polariza-
tion. According to the previous section,
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airlight is bluish. But if it also is partially
polarized, its radiance can be diminished
with a polarizing filter. Transmitted cloud-
light, however, is unpolarized. Because the
radiance of airlight can be reduced more
than that of cloudlight, distant clouds may
change from white to yellow to orange
when viewed through a rotated polariz-
ing filter.

4
Scattering by Particles

Up to this point we have considered only an
atmosphere free of particles, an idealized
state rarely achieved in nature. Particles
still would inhabit the atmosphere even
if the human race were to vanish from
the Earth. They are not simply by-
products of the ‘‘dark satanic mills’’ of
civilization.

All molecules of the same substance are
essentially identical. This is not true of
particles: They vary in shape and size,
and may be composed of one or more
homogeneous regions.

4.1
The Salient Differences between Particles
and Molecules: Magnitude of Scattering

The distinction between scattering by
molecules when widely separated and
when packed together into a droplet is
that between scattering by incoherent and
coherent arrays. Isolated molecules are
excited primarily by incident (external)
light, whereas the same molecules forming
a droplet are excited by incident light and
by each other’s scattered fields. The total
power scattered by an incoherent array of
molecules is the sum of their scattered
powers. The total power scattered by a
coherent array is the square of the total

scattered field, which in turn is the sum
of all the fields scattered by the individual
molecules. For an incoherent array we may
ignore the wave nature of light, whereas
for a coherent array we must take it
into account.

Water vapor is a good example to ponder
because it is a constituent of air and
can condense to form cloud droplets. The
difference between a sky containing water
vapor and the same sky with the same
amount of water but in the form of a cloud
of droplets is dramatic.

According to Rayleigh’s law, scattering
by a particle small compared with the
wavelength increases as the sixth power
of its size (volume squared). A droplet of
diameter 0.03 µm, for example, scatters
about 1012 times more light than does one
of its constituent molecules. Such a droplet
contains about 107 molecules. Thus,
scattering per molecule as a consequence
of condensation of water vapor into
a coherent water droplet increases by
about 105.

Cloud droplets are much larger than
0.03 µm, a typical diameter being about
10 µm. Scattering per molecule in such
a droplet is much greater than scatter-
ing by an isolated molecule, but not to
the extent given by Rayleigh’s law. Scat-
tering increases as the sixth power of
droplet diameter only when the molecules
scatter coherently in phase. If a droplet
is sufficiently small compared with the
wavelength, each of its molecules is ex-
cited by essentially the same field and
all the waves scattered by them inter-
fere constructively. But when a droplet
is comparable to or larger than the wave-
length, interference can be constructive,
destructive, and everything in between,
and hence scattering does not increase
as rapidly with droplet size as predicted by
Rayleigh’s law.
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The figure of merit for comparing
scatterers of different size is their scatter-
ing cross section per unit volume, which,
except for a multiplicative factor, is the scat-
tering cross section per molecule. A scat-
tering cross section may be looked upon
as an effective area for removing radiant
energy from a beam: the scattering cross
section times the beam irradiance is the
radiant power scattered in all directions.

The scattering cross section per unit
volume for water droplets illuminated
by visible light and varying in size
from molecules (10−4 µm) to raindrops
(103 µm) is shown in Fig. 7. Scattering by
a molecule that belongs to a cloud droplet is
about 109 times greater than scattering by
an isolated molecule, a striking example
of the virtue of cooperation. Yet in
molecular as in human societies there are
limits beyond which cooperation becomes
dysfunctional: Scattering by a molecule
that belongs to a raindrop is about 100
times less than scattering by a molecule
that belongs to a cloud droplet. This
tremendous variation of scattering by
water molecules depending on their state
of aggregation has profound observational
consequences. A cloud is optically so much

Fig. 7 Scattering (per molecule) of visible light
(arbitrary units) by water droplets varying in size
from a single molecule to a raindrop

different from the water vapor out of which
it was born that the offspring bears no
resemblance to its parents. We can see
through tens of kilometers of air laden
with water vapor, whereas a cloud a few
tens of meters thick is enough to occult
the sun. Yet a rainshaft born out of a
cloud is considerably more translucent
than its parent.

4.2
The Salient Differences between Particles
and Molecules: Wavelength Dependence of
Scattering

Regardless of their size and composi-
tion, particles scatter approximately as
the inverse fourth power of wavelength
if they are small compared with the wave-
length and absorption is negligible, two
important caveats. Failure to recognize
them has led to errors, such as that yel-
low light penetrates fog better because
it is not scattered as much as light of
shorter wavelengths. Although there may
be perfectly sound reasons for choosing
yellow instead of blue or green as the
color of fog lights, greater transmission
through fog is not one of them: Scat-
tering by fog droplets is essentially in-
dependent of wavelength over the visible
spectrum.

Small particles are selective scatterers;
large particles are not. Particles nei-
ther small nor large give the reverse of
what we have come to expect as nor-
mal. Figure 8 shows scattering of visible
light by oil droplets with diameters 0.1,
0.8, and 10 µm. The smaller droplets
scatter according to Rayleigh’s law; the
larger droplets (typical cloud droplet size)
are nonselective. Between these two ex-
tremes are droplets (0.8 µm) that scatter
long-wavelength light more than short-
wavelength. Sunlight or moonlight seen
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Fig. 8 Scattering of visible light by oil droplets
of diameter 0.1 µm (solid curve), 0.8 µm
(dashes), and 10 µm (dots)

through a thin cloud of these intermediate
droplets would be bluish or greenish. This
requires droplets of just the right size, and
hence it is a rare event, so rare that it oc-
curs once in a blue moon. Astronomers,
for unfathomable reasons, refer to the sec-
ond full moon in a month as a blue moon,
but if such a moon were blue it would be
only by coincidence. The last reliably re-
ported outbreak of blue and green suns
and moons occurred in 1950 and was
attributed to an oily smoke produced in
Canadian forest fires.

4.3
The Salient Differences between Particles
and Molecules: Angular Dependence of
Scattering

The angular distribution of scattered light
changes dramatically with the size of
the scatterer. Molecules and particles that
are small compared with the wavelength
are nearly isotropic scatterers of unpo-
larized light, the ratio of maximum (at
0◦ and 180◦) to minimum (at 90◦) scat-
tered radiance being only 2 for spheres,
and slightly less for other spheroids. Al-
though small particles scatter the same in

the forward and backward hemispheres,
scattering becomes markedly asymmetric
for particles comparable to or larger than
the wavelength. For example, forward scat-
tering by a water droplet as small as 0.5 µm
is about 100 times greater than backward
scattering, and the ratio of forward to back-
ward scattering increases more or less
monotonically with size (Fig. 9).

The reason for this asymmetry is found
in the singularity of the forward direc-
tion. In this direction, waves scattered
by two or more scatterers excited solely
by incident light (ignoring mutual ex-
citation) are always in phase regardless
of the wavelength and the separation
of the scatterers. If we imagine a par-
ticle to be made up of N small sub-
units, scattering in the forward direc-
tion increases as N2, the only direc-
tion for which this is always true. For
other directions, the wavelets scattered by
the subunits will not necessarily all be
in phase. As a consequence, scattering
in the forward direction increases with
size (i.e., N) more rapidly than in any
other direction.

Fig. 9 Angular dependence of scattering of
visible light (0.55 µm) by water droplets small
compared with the wavelength (dashes),
diameter 0.5 µm (solid curve), and diameter
10 µm (dots)
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Many common observable phenom-
ena depend on this forward-backward
asymmetry. Viewed toward the illumi-
nating sun, glistening fog droplets on a
spider’s web warn us of its presence. But
when we view the web with our backs
to the sun, the web mysteriously disap-
pears. A pattern of dew illuminated by
the rising sun on a cold morning seems
etched on a windowpane. But if we go
outside to look at the window, the pattern
vanishes. Thin clouds sometimes hover
over warm, moist heaps of dung, but may
go unnoticed unless they lie between us
and the source of illumination. These are
but a few examples of the consequences
of strongly asymmetric scattering by sin-
gle particles comparable to or larger than
the wavelength.

4.4
The Salient Differences between Particles
and Molecules: Degree of Polarization of
Scattered Light

All the simple rules about polarization
upon scattering are broken when we turn
from molecules and small particles to
particles comparable to the wavelength.
For example, the degree of polarization of
light scattered by small particles is a simple
function of scattering angle. But simplicity
gives way to complexity as particles grow
(Fig. 10), the scattered light being partially
polarized parallel to the scattering plane
for some scattering angles, perpendicular
for others.

The degree of polarization of light
scattered by molecules or by small particles
is essentially independent of wavelength.
But this is not true for particles comparable
to or larger than the wavelength. Scattering
by such particles exhibits dispersion of
polarization: The degree of polarization at,

Fig. 10 Degree of polarization of light scattered
by water droplets illuminated by unpolarized
visible light (0.55 µm). The dashed curve is for a
droplet small compared with the wavelength; the
solid curve is for a droplet of diameter 0.5 µm;
the dotted curve is for a droplet of diameter
1.0 µm. Negative degrees of polarization
indicate that the scattered light is partially
polarized parallel to the scattering plane

Fig. 11 Degree of polarization at a scattering
angle of 90◦ of light scattered by a water droplet
of diameter 0.5 µm illuminated by
unpolarized light

say, 90◦ may vary considerably over the
visible spectrum (Fig. 11).

In general, particles can act as polarizers
or retarders or both. A polarizer transforms
unpolarized light into partially polarized
light. A retarder transforms polarized light
of one form into that of another (e.g.,
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linear into elliptical). Molecules and small
particles, however, are restricted to roles
as polarizers. If the atmosphere were
inhabited solely by such scatterers, skylight
could never be other than partially linearly
polarized. Yet particles comparable to
or larger than the wavelength often
are present; hence skylight can acquire
a degree of ellipticity upon multiple
scattering: Incident unpolarized light is
partially linearly polarized in the first
scattering event, then transformed into
partially elliptically polarized light in
subsequent events.

Bees can navigate by polarized sky-
light. This statement, intended to evoke
great awe for the photopolimetric pow-
ers of bees, is rarely accompanied by
an important caveat: The sky must be
clear. Figures 10 and 11 show two rea-
sons – there are others – why bees, re-
markable though they may be, cannot do
the impossible. The simple wavelength-
independent relation between the posi-
tion of the sun and the direction in
which skylight is most highly polarized,
an underlying necessity for navigating
by means of polarized skylight, is oblit-
erated when clouds cover the sky. This
was recognized by the decoder of bee
dances himself von Frisch, [8]: ‘‘Some-
times a cloud would pass across the area
of sky visible through the tube; when this
happened the dances became disoriented,
and the bees were unable to indicate the
direction to the feeding place. Whatever
phenomenon in the blue sky served to ori-
ent the dances, this experiment showed
that it was seriously disturbed if the
blue sky was covered by a cloud.’’ But
von Frisch’s words often have been for-
gotten by disciples eager to spread the
story about bee magic to those just as
eager to believe what is charming even
though untrue.

4.5
The Salient Differences between Particles
and Molecules: Vertical Distributions

Not only are the scattering properties of
particles quite different, in general, from
those of molecules; the different vertical
distributions of particles and molecules by
themselves affect what is observed. The
number density of molecules decreases
more or less exponentially with height
z above the surface: exp(−z/Hm), where
the molecular scale height Hm is around
8 km. Although the decrease in number
density of particles with height is also ap-
proximately exponential, the scale height
for particles Hp is about 1–2 km. As a
consequence, particles contribute dispro-
portionately to optical thicknesses along
near-horizon paths. Subject to the approxi-
mations underlying Eq. (9), the ratio of the
tangential (horizon) optical thickness for
particles τtp to that for molecules τtm is

τtp

τtm
= τnp

τnm

√
Hm

Hp
, (13)

where the subscript t indicates a tangential
path and n indicates a normal (radial) path.
Because of the incoherence of scattering
by atmospheric molecules and particles,
scattering coefficients are additive, and
hence so are optical thicknesses. For equal
normal optical thicknesses, the tangential
optical thickness for particles is at least
twice that for molecules. Molecules by
themselves cannot give red sunrises and
sunsets; molecules need the help of
particles. For a fixed τnp, the tangential
optical thickness for particles is greater
the more they are concentrated near
the ground.

At the horizon the relative rate of change
of transmission T of sunlight with zenith
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angle is
1

T

dT

d�
= τn

Re

H
, (14)

where the scale height and normal opti-
cal thickness may be those for molecules
or particles. Not only do particles, be-
ing more concentrated near the surface,
give disproportionate attenuation of sun-
light on the horizon, but they magnify
the angular gradient of attenuation there.
A perceptible change in color across the
sun’s disk (which subtends about 0.5◦)
on the horizon also requires the help
of particles.

5
Atmospheric Visibility

On a clear day can we really see for-
ever? If not, how far can we see? To
answer this question requires qualifying
it by restricting viewing to more or less
horizontal paths during daylight. Stars
at staggering distances can be seen at
night, partly because there is no sky-
light to reduce contrast, partly because
stars overhead are seen in directions
for which attenuation by the atmosphere
is least.

The radiance in the direction of a black
object is not zero, because of light scattered
along the line of sight (see Sec. 2.4). At
sufficiently large distances, this airlight is
indistinguishable from the horizon sky.
An example is a phalanx of parallel dark
ridges, each ridge less distinct than those
in front of it (Fig. 12). The farthest ridges
blend into the horizon sky. Beyond some
distance we cannot see ridges because of
insufficient contrast.

Equation (5) gives the airlight radi-
ance, a radiometric quantity that de-
scribes radiant power without taking into

Fig. 12 Because of scattering by molecules and
particles along the line of sight, each successive
ridge is brighter than the ones in front of it even
though all of them are covered with the same
dark vegetation

account the portion of it that stimu-
lates the human eye or by what relative
amount it does so at each wavelength.
Luminance (also sometimes called bright-
ness) is the corresponding photometric
quantity. Luminance and radiance are
related by an integral over the visi-
ble spectrum:

B =
∫

K(λ)L(λ) dλ, (15)

where the luminous efficiency of the hu-
man eye K peaks at about 550 nm and
vanishes outside the range 385–760 nm.

The contrast C between any object and
the horizon sky is

C = B − B∞
B∞

, (16)

where B∞ is the luminance for an infinite
horizon optical thickness. For a uniformly
illuminated line of sight of length d,
uniform in its scattering properties, and
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with a black backdrop, the contrast is

C = −

∫
KGL0 exp(−βd) dλ∫

KGL0 dλ

. (17)

The ratio of integrals in this equation
defines an average optical thickness:

C = − exp(−〈τ 〉). (18)

This expression for contrast reduction
with (optical) distance is mathematically,
but not physically, identical to Eq. (6),
which perhaps has engendered the mis-
conception that atmospheric visibility is
reduced because of attenuation. Yet as
there is no light from a black object to be
attenuated, its finite visual range cannot
be a consequence of attenuation.

The distance beyond which a dark
object cannot be distinguished from the
horizon sky is determined by the contrast
threshold: the smallest contrast detectable
by the human observer. Although this
depends on the particular observer, the
angular size of the object observed,
the presence of nearby objects, and the
absolute luminance, a contrast threshold
of 0.02 is often taken as an average. This
value in Eq. (18) gives

− ln |C| = 3.9 = 〈τ 〉 = 〈βd〉. (19)

To convert an optical distance into a
physical distance requires the scattering
coefficient. Because K is peaked at around
550 nm, we can obtain an approximate
value of d from the scattering coefficient
at this wavelength in Eq. (19). At sea
level, the molecular scattering coefficient
in the middle of the visible spectrum
corresponds to about 330 km for ‘‘forever’’:
the greatest distance at which a black
object can be seen against the horizon

sky assuming a contrast threshold of 0.02
and ignoring the curvature of the earth.

We also observe contrast between ele-
ments of the same scene, a hillside mottled
with stands of trees and forest clearings,
for example. The extent to which we can
resolve details in such a scene depends on
sun angle as well as distance.

The airlight radiance for a nonreflecting
object is Eq. (5) with G = p(�)�s, where
p(�) is the probability (per unit solid angle)
that light is scattered in a direction making
an angle � with the incident sunlight and
�s is the solid angle subtended by the sun.
When the sun is overhead, � = 90◦; with
the sun at the observer’s back, � = 180◦;
for an observer looking directly into the
sun, � = 0◦.

The radiance of an object with a finite re-
flectance R and illuminated at an angle �

is given by Eq. (11). Equations (5) and (11)
can be combined to obtain the contrast be-
tween reflecting and nonreflecting objects:

C = Fe−τ

1 + (F − 1)e−τ
,

F = R cos �

πp(�)
. (20)

All else being equal, therefore, contrast
decreases as p(�) increases. As shown in
Fig. 9, p(�) is more sharply peaked in the
forward direction the larger the scatterer.
Thus, we expect the details of a distant
scene to be less distinct when looking
toward the sun than away from it if the
optical thickness of the line of sight has
an appreciable component contributed by
particles comparable to or larger than the
wavelength.

On humid, hazy days, visibility is
often depressingly poor. Haze, however,
is not water vapor but rather water
that has ceased to be vapor. At high
relative humidities, but still well below
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100%, small soluble particles in the
atmosphere accrete liquid water to become
solution droplets (haze). Although these
droplets are much smaller than cloud
droplets, they markedly diminish visual
range because of the sharp increase in
scattering with particle size (Fig. 7). The
same number of water molecules when
aggregated in haze scatter vastly more than
when apart.

6
Atmospheric Refraction

6.1
Physical Origins of Refraction

Atmospheric refraction is a consequence
of molecular scattering, which is rarely
stated given the historical accident that
before light and matter were well un-
derstood refraction and scattering were
locked in separate compartments and sub-
sequently have been sequestered more
rigidly than monks and nuns in neigh-
boring cloisters.

Consider a beam of light propagating in
an optically homogeneous medium. Light
is scattered (weakly but observably) later-
ally to this beam as well as in the direction
of the beam (the forward direction). The
observed beam is a coherent superposi-
tion of incident light and forward-scattered
light, which was excited by the incident
light. Although refractive indices are of-
ten defined by ratios of phase velocities,
we may also look upon a refractive index
as a parameter that specifies the phase
shift between an incident beam and the
forward-scattered beam that the incident
beam excites. The connection between
(incoherent) scattering and refraction (co-
herent scattering) can be divined from the
expressions for the refractive index n of a

gas and the scattering cross section σs of a
gas molecule:

n = 1 + 1
2αN, (21)

σs = k4

6π
|α|2, (22)

where N is the number density (not mass
density) of gas molecules, k = 2π/λ is the
wave number of the incident light, and α

is the polarizability of a molecule (induced
dipole moment per unit inducing electric
field). The appearance of the polarizabil-
ity in Eq. (21) but its square in Eq. (22) is
the clue that refraction is associated with
electric fields whereas lateral scattering
is associated with electric fields squared
(powers). Scattering, without qualification,
often means incoherent scattering in all
directions. Refraction, in a nutshell, is co-
herent scattering in a particular direction.

Readers whose appetites have been
whetted by the preceding brief discussion
of the physical origins of refraction are
directed to a beautiful paper by Doyle [9]
in which he shows how the Fresnel
equations can be dissected to reveal the
scattering origins of (specular) reflection
and refraction.

6.2
Terrestrial Mirages

Mirages are not illusions, any more so
than are reflections in a pond. Reflections
of plants growing at its edge are not
interpreted as plants growing into the
water. If the water is ruffled by wind,
the reflected images may be so distorted
that they are no longer recognizable
as those of plants. Yet we still would
not call such distorted images illusions.
And so is it with mirages. They are
images noticeably different from what they
would be in the absence of atmospheric
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refraction, creations of the atmosphere,
not of the mind.

Mirages are vastly more common than
is realized. Look and you shall see them.
Contrary to popular opinion, they are
not unique to deserts. Mirages can be
seen frequently even over ice-covered
landscapes and highways flanked by deep
snowbanks. Temperature per se is not
what gives mirages but rather temperature
gradients.

Because air is a mixture of gases, the
polarizability for air in Eq. (21) is an
average over all its molecular constituents,
although their individual polarizabilities
are about the same (at visible wavelengths).
The vertical refractive index gradient can
be written so as to show its dependence on
pressure p and (absolute) temperature T :

d

dz
ln(n − 1) = 1

p

dp

dz
− 1

T

dT

dz
. (23)

Pressure decreases approximately ex-
ponentially with height, where the scale
height is around 8 km. Thus, the first term
on the right-hand side of Eq. (23) is around
0.1 km−1. Temperature usually decreases
with height in the atmosphere. An average
lapse rate of temperature (i.e., its decrease
with height) is around 6 ◦C/km. The aver-
age temperature in the troposphere (within
about 15 km of the surface) is around
280 K. Thus, the magnitude of the second
term in Eq. (23) is around 0.02 km−1. On
average, therefore, the refractive-index gra-
dient is dominated by the vertical pressure
gradient. But within a few meters of the
surface, conditions are far from average.
On a sun-baked highway your feet may
be touching asphalt at 50 ◦C while your
nose is breathing air at 35 ◦C, which cor-
responds to a lapse rate a thousand times
the average. Moreover, near the surface,
temperature can increase with height. In

shallow surface layers, in which the pres-
sure is nearly constant, the temperature
gradient determines the refractive index
gradient. It is in such shallow layers that
mirages, which are caused by refractive-
index gradients, are seen.

Cartoonists by their fertile imaginations
unfettered by science, and textbook writers
by their carelessness, have engendered
the notion that atmospheric refraction can
work wonders, lifting images of ships, for
example, from the sea high into the sky.
A back-of-the-envelope calculation dispels
such notions. The refractive index of air at
sea level is about 1.0003 (Fig. 13). Light
from empty space incident at glancing
incidence onto a uniform slab with this
refractive index is displaced in angular
position from where it would have been
in the absence of refraction by

δ = √
2(n − 1). (24)

This yields an angular displacement of
about 1.4◦, which as we shall see is a rough
upper limit.

Trajectories of light rays in nonuniform
media can be expressed in different ways.
According to Fermat’s principle of least

Fig. 13 Sea-level refractive index versus
wavelength at −15 ◦C (dashes) and 15 ◦C (solid
curve). Data from Penndorf, R. (1957), J. Opt.
Soc. Am. 47, 176–182 [2]
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time (which ought to be extreme time),
the actual path taken by a ray between two
points is such that the path integral

∫ 2

1
n ds (25)

is an extremum over all possible paths.
This principle has inspired piffle about the
alleged efficiency of nature, which directs
light over routes that minimize travel time,
presumably freeing it to tend to important
business at its destination.

The scale of mirages is such that in
analyzing them we may pretend that the
Earth is flat. On such an earth, with
an atmosphere in which the refractive
index varies only in the vertical, Fermat’s
principle yields a generalization

n sin θ = constant (26)

of Snel’s law, where θ is the angle between
the ray and the vertical direction. We
could, of course, have bypassed Fermat’s
principle to obtain this result.

If we restrict ourselves to nearly hori-
zontal rays, Eq. (26) yields the following
differential equation satisfied by a ray:

d2z

dy2 = dn

dz
, (27)

where y and z are its horizontal and vertical
coordinates, respectively. For a constant
refractive-index gradient, which to good
approximation occurs for a constant tem-
perature gradient, Eq. (27) yields parabolas
for ray trajectories. One such parabola for
a constant temperature gradient about 100
times the average is shown in Fig. 14.
Note the vastly different horizontal and
vertical scales. The image is displaced
downward from what it would be in the
absence of atmospheric refraction; hence
the designation inferior mirage. This is the

Fig. 14 Parabolic ray paths in an atmosphere
with a constant refractive-index gradient (inferior
mirage). Note the vastly different horizontal and
vertical scales

familiar highway mirage, seen over high-
ways warmer than the air above them. The
downward angular displacement is

δ = 1

2
s

dn

dz
, (28)

where s is the horizontal distance between
object and observer (image). Even for
a temperature gradient 1000 times the
tropospheric average, displacements of
mirages are less than a degree at distances
of a few kilometers.

If temperature increases with height,
as it does, for example, in air over a
cold sea, the resulting mirage is called
a superior mirage. Inferior and superior are
not designations of lower and higher caste
but rather of displacements downward
and upward.

For a constant temperature gradient,
one and only one parabolic ray tra-
jectory connects an object point to an
image point. Multiple images therefore
are not possible. But temperature gra-
dients close to the ground are rarely
linear. The upward transport of energy
from a hot surface occurs by molecular
conduction through a stagnant boundary
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layer of air. Somewhat above the surface,
however, energy is transported by air in
motion. As a consequence, the tempera-
ture gradient steepens toward the ground
if the energy flux is constant. This vari-
able gradient can lead to two observable
consequences: magnification and multi-
ple images.

According to Eq. (28), all image points
at a given horizontal distance are dis-
placed downward by an amount propor-
tional to the (constant) refractive index
gradient. A corollary is that the closer
an object point is to a surface, where
the temperature gradient is greatest, the
greater the downward displacement of the
corresponding image point. Thus, non-
linear vertical temperature profiles may
magnify images.

Multiple images are seen frequently
on highways. What often appears to
be water on the highway ahead but
evaporates before it is reached is the
inverted secondary image of either the
horizon sky or horizon objects lighter than
dark asphalt.

6.3
Extraterrestrial Mirages

When we turn from mirages of terrestrial
objects to those of extraterrestrial bodies,
most notably the sun and moon, we
can no longer pretend that the Earth
is flat. But we can pretend that the
atmosphere is uniform and bounded.
The total phase shift of a vertical ray
from the surface to infinity is the same
in an atmosphere with an exponentially
decreasing molecular number density as in
a hypothetical atmosphere with a uniform
number density equal to the surface value
up to height H.

A ray refracted along a horizon path
by this hypothetical atmosphere and

originating from outside it had to have
been incident on it from an angle δ below
the horizon:

δ =
√

2H

R
−

√
2H

R
− 2(n − 1), (29)

where R is the radius of the Earth. Thus,
when the sun (or moon) is seen to be on
the horizon it is actually more than halfway
below it, δ being about 0.36◦, whereas the
angular width of the sun (or moon) is
about 0.5◦.

Extraterrestrial bodies seen near the
horizon also are vertically compressed. The
simplest way to estimate the amount of
compression is from the rate of change of
angle of refraction θr with angle of inci-
dence θi for a uniform slab

dθr

dθi
= cos θi√

n2 − sin2 θi

, (30)

where the angle of incidence is that for
a curved but uniform atmosphere such
that the refracted ray is horizontal. The
result is

dθr

dθi
=

√
1 − R

H
(n − 1), (31)

according to which the sun near the
horizon is distorted into an ellipse with
aspect ratio about 0.87. We are unlikely
to notice this distortion, however, be-
cause we expect the sun and moon to
be circular, and hence we see them
that way.

The previous conclusions about the
downward displacement and distortion of
the sun were based on a refractive-index
profile determined mostly by the verti-
cal pressure gradient. Near the ground,
however, the temperature gradient is the
prime determinant of the refractive-index
gradient, as a consequence of which the
sun on the horizon can take on shapes
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Fig. 15 A nearly triangular sun on the horizon.
The serrations are a consequence of horizontal
variations in refractive index

more striking than a mere ellipse. For
example, Fig. 15 shows a nearly triangu-
lar sun with serrated edges. Assigning
a cause to these serrations provides a
lesson in the perils of jumping to con-
clusions. Obviously, the serrations are the
result of sharp changes in the temper-
ature gradient – or so one might think.
Setting aside how such changes could be
produced and maintained in a real at-
mosphere, a theorem of Fraser [10] gives
pause for thought. According to this the-
orem, ‘‘In a horizontally (spherically) ho-
mogeneous atmosphere it is impossible
for more than one image of an extrater-
restrial object (sun) to be seen above the
astronomical horizon.’’ The serrations on
the sun in Fig. 15 are multiple images.
But if the refractive index varies only
vertically (i.e., along a radius), no mat-
ter how sharply, multiple images are not
possible. Thus, the serrations must owe
their existence to horizontal variations of
the refractive index, a consequence of
gravity waves propagating along a tem-
perature inversion.

6.4
The Green Flash

Compared to the rainbow, the green
flash is not a rare phenomenon. Before
you dismiss this assertion as the ravings
of a lunatic, consider that rainbows
require raindrops as well as sunlight to
illuminate them, whereas rainclouds often
completely obscure the sun. Moreover,
the sun must be below about 42◦. As a
consequence of these conditions, rainbows
are not seen often, but often enough that
they are taken as the paragon of color
variation. Yet tinges of green on the upper
rim of the sun can be seen every day
at sunrise and sunset given a sufficiently
low horizon and a cloudless sky. Thus,
the conditions for seeing a green flash
are more easily met than those for seeing
a rainbow. Why then is the green flash
considered to be so rare? The distinction
here is that between a rarely observed
phenomenon (the green flash) and a rarely
observable one (the rainbow).

The sun may be considered to be a
collection of disks, one for each visible
wavelength. When the sun is overhead,
all the disks coincide and we see the
sun as white. But as it descends in the
sky, atmospheric refraction displaces the
disks by slightly different amounts, the red
less than the violet (see Fig. 13). Most of
each disk overlaps all the others except
for the disks at the extremes of the visible
spectrum. As a consequence, the upper
rim of the sun is violet or blue, its lower
rim red, whereas its interior, the region in
which all disks overlap, is still white.

This is what would happen in the ab-
sence of lateral scattering of sunlight. But
refraction and lateral scattering go hand in
hand, even in an atmosphere free of par-
ticles. Selective scattering by atmospheric
molecules and particles causes the color
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of the sun to change. In particular, the
violet-bluish upper rim of the low sun can
be transformed to green.

According to Eq. (29) and Fig. 13, the
angular width of the green upper rim of
the low sun is about 0.01◦, too narrow to
be resolved with the naked eye or even to
be seen against its bright backdrop. But
depending on the temperature profile, the
atmosphere itself can magnify the upper
rim and yield a second image of it, thereby
enabling it to be seen without the aid of a
telescope or binoculars. Green rims, which
require artificial magnification, can be
seen more frequently than green flashes,
which require natural magnification. Yet
both can be seen often by those who know
what to look for and are willing to look.

7
Scattering by Single Water Droplets

All the colored atmospheric displays that
result when water droplets (or ice crystals)
are illuminated by sunlight have the same
underlying cause: light is scattered in
different amounts in different directions
by particles larger than the wavelength,
and the directions in which scattering is
greatest depends on wavelength. Thus,
when particles are illuminated by white
light, the result can be angular separation
of colors even if scattering integrated over
all directions is independent of wavelength
(as it essentially is for cloud droplets and
ice crystals). This description, although
correct, is too general to be completely
satisfying. We need something more
specific, more quantitative, which requires
theories of scattering.

Because superficially different theories
have been used to describe different op-
tical phenomena, the notion has become
widespread that they are caused by these

theories. For example, coronas are said to
be caused by diffraction and rainbows by
refraction. Yet both the corona and the
rainbow can be described quantitatively to
high accuracy with a theory (the Mie the-
ory for scattering by a sphere) in which
diffraction and refraction do not explicitly
appear. No fundamentally impenetrable
barrier separates scattering from (specu-
lar) reflection, refraction, and diffraction.
Because these terms came into general
use and were entombed in textbooks be-
fore the nature of light and matter was well
understood, we are stuck with them. But
if we insist that diffraction, for example, is
somehow different from scattering, we do
so at the expense of shattering the unity
of the seemingly disparate observable phe-
nomena that result when light interacts
with matter. What is observed depends
on the composition and disposition of the
matter, not on which approximate theory
in a hierarchy is used for quantitative de-
scription.

Atmospheric optical phenomena are
best classified by the direction in which
they are seen and by the agents respon-
sible for them. Accordingly, the following
sections are arranged in order of scattering
direction, from forward to backward.

When a single water droplet is illumi-
nated by white light and the scattered
light projected onto a screen, the result
is a set of colored rings. But in the atmo-
sphere we see a mosaic to which individual
droplets contribute. The scattering pattern
of a single droplet is the same as the
mosaic provided that multiple scattering
is negligible.

7.1
Coronas and Iridescent Clouds

A cloud of droplets narrowly distributed in
size and thinly veiling the sun (or moon)
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can yield a spectacular series of colored
concentric rings around it. This corona
is most easily described quantitatively by
the Fraunhofer diffraction theory, a sim-
ple approximation valid for particles large
compared with the wavelength and for
scattering angles near the forward direc-
tion. According to this approximation, the
differential scattering cross section (cross
section for scattering into a unit solid
angle) of a spherical droplet of radius a
illuminated by light of wave number k is

|S|2
k2 , (32)

where the scattering amplitude is

S = x2 1 + cos θ

2

J1(x sin θ)

x sin θ
. (33)

The term J1 is the Bessel function of
first order and the size parameter x =
ka. The quantity (1 + cos θ )/2 is usually
approximated by 1 since only near-forward
scattering angles θ are of interest.

The differential scattering cross section,
which determines the angular distribution
of the scattered light, has maxima for
x sin θ = 5.137, 8.417, 11.62, . . . Thus,
the dispersion in the position of the first
maximum is

dθ

dλ
≈ 0.817

a
(34)

and is greater for higher-order maxima.
This dispersion determines the upper limit
on drop size such that a corona can be
observed. For the total angular dispersion
over the visible spectrum to be greater
than the angular width of the sun (0.5◦),
the droplets cannot be larger than about
60 µm in diameter. Drops in rain, even
in drizzle, are appreciably larger than
this, which is why coronas are not seen
through rainshafts. Scattering by a droplet
of diameter 10 µm (Fig. 16), a typical cloud

Fig. 16 Scattering of light near the forward
direction (according to Fraunhofer theory) by a
sphere of diameter 10 µm illuminated by red and
green light

droplet size, gives sufficient dispersion to
yield colored coronas.

Suppose that the first angular maxi-
mum for blue light (0.47 µm) occurs for a
droplet of radius a. For red light (0.66 µm)
a maximum is obtained at the same an-
gle for a droplet of radius a + �a. That
is, the two maxima, one for each wave-
length, coincide. From this we conclude
that coronas require narrow size distri-
butions: if cloud droplets are distributed
in radius with a relative variance �a/a
greater than about 0.4, color separation is
not possible.

Because of the stringent requirements
for the occurrence of coronas, they are
not observed often. Of greater occur-
rence are the corona’s cousins, iridescent
clouds, which display colors but usually
not arranged in any obviously regular ge-
ometrical pattern. Iridescent patches in
clouds can be seen even at the edges of
thick clouds that occult the sun.

Coronas are not the unique signatures of
spherical scatterers. Randomly oriented ice
columns and plates give similar patterns
according to Fraunhofer theory [11]. As a
practical matter, however, most coronas
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probably are caused by droplets. Many
clouds at temperatures well below freezing
contain subcooled water droplets. Only
if a corona were seen in a cloud at a
temperature lower than −40 ◦C could one
assert with confidence that it must be an
ice-crystal corona.

7.2
Rainbows

In contrast with coronas, which are seen
looking toward the sun, rainbows are
seen looking away from it, and are
caused by water drops much larger than
those that give coronas. To treat the
rainbow quantitatively we may pretend
that light incident on a transparent sphere
is composed of individual rays, each of
which suffers a different fate determined
only by the laws of specular reflection and
refraction. Theoretical justification for this
is provided by van de Hulst’s ([12], p. 208)
localization principle, according to which
terms in the exact solution for scattering by
a transparent sphere correspond to more
or less localized rays.

Each incident ray splinters into an infi-
nite number of scattered rays: externally
reflected, transmitted without internal re-
flection, transmitted after one, two, and so
on internal reflections. At any scattering
angle θ , each splinter contributes to the
scattered light. Accordingly, the differen-
tial scattering cross section is an infinite
series with terms of the form

b(θ)

sin θ

db

dθ
. (35)

The impact parameter b is a sin �i, where
�i is the angle between an incident
ray and the normal to the sphere. Each
term in the series corresponds to one
of the splinters of an incident ray. A
rainbow angle is a singularity (or caustic)

of the differential scattering cross section
at which the conditions

dθ

db
= 0,

b

sin θ
	= 0 (36)

are satisfied. Missing from Eq. (35) are
various reflection and transmission coeffi-
cients (Fresnel coefficients), which display
no singularities and hence do not deter-
mine rainbow angles.

A rainbow is not associated with rays
externally reflected or transmitted without
internal reflection. The succession of
rainbow angles associated with one, two,
three . . . internal reflections are called
primary, secondary, tertiary . . . rainbows.
Aristotle recognized that ‘‘Three or more
rainbows are never seen, because even
the second is dimmer than the first, and
so the third reflection is altogether too
feeble to reach the sun (Aristotle’s view
was that light streams outward from the
eye)’’. Although he intuitively grasped that
each successive ray is associated with
ever-diminishing energy, his statement
about the nonexistence of tertiary rainbows
in nature is not quite true. Although
reliable reports of such rainbows are rare
(unreliable reports are as common as dirt),
at least one observer who can be believed
has seen one [13].

An incident ray undergoes a total
angular deviation as a consequence of
transmission into the drop, one or more
internal reflections, and transmission out
of the drop. Rainbow angles are angles of
minimum deviation.

For a rainbow of any order to exist,

cos �i =
√

n2 − 1

p(p + 1)
(37)

must lie between 0 and 1, where �i is
the angle of incidence of a ray that gives
a rainbow after p internal reflections and
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n is the refractive index of the drop. A
primary bow therefore requires drops with
refractive index less than 2; a secondary
bow requires drops with refractive index
less than 3. If raindrops were composed
of titanium dioxide (n ≈ 3), a commonly
used opacifier for paints, primary rainbows
would be absent from the sky and we
would have to be content with only
secondary bows.

If we take the refractive index of water to
be 1.33, the scattering angle for the primary
rainbow is about 138◦. This is measured
from the forward direction (solar point).
Measured from the antisolar point (the
direction toward which one must look
in order to see rainbows in nature), this
scattering angle corresponds to 42◦, the
basis for a previous assertion that rainbows
(strictly, primary rainbows) cannot be
seen when the sun is above 42◦. The
secondary rainbow is seen at about 51◦
from the antisolar point. Between these
two rainbows is Alexander’s dark band, a
region into which no light is scattered
according to geometrical optics.

The colors of rainbows are a conse-
quence of sufficient dispersion of the
refractive index over the visible spectrum
to give a spread of rainbow angles that
appreciably exceeds the width of the sun.
The width of the primary bow from violet
to red is about 1.7◦; that of the secondary
bow is about 3.1◦.

Because of its band of colors arcing
across the sky, the rainbow has become
the paragon of color, the standard against
which all other colors are compared. Lee
and Fraser [14, 15], however, challenged
this status of the rainbow, pointing out
that even the most vivid rainbows are
colorimetrically far from pure.

Rainbows are almost invariably dis-
cussed as if they occurred literally in a
vacuum. But real rainbows, as opposed

to the pencil-and-paper variety, are nec-
essarily observed in an atmosphere, the
molecules and particles of which scat-
ter sunlight that adds to the light from
the rainbow but subtracts from its purity
of color.

Although geometrical optics yields the
positions, widths, and color separation
of rainbows, it yields little else. For
example, geometrical optics is blind to
supernumerary bows, a series of narrow
bands sometimes seen below the primary
bow. These bows are a consequence
of interference, and hence fall outside
the province of geometrical optics. Since
supernumerary bows are an interference
phenomenon, they, unlike primary and
secondary bows (according to geometrical
optics), depend on drop size. This poses
the question of how supernumerary bows
can be seen in rain showers, the drops
in which are widely distributed in size. In
a nice piece of detective work, Fraser [16]
answered this question.

Raindrops falling in a vacuum are spher-
ical. Those falling in air are distorted by
aerodynamic forces, not, despite the de-
pictions of countless artists, into teardrops
but rather into nearly oblate spheroids with
their axes more or less vertical. Fraser ar-
gued that supernumerary bows are caused
by drops with a diameter of about 0.5 mm,
at which diameter the angular position
of the first (and second) supernumerary
bow has a minimum: interference causes
the position of the supernumerary bow
to increase with decreasing size whereas
drop distortion causes it to increase with
increasing size. Supernumerary patterns
contributed by drops on either side of the
minimum cancel, leaving only the contri-
bution from drops at the minimum. This
cancellation occurs only near the tops of
rainbows, where supernumerary bows are
seen. In the vertical parts of a rainbow, a
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horizontal slice through a distorted drop
is more or less circular, and hence these
drops do not exhibit a minimum supernu-
merary angle.

According to geometrical optics, all
spherical drops, regardless of size, yield
the same rainbow. But it is not necessary
for a drop to be spherical for it to yield
rainbows independent of its size. This
merely requires that the plane defined by
the incident and scattered rays intersect
the drop in a circle. Even distorted
drops satisfy this condition in the vertical
part of a bow. As a consequence, the
absence of supernumerary bows there is
compensated for by more vivid colors
of the primary and secondary bows [17].
Smaller drops are more likely to be
spherical, but the smaller a drop, the
less light it scatters. Thus, the dominant
contribution to the luminance of rainbows
is from the larger drops. At the top of a
bow, the plane defined by the incident and
scattered rays intersects the large, distorted
drops in an ellipse, yielding a range of
rainbow angles varying with the amount of
distortion, and hence a pastel rainbow. To
the knowledgeable observer, rainbows are
no more uniform in color and brightness
than is the sky.

Although geometrical optics predicts
that all rainbows are equal (neglecting
background light), real rainbows do not
slavishly follow the dictates of this approx-
imate theory. Rainbows in nature range
from nearly colorless fog bows (or cloud
bows) to the vividly colorful vertical por-
tions of rainbows likely to have inspired
myths about pots of gold.

7.3
The Glory

Continuing our sweep of scattering direc-
tions, from forward to backward, we arrive

at the end of our journey: the glory. Because
it is most easily seen from airplanes it
sometimes is called the pilot’s bow. Another
name is anticorona, which signals that it
is a corona around the antisolar point. Al-
though glories and coronas share some
common characteristics, there are differ-
ences between them other than direction
of observation. Unlike coronas, which may
be caused by nonspherical ice crystals, glo-
ries require spherical cloud droplets. And
a greater number of colored rings may be
seen in glories than in coronas because
the decrease in luminance away from the
backward direction is not as steep as that
away from the forward direction. To see
a glory from an airplane, look for colored
rings around its shadow cast on clouds be-
low. This shadow is not an essential part
of the glory, it merely directs you to the
antisolar point.

Like the rainbow, the glory may be
looked upon as a singularity in the dif-
ferential scattering cross section Eq. (35).
Equation (36) gives one set of conditions
for a singularity; the second set is

sin θ = 0, b(θ) 	= 0. (38)

That is, the differential scattering cross
section is infinite for nonzero impact
parameters (corresponding to incident
rays that do not intersect the center of the
sphere) that give forward (0◦) or backward
(180◦) scattering. The forward direction
is excluded because this is the direction
of intense scattering accounted for by the
Fraunhofer theory.

For one internal reflection, Eq. (38) leads
to the condition

sin �i = n

2

√
4 − n2, (39)

which is satisfied only for refractive indices
between 1.414 and 2, the lower refractive
index corresponding to a grazing-incidence
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ray. The refractive index of water lies
outside this range. Although a condition
similar to Eq. (39) is satisfied for rays un-
dergoing four or more internal reflections,
insufficient energy is associated with such
rays. Thus, it seems that we have reached
an impasse: the theoretical condition for
a glory cannot be met by water droplets.
Not so, says van de Hulst [18] in a sem-
inal paper. He argues that 1.414 is close
enough to 1.33 given that geometrical op-
tics is, after all, an approximation. Cloud
droplets are large compared with the wave-
length, but not so large that geometrical
optics is an infallible guide to their optical
behavior. Support for the van de Hulstian
interpretation of glories was provided by
Bryant and Cox [19], who showed that the
dominant contribution to the glory is from
the last terms in the exact series for scat-
tering by a sphere. Each successive term
in this series is associated with ever larger
impact parameters. Thus, the terms that
give the glory are indeed those correspond-
ing to grazing rays. Further unraveling of
the glory and vindication of van de Hulst’s
conjectures about the glory were provided
by Nussenzveig [20].

It sometimes is asserted that geometrical
optics is incapable of treating the glory.
Yet the same can be said for the rainbow.
Geometrical optics explains rainbows only
in the sense that it predicts singularities for
scattering in certain directions (rainbow
angles). But it can predict only the angles
of intense scattering, not the amount.
Indeed, the error is infinite. Geometrical
optics also predicts a singularity in the
backward direction. Again, this simple
theory is powerless to predict more.
Results from geometrical optics for both
rainbows and glories are not the end
but rather the beginning, an invitation
to take a closer look with more powerful
magnifying glasses.

8
Scattering by Single Ice Crystals

Scattering by spherical water drops in the
atmosphere gives rise to three distinct dis-
plays in the sky: coronas, rainbows, and
glories. Ice particles (crystals) also can in-
habit the atmosphere, and they introduce
two new variables in addition to size: shape
and orientation, the second a consequence
of the first. Given this increase in the
number of degrees of freedom, it is hardly
cause for wonder that ice crystals are the
source of a greater variety of displays than
are water drops. As with rainbows, the
gross features of ice-crystal phenomena
can be described simply with geometrical
optics, various phenomena arising from
the various fates of rays incident on crys-
tals. Colorless displays (e.g., sun pillars)
are generally associated with reflected rays,
colored displays (e.g., sun dogs and halos)
with refracted rays. Because of the wealth
of ice-crystal displays, it is not possible to
treat all of them here, but one example
should point the way toward understand-
ing many of them.

8.1
Sun Dogs and Halos

Because of the hexagonal crystalline struc-
ture of ice it can form as hexagonal plates
in the atmosphere. The stable position of
a plate falling in air is with the normal
to its face more or less vertical, which is
easy to demonstrate with an ordinary busi-
ness card. When the card is dropped with
its edge facing downward (the supposedly
aerodynamic position that many people
instinctively choose), the card somersaults
in a helter-skelter path to the ground. But
when the card is dropped with its face par-
allel to the ground, it rocks back and forth
gently in descent.
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A hexagonal ice plate falling through
air and illuminated by a low sun is
like a 60◦ prism illuminated normally to
its sides (Fig. 17). Because there is no
mechanism for orienting a plate within
the horizontal plane, all plate orientations
in this plane are equally probable. Stated
another way, all angles of incidence for
a fixed plate are equally probable. Yet all
scattering angles (deviation angles) of rays
refracted into and out of the plate are not
equally probable.

Figure 18 shows the range of scattering
angles corresponding to a range of rays
incident on a 60◦ ice prism that is part of a
hexagonal plate. For angles of incidence
less than about 13◦, the transmitted
ray is totally internally reflected in the
prism. For angles of incidence greater
than about 70◦, the transmittance plunges.
Thus, the only rays of consequence are
those incident between about 13◦ and
70◦.

All scattering angles are not equally
probable. The (uniform) probability
distribution p(θi) of incidence angles θi

is related to the probability distribution

Fig. 17 Scattering by a hexagonal ice plate
illuminated by light parallel to its basal plane.
The particular scattering angle θ shown is an
angle of minimum deviation. The scattered light
is that associated with two refractions by
the plate

Fig. 18 Scattering by a hexagonal ice plate (see
Fig. 17) in various orientations (angles of
incidence). The solid curve is for red light, the
dashed for blue light

P(θ) of scattering angles θ by

P(θ) = p(θi)

dθ/ dθi
. (40)

At the incidence angle for which
dθ/ dθi = 0, P(θ) is infinite and scat-
tered rays are intensely concentrated
near the corresponding angle of mini-
mum deviation.

The physical manifestation of this singu-
larity (or caustic) at the angle of minimum
deviation for a 60◦ hexagonal ice plate is
a bright spot about 22◦ from either or
both sides of a sun low in the sky. These
bright spots are called sun dogs (because
they accompany the sun) or parhelia or
mock suns.

The angle of minimum deviation θm,
hence the angular position of sun dogs,
depends on the prism angle � (60◦
for the plates considered) and refrac-
tive index:

θm = 2 sin−1
(

n sin
�

2

)
− �. (41)

Because ice is dispersive, the separation
between the angles of minimum deviation
for red and blue light is about 0.7◦ (Fig. 18),
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somewhat greater than the angular width
of the sun. As a consequence, sun dogs
may be tinged with color, most noticeably
toward the sun. Because the refractive
index of ice is least at the red end of the
spectrum, the red component of a sun dog
is closest to the sun. Moreover, light of any
two wavelengths has the same scattering
angle for different angles of incidence
if one of the wavelengths does not
correspond to red. Thus, red is the purest
color seen in a sun dog. Away from its red
inner edge a sun dog fades into whiteness.

With increasing solar elevation, sun
dogs move away from the sun. A falling ice
plate is roughly equivalent to a prism, the
prism angle of which increases with solar
elevation. From Eq. (41) it follows that the
angle of minimum deviation, hence the
sun dog position, also increases.

At this point you may be wondering why
only the 60◦ prism portion of a hexagonal
plate was singled out for attention. As
evident from Fig. 17, a hexagonal plate
could be considered to be made up of 120◦
prisms. For a ray to be refracted twice, its
angle of incidence at the second interface
must be less than the critical angle. This
imposes limitations on the prism angle.
For a refractive index 1.31, all incident rays
are totally internally reflected by prisms
with angles greater than about 99.5◦.

A close relative of the sun dog is the
22◦ halo, a ring of light approximately 22◦
from the sun (Fig. 19). Lunar halos are
also possible and are observed frequently
(although less frequently than solar halos);
even moon dogs are possible. Until
Fraser [21] analyzed halos in detail, the
conventional wisdom had been that they
obviously were the result of randomly
oriented crystals, yet another example of
jumping to conclusions. By combining
optics and aerodynamics, Fraser showed
that if ice crystals are small enough

to be randomly oriented by Brownian
motion, they are too small to yield sharp
scattering patterns.

But completely randomly oriented plates
are not necessary to give halos, especially
ones of nonuniform brightness. Each part
of a halo is contributed to by plates with
a different tip angle (angle between the
normal to the plate and the vertical).
The transition from oriented plates (zero
tip angle) to randomly oriented plates
occurs over a narrow range of sizes. In
the transition region, plates can be small
enough to be partially oriented yet large
enough to give a distinct contribution to
the halo. Moreover, the mapping between
tip angles and azimuthal angles on the
halo depends on solar elevation. When
the sun is near the horizon, plates can
give a distinct halo over much of its
azimuth.

Fig. 19 A 22◦ solar halo. The hand is not for
artistic effect but rather to occlude the bright sun



86 Atmospheric Optics

When the sun is high in the sky,
hexagonal plates cannot give a sharp halo
but hexagonal columns – another possible
form of atmospheric ice particles – can.
The stable position of a falling column is
with its long axis horizontal. When the
sun is directly overhead, such columns
can give a uniform halo even if they all lie
in the horizontal plane. When the sun is
not overhead but well above the horizon,
columns also can give halos.

A corollary of Fraser’s analysis is that
halos are caused by crystals with a range of
sizes between about 12 and 40 µm. Larger
crystals are oriented; smaller particles
are too small to yield distinct scatter-
ing patterns.

More or less uniformly bright halos with
the sun neither high nor low in the sky
could be caused by mixtures of hexagonal
plates and columns or by clusters of bullets
(rosettes). Fraser opines that the latter is
more likely.

One of the by-products of his analysis is
an understanding of the relative rarity of
the 46◦ halo. As we have seen, the angle of
minimum deviation depends on the prism
angle. Light can be incident on a hexagonal
column such that the prism angle is 60◦
for rays incident on its side or 90◦ for
rays incident on its end. For n = 1.31,
Eq. (41) yields a minimum deviation angle
of about 46◦ for � = 90◦. Yet, although 46◦
halos are possible, they are seen much less
frequently than 22◦ halos. Plates cannot
give distinct 46◦ halos although columns
can. Yet they must be solid and most
columns have hollow ends. Moreover, the
range of sun elevations is restricted.

Like the green flash, ice-crystal phenom-
ena are not intrinsically rare. Halos and
sun dogs can be seen frequently – once
you know what to look for. Neuberger [22]
reports that halos were observed in State
College, Pennsylvania, an average of 74

days a year over a 16-year period, with
extremes of 29 and 152 halos a year. Al-
though the 22◦ halo was by far the most
frequently seen display, ice-crystal displays
of all kinds were seen, on average, more
often than once every four days at a loca-
tion not especially blessed with clear skies.
Although thin clouds are necessary for ice-
crystal displays, clouds thick enough to
obscure the sun are their bane.

9
Clouds

Although scattering by isolated particles
can be studied in the laboratory, parti-
cles in the atmosphere occur in crowds
(sometimes called clouds). Implicit in the
previous two sections is the assumption
that each particle is illuminated solely
by incident sunlight; the particles do not
illuminate each other to an appreciable de-
gree. That is, clouds of water droplets or
ice grains were assumed to be optically
thin, and hence multiple scattering was
negligible. Yet the term cloud evokes fluffy
white objects in the sky, or perhaps an
overcast sky on a gloomy day. For such
clouds, multiple scattering is not negligi-
ble, it is the major determinant of their
appearance. And the quantity that deter-
mines the degree of multiple scattering is
optical thickness (see Sec. 2.4).

9.1
Cloud Optical Thickness

Despite their sometimes solid appearance,
clouds are so flimsy as to be almost
nonexistent – except optically. The fraction
of the total cloud volume occupied by
water substance (liquid or solid) is about
10−6 or less. Yet although the mass
density of clouds is that of air to within
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a small fraction of a percent, their optical
thickness (per unit physical thickness) is
much greater. The number density of air
molecules is vastly greater than that of
water droplets in clouds, but scattering per
molecule of a cloud droplet is also much
greater than scattering per air molecule
(see Fig. 7).

Because a typical cloud droplet is much
larger than the wavelengths of visible light,
its scattering cross section is to good
approximation proportional to the square
of its diameter. As a consequence, the
scattering coefficient [see Eq. (2)] of a cloud
having a volume fraction f of droplets is
approximately

β = 3f
〈d2〉
〈d3〉 , (42)

where the brackets indicate an average
over the distribution of droplet diameters
d. Unlike molecules, cloud droplets are
distributed in size. Although cloud parti-
cles can be ice particles as well as water
droplets, none of the results in this and the
following section hinge on the assumption
of spherical particles.

The optical thickness along a cloud
path of physical thickness h is βh for
a cloud with uniform properties. The
ratio 〈d3〉/〈d2〉 defines a mean droplet
diameter, a typical value for which is
10 µm. For this diameter and f = 10−6, the
optical thickness per unit meter of physical
thickness is about the same as the normal
optical thickness of the atmosphere in the
middle of the visible spectrum (see Fig. 3).
Thus, a cloud only 1 m thick is equivalent
optically to the entire gaseous atmosphere.

A cloud with (normal) optical thickness
about 10 (i.e., a physical thickness of about
100 m) is sufficient to obscure the disk of
the sun. But even the thickest cloud does
not transform day into night. Clouds are

usually translucent, not transparent, yet
not completely opaque.

The scattering coefficient of cloud
droplets, in contrast with that of air
molecules, is more or less independent
of wavelength. This is often invoked as
the cause of the colorlessness of clouds.
Yet wavelength independence of scatter-
ing by a single particle is only sufficient,
not necessary, for wavelength indepen-
dence of scattering by a cloud of particles
(see Sec. 2.4). Any cloud that is optically
thick and composed of particles for which
absorption is negligible is white upon
illumination by white light. Although ab-
sorption by water (liquid and solid) is not
identically zero at visible wavelengths, and
selective absorption by water can lead to
observable consequences (e.g., colors of
the sea and glaciers), the appearance of all
but the thickest clouds is not determined
by this selective absorption.

Equation (42) is the key to the vastly
different optical characteristics of clouds
and of the rain for which they are the
progenitors. For a fixed amount of water
(as specified by the quantity fh), optical
thickness is inversely proportional to mean
diameter. Rain drops are about 100 times
larger on average than cloud droplets, and
hence optical thicknesses of rain shafts are
correspondingly smaller. We often can see
through many kilometers of intense rain
whereas a small patch of fog on a well-
traveled highway can result in carnage.

9.2
Givers and Takers of Light

Scattering of visible light by a single
water droplet is vastly greater in the
forward (θ < 90◦) hemisphere than in the
backward (θ > 90◦) hemisphere (Fig. 9).
But water droplets in a thick cloud
illuminated by sunlight collectively scatter
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much more in the backward hemisphere
(reflected light) than in the forward
hemisphere (transmitted light). In each
scattering event, incident photons are
deviated, on average, only slightly, but
in many scattering events most photons
are deviated enough to escape from the
upper boundary of the cloud. Here is an
example in which the properties of an
ensemble are different from those of its
individual members.

Clouds seen by passengers in an airplane
can be dazzling, but if the airplane were
to descend through the cloud these same
passengers might describe the cloudy sky
overhead as gloomy. Clouds are both givers
and takers of light. This dual role is
exemplified in Fig. 20, which shows the
calculated diffuse downward irradiance
below clouds of varying optical thickness.
On an airless planet the sky would be black
in all directions (except directly toward
the sun). But if the sky were to be filled
from horizon to horizon with a thin cloud,
the brightness overhead would markedly
increase. This can be observed in a partly
overcast sky, where gaps between clouds
(blue sky) often are noticeably darker than

Fig. 20 Computed diffuse downward irradiance
below a cloud relative to the incident solar
irradiance as a function of cloud
optical thickness

their surroundings. As so often happens,
more is not always better. Beyond a
certain cloud optical thickness, the diffuse
irradiance decreases. For a sufficiently
thick cloud, the sky overhead can be darker
than the clear sky.

Why are clouds bright? Why are they
dark? No inclusive one-line answers can be
given to these questions. Better to ask, Why
is that particular cloud bright? Why is that
particular cloud dark? Each observation
must be treated individually; generaliza-
tions are risky. Moreover, we must keep
in mind the difference between bright-
ness and radiance when addressing the
queries of human observers. Brightness is
a sensation that is a property not only of
the object observed but of its surround-
ings as well. If the luminance of an object
is appreciably greater than that of its sur-
roundings, we call the object bright. If the
luminance is appreciably less, we call the
object dark. But these are relative rather
than absolute terms.

Two clouds, identical in all respects,
including illumination, may still appear
different because they are seen against
different backgrounds, a cloud against the
horizon sky appearing darker than when
seen against the zenith sky.

Of two clouds under identical illumi-
nation, the smaller (optically) will be less
bright. If an even larger cloud were to ap-
pear, the cloud that formerly had been de-
scribed as white might be demoted to gray.

With the sun below the horizon, two
identical clouds at markedly different
elevations might appear quite different
in brightness, the lower cloud being
shadowed from direct illumination by
sunlight.

A striking example of dark clouds can
sometimes be seen well after the sun
has set. Low-lying clouds that are not
illuminated by direct sunlight but are
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seen against the faint twilight sky may
be relatively so dark as to seem like
ink blotches.

Because dark objects of our everyday
lives usually owe their darkness to absorp-
tion, nonsense about dark clouds is rife:
they are caused by pollution or soot. Yet of
all the reasons that clouds are sometimes
seen to be dark or even black, absorption
is not among them.

Glossary

Airlight: Light resulting from scattering by
all atmospheric molecules and particles
along a line of sight.

Antisolar Point: Direction opposite the
sun.

Astronomical Horizon: Horizontal direc-
tion determined by a bubble level.

Brightness: The attribute of sensation by
which an observer is aware of differences
of luminance (definition recommended
by the 1922 Optical Society of America
Committee on Colorimetry).

Contrast Threshold: The minimum rela-
tive luminance difference that can be
perceived by the human observer.

Inferior Mirage: A mirage in which images
are displaced downward.

Irradiance: Radiant power crossing unit
area in a hemisphere of directions.

Lapse Rate: The rate at which a physical
property of the atmosphere (usually tem-
perature) decreases with height.

Luminance: Radiance integrated over the
visible spectrum and weighted by the

spectral response of the human ob-
server. Also sometimes called photometric
brightness.
.5.5

Mirage: An image appreciably different
from what it would be in the absence of
atmospheric refraction.

Neutral Point: A direction in the sky for
which the light is unpolarized.

Normal Optical Thickness: Optical thick-
ness along a radial path from the surface
of the earth to infinity.

Optical Thickness: The thickness of a scat-
tering medium measured in units of
photon mean free paths. Optical thick-
nesses are dimensionless.

Radiance: Radiant power crossing a unit
area and confined to a unit solid angle
about a particular direction.

Scale Height: The vertical distance over
which a physical property of the at-
mosphere is reduced to 1/e of its
value.

Scattering Angle: Angle between incident
and scattered waves.

Scattering Coefficient: The product of scat-
tering cross section and number density of
scatterers.

Scattering Cross Section: Effective area of a
scatterer for removal of light from a beam
by scattering.

Scattering Plane: Plane determined by
incident and scattered waves.

Solar Point: The direction toward the
sun.
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Superior Mirage: A mirage in which im-
ages are displaced upward.

Tangential Optical Thickness: Optical
thickness through the atmosphere along
a horizon path.
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(1985), Polarized Light in Nature. Cambridge,
UK: Cambridge University Press; Tape, W.
(1994), Atmosphere Halos. Washington, DC:
American Geophysical Union.

Although not devoted exclusively to atmospheric
optics, Humphreys, W. J. (1964), Physics of the
Air. New York: Dover Publications, contains

a few relevant chapters. Two popular science
books on simple experiments in atmospheric
physics are heavily weighted toward atmo-
spheric optics: Bohren, C. F. (1987), Clouds in
a Glass of Beer. New York: Wiley; Bohren, C. F.
(1991), What Light Through Yonder Window
Breaks? New York: Wiley.

For an expository article on colors of the sky
see Bohren, C. F., Fraser, A. B. (1985), Phys.
Teacher 23, 267–272.

An elementary treatment of the coherence
properties of light waves was given by For-
rester, A. T. (1956), Am. J. Phys. 24, 192–196.
This journal also published an expository arti-
cle on the observable consequences of multiple
scattering of light: Bohren, C. F. (1987), Am. J.
Phys. 55, 524–533.

Although a book devoted exclusively to atmo-
spheric refraction has yet to be published,
an elementary yet thorough treatment of mi-
rages was given by Fraser, A. B., Mach, W. H.
(1976), Sci. Am. 234(1), 102–111.

Colorimetry, the often (and unjustly) neglected
component of atmospheric optics, is treated
in, for example, Optical Society of Amer-
ica Committee on Colorimetry (1963), The
Science of Color. Washington, DC: Optical
Society of America. Billmeyer, F. W., Saltz-
man, M. (1981), Principles of Color Technol-
ogy, (2nd ed.), New York: Wiley-Interscience.
MacAdam, D. L. (1985), Color Measurement,
(2nd ed.), Berlin: Springer.

Understanding atmospheric optical phenom-
ena is not possible without acquiring at
least some knowledge of the properties
of the particles responsible for them. To
this end, the following are recommended:
Pruppacher, H. R., Klett, J. D. (1980), Micro-
physics of Clouds and Precipitation. Dor-
drecht, Holland: D. Reidel. Twomey, S. A.
(1977), Atmospheric Aerosols. New York:
Elsevier.



937

Interferometry

Parameswaran Hariharan
School of Physics, University of Sydney, Australia
Phone: (612) 9413 7159; Fax: (612) 9413 7200; e-mail: hariharan optics@hotmail.com

Katherine Creath
Optineering, Tucson, Arizona, USA
Phone: (520) 882-2950; Fax: (520) 882-6976; e-mail: kcreath@ieee.org

Abstract
This article reviews the field of interferometry. It begins by outlining the fundamentals
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1
Introduction

Optical interferometry uses the phe-
nomenon of interference between light
waves to make extremely accurate mea-
surements. The interference pattern con-
tains, in addition to information on the
optical paths traversed by the waves, infor-
mation on the spectral content of the light
and its spatial distribution over the source.

Young was the first to state the principle
of interference and demonstrate that the
summation of two rays of light could give
rise to darkness, but the father of optical in-
terferometry was undoubtedly Michelson.
Michelson’s contributions to interferom-
etry, from 1880 to 1930, dominated the
field to such an extent that optical inter-
ferometry was regarded for many years as
a closed chapter. However, the last four
decades have seen an explosive growth of
interest in interferometry due to several
new developments.

The most important of these was the
development of the laser, which made
available, for the first time, an intense
source of light with a remarkably high
degree of spatial and temporal coher-
ence. Lasers have removed most of the
limitations imposed by conventional light
sources and have made possible many new
techniques, including nonlinear interfer-
ometry.

Another development that has revo-
lutionized interferometry has been the
application of electronic techniques. The
use of photoelectric detector arrays and
digital computers has made possible direct
measurements of the optical path differ-
ence at an array of points covering an
interference pattern, with very high accu-
racy, in a very short time.

Light scattered from a moving particle
has its frequency shifted by an amount
proportional to the component of its
velocity in a direction determined by the
directions of illumination and viewing.
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Lasers have made it possible to measure
this frequency shift and, hence, the velocity
of the particles, by detecting the beats
produced by mixing the scattered light and
the original laser beam.

Another major advance has been the
use of single-mode optical fibers to
build analogs of conventional two-beam
interferometers. Since very long optical
paths can be accommodated in a small
space, fiber interferometers are now used
widely as rotation sensors. In addition,
since the length of the optical path in
such a fiber changes with pressure or
temperature, fiber interferometers have
found many applications as sensors for
a number of physical quantities.

In the field of stellar interferometry, it
is now possible to combine images from
widely spaced arrays of large telescopes
to obtain extremely high resolution. In-
terferometry is also being applied to the
detection of gravitational waves from black
holes and supernovae.

Holography (see HOLOGRAPHY) is a com-
pletely new method of imaging based on
optical interference. Holographic interfer-
ometry has made it possible to map the
displacements of a rough surface with an
accuracy of a few nanometers, and even to
make interferometric comparisons of two
stored wavefronts that existed at different
times. Holographic interferometry and a
related technique, speckle interferometry
(see SPECKLE AND SPECKLE METROLOGY), are
now used widely in industry for nonde-
structive testing and structural analysis.

The applications outlined above provide
a glimpse of the many areas of optics that
use interferometry. This article is meant
to provide an overview. More detail is
available in the cross-referenced articles
as well as in the lists of works cited and
further reading.

2
Interference and Coherence

When two light waves are superimposed,
the resultant intensity depends on whether
they reinforce or cancel each other.
This is the well-known phenomenon of
interference (see WAVE OPTICS).

If, at any point, the complex ampli-
tudes of two light waves, derived from the
same monochromatic point source and
polarized in the same plane, are A1 =
a1 exp(−iφ1) and A2 = a2 exp(−iφ2), the
intensity (or the irradiance, units W m−2)
at this point is

I = |A1 + A2|2
= I1 + I2 + 2(I1I2)

1/2 cos(φ1 − φ2),

(1)

where I1 and I2 are the intensities due
to the two waves acting separately and
φ1 − φ2 is the difference in their phases.

The visibility V of the interference
fringes is defined by the relation

V = Imax − Imin

Imax + Imin

= 2(I1I2)
1/2

I1 + I2
. (2)

Interference effects can be observed
quite easily by viewing a transparent plate
illuminated by a point source of monochro-
matic light. In this case, interference takes
place between the waves reflected from the
front and back surfaces of the plate.

For a ray incident at an angle θ1 on a
plane-parallel plate (thickness d, refractive
index n) and refracted within the plate at
an angle θ2, the optical path difference
between the two reflected rays is

�p = 2nd cos θ2 + λ

2
, (3)
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since an additional phase shift of π is
introduced by reflection at one of the
surfaces. The interference fringes are
circles centered on the normal to the
plate (fringes of equal inclination, or
Haidinger fringes).

With a collimated beam, the interfer-
ence fringes are contours of equal optical
thickness (Fizeau fringes). The variations
in the phase difference observed can rep-
resent variations in the thickness or the
refractive index of the plate. A polished flat
surface can be compared with a reference
flat surface, by placing them in contact
and observing the fringes of equal thick-
ness formed in the air film between them.
Introduction of a small tilt between the
test and reference surfaces produces a set
of almost straight and parallel fringes. Any
deviations of the test surface from a plane
are seen as a departure of the fringes from
straight lines. The errors of the test sur-
face can then be evaluated, as shown in
Fig. 1, by measuring the maximum devia-
tion (�x) of a fringe from a straight line
as well as the spacing between successive
fringes (x). Each fringe corresponds to a
change in the optical path difference of
half a wavelength.

2.1
Localization of Fringes

An extended monochromatic source can
be considered as an array of independent
point sources. Since the light waves from
these sources take different paths to the
point where interference is observed, the
elementary interference patterns produced
by any two of them will not, in general,
coincide. Interference fringes are then
observed with maximum contrast only
in a particular region (the region of
localization).

∆x

x

Fig. 1 Evaluation of the errors of a polished flat
test surface by interference

With a plane-parallel plate, the inter-
ference fringes are localized at infinity.
With a wedged thin film, and near-normal
incidence, the interference fringes are lo-
calized in the wedge.

2.2
Coherence

A more detailed analysis [1] shows that
the interference effects observed depend
on the degree of correlation between the
wave fields at the point of observation.
The intensity in the interference pattern is
given by the relation

I = I1 + I2 + 2(I1I2)
1/2|γ |

× cos(arg γ + 2πντ), (4)

where I1 and I2 are the intensities of
the two beams, ν is the frequency of the
radiation, τ is the mean time delay between
the arrival of the two beams and γ is the
(complex) degree of coherence between the
wave fields.

With two beams of equal intensity, the
visibility of the interference fringes is equal
to |γ |, with a maximum value of 1 when
the correlation between the wave fields
is complete.

The correlation between the fields at any
two points, when the difference between
the optical paths to the source is small
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enough for effects due to the spectral
bandwidth of the light to be neglected,
is a measure of the spatial coherence of
the light. If the size of the source and
the separation of the two points are very
small compared to their distance from
the source, it can be shown that the
complex degree of coherence is given by
the normalized two-dimensional Fourier
transform of the intensity distribution
over the source (see FOURIER AND OTHER

TRANSFORM METHODS).
Similarly, the correlation between the

fields at the same point at different
times is a measure of the temporal
coherence of the light and is related to its
spectral bandwidth. With a point source
(or when interference takes place between
corresponding elements of the original
wavefront), the visibility of the fringes
as a function of the delay is the Fourier
transform of the source spectrum.

To make this analysis complete, we must
also take into account the polarization ef-
fects. In general, for maximum visibility,
the beams must start in the same state
of polarization (see POLARIZED LIGHT, BA-

SIC CONCEPTS OF) and interfere in the same
state of polarization. For natural (unpolar-
ized) light, the optical path difference must
be the same for all polarizations. The ef-
fects of deviations from these conditions,
which can be quite complex, have been
discussed by [2].

3
Two-beam Interferometers

Two methods are used to obtain two beams
from a common source.

In wavefront division, two beams are
isolated from separate areas of the primary
wavefront. This technique was used in

Young’s experiment and in the Rayleigh
interferometer.

More commonly, two beams are derived
from the same portion of the primary wave-
front (amplitude division) using a beam
splitter (a transparent plate coated with
a partially reflecting film), a diffraction
grating or a polarizing prism.

3.1
The Michelson Interferometer

In the Michelson interferometer, a single
beam splitter is used, as shown in Fig. 2,
to divide and recombine the beams.
However, to obtain interference fringes
with white light, the two optical paths
must contain the same thickness of glass.
Accordingly, a compensating plate (of the
same thickness and the same material
as the beam splitter) is introduced in
one beam.

The interference pattern observed is
similar to that produced in a plate (n = 1)

bounded by one mirror and the image of
the other mirror produced by reflection
from the beam splitter. With an extended
source, the interference fringes are circles
localized at infinity (fringes of equal

BS

Fig. 2 The Michelson interferometer
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inclination). With collimated light (the
Twyman–Green interferometer), straight,
parallel fringes of equal thickness (Fizeau
fringes) are obtained.

3.2
The Mach–Zehnder Interferometer

As shown in Fig. 3, the Mach–Zehnder
interferometer (MZI) uses two beam split-
ters to divide and recombine the beams.

The MZI has the advantage that each
optical path is traversed only once. In
addition, with an extended source, the
region of localization of the fringes can
be made to coincide with the test section.
The MZI has been used widely to map
local variations of the refractive index in
wind tunnels, flames, and plasmas.

A variant, the Jamin interferometer,
along with the Rayleigh interferometer, is
commonly used to measure the refractive
index of gases and mixtures of gases. Accu-
rate measurements of the refractive index
of air are a prerequisite for interferometric
measurements of length (see Sect. 5).

3.3
The Sagnac Interferometer

In one form of the Sagnac interferometer,
as shown in Fig. 4, the two beams traverse

BS

BS

Fig. 3 The Mach–Zehnder interferometer

BS

Fig. 4 The Sagnac interferometer

exactly the same path in opposite direc-
tions. However, with an odd number of re-
flections in the path, the wavefronts are lat-
erally inverted with respect to each other.

Since the optical paths traversed by
the two beams are always very nearly
equal, fringes can be obtained easily with
an extended, white-light source. Modified
forms of the Sagnac interferometer are
used for rotation sensing, since the
rotation of the interferometer with an
angular velocity 	 about an axis making
an angle θ with the normal to the
plane of the beams introduces an optical
path difference

�p =
(

4	A

c

)
cos θ, (5)

between the two beams, where A is the
area enclosed by the beams and c is the
speed of light.

4
Multiple-beam Interference

With two highly reflecting surfaces, we
have to take into account the effects
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of multiply reflected beams (see WAVE

OPTICS). The intensity in the interference
pattern formed by the transmission is

IT(φ) = T2

1 + R2 − 2R cos φ
, (6)

where R and T are, respectively, the
reflectance and transmittance of the sur-
faces and φ = (4π/λ)nd cos θ2. As the
reflectance R increases, the intensity at the
minima decreases, and the bright fringes
become sharper.

The finesse, defined as the ratio of the
separation of adjacent fringes to the full
width at half maximum (FWHM) of the
fringes (the separation of points at which
the intensity is equal to half its maximum
value), is

F = πR1/2

1 − R
. (7)

The interference fringes formed by the
reflected beams are complementary to
those obtained by transmission.

4.1
Fringes of Equal Chromatic Order

With a white-light source, interference
fringes cannot be seen for optical path dif-
ferences greater than a few micrometers.
However, if the reflected light is exam-
ined with a spectroscope, the spectrum
will be crossed by dark bands correspond-
ing to interference minima. With a thin
film (thickness d, refractive index n), if λ1

and λ2 are the wavelengths corresponding
to adjacent dark bands, we have

d = λ1λ2

2n|λ2 − λ1| . (8)

With two highly reflecting surfaces en-
closing a thin film, very sharp fringes of
equal chromatic order (FECO fringes) can
be obtained, using a white-light source

and a spectrograph. FECO fringes permit
measurements with a precision of λ/500.

A major application of FECO fringes has
been to study the microstructure of sur-
faces [3, 4]. However, the test surface must
be coated with a highly reflective coating.

5
Measurement of Length

One of the earliest applications of interfer-
ometry was in measurements of lengths.
Because of the limited distance over which
interference fringes could be observed
with conventional light sources, Michel-
son had to perform a laborious series
of comparisons to measure the number
of wavelengths of a spectral line in the
standard meter. The extremely narrow
spectral bandwidth of light from a laser
has led to the development of a number of
interferometric techniques for direct mea-
surements of large distances. The values
obtained for the optical path length are di-
vided by the value of the refractive index of
air, under the conditions of measurement,
to obtain the true length.

5.1
Electronic Fringe Counting

If an additional phase difference of π/2
is introduced between the beams in
one half of the field, two detectors can
provide signals in quadrature to drive a
bidirectional counter. These signals can
also be processed to obtain an estimate of
the fractional interference order [5].

5.2
Heterodyne Interferometry

In the Hewlett–Packard interferome-
ter [6], a He-Ne laser is forced to oscillate
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Solenoid
Beam

expander

Laser l/4 plate

Detectors

DR DS

2 − 1± ∆

2 − 1

Polarizers

Counter

Counter

Subtractor Display

C1

2± ∆

2
1 C2

Reference
signal

Fig. 5 Fringe-counting interferometer using a two-frequency laser (after Dukes, J. N., Gordon, G. B.
(1970), Hewlett-Packard J. 21, 2–8 [6].  Hewlett–Packard Company. Reproduced with permission)

simultaneously at two frequencies sep-
arated by about 2 MHz by applying a
longitudinal magnetic field. As shown in
Fig. 5, these two frequencies that have op-
posite circular polarizations pass through a
λ/4 plate that converts them to orthogonal
linear polarizations.

A polarizing beam splitter reflects one
frequency to a fixed cube-corner, while the
other is transmitted to a movable cube-
corner. Both frequencies return along a
common axis and, after passing through
a polarizer set at 45◦, are incident on a
photodetector. The beat frequencies from
this detector and a reference detector go to
a differential counter. If one of the cube-
corners is moved, the net count gives the
change in the optical path in wavelengths.

Very small changes in length can be
measured by heterodyne interferometry.
In one technique [7], a small frequency
shift is introduced between the two beams,
typically by means of a pair of acousto-optic
modulators operated at slightly different
frequencies. The output from a detector

viewing the interference pattern contains
a component at the difference frequency,
and the phase of this heterodyne signal cor-
responds to the phase difference between
the interfering beams.

In another technique, the two mirrors of
a Fabry–Perot interferometer are attached
to the two ends of the sample, and the
wavelength of a laser is locked to a
transmission peak [8]. A change in the
separation of the mirrors results in a
change in the wavelength of the laser and,
hence, in its frequency. These changes can
be measured with high precision by mixing
the beam from the laser with the beam
from a reference laser, and measuring the
beat frequency.

5.3
Two-wavelength Interferometry

If an interferometer is illuminated simul-
taneously with two wavelengths λ1 and λ2,
the envelope of the fringes yields the inter-
ference pattern that can be obtained with
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a synthetic wavelength

λs = λ1λ2

|λ1 − λ2| . (9)

One way to implement this technique is
with a CO2 laser, which is switched rapidly
between two wavelengths, as one of the
mirrors of an interferometer is moved
over the distance to be measured. The
output signal from a photodetector is then
processed to obtain the phase difference at
any point [9].

5.4
Frequency-modulation Interferometry

Absolute measurements of distance can be
made with a semiconductor laser by sweep-
ing its frequency linearly with time [10]. If
the optical path difference between the two
beams in the interferometer is L, one beam
reaches the detector with a time delay L/c,
and they interfere to yield a beat signal
with a frequency

f =
(

L

c

)(
df

dt

)
, (10)

where df /dt is the rate at which the laser
frequency varies with time.

5.5
Laser-feedback Interferometry

If, as shown in Fig. 6, a small fraction of
the output of a laser is fed back to it by
an external mirror, the output of the laser
varies cyclically with the position of the
mirror [11]. A displacement of the mirror

by half a wavelength corresponds to one
cycle of modulation.

A very simple laser-feedback interfer-
ometer can be set up with a single-mode
semiconductor laser. An increased mea-
surement range and higher accuracy can
be obtained by mounting the mirror on a
piezoelectric translator, and using an ac-
tive feedback loop to hold the optical path
constant [12].

6
Optical Testing

A major application of interferometry is
in testing optical components and optical
systems (see OPTICAL METROLOGY).

6.1
Flat Surfaces

The Fizeau interferometer (see Fig. 7) is
used widely to compare a polished flat
surface with a standard flat surface without
placing them in contact and risking
damage to the surfaces. Measurements
are made on the fringes of equal thickness
formed with collimated light in the air
space separating the two surfaces.

To determine absolute flatness, it is
possible to use a liquid surface as a
reference [13]; however, a more often-used
method is to test a set of three nominally
flat surfaces in pairs. Errors of each of the
three surfaces can be evaluated using this
technique without the need for a known
standard flat surface [14–16].

Detector Laser

M

Fig. 6 Laser-feedback interferometer
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Laser

Test surface

Reference flat

Fig. 7 Fizeau interferometer used to test flat surfaces

6.2
Homogeneity

The homogeneity of a material can be
checked by preparing a plane-parallel sam-
ple and placing it in the test path of
the interferometer. The effects of sur-
face imperfections and systematic er-
rors can be minimized by submerging
the sample in a refractive-index match-
ing oil and making measurements with
and without the sample in the test
path [17].

6.3
Concave and Convex Surfaces

The Fizeau and Twyman–Green interfer-
ometers can be used to test concave and
convex surfaces [18, 19]. Typical test con-
figurations for curved optical surfaces are
shown in Fig. 8.

6.4
Prisms

Figure 9 shows a test configuration for a
60◦ prism. With a prism having a roof

Reference flat Converging lens

Concave surface test

Convex surface test

Fig. 8 Fizeau interferometer used to test concave and convex surfaces
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Prism

Fig. 9 Twyman–Green interferometer used to
test a prism

angle of 90◦, the beam is retro-reflected
back through the system.

6.5
Aspheric Surfaces

Problems can arise in testing an aspheric
surface against a spherical reference wave-
front because the fringes in some parts
of the resulting interferogram may be too
closely spaced to be resolved. One way to
solve this problem is to use a compen-
sating null-lens [20]; another is to use a
computer-generated hologram to produce
a reference wavefront matching the de-
sired aspheric wavefront [21, 22]. Shearing
interferometry is yet another way to reduce
the number of fringes in the interfero-
gram [23, 24].

6.6
Optically Rough Surfaces

One way to test fine ground surfaces,
before they are polished, is by infrared
interferometry with a CO2 laser at a
wavelength of 10.6 µm [25]. A simpler al-
ternative, with nominally flat surfaces,

is to use oblique incidence [26]. An-
other means of measuring these sur-
faces uses scanning white-light tech-
niques similar to those described in
Sect. 8.3.

6.7
Shearing Interferometers

Shearing interferometers, in which inter-
ference takes place between two images
of the test wavefront, have the advan-
tage that they eliminate the need for a
reference surface of the same dimen-
sions as the test surface [23, 24]. With
a lateral shear, as shown in Fig. 10(a),
the two images undergo a mutual lateral
displacement. If the shear is small, the
wavefront aberrations can be obtained by
integrating the phase data from two in-
terferograms with orthogonal directions
of shear. With a radial shear, as shown
in Fig. 10(b), one of the images is con-
tracted or expanded with respect to the

s

x

y

(a)

(b)

d1 d2

Fig. 10 Images of the test wavefront in
(a) lateral and (b) radial shearing interferometers



Interferometry 949

other. If the diameter of one image is
less than (say) 0.3 of the other, the inter-
ferogram obtained is very similar to that
obtained with a Fizeau or Twyman–Green
interferometer.

Other forms of shear, such as rotational,
inverting or folding shears, can also be
used for specific applications.

6.8
The Point-diffraction Interferometer

As shown in Fig. 11, the point-diffraction
interferometer [27] consists of a pinhole in
a partially transmitting film placed at the
focus of the test wavefront.

The interference pattern formed by
the test wavefront, which is transmitted
by the film, and a spherical reference
wave produced by diffraction at the pin-
hole corresponds to a contour map of
the wavefront aberrations. Both wave-
fronts traverse the same path, making
this compact interferometer insensitive to
vibrations.

7
Fringe Analysis

High-accuracy information can be ex-
tracted from the fringe pattern, including
the calculation of aberration coefficients
(see OPTICAL ABERRATIONS; [28]), by using
an electronic camera interfaced with a
computer to measure and process the
intensity distribution in the interference
pattern. Several methods are available for
this purpose (see [29]).

7.1
Fringe Tracking and Fourier Analysis

Early approaches to fringe analysis were
based on fringe tracking [30]. In order
to analyze a single fringe pattern, it is
desirable to introduce a tilt between the
interfering wavefronts so that a large
number of nominally straight fringes are
obtained. The shape of the fringe will
be modified by the errors of the test
wavefront. Fourier analysis of the fringes

Image of
point source

Transmitted
wave

Pinhole

Test wavefront
Partially

transmitting
film

Diffracted spherical
reference wave

Fig. 11 The point-diffraction interferometer [27]
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can then determine the test wavefront
deviation [31–33].

7.2
Phase-shifting Interferometry

Direct measurement of the phase differ-
ence between the beams at a uniformly
spaced array of points offers many advan-
tages. In order to determine the phase
of the wavefront at each data point, at
least three interferograms are required.
The phase difference between the inter-
fering beams is usually varied linearly
with time, and the intensity signal is
integrated at each point over a num-
ber of equal phase segments covering
one period of the sinusoidal output sig-
nal. This technique is often simplified by
adjusting the phase difference in equal
steps.

The most common way to accomplish
the phase shift between the object and
reference beams is by changing the op-
tical path difference between the beams
through a shift of the reference mirror
along the optical axis. Other ways include

tilting a glass plate, moving a grating,
frequency-shifting, or rotating a half-wave
plate or analyzer. Typically, intensity infor-
mation from four or five interferograms
are used to calculate the original phase
difference between the wavefronts on a
point-by-point basis [34, 35]. The repeata-
bility of measurements is around λ/1000.

Because the phase-calculation algorithm
utilizes an arctangent function, which does
not yield any information on the integral
interference order, it is necessary to use
a phase unwrapping procedure to detect
changes in the integral interference order
and remove discontinuities in the retrieved
phase [29, 36].

Figure 12 shows a three-dimensional
plot of the errors of a flat surface pro-
duced by an interferometer using a digital
phase-measurement system.

Normally, to implement such a phase
unwrapping procedure, it is necessary to
have at least two measurements per fringe
spacing; this constraint, limits the phase
gradients that can be measured. However,
techniques are available that can be used
in special situations, with some a priori

109.9 mm

105.7

Fig. 12 Three-dimensional plot of the errors of a flat surface (326 nm Peak-to-Valley)
obtained with a phase-measurement interferometer (Courtesy of Veeco
Instruments Inc.)
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knowledge about the test surface, to work
around this limitation [37].

7.3
Determining Aberrations

With most optical systems, it is then
convenient to express the deviations of
the test wavefront as a linear combina-
tion of Zernike circular polynomials in
the form

W(ρ, θ) =
n∑

k=0

k∑
l=0

ρk

× (Akl cos lθ + Bkl sin lθ), (11)

where ρ and θ are polar coordinates
over the pupil, and (k − l) is an even
number. If the optical path differences
at a suitably chosen array of points
are known, the coefficients Akl and Bkl
can be calculated from a set of linear
equations [38, 39].

8
Interference Microscopy

Interference microscopy provides a non-
contact method for studies of sur-
faces as well as a method for study-
ing living cells without the need to
stain them.

Two-beam interference microscopes
have been described using optical systems
similar to the Fizeau and Michelson
interferometers. For high magnifications,
a suitable configuration is that described
by Linnik [40] in which a beam splitter
directs the light onto two identical
objectives; one beam is incident on the
test surface, while the other is directed to
the reference mirror.

8.1
The Mirau Interferometer

The Mirau interferometer permits a very
compact optical arrangement. As shown
schematically in Fig. 13, light from an
illuminator is incident through the mi-
croscope objective on a beam splitter. The
transmitted beam falls on the test surface,
while the reflected beam falls on an alu-
minized spot on a reference surface. The
two reflected beams are recombined at the
same beam splitter and return through
the objective.

As shown in Fig. 14, very accurate
measurements of surface profiles can
be made using phase shifting. With a
rough surface, the data can be processed
to obtain the rms surface roughness
and the autocovariance function of the
surface [41].

8.2
The Nomarski Interferometer

Common-path interference microscopes
use polarizing elements to split and re-
combine the beams [42]. In the Nomarski
interferometer (see Fig. 15), two polarizing

Microscope objective

Reference surface

Beam splitter

Sample

Fig. 13 The Mirau interferometer
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Fig. 14 Pits (approximately 90 nm deep) on the surface of a mass-replicated
CD-ROM. 11 µm × 13 µm field of view (Courtesy of Veeco Instruments Inc.)

Objective

Object

Condenser

Fig. 15 The Nomarski interferometer

prisms (see MICROSCOPY) introduce a lat-
eral shear between the two beams.

With small isolated objects, two im-
ages are seen covered with fringes that
map the phase changes introduced by
the object. With larger objects, the in-
terference pattern is a measure of the
phase gradients, revealing edges and local
defects.

The use of phase-shifting techniques to
extract quantitative information from the
interference pattern has been described
by [43].

8.3
White-light Interferometry

With monochromatic light, ambiguities
can arise at discontinuities and steps
producing a change in the optical path
difference greater than a wavelength.
This problem can be overcome by using
a broadband (white-light) source. When
the surface is scanned in height and
the corresponding variations in intensity
at each point are recorded, the height
position corresponding to equal optical
paths at which the visibility of the fringes
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Laser Flow

Detector

2q

Fig. 16 Laser–Doppler interferometer for measurements of flow velocities

is a maximum yields the height of the
surface at that point.

The method most commonly used to re-
cover the fringe visibility function from
the fringe intensity is by digital filter-
ing [44]. More recent techniques combine
phase-shifting techniques with signal de-
modulation [45, 46]. More detail on these
techniques is available in OPTICAL METROL-

OGY.
Another technique that can be used

with white light is spectrally resolved
interferometry [47, 48]. A spectroscope is
used to analyze the light from each point
on the interferogram. The optical path
difference between the beams at this point
can then be obtained from the intensity
distribution in the resulting channeled
spectrum (see Sect. 4.1).

White-light interferometry techniques
used for biomedical applications are gen-
erally referred to as optical coherence
tomography or coherence radar (BIOMEDI-

CAL IMAGING TECHNIQUES; [49, 50]).

9
Interferometric Sensors

Interferometers can be used as sensors for
several physical quantities.

9.1
Laser–Doppler Interferometry

Laser–Doppler interferometry [51] makes
use of the fact that light scattered by

a moving particle has its frequency
shifted.

In the arrangement shown in Fig. 16,
two intersecting laser beams making
angles ±θ with the direction of observation
are used to illuminate the test field.

The frequency of the beat signal ob-
served is

�ν = 2v sin θ

λ
, (12)

where v is the component of the velocity
of the particle in the plane of the beams at
right angles to the direction of observation.

Simultaneous measurements of the ve-
locity components along orthogonal direc-
tions can be made by using two pairs of
illuminating beams (with different wave-
lengths) in orthogonal planes.

It is also possible to use a self-mixing
configuration for velocimetry, in which the
light reflected from the moving object is
mixed with the light in the laser cavity. A
very compact system has been described
by [52] using a laser diode operated near
threshold with an external cavity to ensure
single-frequency operation.

Very small vibration amplitudes can be
measured by attaching one of the mirrors
in an interferometer to the vibrating object.
If the reflected beam is made to interfere
with a reference beam with a fixed-
frequency offset, the time-varying output
contains, in addition to a component at
the offset frequency (the carrier), two
sidebands [53]. The vibration amplitude is
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given by the relation

a =
(

λ

2π

)(
Is

Ic

)
, (13)

where Ic and Is are, respectively, the power
in the carrier and the sidebands.

9.2
Fiber Interferometers

Since the length of the optical path in an
optical fiber changes when it is stretched,
or when its temperature changes, inter-
ferometers in which the beams propagate
in single-mode optical fibers (see FIBER OP-

TICS and SENSORS, OPTICAL) can be used as
sensors for a number of physical quanti-
ties [54]. High sensitivity can be obtained,
because it is possible to have very long,
noise-free paths in a very small space.

In the interferometer shown in Fig. 17,
light from a laser diode is focused on the
end of a single-mode fiber and optical
fiber couplers are used to divide and
recombine the beams. Fiber stretchers are

used to shift and modulate the phase of
the reference beam. The output goes to a
pair of photodetectors, and measurements
are made with a heterodyne system or a
phase-tracking system [55].

It is also possible, as shown in Fig. 18, to
use a length of a birefringent single-mode
fiber, in a configuration similar to a Fizeau
interferometer, as a temperature-sensing
element [56].

The outputs from the two detectors are
processed to give the phase retardation
between the waves reflected from the front
and rear ends of the fiber. Changes in
temperature of 0.0005 ◦C can be detected
with a 1-cm-long sensing element.

Measurements of electric and magnetic
fields can also be made with fiber interfer-
ometers by bonding the fiber sensor to a
piezoelectric or magnetostrictive element.
In addition, it is possible to multiplex sev-
eral optical fiber sensors in a single system
to make measurements of various quanti-
ties at a single location or even at different
locations (see [57, 58]).

Splitter Combiner

Oscillator

Detectors

Detector
system

Phase
shifter

Laser

Phase modulator

Optical fiber
reference path

Optical fiber
sensing element

Fig. 17 Interferometer using a single-mode fiber as a sensing element.
(Giallorenzi, T. G., Bucaro, J. A., Dandridge, A., Sigel, Jr G. H., Cole, J. H.,
Rashleigh, S. C., Priest, R. G. (1982), IEEE J. Quantum Electron. QE-18, 626–665 [55]
 IEEE, 1982. Reproduced with permission.)
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Fig. 18 Interferometer using a birefringent single-mode fiber as a
sensing element [56]

9.3
Rotation Sensing

Another application of fiber interferom-
eters is in rotation sensing [59, 60]. The
configuration used, in which the two waves
traverse a closed multiturn loop in oppo-
site directions, is the equivalent of a Sagnac
interferometer (see Sect. 3.3). A typical sys-
tem is shown in Fig. 19 [61].

10
Interference Spectroscopy

Interferometric techniques are now used
widely in high-resolution spectroscopy
(see SPECTROSCOPY, LASER) because they
offer, in addition to higher resolution, a
higher throughput.

10.1
Etendue of an Interferometer

The throughput of an optical system is
proportional to a quantity known as its

etendue (see OPTICAL RADIATION SOURCES

AND STANDARDS).
In the optical system shown in Fig. 20,

the effective areas AS and AD of the
source and detector are images of each
other.

The etendue of the system is

E = AS	S = AD	D, (14)

where 	S is the solid angle subtended by
the lens LS at the source and 	D is the
solid angle subtended by the lens LD at
the detector.

Since the etendue of a conventional spec-
troscope is limited by the entrance slit, a
much higher etendue can be obtained with
an interferometer.

10.2
The Fabry–Perot Interferometer

The Fabry–Perot interferometer (FPI) [62]
uses multiple-beam interference between
two flat, parallel surfaces coated with
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Fig. 19 Fiber interferometer for rotation sensing [61]
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Fig. 20 Etendue of an interferometer

semitransparent, highly reflecting coat-
ings. With a fixed spacing d, any single
wavelength produces a system of sharp,
bright rings (fringes of equal inclination),
defined by Eq. (6), centered on the normal
to the surfaces.

For any angle of incidence, with a
broadband source, it also follows from
Eq. (6) that the separation of succes-
sive intensity maxima corresponds to a

wavelength difference λ2/2nd. This wave-
length difference, known as the free
spectral range (FSR), is the range of
wavelengths that can be handled by the
FPI without successive interference orders
overlapping.

The resolving power of the FPI is
obtained by dividing the FSR by the
finesse (see Eq. 7) and is given by the
relation
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R = λ

�λ

=
(

2nd

λ

)[
πR1/2

1 − R

]
, (15)

where �λ is the half-width of the peaks,
and R is the reflectance of the surfaces.

One way to overcome the limited FSR of
the FPI is by imaging the fringes onto the
slit of a spectrometer, but this procedure
limits the etendue of the system. A better
way is to use two or more FPIs, with
different values of d, in series.

Another important characteristic of an
FPI is the contrast factor, defined by the
ratio of the intensities of the maxima and
minima, which is

C =
[

1 + R

1 − R

]2

. (16)

For applications such as Brillouin spec-
troscopy, in which a weak spectrum line
may be masked by the background due to
a neighboring strong spectral line, a much
higher contrast factor can be obtained by
passing the light several times through the
same FPI [63].

A much higher throughput can be
obtained with the confocal Fabry–Perot
interferometer shown in Fig. 21 that uses

M M

Fig. 21 Confocal Fabry–Perot interferometer

two spherical mirrors separated by a
distance equal to their radius of curvature,
so that their foci coincide. Since the optical
path difference is independent of the angle
of incidence, a uniform field is obtained.
An extended source can be used, and the
transmitted intensity is recorded as the
separation of the plates is varied [64].

10.3
Wavelength Measurements

Accurate measurements of the wavelength
of the output from a tunable laser, such
as a dye laser, can be made with an
interferometric wavelength meter.

In the dynamic wavelength meter shown
in Fig. 22, a beam from the dye laser as
well as a beam from a reference laser,
whose wavelength is known, traverse the
same two paths. The wavelength of the dye
laser is determined by counting fringes
simultaneously at both wavelengths, as the
end reflector is moved [65].

Reference laser (l2)

Dye laser (l1)

Detector D1 (l1)

Detector D2 (l2)

Movable
cube-corner

Fig. 22 Dynamic wavelength meter [65]
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In a simpler arrangement [66], the
fringes of equal thickness formed in a
wedged air film are imaged on a linear de-
tector array. The spacing of the fringes is
used to evaluate the integral interference
order, and their position to determine the
fractional interference order.

10.4
Laser Linewidth

The extremely small spectral bandwidth of
the output from a laser can be measured
by mixing, as shown in Fig. 23, light from
the laser with a reference beam from the
same laser that has undergone a frequency
shift and a delay [67].

10.5
Fourier-transform Spectroscopy

Major applications of Fourier-transform
spectroscopy include measurements of
infrared absorption spectra as well as
emission spectra from faint astronomical
objects (see SPECTROMETERS, ULTRAVIOLET

AND VISIBLE LIGHT and SPECTROMETERS, IN-

FRARED).
With a scanning spectrometer, the total

time of observation T is divided between,
say, m elements of the spectrum. Since
in the infrared, the main source of noise
is the detector, the signal-to-noise (S/N)

ratio is reduced by a factor m1/2. This
reduction in the S/N ratio can be avoided
by varying the optical path difference in
an interferometer linearly with time, in
which case each element of the spectrum
generates an output modulated at a
frequency that is inversely proportional
to its wavelength. It is then possible to
record all these signals simultaneously
(or, in other words, to multiplex them)
and then, by taking the Fourier transform
of the recording (see FOURIER AND OTHER

TRANSFORM METHODS), to recover the
spectrum [68–70].

As shown in Fig. 24, a Fourier-
transform spectrometer is basically a
Michelson interferometer illuminated
with an approximately collimated beam
from the source whose spectrum is to be

Laser Optical
isolator

Acousto-
optic

modulatorB1

B2

Single-mode
optical fiber

Detector

Detector

SubtractorSpectrum
analyzer

Fig. 23 Measurement of laser linewidth by heterodyne interferometry [67]
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Detector

Movable reflector

Source

Fig. 24 Fourier-transform spectrometer

recorded. The mirrors are often replaced
by ‘‘cat’s eye’’ reflectors to minimize
problems due to tilting as they are moved.

The interferogram is then sampled at
a number of equally spaced points. To
avoid ambiguities (aliasing) the change
in the optical path difference between
samples must be less than half the short-
est wavelength in the spectrum. Finally,
the spectrum is computed using the fast
Fourier-transform algorithm [71]. Errors
in the computed spectrum can be reduced
by a process called apodization, where
the interference signal is multiplied by
a symmetrical weighting function whose
value decreases gradually with the optical
path difference.

11
Nonlinear Interferometers

The high light intensity available with
pulsed lasers has opened up completely

new areas of interferometry based on
the use of nonlinear optical materials
(see NONLINEAR OPTICS).

11.1
Second-harmonic Interferometers

Second-harmonic interferometers produce
a fringe pattern corresponding to the
phase difference between two second-
harmonic waves generated at differ-
ent points in the optical path from
the original wave at the fundamental
frequency.

Figure 25 is a schematic of an inter-
ferometer using two frequency-doubling
crystals that can be considered as an
analog of the Mach–Zehnder interferom-
eter [72].

In this interferometer, the infrared
beam from a Q-switched Nd:YAG laser
(λ1 = 1.06 µm) is incident on a frequency-
doubling crystal, and the green (λ2 =
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IR laser

Doubler DoublerTest piece

Green

Fig. 25 Second-harmonic interferometer using two frequency-doubling crystals

0.53 µm) and infrared beams emerging
from this crystal pass through the test
piece. At the second crystal, the infrared
beam undergoes frequency doubling to
produce a second green beam that in-
terferes with the one produced at the
first crystal. The interference order at any
point is

N(x, y) = (n2 − n1) d(x, y)

λ2
, (17)

where d(x, y) is the thickness of the test
specimen at any point (x, y) and n1 and n2

are its refractive indices for infrared and
green light, respectively.

Other types of interferometers that are
analogs of the Fizeau, Twyman, and point-
diffraction interferometers have also been
described [73, 74].

11.2
Phase-conjugate Interferometers

In a phase-conjugate interferometer, the
test wavefront is made to interfere with its
conjugate, eliminating the need for a ref-
erence wave and doubling the sensitivity.

In the phase-conjugate interferometer
shown in Fig. 26, which can be regarded
as an analog of the Fizeau interferometer,
a partially reflecting mirror is placed in
front of a single crystal of barium titanate,
which functions as a self-pumped phase-
conjugate mirror [75, 76].

An interferometer in which both mirrors
have been replaced by a single-phase
conjugator has the unique property that
the field of view is normally completely
dark and is unaffected by misalignment
or by air currents. However, because of
the delay in the response of the phase

Input wavefront

Beam splitter

Output
wavefronts

Reference
surface

Phase-conjugate
mirror

Fig. 26 Phase-conjugate interferometer [76]
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conjugator, any sudden local change in the
optical path produces a bright spot that
slowly fades away [77].

11.3
Measurement of Nonlinear Susceptibilities

A modified Twyman–Green interferom-
eter can be used for measurements of
nonlinear susceptibilities. A system that
can be used to measure the relative phase
shift between two-phase conjugators, as
well as the ratio of their susceptibilities,
and yields high sensitivity, even with weak
signals, has been described by [78].

12
Interferometric Imaging

Interferometric imaging started with the
development of techniques to measure
the diameters of stars that could not
be resolved with conventional telescopes
(see ASTRONOMICAL TELESCOPES AND IN-

STRUMENTATION).
Michelson’s stellar interferometer [79]

used the fact that the angular diameter of a
star can be calculated from observations
of the visibility of the fringes in an
interferometer using light from the star
reaching the surface of the earth at two
points separated by a known distance.

If we assume the star to be a uniform
circular source with an angular diameter
2α, and D is the separation of two mirrors
receiving the light from the star and
feeding it to a telescope, as shown in
Fig. 27, the visibility of the fringes is

V = 2J1(u)

u
, (18)

where u = 2παD/λ and J1 is a first-order
Bessel function. The fringe visibility drops

Telescope

Fig. 27 Michelson’s stellar interferometer

to zero when

D = 1.22λ

2α
. (19)

Measurements with Michelson’s stellar in-
terferometer over baselines longer than
6 m presented serious difficulties because
of the difficulty of maintaining the optical
path difference between the beams stable
and small enough not to affect the visibility
of the fringes. However, modern detection,
control, and data handling techniques have
made possible a new version of Michel-
son’s stellar interferometer [80] designed
to make measurements over baselines up
to 640 m.

12.1
The Intensity Interferometer

The problem of maintaining the equality
of the two paths was minimized in
the intensity interferometer, which used
measurements of the degree of correlation
between the fluctuations in the outputs
of two photodetectors at the foci of two
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large light collectors separated by a variable
distance [81, 82].

The actual instrument used light collec-
tors operated with separations up to 188 m.
With a bandwidth of 100 MHz it was only
necessary to equalize the two optical paths
to within 30 cm, but, because of the narrow
bandwidth, measurements could only be
made on 32 of the brightest stars.

12.2
Heterodyne Stellar Interferometers

In these instruments, as shown in Fig. 28,
light from the star is received by two
telescopes and mixed with light from a
laser at two photodiodes. The resulting
heterodyne signals are multiplied in a
correlator. The output signal is a measure

Telescope

5 MHz offset

Heterodyne signals (< 1500 MHz)

Delay lines

Multiplier

Processor

5 MHz signal

Computer

Fringe amplitude

Laser

Detector Detector

Laser

Telescope

Fig. 28 Schematic of a heterodyne stellar interferometer [83]
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of the degree of coherence of the wave
fields at the two photo detectors [83].

As with the intensity interferometer,
this technique only requires the two op-
tical paths to be equalized to within a
few centimeters; however, the sensitivity
is higher, since it is proportional to the
product of the intensities of the laser
and the star. An infrared interferome-
ter comprising two telescopes with an
aperture of 1.65 m has been constructed,
capable of yielding an angular resolu-
tion of 0.001 second of arc [84]. Larger
telescopes are planned (see ASTRONOMICAL

TELESCOPES AND INSTRUMENTATION).

12.3
Stellar Speckle Interferometry

Stellar speckle interferometry makes use
of the fact that, due to local inhomo-
geneities in the earth’s atmosphere, the
image of a star produced by a large
telescope, when observed under high mag-
nification, has a speckle structure [85]
(see also ASTRONOMICAL TELESCOPES AND

INSTRUMENTATION). However, individual
speckles have dimensions correspond-
ing to a diffraction-limited image of the
star. Reference [86] showed that a high-
resolution image could be extracted from a
number of such speckled images recorded
with sufficiently short exposures to freeze
the speckles.

While the angular resolution that can
be obtained by speckle interferometry is
limited by the aperture of the telescope, it
has been applied successfully to a number
of problems, including the study of close
double stars.

12.4
Telescope Arrays

The ultimate objective would be the abil-
ity to produce high-resolution images of

stars. Unfortunately, with a two-element
interferometer, it is only possible to ob-
tain information on the fringe amplitude
because the value of the phase is affected
by instrumental and atmospheric effects.
However, with a triangular array, the clo-
sure phase is determined only by the
coherence function. As the number of ele-
ments increases, the image becomes better
constrained [87].

Some images have already been ob-
tained from a large, multielement inter-
ferometer (the Cambridge Optical Aper-
ture Synthesis Telescope) [88] and several
other telescope arrays are nearing comple-
tion (see ASTRONOMICAL TELESCOPES AND

INSTRUMENTATION).

13
Space-time and Gravitation

Michelson’s classical experiment to test
the hypothesis of a stationary ether showed
an effect that was less than one-tenth of
that expected. This experiment was re-
peated by [89], with a much higher degree
of accuracy, by locking the frequency of
a He-Ne laser to a resonance of a ther-
mally isolated Fabry–Perot interferometer
mounted along with it on a rotating hor-
izontal granite slab. When the frequency
of this laser was compared to that of a
stationary, frequency-stabilized laser, the
frequency shifts were found to be less
than 1 part in 106 of those expected with a
stationary ether.

13.1
Gravitational Waves

It follows from the general theory of
relativity that binary systems of neutron
stars, collapsing supernovae, and black
holes should be the sources of gravita-
tional waves.
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Because of the transverse quadrupolar
nature of a gravitational wave, the local
distortion of space-time due to it stretches
space in a direction normal to the direction
of propagation of the wave, and shrinks
it along the orthogonal direction. This
local strain could, therefore, be measured
by a Michelson interferometer in which
the beam splitter and the end mirrors
are attached to separate, freely suspended
masses [90, 91].

Theoretical estimates of the intensity
of gravitational radiation due to various
possible events, suggest that a sensitivity
to strain of the order of 10−21 over a
bandwidth of a kilohertz would be needed.
This would require an interferometer with
unrealistically long arms.

One way to obtain a substantial increase
in sensitivity is, as shown in Fig. 29, by
using two identical Fabry–Perot cavities,
with their mirrors mounted on freely
suspended test masses, as the arms of

the interferometer. The frequency of the
laser is locked to a transmission peak of
one interferometer, while the optical path
length in the other is continually adjusted
so that its peak transmittance is also at this
frequency [92].

A further increase in sensitivity can
be obtained by recycling the available
light. Since the interferometer is normally
adjusted so that observations are made
on a dark fringe, to avoid overloading
the detector, most of the light is returned
toward the source and is lost. If this light
is reflected back into the interferometer in
the right phase, by an extra mirror placed
in the input beam, the amount of light
traversing the arms of the interferometer
can be increased substantially [93].

Two other techniques that can be com-
bined with these techniques for obtaining
even higher sensitivity are signal recy-
cling [94] and resonant side-band extrac-
tion [95].

End mirrors

T = 0%

T = 3%

T = 3%

T = 3%

T = 50%

T = 0%

Corner
mirrors

To
detector

Recycling
mirror

From
laser

L
1 L 2

Fig. 29 Schematic of an interferometric gravitational wave detector [91]
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13.2
LIGO

The laser interferometer gravitational ob-
servatory (LIGO) project [96, 97] involves
the construction of three laser interferom-
eters with arms up to 4-km long, two at
one site and the third at another site sep-
arated from the first by almost 3000 km.
The test masses and the optical paths in
these interferometers are housed in a vac-
uum. Correlating the outputs of the three
interferometers should make it possible to
distinguish the signals due to gravitational
waves from the bursts of instrumental and
environmental noise.

13.3
Limits to Measurement

The limit to measurements of such small
displacements is ultimately related to the
number of photons n that pass through
the interferometer in the measurement
time. The resulting uncertainty in mea-
surements of the phase difference between
the beams has been shown to be [98]

�φ ≥ 1

2
√

n
, (20)

and is known as the standard quantum
limit (SQL).

14
Holographic Interferometry

Holography (see HOLOGRAPHY and
OPTICAL TECHNIQUES FOR MECHANICAL

MEASUREMENT) makes it possible to
store and reconstruct a perfect three-
dimensional image of an object. The
reconstructed wave can then be made to
interfere with the wave generated by the
object to produce fringes that contour, in

real time, any changes in the shape of the
object. Alternatively, two holograms can be
recorded with the object in two different
states and the wavefronts reconstructed
by these two holograms can be made
to interfere.

Since holographic interferometry makes
it possible to measure, with very high pre-
cision, changes in the shape of objects with
rough surfaces, it has found many applica-
tions including nondestructive testing and
vibration analysis [99–101].

14.1
Strain Analysis

The phase difference at any point (x, y) in
the interferogram is given by the relation
(see Fig. 30)

�φ = L(x, y) · (k1 − k2) = L(x, y) · K,

(21)

where L(x, y) is the vector displacement of
the corresponding point on the surface of
the object, k1 and k2 are the propagation
vectors of the incident and scattered light,
and K = k1 − k2 is known as the sensitivity
vector [102].

To evaluate the vector displacements
(out-of-plane and in-plane), it is convenient
to use a single direction of observation and

Deformed
object

To
observer

Image Incident
light

k1

k2

P′

K P

L

Fig. 30 Phase difference produced by a
displacement of the object
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record four holograms with the object illu-
minated from two different angles in the
vertical plane and two different angles in
the horizontal plane. Phase shifting is used
to obtain the phase differences at a network
of points [103]. These values can then be
used, along with information on the shape
of the object, to obtain the strains.

14.2
Vibration Analysis

One way to study the vibrating objects is to
record a hologram of the vibrating object
with an exposure time that is much longer
than the period of the vibration [104]. The
intensity at any point (x, y) in the image is
then given by the relation

I(x, y) = I0(x, y)J0[K · L(x, y)], (22)

where I0(x, y) is the intensity with the
stationary object, J0 is a zero-order Bessel
function and L(x, y) is the amplitude of
vibration of the object. The fringes ob-
served (time-average fringes) are contours
of equal vibration amplitude, with the dark

fringes corresponding to the zeros of the
Bessel function.

Alternatively, a hologram can be recor-
ded of the stationary object, and the real-
time interference pattern obtained with the
vibrating object can be viewed using stro-
boscopic illumination. A brighter image
can be obtained by recording the hologram
with stroboscopic illumination, synchro-
nized with the vibration cycle, and viewing
the interference fringes formed with the
stationary object, using continuous illu-
mination. Phase-shifting techniques can
then be used to map the instantaneous
displacement of the vibrating object (see
Fig. 31) [105].

14.3
Contouring

The simplest method of contouring an
object is by recording two holograms
with the object illuminated from slightly
different angles. More commonly used
techniques are two-wavelength contouring
and two-refractive-index contouring.

In two-wavelength contouring [106], a
telecentric lens system is used to image

1.0

0.5

25 50
(mm)

75

(µ
m

)

Fig. 31 Three-dimensional plot of the instantaneous displacement of a metal plate
vibrating at 231 Hz obtained by stroboscopic holographic interferometry using
phase shifting[105]
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the object on the hologram plane and
exposures are made with two different
wavelengths, λ1 and λ2. When the holo-
gram is illuminated with one of the
wavelengths (say λ2), fringes are seen con-
touring the reconstructed image, separated
by an increment of height

|δz| = λ1λ2

2(λ1 − λ2)
(23)

In two-refractive-index contouring [107],
the object is placed in a cell with a
glass window and imaged by a telecen-
tric system.

Two holograms are recorded on a plate
placed near the stop of the telecentric
system with the cell filled with liquids
having refractive indices n1 and n2, re-
spectively. Contours are obtained with a
spacing

|δz| = λ

2(n1 − n2)
. (24)

Digital phase-shifting techniques can
be used with both these methods of
holographic contouring. Figure 32 shows
a three-dimensional plot of a wear mark
on a flat surface obtained by phase

shifting, using the two-refractive-index
technique [108].

15
Moiré Techniques

Moiré techniques complement hologra-
phic interferometry and can be used where
a contour interval greater than 10 µm is re-
quired [109] (see also OPTICAL TECHNIQUES

FOR MECHANICAL MEASUREMENT).
A simple way to obtain Moiré fringes

is to project interference fringes (or a
grating) onto the object and view it
through a grating of approximately the
same spacing. The contour interval is
determined by the fringe (grating) spacing
and the angle between the illumination
and viewing directions. Phase shifting is
possible by shifting one grating or the
projected fringes.

15.1
Grating Interferometry

The in-plane displacements of nearly
flat objects can be measured with

200

100

0

(µ
m

)

Fig. 32 Three-dimensional plot of a wear mark on a flat surface
obtained by phase shifting, using the two-refractive-index
technique [108]
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submicrometer sensitivity by grating
interferometry [109, 110].

A reflection grating is attached to the
object under test with a suitable adhesive
and illuminated by two coherent beams
symmetrical to the grating normal. The
interference pattern produced by the two
diffracted beams reflected from the grating
yields a map of the in-plane displacements.
Polarization techniques can be used for
phase shifting.

16
Speckle Interferometry

The image of an object illuminated by a
laser is covered with a stationary gran-
ular pattern known as a speckle pat-
tern (see SPECKLE AND SPECKLE METROL-

OGY). Speckle interferometry [111] utilizes
interference between the speckled image
of an object illuminated by a laser and a
reference beam derived from the same
laser. Any change in the shape of the
object results in local changes in the in-
tensity distribution in the speckle pattern.
If two photographs of the speckled image
are superimposed, fringes are obtained,
corresponding to the degree of correlation
of the two speckle patterns that contour
the changes in shape of the surface [112].

Speckle interferometry can be a very
simple way of measuring the in-plane

displacements using an optical system in
which the surface is illuminated by two
beams making equal but opposite angles
to the normal.

16.1
Electronic Speckle Pattern Interferometry
(ESPI)

Measurements can be made at video rates
using a TV camera interfaced to a com-
puter [111, 113]. As shown in Fig. 33, the
object is imaged on a CCD array along with
a coaxial reference beam. This technique
was originally known as electronic speckle
pattern interferometry (ESPI).

If an image of the object in its original
state is subtracted from an image of
the object at a later stage, regions in
which the speckle pattern has not changed,
corresponding to the condition

K · L(x, y) = 2mπ, (25)

where m is an integer, appear dark, while
regions where the pattern has changed are
covered with bright speckles [114, 115].

This technique is also known as
TV holography.

16.2
Phase-shifting Speckle Interferometry

Each speckle can be regarded as an
individual interference pattern and the

Object
TV

camera

Reference beam

Single-mode
fiber

Fig. 33 System for ESPI
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phase difference between the two beams
at this point can be measured by phase
shifting, with the object before and after
an applied stress. The result of subtracting
the second set of values from the first is
then a contour map of the deformation of
the object [116, 117].

Further developments in speckle
interferometry with phase-measurement
techniques, high-resolution CCD arrays,
and real-time processing have created
many techniques encompassing what is
now most commonly known as digital
holography (see OPTICAL TECHNIQUES

FOR MECHANICAL MEASUREMENT and
HOLOGRAPHY).

16.3
Vibrating Objects

If the period of the vibration is small
compared to the exposure time or the
scan time of the camera, the contrast
of the speckles at any point is given by
the expression

C = {1 + 2αJ2
0[K · L(x, y)]}1/2

1 + α
, (26)

where α is the ratio of the intensities of
the reference beam and the object beam,
K is the sensitivity vector and L(x, y) is the
vibration amplitude at that point. Regions
corresponding to the zeros of the J0 Bessel
function appear as dark fringes.

Phase-shifting techniques can also be
applied to the analysis of vibrations [118].

Glossary

Beam splitter: An optical element that
divides a single beam of light into two
beams of the same wave form.

Coherence: A complex quantity whose
magnitude denotes the correlation be-
tween two wave fields; its phase de-
notes the effective phase difference be-
tween them.

Degree of Coherence: The value of the
coherence expressed as a fraction of
that for complete correlation between the
wave fields.

Fringes of Equal Inclination: Interference
fringes created from two collinear in-
terfering beams having wavefronts with
different radii of curvature.

Fringes of Equal Thickness: Interference
fringes created with collimated beams
when the optical path difference depends
only on the thickness and refractive index.

Interference Order: The number of wave-
lengths in the optical path difference
between two interfering beams.

Interferogram: The varying part of an
interference pattern, after subtracting any
uniform background.

Moiré Fringes: Relatively coarse fringes
produced by the superposition of two
fine fringe patterns with slightly different
spacings or orientations.

Optical Path Difference: The difference
in the optical path length between two
interfering beams.

Optical Path Length: The product of the
refractive index of the medium traversed
by a beam and the length of the path in
the medium.

Optical Phase: The resultant phase of a
light beam after allowing for changes due
to the optical path traversed and reflection
at any surfaces.
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Phase Shifting: A technique that shifts the
phase of one interfering beam relative to
the other in order to determine optical
path difference from the intensity in an
interference fringe pattern.

Region of Localization: The region in which
interference fringes are observed with
maximum contrast.
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1
Introduction

The combination of laser cooling and
atom trapping has produced astounding
new tools for atomic physicists [1]. These
experiments require the exchange of mo-
mentum between atoms and an optical
field, usually at a nearly resonant fre-
quency. The energy of light h̄ω changes
the internal energy of the atom, and the
angular momentum h̄ changes the orbital
angular momentum � of the atom, as de-
scribed by the well-known selection rule
�� = ±1. By contrast, the linear momen-
tum of light p = h̄ω/c = h̄k cannot change
the internal atomic degrees of freedom,
and therefore must change the momen-
tum of the atoms in the laboratory frame.
The force resulting from this momentum
exchange between the light field and the
atoms can be used in many ways to control
atomic motion, and is the subject of this
article.

1.1
Temperature and Entropy

The idea of ‘‘temperature’’ in laser cool-
ing requires some careful discussion and
disclaimers. In thermodynamics, temper-
ature is carefully defined as a parameter
of the state of a closed system in thermal
equilibrium with its surroundings. This,
of course, requires that there be thermal
contact, that is, heat exchange, with the en-
vironment. In laser cooling, this is clearly
not the case because a sample of atoms
is always absorbing and scattering light.
Furthermore, there is essentially no heat
exchange (the light cannot be considered
as heat even though it is indeed a form
of energy). Thus, the system may very
well be in a steady state situation, but cer-
tainly not in thermal equilibrium, so the

assignment of a thermodynamic ‘‘temper-
ature’’ is completely inappropriate.

Nevertheless, it is convenient to use the
label of temperature to describe an atomic
sample whose average kinetic energy 〈Ek〉
has been reduced by the laser light, and
this is written simply as kBT/2 = 〈Ek〉,
where kB is the Boltzmann’s constant (for
the case of one dimension, 1-D). It must
be remembered that this temperature
assignment is absolutely inadequate for
atomic samples that do not have a
Maxwell–Boltzmann velocity distribution,
whether or not they are in thermal contact
with the environment; there are infinitely
many velocity distributions that have the
same value of 〈Ek〉 but are so different
from one another that characterizing them
by the same ‘‘temperature’’ is a severe
error. (In the special case where there
is a true damping force, F ∝ −v, and
where the diffusion in momentum space
is a constant independent of momentum,
solutions of the Fokker–Planck equation
can be found analytically and can lead
to a Maxwell–Boltzmann distribution that
does indeed have a temperature.)

Since laser cooling decreases the tem-
perature of a sample of atoms, there is
less disorder and therefore less entropy.
This seems to conflict with the second law
of thermodynamics, which requires the
entropy of a closed system to always in-
crease with time. The explanation lies in
the consideration of the fact that in laser
cooling, the atoms do not form a closed
system. Instead, there is always a flow of
laser light with low entropy into the sys-
tem and fluorescence with high entropy
out of it. The decrease of entropy of the
atoms is accompanied by a much larger
increase in entropy of the light field. En-
tropy considerations for a laser beam are
far from trivial, but recently it has been
shown that the entropy lost by the atoms
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is many orders of magnitude smaller than
the entropy gained by the light field.

1.2
Phase Space Density

The phase space density ρ(�r, �p, t) is
defined as the probability that a single
particle is in a region d�r around �r and
has momentum d�p around �p at time t.
In classical mechanics, ρ(�r, �p, t) is just the
sum of the ρ(�r, �p, t) values of each of the N
particles in the system divided by N. Since
the phase space density is a probability, it
is always positive and can be normalized
over the six-dimensional volume spanned
by position �r and momentum �p. For a gas
of cold atoms, it is convenient to choose the
elementary volume for ρ(�r, �p, t) to be h̄3,
so it becomes the dimensionless quantity

ρφ = nλ3
deB, (1)

where λdeB is the deBroglie wavelength of
the atoms in the sample and n is their
spatial density.

The Liouville theorem requires that ρφ

cannot be increased by using conservative
forces. For instance, in light optics one
can focus a parallel beam of light with a
lens to a small spot. However, that simply
produces a high density of light rays in the
focus in exchange for the momentum part
of ρφ because the beam entering the lens
is parallel but the light rays are divergent
at the focus.

For classical particles, the same principle
applies. By increasing the strength of the
trapping potential of particles in a trap, one
can increase the density of the atoms in the
trap but at the same time, the compression
of the sample results in a temperature
increase, leaving the phase space density
unchanged.

In order to increase the phase space
density of an atomic sample, it is necessary

to use a force that is not conservative,
such as a velocity-dependent force. In laser
cooling, the force on the atoms can be
a damping force, that is, always directed
opposite to the atomic velocity, so that
the momentum part of ρφ increases. This
process arises from the irreversible nature
of spontaneous emission.

2
Optical Forces on Neutral Atoms

The usual form of electromagnetic forces is
given by �F = q(�E + �v × �B), but for neutral
atoms, q = 0. The next order of force is the
dipole term, but this also vanishes because
neutral atoms have no inherent dipole
moment. However, a dipole moment can
be induced by a field, and this is most
efficient if the field is alternating near the
atomic resonance frequency. Since these
frequencies are typically in the optical
range, dipole moments are efficiently
induced by shining nearly resonant light
on the atoms.

If the light is absorbed, the atom
makes a transition to the excited state,
and the subsequent return to the ground
state can be either by spontaneous or by
stimulated emission. The nature of the
optical force that arises from these two
different processes is quite different and
will be described separately.

The spontaneous emission case is
different from the familiar quantum-
mechanical calculations using state vec-
tors to describe the system. Spontaneous
emission causes the state of the sys-
tem to evolve from a pure state into
a mixed state and so the density ma-
trix is needed to describe it. Sponta-
neous emission is an essential ingredient
for the dissipative nature of the optical
forces.
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2.1
Radiative Optical Forces

In the simplest case–the absorption of
well-directed light from a laser beam–the
momentum exchange between the light
field and the atoms results in a force

�F = d�p
dt

= h̄�kγp, (2)

where γp is the excitation rate of the atoms.
The absorption leaves the atoms in their
excited state, and if the light intensity
is low enough that they are much more
likely to return to the ground state by
spontaneous emission than by stimulated
emission, the resulting fluorescent light
carries off momentum h̄k in a random
direction. The momentum exchange from
the fluorescence averages zero, so the net
total force is given by Eq. (2).

The excitation rate γp depends on the
laser detuning from atomic resonance δ ≡
ωl − ωa, where ωl is the laser frequency
and ωa is the atomic resonance frequency.
This detuning is measured in the atomic
rest frame, and it is necessary that the
Doppler-shifted laser frequency in the rest
frame of the moving atoms be used to
calculate γp. In Sect. 2.3.3, we find that
γp for a two-level atom is given by the
Lorentzian

γp = s0γ /2

1 + s0 + [2(δ + ωD)/γ ]2
, (3)

where γ ≡ 1/τ is an angular frequency
corresponding to the natural decay rate of
the excited state. Here, s0 = I/Is is the ratio
of the light intensity I to the saturation
intensity Is ≡ πhc/3λ3τ , which is a few
mW cm−2 for typical atomic transitions.
The Doppler shift seen by the moving
atoms is ωD = −�k · �v (note that �k opposite
to �v produces a positive Doppler shift for

the atoms). The force is thus velocity-
dependent and the experimenters’ task is
to exploit this dependence to the desired
goal, for example, optical friction for laser
cooling.

The maximum attainable deceleration
is obtained for high intensities of light.
High-intensity light can produce faster ab-
sorption, but it also causes equally fast
stimulated emission; the combination pro-
duces neither deceleration nor cooling.
The momentum transfer to the atoms
by stimulated emission is in the oppo-
site direction to what it was in absorption,
resulting in a net transfer of zero mo-
mentum. At high intensity, Eq. (3) shows
saturation of γp at γ /2, and since the force
is given by Eq. (2), the deceleration satu-
rates at a value �amax = h̄�kγ /2M.

2.2
Dipole Optical Forces

While detuning |δ| � γ , spontaneous
emission may be much less frequent than
stimulated emission, unlike the case of the
dissipative radiative force that is necessary
for laser cooling, given by Eqs. (2) and (3).
In this case, absorption is most often fol-
lowed by stimulated emission, and seems
to produce zero momentum transfer be-
cause the stimulated light has the same
momentum as the exciting light. How-
ever, if the optical field has beams with at
least two different �k-vectors present, such
as in counterpropagating beams, absorp-
tion from one beam followed by stimulated
emission into the other indeed produces a
nonzero momentum exchange. The result
is called the dipole force, and is reversible
and hence conservative, so it cannot be
used for laser cooling.

The dipole force is more easily calculated
from an energy picture than from a
momentum picture. The force then derives
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from the gradient of the potential of an
atom in an inhomogeneous light field,
which is appropriate because the force is
conservative. The potential arises from the
shift of the atomic energy levels in the
light field, appropriately called the ‘‘light
shift”, and is found by direct solution of the
Schrödinger equation for a two-level atom
in a monochromatic plane wave. After
making both the dipole and rotating wave
approximations, the Hamiltonian can be
written as

H = h̄

2

[−2δ �

�∗ 0

]
(4)

where the Rabi frequency is |�| = γ
√

s0/2
for a single traveling laser beam. Solution
of Eq. (4) for its eigenvalues provides
the dressed state energies that are light-
shifted by

ωls =
[√|�|2 + δ2 − δ

]
2

. (5)

For sufficiently large detuning |δ| � |�|,
approximation of Eq. (5) leads to ωls ≈
|�|2/4δ = γ 2s0/8δ.

In a standing wave in 1-D with |δ| � |�|,
the light shift ωls varies sinusoidally from
node to antinode. When δ is sufficiently
large, the spontaneous emission rate
may be negligible compared with that of
stimulated emission, so that h̄ωls may be
treated as a potential U. The resulting
dipole force is

�F = −�∇U = − h̄γ 2

8δIs
�∇I, (6)

where I is the total intensity distribution
of the standing-wave light field of period
λ/2. For such a standing wave, the optical
electric field (and the Rabi frequency) at the
antinodes is double that of each traveling
wave that composes it, and so the total

intensity Imax at the antinodes is four times
that of the single traveling wave.

2.3
Density Matrix Description of Optical
Forces

2.3.1 Introduction
Use of the density matrix ρ for pure states
provides an alternative description to the
more familiar one that uses wave functions
and operators but adds nothing new. Its
equation of motion is ih̄(dρ/dt) = [H, ρ],
and can be derived directly from the
Schrödinger equation. Moreover, it is a
straightforward exercise to show that the
expectation value of any operator A that
represents an observable is 〈A〉 = tr (ρA).

Application of the Ehrenfest theorem
gives the expectation value of the force as
〈F〉 = −tr (ρ∇H). Beginning with the two-
level atom Hamiltonian of Eq. (4), we find
the force in 1-D to be

〈F〉 = h̄

(
∂�

∂z
ρ∗

eg + ∂�∗
∂z

ρeg

)
. (7)

Thus, 〈F〉 depends only on the off-diagonal
elements ρeg = ρ∗

ge, terms that are called
the optical coherences.

2.3.2 Open Systems and the Dissipative
Force
The real value of the density matrix
formalism for atom-light interactions is
its ability to deal with open systems. By
not including the fluorescent light that is
lost from an atom-laser system undergoing
cooling, a serious omission is being made
in the discussion above. That is, the closed
system of atom plus laser light that can be
described by Schrödinger wave functions
and is thus in a pure state, undergoes
evolution to a ‘‘mixed’’ state by virtue of
the spontaneous emission. This omission
can be rectified by simple ad hoc additions
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to the equation of motion, and the result is
called the optical Bloch equations (OBE).
These are written explicitly as

dρgg

dt
= +γρee + i

2
(�∗ρ̃eg − �ρ̃ge)

dρee

dt
= −γρee + i

2
(�ρ̃ge − �∗ρ̃eg)

dρ̃ge

dt
= −

(γ

2
+ iδ

)
ρ̃ge + i

2
�∗(ρee − ρgg)

dρ̃eg

dt
= −

(γ

2
− iδ

)
ρ̃eg + i

2
�(ρgg − ρee),

(8)

where ρ̃eg ≡ ρege−iδt for the coherences.
In these equations, the terms propor-

tional to the spontaneous decay rate γ have
been put in ‘‘by hand”, that is, they have
been introduced into the OBEs to account
for the effects of spontaneous emission.
The spontaneous emission is irreversible
and accounts for the dissipation of the
cooling process. For the ground state, the
decay of the excited state leads to an in-
crease of its population ρgg proportional to
γρee, whereas for the excited state, it leads
to a decrease of ρee, also proportional to

γρee. These equations have to be solved in
order to evaluate the optical force on the
atoms.

2.3.3 Solution of the OBEs in Steady State
In most cases, the laser light is applied
for a period long compared to the typical
evolution times of atom-light interaction,
that is, the lifetime of the excited state τ =
1/γ . Thus, only the steady state solution of
the OBEs have to be considered, and these
are found by setting the time derivatives in
Eq. (8) to zero. Then the probability ρee to
be in the excited state is found to be

ρee = γp

γ
= s0/2

1 + s0 + (2δ/γ )2 = s/2

1 + s
,

(9)

where s ≡ s0/[1 + (2δ/γ )2] is the off-
resonance saturation parameter. The
excited-state population ρee increases lin-
early with the saturation parameter s for
small values of s, but for s of the order of
unity, the probability starts to saturate to a
value of 1/2. The detuning dependence of
γp (see Eq. 3) showing this saturation for
various values of s0 is depicted in Fig. 1.
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Fig. 1 Excitation rate γp as a function of the detuning δ for several
values of the saturation parameter s0. Note that for s0 > 1, the line
profiles start to broaden substantially from power broadening
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2.3.4 Radiative and Dipole Forces
Some insight into these forces emerges
by expressing the gradient of the Rabi
frequency of Eq. (7) in terms of a real
and imaginary part so that (∂�/∂z) =
(qr + iqi)�. Then Eq. (7) becomes

F = h̄qr(�ρ∗
eg + �∗ρeg)

+ ih̄qi(�ρ∗
eg − �∗ρeg) (10)

Thus, the first term of the force is related
to the dispersive part of the atom-light
interaction, whereas the second term is
related to the absorptive part of the atom-
light interaction.

To appreciate the utility of the separation
of ∇� into real and imaginary parts,
consider the interaction of atoms with a
traveling plane wave E(z) = E0(ei(kz−ωt) +
c.c.)/2. In this case, qr = 0 and qi = k, and
so the force is caused only by absorption.
The force is given by Fsp = h̄kγρee and is
the radiative force of Eqs. (2) and (3).

For the case of counterpropagating plane
waves, there is a standing wave whose
electric field is E(z) = E0 cos(kz)(e−iωt +
c.c.). Thus, qr = −k tan(kz) and qi = 0, so
there is only the dispersive part of the
force, given by

Fdip = 2h̄kδs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ )2 . (11)

This replaces Eq. (6) for the dipole force
and removes the restriction |δ| � |�|,
thereby including saturation effects. Even
though the average of this force over a
wavelength vanishes, it can be used to
trap atoms in a region smaller than the
wavelength of the light.

2.3.5 Force on Moving Atoms
In order to show how these forces can be
used to cool atoms, one has to consider
the force on moving atoms. For the case of

atomic velocities that are small compared
with γ /k, the motion can be treated as a
small perturbation in the atomic evolution
that occurs on the time scale 1/γ . Then the
first-order result is given by

d�

dt
= ∂�

∂t
+ v

∂�

∂z
= ∂�

∂t
+ v(qr + iqi)�.

(12)

For the case of atoms moving in a standing
wave, this results in the same damping
force as Eq. (13) below.

3
Laser Cooling

3.1
Slowing Atomic Beams

Among the earliest laser cooling exper-
iments was the deceleration of atoms
in a beam [2]. The authors exploited the
Doppler shift to make the momentum
exchange (hence the force) velocity de-
pendent. It worked by directing a laser
beam opposite an atomic beam so that the
atoms could absorb light, and hence mo-
mentum h̄k, very many times along their
paths through the apparatus as shown in
Fig. 2 [2, 3]. Of course, excited-state atoms
cannot absorb light efficiently from the
laser that excited them, so between ab-
sorptions they must return to the ground
state by spontaneous decay, accompanied
by the emission of fluorescent light. The
spatial symmetry of the emitted fluores-
cence results in an average of zero net
momentum transfer from many such fluo-
rescence events. Thus, the net force on the
atoms is in the direction of the laser beam,
and the maximum deceleration is limited
by the spontaneous emission rate γ .

Since the maximum deceleration �amax =
h̄�kγ /2M is fixed by atomic parameters, it is
straightforward to calculate the minimum
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Fig. 2 Schematic diagram of apparatus for beam slowing. The tapered magnetic field is
produced by layers of varying length on the solenoid

stopping length Lmin and time tmin for
the rms velocity of atoms v̄ = 2

√
kBT/M

at the source temperature. The result is
Lmin = v2/2amax and tmin = v/amax. In
Table 1 are some of the parameters for
slowing a few atomic species of interest
from the peak of the thermal velocity
distribution.

Maximizing the scattering rate γp re-
quires δ = −ωD in Eq. (3). If δ is chosen
for a particular atomic velocity in the
beam, then as the atoms slow down, their
changing Doppler shift will take them
out of resonance. They will eventually
cease deceleration after their Doppler shift
has been decreased by a few times the
power-broadened width γ ′ = γ

√
1 + s0,

corresponding to �v of a few times
vc = γ ′/k. Although this �v of a few
m s−1 is considerably larger than the typ-
ical atomic recoil velocity vr = h̄k/M of a
few cm s−1, it is still only a small frac-
tion of the average thermal velocity v of
the atoms, such that significant further
cooling or deceleration cannot be accom-
plished.

Tab. 1 Parameters of interest for slowing
various atoms. The stopping length Lmin and
time tmin are minimum values. The oven
temperature Toven that determines the peak
velocity is chosen to give a vapor pressure of
1 Torr. Special cases are H at 1000 K for
dissociation of H2 into atoms, and He in the
metastable triplet state, for which two rows are
shown: one for a 4-K source and another for the
typical discharge temperature

Atom Toven
[K]

v
[m s−1]

Lmin
[m]

tmin
[ms]

H 1000 5000 0.012 0.005
He* 4 158 0.03 0.34
He* 650 2013 4.4 4.4
Li 1017 2051 1.15 1.12
Na 712 876 0.42 0.96
K 617 626 0.77 2.45
Rb 568 402 0.75 3.72
Cs 544 319 0.93 5.82

In order to achieve deceleration that
changes the atomic speeds by hundreds
of m s−1, it is necessary to maintain
(δ + ωD)  γ by compensating such large
changes of the Doppler shift. This can be
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done by changing ωD through the angular
dependence of �k · �v, or changing δ either
via ωl or ωa. The two most common
methods for maintaining this resonance
are sweeping the laser frequency ωl
along with the changing ωD of the
decelerating atoms [4–6], or by spatially
varying the atomic resonance frequency
with an inhomogeneous d.c magnetic
field to keep the decelerating atoms
in resonance with the fixed frequency
laser [2, 3, 7].

The use of a spatially varying magnetic
field to tune the atomic levels along the
beam path was the first method to succeed
in slowing atoms [2, 3]. It works as long
as the Zeeman shifts of the ground and
excited states are different so that the
resonant frequency is shifted. The field
can be tailored to provide the appropriate
Doppler shift along the moving atom’s
path. A solenoid that can produce such
a spatially varying field has layers of
decreasing lengths. The technical problem
of extracting the beam of slow atoms from
the end of the solenoid can be simplified by
reversing the field gradient and choosing a
transition whose frequency decreases with
increasing field [9].

For alkali atoms such as sodium, a
time-of-flight (TOF) method can be used
to measure the velocity distribution of
atoms in the beam [8]. It employs two
additional beams labeled pump and probe
from Laser 1 as shown in Fig. 2. Because
these beams cross the atomic beam at 90◦,
ωD = −�k · �v = 0, and they excite atoms at
all velocities. The pump beam is tuned
to excite and empty a selected ground
hyperfine state (hfs), and it transfers
more than 98% of the population as the
atoms pass through its 0.5 mm width.
To measure the velocity distribution of
atoms in the selected hfs, this pump
laser beam is interrupted for a period of

�t = 10 − 50 µs with an acoustic optical
modulator (AOM). A pulse of atoms in
the selected hfs passes the pump region
and travels to the probe beam. The time
dependence of the fluorescence induced
by the probe laser, tuned to excite the
selected hfs, gives the time of arrival, and
this signal is readily converted to a velocity
distribution. Figure 3 shows the measured
velocity distribution of the atoms slowed
by Laser 2.

3.2
Optical Molasses

3.2.1 Doppler Cooling
A different kind of radiative force arises
in low intensity, counterpropagating light
beams that form a weak standing wave. It
is straightforward to calculate the radiative
force on atoms moving in such a standing
wave using Eq. (3). In the low intensity
case where stimulated emission is not
important, the forces from the two light
beams are simply added to give �FOM =
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Fig. 3 The velocity distribution measured with
the TOF method. The experimental width of
approximately 1

6 (γ /k) is shown by the dashed
vertical lines between the arrows. The Gaussian
fit through the data yields an FWHM (full width
at half maximum) of 2.97 m s−1 (figure taken
from Molenaar, P. A., vander Straten, P.,
Heideman, H. G. M., Metcalf, H. (1997), Phys.
Rev. A 55, 605–614)
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�F+ + �F−, where �F± are found from Eqs. (2)
and (3). Then the sum of the two forces is

�FOM ∼= 8h̄k2δs0�v
γ (1 + s0 + (2δ/γ )2)2 ≡ −β�v,

(13)

where terms of order (kv/γ )4 and higher
have been neglected. The force is pro-
portional to velocity for small enough
velocities, resulting in viscous damping
for δ < 0 [10, 11] that gives this technique
the name ‘‘optical molasses’’ (OM).

These forces are plotted in Fig. 4. For
δ < 0, this force opposes the velocity
and therefore viscously damps the atomic
motion. The force �FOM has maxima near
v ≈ ±γ

√
s0 + 1/2k and decreases rapidly

for larger velocities.

3.2.2 Doppler Cooling Limit
If there were no other influence on the
atomic motion, all atoms would quickly
decelerate to v = 0 and the sample would
reach T = 0, a clearly unphysical result. In

laser cooling and related aspects of optical
control of atomic motion, the forces arise
because of the exchange of momentum
between the atoms and the laser field.
These necessarily discrete steps of size h̄k
constitute a heating mechanism that must
be considered.

Since the atomic momentum changes
by h̄k, their kinetic energy changes on
an average by at least the recoil energy
Er = h̄2k2/2M = h̄ωr. This means that the
average frequency of each absorption is
at least ωabs = ωa + ωr. Similarly, the en-
ergy h̄ωa available from each spontaneous
decay must be shared between the out-
going light and the kinetic energy of
the atom recoiling with momentum h̄k.
Thus, the average frequency of each emis-
sion is ωemit = ωa − ωr. Therefore, the
light field loses an average energy of
h̄(ωabs − ωemit) = 2h̄ωr for each scatter-
ing event. This loss occurs at a rate of 2γp

(two beams), and the energy is converted
to atomic kinetic energy because the atoms
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Fig. 4 Velocity dependence of the optical damping forces for 1-D
optical molasses. The two dotted traces show the force from each
beam, and the solid curve is their sum. The straight line shows
how this force mimics a pure damping force over a restricted
velocity range. These are calculated for s0 = 2 and δ = −γ , so
there is some power broadening evident
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recoil from each event. The atomic sample
is thereby heated because these recoils are
in random directions.

The competition between this heating
and the damping force of Eq. (13) results
in a nonzero kinetic energy in steady state,
where the rates of heating and cooling are
equal. Equating the cooling rate, �FOM · �v, to
the heating rate, 4h̄ωrγp, we find the steady
state kinetic energy to be (h̄γ /8)(2|δ|/γ +
γ /2|δ|). This result is dependent on
|δ|, and has a minimum at 2|δ|/γ = 1,
whence δ = −γ /2. The temperature found
from the kinetic energy is then TD =
h̄γ /2kB, where TD is called the Doppler
temperature or the Doppler cooling limit.
For ordinary atomic transitions, TD is
typically below 1 mK.

Another instructive way to determine
TD is to note that the average momentum
transfer of many spontaneous emissions
is zero, but the rms scatter of these
about zero is finite. One can imagine
these decays as causing a random walk
in momentum space, similar to Brownian
motion in real space, with step size h̄k

and step frequency 2γp, where the factor
of 2 arises because of the two beams. The
random walk results in an evolution of
the momentum distribution as described
by the Fokker–Planck equation, and can
be used for a more formal treatment of
laser cooling. It results in diffusion in
momentum space with diffusion coeffi-
cient D0 ≡ 2(�p)2/�t = 4γp(h̄k)2. Then
the steady state temperature is given by
kBT = D0/β. This turns out to be h̄γ /2 as
above for the case s0  1 when δ = −γ /2.
This remarkable result predicts that the
final temperature of atoms in OM is inde-
pendent of the optical wavelength, atomic
mass, and laser intensity (as long as it is
not too large).

3.2.3 Atomic Beam
Collimation – One-dimensional Optical
Molasses – Beam Brightening
When an atomic beam crosses a 1-D OM
as shown in Fig. 5, the transverse motion
of the atoms is quickly damped while
the longitudinal component is essentially
unchanged. This transverse cooling of

Optical
molasses

Optical
molasses

Laser or
magnetic lens

Very bright
atomic beam

Oven

Fig. 5 Scheme for optical brightening of an atomic beam. First,
the transverse velocity components of the atoms are damped out
by an optical molasses, then the atoms are focused to a spot,
and finally the atoms are recollimated in a second optical
molasses (figure taken from Sheehy, B., Shang, S. Q., van der
Straten, P., Metcalf, H. (1990), Chem. Phys. 145, 317–325)
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an atomic beam is an example of a
method that can actually increase its
brightness (atoms/s-sr-cm2) because such
active collimation uses dissipative forces
to compress the phase space volume
occupied by the atoms. By contrast, the
usual focusing or collimation techniques
for light beams and most particle beams
is restricted to selection by apertures or
conservative forces that preserve the phase
space density of atoms in the beam.

This velocity compression at low in-
tensity in one dimension can be easily
estimated for two-level atoms to be about
vc/vD = √

γ /ωr ≡ √
1/ε. Here vD is the

velocity associated with the Doppler limit
for laser cooling discussed above: vD =√

h̄γ /2M. For Rb, vD = 12 cm s−1, vc =
γ /k � 4.6 m s−1, ωr � 2π × 3.8 kHz, and
1/ε � 1600. (The parameter ε character-
izes optical forces on atoms.) Includ-
ing two transverse directions along with
the longitudinal slowing and cooling
discussed above, the decrease in three-
dimensional 3-D phase space volume for
laser cooling of an Rb atomic beam from
the momentum contribution alone can
exceed 106. Clearly optical techniques
can create atomic beams enormously
more times intense than ordinary thermal
beams and also many orders of magnitude
brighter.

3.2.4 Experiments in Three-dimensional
Optical Molasses
By using three intersecting orthogonal
pairs of oppositely directed beams, the
movement of atoms in the intersection
region can be severely restricted in all 3-D,
and many atoms can thereby be collected
and cooled in a small volume.

Even though atoms can be collected
and cooled in the intersection region, it
is important to stress that this is not a
trap (see Sect. 4 below), that is, atoms that

wander away from the center experience
no force directing them back. They are
allowed to diffuse freely and even escape,
as long as there is enough time for
their very slow diffusive movement to
allow them to reach the edge of the
region of intersection of the laser beams.
Since the atomic velocities are randomized
during the damping time M/β = 2/ωr,
atoms execute a random walk in position
space with a step size of 2vD/ωr =
λ/(π

√
2ε) ∼= few µm. To diffuse a distance

of 1 cm requires about 107 steps or about
30 s [13, 14].

In 1985, the group at Bell Labs was the
first to observe 3-D OM [11]. Preliminary
measurements of the average kinetic en-
ergy of the atoms were done by blinking
off the laser beams for a fixed interval.
Comparison of the brightness of the fluo-
rescence before and after the turnoff was
used to calculate the fraction of atoms that
left the region while it was in the dark.
The dependence of this fraction on the
duration of the dark interval was used to es-
timate the velocity distribution and hence
the temperature. This method, which is
usually referred to as release and recapture,
is specifically designed to measure the tem-
perature of the atoms, since the usual way
of measuring temperatures cannot be ap-
plied to an atomic cloud of a few million
atoms. The result was consistent with TD

as calculated from the Doppler theory, as
described in Sect. 3.2.2.

Later a more sensitive ballistic technique
was devised at NIST that showed the
astounding result that the temperature of
the atoms in OM was very much lower than
TD [15]. These experiments also found that
OM was less sensitive to perturbations
and more tolerant of alignment errors
than was predicted by Doppler theory.
For example, if the intensities of the two
counterpropagating laser beams forming
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an OM were unequal, then the force
on the atoms at rest would not vanish,
but the force on the atoms with some
nonzero drift velocity would vanish. This
drift velocity can be easily calculated by
using unequal intensities s0+ and s0−,
to derive an analog of Eq. (13). Thus,
atoms would drift out of an OM, and the
calculated rate would be much faster than
observed by deliberately unbalancing the
beams in the experiments [16].

3.3
Cooling Below the Doppler Limit

3.3.1 Introduction
It was an enormous surprise to observe
that the ballistically measured temperature
of the Na atoms was as much as 10
times lower than TD = 240 µK [15], the
temperature minimum calculated from
theory. This breaching of the Doppler limit
forced the development of an entirely new
picture of OM that accounts for the fact
that in 3-D, a two-level picture of atomic
structure is inadequate. The multilevel
structure of atomic states, and optical
pumping among these sublevels, must be
considered in the description of 3-D OM.

In response to these surprising mea-
surements of temperatures below TD, two
groups developed a model of laser cooling
that could explain the lower tempera-
tures [17, 18]. The key feature of this model
that distinguishes it from the earlier pic-
ture is the inclusion of the multiplicity of
sublevels that make up an atomic state
(e.g., Zeeman and hfs). The dynamics
of optically pumping the moving atoms
among these sublevels provides the new
mechanism for producing ultralow tem-
peratures [19].

The dominant feature of these models
is the nonadiabatic response of moving
atoms to the light field. Atoms at rest in a

steady state have ground-state orientations
caused by optical pumping processes that
distribute the populations over the differ-
ent ground-state sublevels. In the presence
of polarization gradients, these orienta-
tions reflect the local light field. In the
low-light-intensity regime, the orientation
of stationary atoms is completely deter-
mined by the ground-state distribution;
the optical coherences and the excited-
state population follow the ground-state
distribution adiabatically.

For atoms moving in a light field
that varies in space, optical pumping
acts to adjust the atomic orientation
to the changing conditions of the light
field. In a weak pumping process, the
orientation of moving atoms always lags
behind the orientation that would exist for
stationary atoms. It is this phenomenon of
nonadiabatic following that is the essential
feature of the new cooling process.

Production of spatially dependent optical
pumping processes can be achieved in
several different ways. As an example,
consider two counterpropagating laser
beams that have orthogonal polarizations,
as discussed below. The superposition of
the two beams results in a light field
having a polarization that varies on the
wavelength scale along the direction of the
laser beams. Laser cooling by such a light
field is called polarization gradient cooling.
In a 3-D OM, the transverse wave character
of light requires that the light field always
has polarization gradients.

3.3.2 Linear ⊥ Linear Polarization
Gradient Cooling
One of the most instructive models for
discussion of sub-Doppler laser cooling
was introduced in Ref. [17] and very well
described in Ref. [19]. If the polarizations
of two counterpropagating laser beams
are identical, the two beams interfere
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and produce a standing wave. When
the two beams have orthogonal linear
polarizations (same frequency ωl) with
their Ê vectors perpendicular (e.g., x̂ and
ŷ), the configuration is called lin ⊥ lin
or lin-perp-lin. Then the total field is the
sum of the two counterpropagating beams
given by

�E = E0 x̂ cos(ωlt − kz) + E0ŷ cos(ωlt + kz)

= E0[(x̂ + ŷ) cos ωlt cos kz

+ (x̂ − ŷ) sin ωlt sin kz]. (14)

At the origin, where z = 0, this becomes

�E = E0(x̂ + ŷ) cos ωlt, (15)

which corresponds to linearly polarized
light at an angle +π/4 to the x-axis. The
amplitude of this field is

√
2E0. Similarly,

for z = λ/4, where kz = π/2, the field is
also linearly polarized but at an angle −π/4
to the x-axis.

Between these two points, at z = λ/8,
where kz = π/4, the total field is

�E = E0

[
x̂ sin

(
ωlt + π

4

)

− ŷ cos
(
ωlt + π

4

)]
. (16)

Since the x̂ and ŷ components have
sine and cosine temporal dependence,
they are π/2 out of phase, and so
Eq. (16) represents circularly polarized
light rotating about the z-axis in the
negative sense. Similarly, at z = 3λ/8
where kz = 3π/4, the polarization is
circular but in the positive sense. Thus,
in this lin ⊥ lin scheme the polarization
cycles from linear to circular to orthogonal
linear to opposite circular in the space of
only half a wavelength of light, as shown in
Fig. 6. It truly has a very strong polarization
gradient.

l/2

py

px

l/2

0

0 l/4

s−

s +
k1
→

k2
→

Fig. 6 Polarization gradient field for the lin ⊥ lin
configuration

Since the coupling of the different states
of multilevel atoms to the light field de-
pends on its polarization, atoms moving
in a polarization gradient will be coupled
differently at different positions, and this
will have important consequences for laser
cooling. For the Jg = 1/2 → Je = 3/2 tran-
sition (one of the simplest transitions that
show sub-Doppler cooling [20]), the opti-
cal pumping process in purely σ+ light
drives the ground-state population to the
Mg = +1/2 sublevel. This optical pump-
ing occurs because absorption always
produces �M = +1 transitions, whereas
the subsequent spontaneous emission pro-
duces �M = ±1, 0. Thus, the average
�M ≥ 0 for each scattering event. For σ−-
light, the population is pumped toward the
Mg = −1/2 sublevel. Thus, atoms trav-
eling through only a half wavelength in
the light field, need to readjust their pop-
ulation completely from Mg = +1/2 to
Mg = −1/2 and back again.

The interaction between nearly resonant
light and atoms not only drives transitions
between atomic energy levels but also
shifts their energies. This light shift of
the atomic energy levels, discussed in
Sect. 2.2, plays a crucial role in this scheme
of sub-Doppler cooling, and the changing
polarization has a strong influence on the
light shifts. In the low-intensity limit of
two laser beams, each of intensity s0Is, the
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light shifts �Eg of the ground magnetic
substates are given by a slight variation of
the approximation to Eq. (5) that accounts
for the multilevel structure of the atoms.
We write

�Eg = h̄s0C2
geγ

2

8δ
, (17)

where Cge is the Clebsch–Gordan coeffi-
cient that describes the coupling between
the particular levels of the atom and the
light field.

In the present case of orthogonal linear
polarizations and J = 1/2 → 3/2, the light
shift for the magnetic substate Mg = 1/2
is three times larger than that of the
Mg = −1/2 substate when the light field
is completely σ+. On the other hand,
when an atom moves to a place where
the light field is σ−, the shift of Mg =
−1/2 is three times larger. So, in this
case, the optical pumping discussed above
causes a larger population to be there
in the state with the larger light shift.
This is generally true for any transition
Jg → Je = Jg + 1. A schematic diagram
showing the populations and light shifts
for this particular case of negative detuning
is illustrated in Fig. 7.

3.3.3 Origin of the Damping Force
To discuss the origin of the cooling process
in this polarization gradient scheme,
consider atoms with a velocity v at a
position where the light is σ+-polarized, as
shown at the lower left of Fig. 7. The light
optically pumps such atoms to the strongly
negative light-shifted Mg = +1/2 state. In
moving through the light field, atoms must
increase their potential energy (climb a
hill) because the polarization of the light is
changing and the state Mg = 1/2 becomes
less strongly coupled to the light field. After
traveling a distance λ/4, atoms arrive at

0 λ /4 λ /2 3λ /4

Position (z)

0

E
ne

rg
y

M = +1/2

M = −1/2

Fig. 7 The spatial dependence of the light shifts
of the ground-state sublevels of the
J = 1/2 ⇔ 3/2 transition for the case of lin ⊥ lin
polarization configuration. The arrows show the
path followed by atoms being cooled in this
arrangement. Atoms starting at z = 0 in the
Mg = +1/2 sublevel must climb the potential
hill as they approach the z = λ/4 point where the
light becomes σ− polarized, and they are
optically pumped to the Mg = −1/2 sublevel.
Then they must begin climbing another hill
toward the z = λ/2 point where the light is σ+
polarized and they are optically pumped back to
the Mg = +1/2 sublevel. The process repeats
until the atomic kinetic energy is too small to
climb the next hill. Each optical pumping event
results in the absorption of light at a frequency
lower than emission, thus dissipating energy to
the radiation field

a position where the light field is σ−-
polarized, and are optically pumped to
Mg = −1/2, which is now lower than the
Mg = 1/2 state. Again, the moving atoms
are at the bottom of a hill and start to
climb. In climbing the hills, the kinetic
energy is converted to potential energy,
and in the optical pumping process, the
potential energy is radiated away because
the spontaneous emission is at a higher
frequency than the absorption (see Fig. 7).
Thus, atoms seem to be always climbing
hills and losing energy in the process.
This process brings to mind a Greek
myth, and is thus called ‘‘Sisyphus laser
cooling’’.
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The cooling process described above is
effective over a limited range of atomic
velocities. The force is maximum for
atoms that undergo one optical pumping
process while traveling over a distance λ/4.
Slower atoms will not reach the hilltop
before the pumping process occurs and
faster atoms will travel a longer distance
before being pumped toward the other
sublevel, so �E/�z is smaller. In both
cases, the energy loss is smaller and
therefore the cooling process less efficient.
Nevertheless, the damping constant β

for this process is much larger than for
Doppler cooling, and therefore the final
steady state temperature is lower [17, 19].

In the experiments of Ref. [21], the
temperature was measured in a 3-D
molasses under various configurations
of the polarization. Temperatures were
measured by a ballistic technique, in which
the flight time of the released atoms was
measured as they fell through a probe
a few centimeters below the molasses
region. The lowest temperature obtained
was 3 µK, which is a factor 40 below the
Doppler temperature and a factor 15 above
the recoil temperature of Cs.

3.3.4 The Limits of Sisyphus Laser Cooling
The extension of the kind of thinking
about cooling limits in the case of Doppler
cooling to the case of the sub-Doppler
processes must be done with some care,
because a naive application of similar
ideas would lead to an arbitrarily low
final temperature. In the derivation in
Sect. 3.2.2, it is explicitly assumed that
each scattering event changes the atomic
momentum p by an amount that is a small
fraction of p and this clearly fails when
the velocity is reduced to the region of
vr ≡ h̄k/M.

This limitation of the minimum steady
state value of the average kinetic energy to

a few times Er ≡ kBTr/2 = Mv2
r /2 is intu-

itively comforting for two reasons. First,
one might expect that the last spontaneous
emission in a cooling process would leave
atoms with a residual momentum of the
order of h̄k, since there is no control over
its direction. Thus, the randomness asso-
ciated with this would put a lower limit
of vmin ∼ vr on such cooling. Second, the
polarization gradient cooling mechanism
described above requires that atoms be
localizable within the scale of ∼ λ/2π in
order to be subject to only a single polariza-
tion in the spatially inhomogeneous light
field. The uncertainty principle then re-
quires that these atoms have a momentum
spread of at least h̄k.

The recoil limit discussed here has
been surpassed by evaporative cooling
of trapped atoms [22] and two different
optical cooling methods, neither of which
can be described in simple notions. One of
these uses optical pumping into a velocity-
selective dark state [23]. The other one
uses carefully chosen, counterpropagating,
laser pulses to induce velocity-selective
Raman transitions, and is called Raman
cooling [24].

4
Traps for Neutral Atoms

In order to confine any object, it is
necessary to exchange kinetic for poten-
tial energy in the trapping field, and in
neutral atom traps, the potential energy
must be stored as internal atomic energy.
Thus, practical traps for ground-state neu-
tral atoms are necessarily very shallow
compared with thermal energy because
the energy-level shifts that result from
convenient size fields are typically con-
siderably smaller than kBT for T = 1 K.
Neutral atom trapping therefore depends
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on substantial cooling of a thermal atomic
sample, and is often connected with the
cooling process. In most practical cases,
atoms are loaded from magneto-optical
traps (MOTs) in which they have been
efficiently accumulated and cooled to mK
temperatures (see Sect. 4.3), or from op-
tical molasses, in which they have been
optically cooled to µK temperatures (see
Sect. 3.2).

The small depth of typical neutral
atom traps dictates stringent vacuum
requirements because an atom cannot
remain trapped after a collision with a
thermal energy background gas molecule.
Since these atoms are vulnerable targets
for thermal energy background gas, the
mean free time between collisions must
exceed the desired trapping time. The
cross section for destructive collisions is
quite large because even a gentle collision
(i.e., large impact parameter) can impart
enough energy to eject an atom from a
trap. At pressure P sufficiently low to be
of practical interest, the trapping time is ∼
(10−8/P) s, where P is in Torr.

4.1
Dipole Force Optical Traps

4.1.1 Single-beam Optical Traps for
Two-level Atoms
The simplest imaginable optical trap con-
sists of a single, strongly focused Gaussian
laser beam (see Fig. 8) [25, 26] whose in-
tensity at the focus varies transversely with
r as

I(r) = I0e−2r2/w2
0 , (18)

Laser

2w0

Fig. 8 A single focused laser beam produces
the simplest type of optical trap

where w0 is the beam waist size. Such
a trap has a well-studied and important
macroscopic classical analog in a phe-
nomenon called optical tweezers [27–29].

With the laser light tuned below reso-
nance (δ < 0), the ground-state light shift
is negative everywhere, but largest at
the center of the Gaussian beam waist.
Ground-state atoms, therefore, experience
a force attracting them toward this cen-
ter, given by the gradient of the light
shift, which is found from Eq. (5), and for
δ/γ � s0 is given by Eq. (6). For the Gaus-
sian beam, this transverse force at the waist
is harmonic for small r and is given by

F � h̄γ 2

4δ

I0

Is

r

w2
0

e−2r2/w2
0 . (19)

In the longitudinal direction, there is
also an attractive force but it is more
complicated and depends on the details
of the focusing. Thus, this trap produces
an attractive force on the atoms in three
dimensions.

Although it may appear that the trap does
not confine atoms longitudinally because
of the radiation pressure along the laser
beam direction, careful choice of the laser
parameters can indeed produce trapping
in 3-D. This can be accomplished because
the radiation pressure force decreases as
1/δ2 (see Eqs. 2 and 3), but by contrast,
the light shift and hence the dipole force
decreases only as 1/δ for δ � � (see
Eq. 5). If |δ| is chosen to be sufficiently
large, atoms spend very little time in
the untrapped (actually repelled), excited
state because its population is proportional
to 1/δ2. Thus, a sufficiently large value
of |δ| produces longitudinal confinement
and also maintains the atomic population
primarily in the trapped ground state.

The first optical trap was demonstrated
in Na with light detuned below the D-
lines [26]. With 220 mW of dye laser light
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tuned about 650 GHz below the atomic
transition and focused to an ∼10 µm
waist, the trap depth was about 15h̄γ

corresponding to 7 mK.
Single-beam dipole force traps can

be made with the light detuned by a
significant fraction of its frequency from
the atomic transition. Such a far-off-
resonance trap (FORT) has been developed
for Rb atoms using light detuned by nearly
10% to the red of the D1 transition at
λ = 795 nm [30]. Between 0.5 and 1 W of
power was focused to a spot about 10 µm in
size, resulting in a trap 6 mK deep where
the light-scattering rate was only a few
hundreds per second. The trap lifetime
was more than half a second.

There is a qualitative difference when the
trapping light is detuned by a large frac-
tion of the optical frequency. In one such
case, Nd : YAG light at λ = 1064 nm was
used to trap Na whose nearest transition
is at λ = 596 nm [31]. In a more extreme
case, a trap using λ = 10.6 µm light from
a CO2 laser has been used to trap Cs
whose optical transition is at a frequency
∼12 times higher (λ = 852 nm) [32]. For
such large values of |δ|, calculations of
the trapping force cannot exploit the rotat-
ing wave approximations as was done for
Eqs. (4) and (5), and the atomic behavior is
similar to that in a DC field. It is impor-
tant to remember that for an electrostatic
trap Earnshaw’s theorem precludes a field
maximum, but that in this case there is in-
deed a local 3-D intensity maximum of the
focused light because it is not a static field.

4.1.2 Blue-detuned Optical Traps
One of the principal disadvantages of the
optical traps discussed above is that the
negative detuning attracts atoms to the
region of highest light intensity. This may
result in significant spontaneous emission
unless the detuning is a large fraction of

the optical frequency such as the Nd : YAG
laser trap [31] or the CO2 laser trap [32].
More important in some cases is that the
trap relies on Stark shifting of the atomic
energy levels by an amount equal to the
trap depth, and this severely compromises
the capabilities for precision spectroscopy
in a trap [33].

Attracting atoms to the region of low-
est intensity would ameliorate both these
concerns, but such a trap requires positive
detuning (blue), and an optical configu-
ration having a dark central region. One
of the first experimental efforts at a blue
detuned trap used the repulsive dipole
force to support Na atoms that were oth-
erwise confined by gravity in an optical
‘‘cup’’ [34]. Two rather flat, parallel beams
detuned by 25% of the atomic resonance
frequency were directed horizontally and
oriented to form a V-shaped trough. Their
Gaussian beam waists formed a region
�1 mm long where the potential was deep-
est, and hence provided confinement along
their propagation direction as shown in
Fig. 9. The beams were the λ = 514 nm
and λ = 488 nm from an argon laser, and
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Fig. 9 The light intensity experienced by an
atom located in a plane 30 µm above the beam
waists of two quasi-focused sheets of light
traveling parallel and arranged to form a
V-shaped trough. The x and y dimensions are in
µm (figure taken from Davidson, N., Lee, H. J.,
Adams, C. S., Kasevich, M., Chu, S. (1995), Phys.
Rev. Lett. 74, 1311–1314)



994 Laser Cooling and Trapping of Neutral Atoms

the choice of the two frequencies was not
simply to exploit the full power of the mul-
tiline Ar laser, but also to avoid the spatial
interference that would result from the use
of a single frequency.

Obviously, a hollow laser beam would
also satisfy the requirement for a blue-
detuned trap, but conventional textbook
wisdom shows that such a beam is not
an eigenmode of a laser resonator [35].
Some lasers can make hollow beams,
but these are illusions because they
consist of rapid oscillations between the
TEM01 and TEM10 modes of the cavity.
Nevertheless, Maxwell’s equations permit
the propagation of such beams, and
in the recent past there have been
studies of the LaGuerre–Gaussian modes
that constitute them [36–38]. The several
ways of generating such hollow beams
have been tried by many experimental
groups and include phase and amplitude
holograms, hollow waveguides, axicons or
related cylindrical prisms, stressing fibers,
and simply mixing the TEM01 and TEM10

modes with appropriate cylindrical lenses.
An interesting experiment has been

performed using the ideas of Sisyphus
cooling (see Sect. 3.3) with evanescent
waves combined with a hollow beam
formed with an axicon [39]. In the pre-
viously reported experiments with atoms
bouncing under gravity from an evanes-
cent wave field [40, 41], they were usually
lost to horizontal motion for several rea-
sons, including slight tilting of the surface,
surface roughness, horizontal motion as-
sociated with their residual motion, and
horizontal ejection by the Gaussian pro-
file of the evanescent wave laser beam.
The authors of Ref. [39] simply confined
their atoms in the horizontal direction by
surrounding them with a wall of blue-
detuned light in the form of a vertical
hollow beam. Their gravito-optical surface

trap cooled Cs atoms to �3 µK at a density
of �3 × 1010/cm3 in a sample whose 1/e
height in the gravitational field was only
19 µm. Simple ballistics gives a frequency
of 450 bounces per second, and the �6-s
lifetime (limited only by background gas
collisions) corresponds to several thousand
bounces. However, at such low energies,
the deBroglie wavelength of the atoms is
�1/4 µm, and the atomic motion is no
longer accurately described classically, but
requires deBroglie wave methods.

4.2
Magnetic Traps

4.2.1 Introduction
Magnetic trapping of neutral atoms is
well suited for use in very many areas,
including high-resolution spectroscopy,
collision studies, Bose–Einstein conden-
sation (BEC), and atom optics. Although
ion trapping, laser cooling of trapped ions,
and trapped ion spectroscopy were known
for many years [42], it was only in 1985
that neutral atoms were first trapped [43].
Such experiments offer the capability of
the spectroscopic ideal of an isolated atom
at rest, in the dark, available for interaction
with electromagnetic field probes.

Because trapping requires the exchange
of kinetic energy for potential energy, the
atomic energy levels will necessarily shift
as the atoms move in the trap. These
shifts can severely affect the precision of
spectroscopic measurements. Since one
of the potential applications of trapped
atoms is in high-resolution spectroscopy,
such inevitable shifts must be carefully
considered.

4.2.2 Magnetic Confinement
The Stern–Gerlach experiment in 1924
first demonstrated the mechanical action
of inhomogeneous magnetic fields on
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neutral atoms having magnetic moments,
and the basic phenomenon was subse-
quently developed and refined. An atom
with a magnetic moment �µ can be con-
fined by an inhomogeneous magnetic field
because of an interaction between the mo-
ment and the field. This produces a force
given by

�F = �∇(�µ · �B) (20)

since E = −�µ · �B. Several different mag-
netic traps with varying geometries that
exploit the force of Eq. (20) have been
studied in some detail in the literature.
The general features of the magnetic fields
of a large class of possible traps has been
presented [44].

W. Paul originally suggested a quadru-
pole trap composed of two identical coils
carrying opposite currents (see Fig. 10).
This trap clearly has a single center in
which the field is zero, and is the simplest
of all possible magnetic traps. When the
coils are separated by 1.25 times their
radius, such a trap has equal depth in the
radial (x-y plane) and longitudinal (z-axis)

I

I

Fig. 10 Schematic diagram of the coil
configuration used in the quadrupole trap and
the resultant magnetic field lines. Because the
currents in the two coils are in opposite
directions, there is a |�B| = 0 point at the center

directions [44]. Its experimental simplicity
makes it most attractive, both because of
ease of construction and of optical access
to the interior. Such a trap was used in the
first neutral atom trapping experiments at
NIST on laser-cooled Na atoms for times
exceeding 1 s, and that time was limited
only by background gas pressure [43].

The magnitude of the field is zero at
the center of this trap, and increases in all
directions as

B = ∇B
√

ρ2 + 4z2, (21)

where ρ2 ≡ x2 + y2 and the field gradient
is constant (see Ref. [44]). The field gradi-
ent is constant along any line through the
origin, but has different values in differ-
ent polar directions because of the ‘4’ in
Eq. (21). Therefore, the force of Eq. (20)
that confines the atoms in the trap is
neither harmonic nor central, and orbital
angular momentum is not conserved.

The requisite field for the quadrupole
trap can also be provided in two dimen-
sions by four straight currents as indicated
in Fig. 11. The field is translationally in-
variant along the direction parallel to the
currents, so a trap cannot be made this
way without additional fields. These are
provided by end coils that close the trap, as
shown.

Although there are very many different
kinds of magnetic traps for neutral parti-
cles, this particular one has played a special

II
+

−

−

+

Fig. 11 The Ioffe trap has four straight current
elements that form a linear quadrupole field. The
axial confinement is accomplished with end coils
as shown. These fields can be achieved with
many different current configurations as long as
the geometry is preserved
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role. There are certain conditions required
for trapped atoms not to be ejected in a
region of zero field such as occurs at the
center of a quadrupole trap (see Sects. 4.2.3
and 4.2.4). This problem is not easily cured;
the Ioffe trap has been used in many of the
BEC experiments because it has |�B| �= 0
everywhere.

4.2.3 Classical Motion of Atoms in a
Quadrupole Trap
Because of the dependence of the trapping
force on the angle between the field
and the atomic moment (see Eq. 20), the
orientation of the magnetic moment with
respect to the field must be preserved
as the atoms move about in the trap.
Otherwise, the atoms may be ejected
instead of being confined by the fields
of the trap. This requires velocities low
enough to ensure that the interaction
between the atomic moment �µ and the
field �B is adiabatic especially when the
atom’s path passes through a region
where the field magnitude is small and
therefore the energy separation between
the trapping and nontrapping states is
small. This is especially critical at the
low temperatures of the BEC experiments.
Therefore energy considerations that focus
only on the trap depth are not sufficient
to determine the stability of a neutral
atom trap; orbit and/or quantum state
calculations and their consequences must
also be considered.

For the two-coil quadrupole magnetic
trap of Fig. 10, stable circular orbits of
radius ρ1 in the z = 0 plane can be found
classically by setting µ∇B = Mv2/ρ1, so
that v = √

ρ1a, where a ≡ µ∇B/M is
the centripetal acceleration supplied by
the field gradient (cylindrical coordinates
are appropriate). Such orbits have an
angular frequency of ωT = √

a/ρ1. For
traps of a few centimeter size and a few

hundred Gauss depth, a ∼ 250 m s−2, and
the fastest trappable atoms in circular
orbits have vmax ∼ 1 m s−1 so ωT/2π ∼
20 Hz. Because of the anharmonicity
of the potential, the orbital frequencies
depend on the orbit size, but in general,
atoms in lower-energy orbits have higher
frequencies.

For the quadrupole trap to work, the
atomic magnetic moments must be ori-
ented with �µ · �B < 0 so that they are
repelled from regions of strong fields.
This orientation must be preserved while
the atoms move around in the trap even
though the trap fields change directions
in a very complicated way. The condi-
tion for adiabatic motion can be written
as ωZ � |dB/dt|/B, where ωZ = µB/h̄ is
the Larmor precession rate in the field.

Since v/ρ1 = v∇B/B = |dB/dt|/B for a
uniform field gradient, the adiabaticity
condition is

ωZ � ωT . (22)

More general orbits must satisfy a simi-
lar condition. For the two-coil quadrupole
trap, the adiabaticity condition can be eas-
ily calculated. Using v = √

ρ1a for circular
orbits in the z = 0 plane, the adiabatic con-
dition for a practical trap (∇B ∼ 1 T/m) re-
quires ρ1 � (h̄2/M2a)1/3 ∼ 1 µm as well
as v � (h̄a/M)1/3 ∼ 1 cm s−1. Note that
violation of these conditions (i.e., v ∼
1 cm s−1 in a trap with ∇B ∼ 1 T/m) re-
sults in the onset of quantum dynamics for
the motion (deBroglie wavelength ≈ orbit
size).

Since the nonadiabatic region of the trap
is so small (less than 10−18 m3 compared
with typical sizes of ∼2 cm, corresponding
to 10−5 m3), nearly all the orbits of most
atoms are restricted to regions where
they are adiabatic. Therefore, most of
such laser-cooled atoms stay trapped for
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many thousands of orbits corresponding
to several minutes. At laboratory vacuum
chamber pressures of typically 10−10 torr,
the mean free time between collisions that
can eject trapped atoms is ∼2 min, so the
transitions caused by nonadiabatic motion
are not likely to be observable in atoms
that are optically cooled.

4.2.4 Quantum Motion in a Trap
Since laser and evaporative cooling have
the capability to cool atoms to energies
where their deBroglie wavelengths are on
the scale of the orbit size, the motional
dynamics must be described in terms
of quantum mechanical variables and
suitable wave functions. Quantization of
the motion leads to discrete bound states
within the trap having �µ · �B < 0, and also a
continuum of unbound states having �µ · �B
with opposite sign.

Studying the behavior of extremely slow
(cold) atoms in the two-coil quadrupole
trap begins with a heuristic quantization
of the orbital angular momentum using
Mr2ωT = nh̄ for circular orbits. The en-
ergy levels are then given by

En = 3

2
E1n2/3, where

E1 = (Ma2 h̄2)1/3 ∼ h × 5 kHz, (23)

For velocities of optically cooled atoms of
a few cm s−1, n ∼ 10 − 100. It is readily
found that ωZ = nωT , so that the adiabatic
condition of Eq. (22) is satisfied only for
n � 1.

These large-n bound states have small
matrix elements coupling them to the
unbound continuum states [45]. This can
be understood classically since they spend
most of their time in a stronger field, and
thus satisfy the condition of adiabaticity
of the orbital motion relative to the
Larmor precession. In this case, the

separation of the rapid precession from
the slower orbital motion is reminiscent
of the Born–Oppenheimer approximation
for molecules.

On the other hand, the small-n states,
whose orbits are confined to a region near
the origin where the field is small, have
much larger coupling to the continuum
states. Thus, they are rapidly ejected from
the trap. The transitions to unbound states
resulting from the coupling of the motion
with the trapping fields are called Majorana
spin flips, and effectively constitute a ‘‘hole’’
at the bottom of the trap. The evaporative
cooling process used to produce very cold,
dense samples reduces the average total
energy of the trapped atoms sufficiently
that the orbits are confined to regions
near the origin and so, such losses
dominate [44, 45].

There have been different solutions
to this problem of Majorana losses for
confinement of ultracold atoms for the
BEC experiments. In the JILA-experiment,
the hole was rotated by rotating the
magnetic field, and thus, the atoms do
not spend sufficient time in the hole to
make a spin flip. In the MIT experiment,
the hole was plugged by using a focused
laser beam tuned to the blue side of atomic
resonance, which expelled the atoms from
the center of the magnetic trap. In the
Rice experiment, the atoms were trapped
in an Ioffe trap, which has a nonzero
field minimum. Most BEC experiments
are now using the Ioffe trap solution.

4.3
Magneto-optical Traps

4.3.1 Introduction
The most widely used trap for neutral
atoms is a hybrid employing both optical
and magnetic fields to make a magneto-
optical trap (MOT), first demonstrated in
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1987 [46]. The operation of an MOT de-
pends on both inhomogeneous magnetic
fields and radiative selection rules to ex-
ploit both optical pumping and the strong
radiative force [46, 47]. The radiative in-
teraction provides cooling that helps in
loading the trap and enables very easy op-
eration. MOT is a very robust trap that
does not depend on precise balancing of
the counterpropagating laser beams or on
a very high degree of polarization.

The magnetic field gradients are modest
and have the convenient feature that
the configuration is the same as the
quadrupole magnetic traps discussed in
Sect. 4.2.2. Appropriate fields can readily
be achieved with simple, air-cooled coils.
The trap is easy to construct because it can
be operated with a room-temperature cell
in which alkali atoms are captured from
the vapor. Furthermore, low-cost diode
lasers can be used to produce the light
appropriate for many atoms, so the MOT
has become one of the least expensive ways
to make atomic samples with temperatures
below 1 mK.

Trapping in an MOT works by opti-
cal pumping of slowly moving atoms in
a linearly inhomogeneous magnetic field
B = B(z) (see Eq. 21), such as that formed
by a magnetic quadrupole field. Atomic
transitions with the simple scheme of
Jg = 0 → Je = 1 have three Zeeman com-
ponents in a magnetic field, excited by each
of three polarizations, whose frequencies
tune with the field (and therefore with po-
sition) as shown in Fig. 12 for 1-D. Two
counterpropagating laser beams of oppo-
site circular polarization, each detuned
below the zero-field atomic resonance by
δ, are incident as shown.

Because of the Zeeman shift, the excited
state Me = +1 is shifted up for B >

0, whereas the state with Me = −1 is
shifted down. At position z′ in Fig. 12,

z ′

Me = +1

Me = 0

Me = −1

Mg = 0
Position

Energy

s− beam

d+d

wl

d−

s+ beam

Fig. 12 Arrangement for an MOT in 1-D. The
horizontal dashed line represents the laser
frequency seen by an atom at rest in the center of
the trap. Because of the Zeeman shifts of the
atomic transition frequencies in the
inhomogeneous magnetic field, atoms at z = z′
are closer to resonance with the σ− laser beam
than with the σ+ beam, and are therefore driven
toward the center of the trap

the magnetic field, therefore, tunes the
�M = −1 transition closer to resonance
and the �M = +1 transition further out of
resonance. If the polarization of the laser
beam incident from the right is chosen
to be σ− and correspondingly σ+ for the
other beam, then more light is scattered
from the σ− beam than from the σ+ beam.
Thus, the atoms are driven toward the
center of the trap where the magnetic field
is zero. On the other side of the center of
the trap, the roles of the Me = ±1 states are
reversed and now more light is scattered
from the σ+ beam, again driving the atoms
toward the center.

So far, the discussion has been limited
to the motion of atoms in 1-D. However,
the MOT scheme can easily be extended
to 3-D by using six instead of two laser
beams. Furthermore, even though very
few atomic species have transitions as
simple as Jg = 0 → Je = 1, the scheme
works for any Jg → Je = Jg + 1 transition.
Atoms that scatter mainly from the σ+
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laser beam will be optically pumped toward
the Mg = +Jg substate, which forms a
closed system with the Me = +Je substate.

4.3.2 Cooling and Compressing Atoms in
an MOT
For a description of the motion of atoms
in an MOT, consider the radiative force in
the low intensity limit (see Eqs. 2 and 3).
The total force on the atoms is given by
�F = �F+ + �F−, where �F± can be found from
Eqs. (2) and (3), and the detuning δ± for
each laser beam is given by δ± = δ ∓ �k ·
�v ± µ′B/h̄. Here, µ′ ≡ (geMe − ggMg)µB

is the effective magnetic moment for the
transition used. Note that the Doppler
shift ωD ≡ −�k · �v and the Zeeman shift
ωZ = µ′B/h̄ both have opposite signs for
opposite beams.

The situation is analogous to the velocity
damping in an OM from the Doppler effect
as discussed in Sec. 3.2, but here the effect
also operates in position space, whereas
for molasses it operates only in velocity
space. Since the laser light is detuned
below the atomic resonance in both cases,
compression and cooling of the atoms is
obtained simultaneously in an MOT.

When both the Doppler and Zeeman
shifts are small compared to the detuning
δ, the denominator of the force can be
expanded as for Eq. (13) and the result
becomes

�F = −β�v − κ�r, (24)

where the damping coefficient β is defined
in Eq. (13). The spring constant κ arises
from the similar dependence of �F on the
Doppler and Zeeman shifts, and is given
by κ = µ′β∇B/h̄k

The force of Eq. (24) leads to damped
harmonic motion of the atoms, where the
damping rate is given by �MOT = β/M
and the oscillation frequency ωMOT =

√
κ/M. For magnetic field gradients ∇B ≈

0.1 T m−1, the oscillation frequency is typ-
ically a few kHz, and this is much smaller
than the damping rate that is typically a
few hundred kHz. Thus, the motion is
overdamped, with a characteristic restor-
ing time to the center of the trap of
2�MOT/ω2

MOT ≈ several milliseconds for
typical values of detuning and intensity of
the lasers.

4.3.3 Capturing Atoms in an MOT
Although the approximations that lead to
Eq. (24) for force hold for slow atoms near
the origin, they do not apply for the capture
of fast atoms far from the origin. In the
capture process, the Doppler and Zeeman
shifts are no longer small compared to
the detuning, so the effects of the position
and velocity can no longer be disentangled.
However, the full expression for the force
still applies and the trajectories of the
atoms can be calculated by numerical
integration of the equation of motion [48].

The capture velocity of an MOT is
serendipitously enhanced because atoms
traveling across it experience a decreasing
magnetic field just as in beam deceleration
described in Sect. 3.1. This enables reso-
nance over an extended distance and ve-
locity range because the changing Doppler
shift of decelerating atoms can be com-
pensated by the changing Zeeman shift as
atoms move in the inhomogeneous mag-
netic field. Of course, it will work this
way only if the field gradient ∇B does not
demand an acceleration larger than the
maximum acceleration amax. Thus, atoms
are subject to the optical force over a dis-
tance that can be as long as the trap size,
and can therefore be slowed considerably.

The very large velocity capture range
vcap of an MOT can be estimated by using
Fmax = h̄kγ /2 and choosing a maximum
size of a few centimeters for the beam
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diameters. Thus, the energy change can
be as large as a few K, corresponding
to vcap ∼ 100 m s−1 [47]. The number of
atoms in a vapor with velocities below vcap
in the Boltzmann distribution scales as
v4

cap, and there are enough slow atoms to
fall within the large MOT capture range
even at room temperature, because a few
K includes 10−4 of the atoms.

4.3.4 Variations on the MOT Technique
Because of the wide range of applications
of this most versatile kind of atom trap, a
number of careful studies of its properties
have been made [47, 49–56], and several
variations have been developed. One of
these is designed to overcome the density
limits achievable in an MOT. In the
simplest picture, loading additional atoms
into an MOT produces a higher atomic
density because the size of the trapped
sample is fixed. However, the density
cannot increase without limit as more
atoms are added. The atomic density
is limited to ∼1011 cm−3 because the
fluorescent light emitted by some trapped
atoms is absorbed by others.

One way to overcome this limit is to
have much less light in the center of the
MOT than at the sides. Simply lowering
the laser power is not effective in reducing
the fluorescence because it will also reduce
the capture rate and trap depth. But those
advantageous properties can be preserved
while reducing fluorescence from atoms at
the center if the light intensity is low only
in the center.

The repumping process for the alkali
atoms provides an ideal way of imple-
menting this idea [57]. If the repumping
light is tailored to have zero intensity at
the center, then atoms trapped near the
center of the MOT are optically pumped
into the ‘‘wrong’’ hfs state and stop fluo-
rescing. They drift freely in the ‘‘dark’’ at

low speed through the center of the MOT
until they emerge on the other side, into
the region where light of both frequen-
cies is present and begin absorbing again.
Then they feel the trapping force and are
driven back into the ‘‘dark’’ center of the
trap. Such an MOT has been operated at
MIT [57] with densities close to 1012/cm3,
and the limitations are now from colli-
sions in the ground state rather than from
multiple light scattering and excited-state
collisions.

5
Optical Lattices

5.1
Quantum States of Motion

As the techniques of laser cooling ad-
vanced from a laboratory curiosity to a tool
for new problems, the emphasis shifted
from attaining the lowest possible steady
state temperatures to the study of ele-
mentary processes, especially the quantum
mechanical description of the atomic mo-
tion. In the completely classical description
of laser cooling, atoms were assumed to
have a well-defined position and momen-
tum that could be known simultaneously
with arbitrary precision. However, when
atoms are moving sufficiently slowly that
their deBroglie wavelength precludes their
localization to less than λ/2π , these de-
scriptions fail and a quantum mechanical
description is required. Such exotic be-
havior for the motion of whole atoms, as
opposed to electrons in the atoms, had not
been considered before the advent of laser
cooling simply because it was too far out of
the range of ordinary experiments. A series
of experiments in the early 1990s provided
dramatic evidence for these new quantum
states of motion of neutral atoms, and
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led to the debut of deBroglie wave atom
optics.

The quantum description of atomic
motion requires that the energy of such
motion be included in the Hamiltonian.
The total Hamiltonian for atoms moving
in a light field would then be given by

H = Hatom + Hrad + Hint + Hkin, (25)

where Hatom describes the motion of the
atomic electrons and gives the internal
atomic energy levels, Hrad is the energy of
the radiation field and is of no concern here
because the field is not quantized, Hint
describes the excitation of atoms by the
light field and the concomitant light shifts,
and Hkin is the kinetic energy operator of
the motion of the center of mass of the
atoms. This Hamiltonian has eigenstates
of not only the internal energy levels and
the atom-laser interaction that connects
them, but also that of the kinetic energy
operatorHkin ≡ P2/2M. These eigenstates
will therefore be labeled by quantum
numbers of the atomic states as well as
the center of mass momentum p. An atom
in the ground state, |g; p〉, has an energy
Eg + p2/2M, that can take on a range of
values.

In 1968, V.S. Letokhov [58] suggested
that it is possible to confine atoms in the
wavelength-size regions of a standing wave
by means of the dipole force that arises
from the light shift. This was first accom-
plished in 1987 in 1-D with an atomic beam
traversing an intense standing wave [59].
Since then, the study of atoms confined
to wavelength-size potential wells has be-
come an important topic in optical control
of atomic motion because it opens up con-
figurations previously accessible only in
condensed matter physics using crystals.

The limits of laser cooling discussed in
Sect. 3.3.4 suggest that atomic momenta
can be reduced to a ‘‘few’’ times h̄k. This

means that their deBroglie wavelengths are
equal to the optical wavelengths divided by
a ‘‘few’’. If the depth of the optical potential
wells is high enough to contain such very
slow atoms, then their motion in potential
wells of size λ/2 must be described
quantum mechanically, since they are
confined to a space of size comparable
to their deBroglie wavelengths. Thus, they
do not oscillate in the sinusoidal wells as
classical localizable particles, but instead
occupy discrete, quantum mechanical
bound states [60], as shown in the lower
part of Fig. 13.

The basic ideas of the quantum me-
chanical motion of particles in a periodic
potential were laid out in the 1930s with the
Kronig–Penney model and Bloch’s theo-
rem, and optical lattices offer important
opportunities for their study. For example,

0 l/4 l/2
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3l/4 l
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y

Fig. 13 Energy levels of atoms moving in the
periodic potential of the light shift in a standing
wave. There are discrete bound states deep in
the wells that broaden at higher energy, and
become bands separated by forbidden energies
above the tops of the wells. Under conditions
appropriate to laser cooling, optical pumping
among these states favors populating the lowest
ones as indicated schematically by the arrows
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these lattices can be made essentially free
of defects with only moderate care in
spatially filtering the laser beams to as-
sure a single transverse mode structure.
Furthermore, the shape of the potential
is exactly known and does not depend
on the effect of the crystal field or the
ionic energy level scheme. Finally, the
laser parameters can be varied to mod-
ify the depth of the potential wells without
changing the lattice vectors, and the lat-
tice vectors can be changed independently
by redirecting the laser beams. The sim-
plest optical lattice to consider is a 1-D
pair of counterpropagating beams of the
same polarization, as was used in the first
experiment [59].

Of course, such tiny traps are usually
very shallow, so loading them requires
cooling to the µK regime. Even atoms
whose energy exceeds the trap depth
must be described as quantum mechanical
particles moving in a periodic potential
that display energy band structure [60].
Such effects have been observed in very
careful experiments.

Because of the transverse nature of light,
any mixture of beams with different �k-
vectors necessarily produces a spatially
periodic, inhomogeneous light field. The
importance of the ‘‘egg-crate’’ array of
potential wells arises because the asso-
ciated atomic light shifts can easily be
comparable to the very low average atomic
kinetic energy of laser-cooled atoms. A
typical example projected against two di-
mensions is shown in Fig. 14.

Atoms trapped in wavelength-sized
spaces occupy vibrational levels similar
to those of molecules. The optical spec-
trum can show Raman-like sidebands that
result from transitions among the quan-
tized vibrational levels [61, 62] as shown in
Fig. 15. These quantum states of atomic

Fig. 14 The ‘‘egg-crate’’ potential of an optical
lattice shown in two dimensions. The potential
wells are separated by λ/2

motion can also be observed by stimu-
lated emission [62, 63] and by direct RF
spectroscopy [64, 65].

5.2
Properties of 3-D Lattices

The name ‘‘optical lattice’’ is used rather
than optical crystal because the filling
fraction of the lattice sites is typically
only a few percent (as of 1999). The limit
arises because the loading of atoms into
the lattice is typically done from a sample
of trapped and cooled atoms, such as an
MOT for atom collection, followed by an
OM for laser cooling. The atomic density in
such experiments is limited by collisions
and multiple light scattering to a few times
1011 cm−3. Since the density of lattice sites
of size λ/2 is a few times 1013 cm−3, the
filling fraction is necessarily small. With
the advent of experiments that load atoms
directly into a lattice from a BEC, the filling
factor can be increased to 100%, and in
some cases it may be possible to load more
than one atom per lattice site [66, 67].

In 1993 a very clever scheme was
described [68]. It was realized that an n-
dimensional lattice could be created by
only n + 1 traveling waves rather than
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Fig. 15 (a) Fluorescence spectrum in a 1-D lin ⊥ lin optical molasses. Atoms are first
captured and cooled in an MOT, and then the MOT light beams are switched off leaving a pair
of lin ⊥ lin because of spontaneous emission of the atoms to the same vibrational state from
which they are excited, whereas the sideband on the left (right) is due to spontaneous
emission to a vibrational state with one vibrational quantum number lower (higher) (see
Fig. 13). The presence of these sidebands is a direct proof of the existence of the band
structure. (b) Same as (a) except that the 1-D molasses is σ+ − σ−, which has no spatially
dependent light shift and hence no vibrational states (figure taken from Jessen, P. S., Gerz, C.,
Lett, P. D., Phillips, W. D., Rolston, S. L., Spreeuw, R. J. C., Westbrook, C. I. (1992), Phys. Rev.
Lett. 69, 49–52)

2n. The real benefit of this scheme is
that in case of phase instabilities in the
laser beams, the interference pattern is
only shifted in space, but the interference
pattern itself is not changed. Instead
of producing optical wells in 2-D with
four beams (two standing waves), these
authors used only three. The �k-vectors
of the coplanar beams were separated by
2π/3, and they were all linearly polarized
in their common plane (not parallel
to one another). The same immunity
to vibrations was established for a 3-
D optical lattice by using only four
beams arranged in a quasi-tetrahedral
configuration. The three linearly polarized
beams of the 2-D arrangement described
above were directed out of the plane
toward a common vertex, and a fourth
circularly polarized beam was added.
All four beams were polarized in the
same plane [68]. The authors showed that
this configuration produced the desired
potential wells in 3-D.

5.3
Spectroscopy in 3-D Lattices

The group at NIST developed a new
method that superposed a weak probe
beam of light directly from the laser upon
some of the fluorescent light from the
atoms in a 3-D OM, and directed the
light from these combined sources onto
on a fast photodetector [70]. The resulting
beat signal carried information about the
Doppler shifts of the atoms in the optical
lattices [61]. These Doppler shifts were
expected to be in the sub-MHz range for
atoms with the previously measured 50-
µK temperatures. The observed features
confirmed the quantum nature of the
motion of atoms in the wavelength-size
potential wells (see Fig. 15) [15].

The NIST group also studied atoms
loaded into an optical lattice using of
laser light from the spatially ordered
array [71]. They cut off the laser beams
that formed the lattice, and before the
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atoms had time to move away from their
positions, they pulsed on a probe laser
beam at the Bragg angle appropriate for
one of the sets of lattice planes. The
Bragg diffraction not only enhanced the
reflection of the probe beam by a factor
of 105, but by varying the time between
the shut-off of the lattice and turn-on of
the probe, they could also measure the
‘‘temperature’’ of the atoms in the lattice.
The reduction of the amplitude of the
Bragg-scattered beam with time provided
some measure of the diffusion of the atoms
away from the lattice sites, much like the
Debye–Waller factorDebye–Waller factor
in X-ray diffraction.

5.4
Quantum Transport in Optical Lattices

In the 1930s, Bloch realized that applying
a uniform force to a particle in a periodic
potential would not accelerate it beyond a
certain speed, but instead would result
in Bragg reflection when its deBroglie
wavelength became equal to the lattice
period. Thus, an electric field applied to
a conductor could not accelerate electrons

to a speed faster than that corresponding
to the edge of a Brillouin zone, and
that at longer times the particles would
execute oscillatory motion. Ever since then,
experimentalists have tried to observe
these Bloch oscillations in increasingly
pure and/or defect-free crystals.

Atoms moving in optical lattices are ide-
ally suited for such an experiment, as was
beautifully demonstrated in 1996 [69]. The
authors loaded a 1-D lattice with atoms
from a 3-D molasses, further narrowed the
velocity distribution, and then instead of
applying a constant force, simply changed
the frequency of one of the beams of the
1-D lattice with respect to the other in
a controlled way, thereby creating an ac-
celerating lattice. Seen from the atomic
reference frame, this was the equivalent of
a constant force trying to accelerate them.
After a variable time ta, the 1-D lattice
beams were shut off and the measured
atomic velocity distribution showed beau-
tiful Bloch oscillations as a function of ta.
The centroid of the very narrow velocity
distribution was seen to shift in velocity
space at a constant rate until it reached
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Fig. 16 Plot of the measured velocity distribution verses. time in the accelerated 1-D lattice.
(a) Atoms in a 1-D lattice are accelerated for a fixed potential depth for a certain time ta and
the momentum of the atoms after the acceleration is measured. The atoms accelerate only
to the edge of the Brillouin zone where the velocity is +vr, and then the velocity distribution
appears at −vr. (b) Mean velocity of the atoms as a function of the quasi-momentum, that
is, the force times the acceleration time (figure taken from Ben Dahan, M., Peik, E.,
Reichel, J., Castin, Y., Salomon, C. (1996), Phys. Rev. Lett. 76, 4508–4511)
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vr = h̄k/M, and then it vanished and reap-
peared at −vr as shown in Fig. 16. The
shape of the ‘‘dispersion curve’’ allowed
measurement of the ‘‘effective mass’’ of
the atoms bound in the lattice.

6
Bose–Einstein Condensation

6.1
Introduction

In the 1920s, Bose and Einstein predicted
that for sufficiently high phase space
density, ρφ ∼ 1 (see Sect. 1.2), a gas of
atoms undergoes a phase transition that is
now called Bose–Einstein condensation.
It took 70 years before BEC could be
unambiguously observed in a dilute gas.
From the advent of laser cooling and
trapping, it became clear that this method
could be instrumental in achieving BEC.

BEC is another manifestation of quanti-
zation of atomic motion. It occurs in the
absence of resonant light, and its onset is
characterized by cooling to the point where
the atomic deBroglie wavelengths are com-
parable to the interatomic spacing. This is
in contrast with the topics discussed in
Sect. 5 where the atoms were in an optical
field and their deBroglie wavelengths were
comparable to the optical wavelength λ.

Laser cooling alone is inherently inca-
pable of achieving ρφ ∼ 1. This is easily
seen from the recoil limit of Sect. 3.3.4
that limits λdeB to λ/‘‘few’’. Since the cross
section for optical absorption near reso-
nance is σ ∼ λ2 near ρφ ∼ 1, this limit of
λdeB ∼ λ/‘‘few’’ results in the penetration
depth of the cooling light into the sample
being smaller than λ. Thus, the sample
would have to be extremely small and con-
tain only a few atoms, hardly a system
suitable for investigation.

Temperatures lower than the recoil limit
are readily achieved by evaporative cooling,
and so all BEC experiments employ it in
their final phase. Evaporative cooling is
inherently different from the other cooling
processes discussed in Sect. 3, and hence
discussed here separately.

Since the first observations in 1995, BEC
has been the subject of intense investiga-
tion, both theoretical and experimental. No
attempt is made in this article to even ad-
dress, much less cover, the very rich range
of physical phenomena that have been un-
veiled by these studies. Instead, we focus
on the methods to achieve ρφ ∼ 1 and
BEC.

6.2
Evaporative Cooling

Evaporative cooling is based on the
preferential removal of those atoms from
a confined sample with an energy higher
than the average energy followed by a
rethermalization of the remaining gas by
elastic collisions. Although evaporation is
a process that occurs in nature, it was
applied to atom cooling for the first time
in 1988 [72].

One way to think about evaporative
cooling is to consider cooling of a con-
tainer of hot liquid. Since the most
energetic molecules evaporate from the
liquid and leave the container, the remain-
ing molecules obtain a lower temperature
and are cooled. Furthermore, it requires
the evaporation of only a small fraction
of the liquid to cool it by a considerable
amount.

Evaporative cooling works by remov-
ing the higher-energy atoms as sug-
gested schematically in Fig. 17. Those
that remain have much lower average en-
ergy (temperature) and so they occupy a
smaller volume near the bottom of the
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Fig. 17 Principle of the evaporation technique.
Once the trap depth is lowered, atoms with
energy above the trap depth can escape and the
remaining atoms reach a lower temperature

trap, thereby increasing their density. For
trapped atoms, it can be achieved by lower-
ing the depth of the trap, thereby allowing
the atoms with energies higher than the
trap depth to escape, as discussed first by
Hess [73]. Elastic collisions in the trap then
lead to a rethermalization of the gas. This
technique was first employed for evapora-
tive cooling of hydrogen [72, 74–76]. Since
both the temperature and the volume de-
crease, ρφ increases.

Recently, more refined techniques have
been developed. For example, to sustain
the cooling process the trap depth can
be lowered continuously, achieving a
continuous decrease in temperature. Such
a process is called forced evaporation and is
discussed in Sect. 6.3 below.

6.2.1 Simple Model
This section describes a simple model of
evaporative cooling. Since such cooling is
not achieved for single atoms but for the
whole ensemble, an atomic description of
the cooling process must be replaced by
thermodynamic methods. These methods
are completely different from the rest of the
material in this article, and will therefore
remain rather elementary.

Several models have been developed
to describe this process, but we present
here the simplest one [77] because of its
pedagogical value [22]. In this model, the
trap depth is lowered in one single step
and the effect on the thermodynamic
quantities, such as temperature, density,
and volume, is calculated. The process can
be repeated and the effects of multiple
steps added up cumulatively.

In such models of evaporative cooling,
the following assumptions are made:

1. The gas behaves sufficiently ergodically,
that is, the distribution of atoms
in phase space (both position and
momentum) depends only on the
energy of the atoms and the nature
of the trap.

2. The gas is assumed to begin the
process with ρφ  1 (far from the BEC
transition point), and so it is described
by classical statistics.

3. Even though ρφ  1, the gas is cold
enough that the atomic scattering is
pure (s-wave) quantum mechanical,
that is, the temperature is sufficiently
low that all higher partial waves do
not contribute to the cross section.
Furthermore, the cross section for
elastic scattering is energy-independent
and is given by σ = 8πa2, where a is the
scattering length. It is also assumed that
the ratio of elastic to inelastic collision
rates is sufficiently large that the elastic
collisions dominate.

4. Evaporation preserves the thermal na-
ture of the distribution, that is, the
thermalization is much faster than the
rate of cooling.

5. Atoms that escape from the trap neither
collide with the remaining atoms nor
exchange energy with them. This is
called full evaporation.



Laser Cooling and Trapping of Neutral Atoms 1007

6.2.2 Application of the Simple Model
The first step in applying this simple model
is to characterize the trap by calculating
how the volume of a trapped sample
of atoms changes with temperature T .
Consider a trapping potential that can be
expressed as a power law given by

U(x, y, z) = ε1

∣∣∣∣ x

a1

∣∣∣∣
s1

+ ε2

∣∣∣∣ y

a2

∣∣∣∣
s2

+ ε3

∣∣∣∣ z

a3

∣∣∣∣
s3

, (26)

where aj is a characteristic length and sj the
power, for a certain direction j. Then the
volume occupied by trapped atoms scales
as V ∝ Tξ [78], where

ξ ≡ 1

s1
+ 1

s2
+ 1

s3
. (27)

Thus, the effect of the potential on the
volume of the trapped sample for a
given temperature can be reduced to a
single parameter ξ . This parameter is
independent of how the occupied volume
is defined, since many different definitions
lead to the same scaling. When a gas is held
in a 3-D box with infinitely high walls, then
s1 = s2 = s3 = ∞ and ξ = 0, which means
that V is independent of T , as expected.
For a harmonic potential in 3-D, ξ = 3/2;
for a linear potential in 2-D, ξ = 2; and for
a linear potential in 3-D, ξ = 3.

The evaporative cooling model itself [77]
starts with a sample of N atoms in volume
V having a temperature T held in an in-
finitely deep trap. The strategy for using
the model is to choose a finite quantity η,
and then (1) lower the trap depth to a value
ηkBT , (2) allow for a thermalization of the
sample by collisions, and (3) determine the
change in ρφ .

Only two parameters are needed to com-
pletely determine all the thermodynamic

quantities for this process (the values af-
ter the process are denoted by a prime).
One of these is ν ≡ N′/N, the fraction of
atoms remaining in the trap after the cool-
ing. The other is γ (This γ is not to be
confused with the natural width of the ex-
cited state.), a measure of the decrease in
temperature caused by the release of hot
atoms and subsequent cooling, modified
by ν, and defined as

γ ≡ log(T ′/T)

log(N′/N)
= log(T ′/T)

log ν
. (28)

This yields a power-law dependence for
the decrease in temperature caused by
the loss of the evaporated particles, that
is, T ′ = Tνγ . The dependence of the
other thermodynamic quantities on the
parameters ν and γ can then be calculated.

The scaling of N′ = Nν, T ′ = Tνγ , and
V ′ = Vνγ ξ can provide the scaling of
all the other thermodynamic quantities
of interest by using the definitions for
the density n = N/V , the phase space
density ρφ = nλ3

deB ∝ nT−3/2, and the
elastic collision rate kel ≡ nσ v ∝ nT1/2.
The results are given in Table 2. For a
given value of η, the scaling of all quantities
depends only on γ . Note that for successive
steps j, ν has to be replaced with ν j.

Tab. 2 Exponent q for the scaling of the
thermodynamic quantities X ′ = Xνq with the
reduction ν of the number of atoms in the trap

Thermodynamic
variable

Symbol Exponent q

Number of
atoms

N 1

Temperature T γ

Volume V γ ξ

Density n 1 − γ ξ

Phase space
density

ρ 1 − γ (ξ + 3/2)

Collision rate k 1 − γ (ξ − 1/2)
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The fraction of atoms remaining is fully
determined by the final trap depth η for
a given potential characterized by the trap
parameter ξ . In order to determine the
change of the temperature in the cooling
process, it is necessary to consider in
detail the distribution of the atoms in the
trap, and this is discussed more fully in
Refs. [1, 22, 77].

6.2.3 Speed of Evaporation
So far, the speed of the evaporative cooling
process has not been considered. If the
trap depth is ramped down too quickly, the
thermalization process does not have time
to run its course and the process becomes
less efficient. On the other hand, if the
trap depth is ramped down too slowly,
the loss of particles by inelastic collisions
becomes important, thereby making the
evaporation inefficient.

The speed of evaporation can be found
from the principle of detailed balance [22].
Its application shows that the ratio of the
evaporation time and the elastic collision
time is

τev

τel
=

√
2eη

η
. (29)

Note that this ratio increases exponentially
with η.

Experimental results show that ∼2.7
elastic collisions are necessary to rether-
malize the gas [79]. In order to model the
rethermalization process, Luiten et al. [80]
have discussed a model based on the Boltz-
mann equation where the evolution of the
phase space density ρ(�r, �p, t) is calculated.
This evolution is not only caused by the
trapping potential, but also by collisions
between the particles. Only elastic col-
lisions, whose cross section is given by
σ = 8πa2 with a as the scattering length,
are considered. This leads to the Boltz-
mann equation [81].

6.2.4 Limiting Temperature
In the models discussed so far, only
elastic collisions have been considered,
that is, collisions where kinetic energy
is redistributed between the partners.
However, if part of the internal energy
of the colliding partners is exchanged with
their kinetic energy in the collision, then
it is inelastic. Inelastic collisions can cause
problems for two reasons: (1) the internal
energy released can cause the atoms to
heat up and (2) the atoms can change their
internal states, and the new states may
no longer be trapped. In each case, such
collisions can lead to trap loss and are
therefore not desirable.

Apart from collisions with the back-
ground gas and three-body recombination,
there are two inelastic processes that are
important for evaporative cooling of alkali
atoms: dipolar relaxation and spin relax-
ation. The collision rate nkdip for them
at low energies is independent of veloc-
ity [82]. Since the elastic collision rate is
given by kel = nσ vrel, the ratio of good
(= elastic) to bad (= relaxation) collisions
goes down when the temperature does.
This limits the temperature to a value Te

near which the ratio between good and
bad collisions becomes unity, and Te is
given by

kBTe =
πMk2

dip

16σ 2 . (30)

The limiting temperature for the alkalis
is of the order of 1 nK, depending on the
values of σ and kdip.

In practice, however, this ratio has to
be considerably larger than unity, and
so the practical limit for evaporative
cooling occurs when the ratio is ∼103 [22].
In the model of Ref. [80], the authors
discuss different strategies for evaporative
cooling. Even for the strategy of the
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lowest temperature, the final temperature
is higher than Te.

The collision rate between atoms with
one in the excited state (S + P collisions) is
also much larger at low temperatures than
the rate for such collisions with both atoms
in the ground state (S + S collisions). Since
S + P collisions are generally inelastic and
the inelastic energy exchange generally
leads to a heating of the atoms, increasing
the density increases the loss of cold
atoms. To achieve BEC, resonant light
should therefore be avoided, and thus laser
cooling is not suitable for achieving BEC.

6.3
Forced Evaporative Cooling

In all the earliest experiments that achieved
BEC, the evaporative cooling was ‘‘forced’’
by inducing rf transitions to magnetic
sublevels that are not bound in the
magnetic trap. Atoms with the highest
energies can access regions of the trap
where the magnetic field is stronger, and
thus their Zeeman shifts would be larger.
A correspondingly high-frequency rf field
would cause only these most energetic
atoms to undergo transitions to states
that are not trapped, and in doing so, the
departing atoms carry away more than the
average energy. Thus, a slow sweep of
the rf frequency from high to low would
continuously shave off the high-energy tail
of the energy distribution, and thereby
continuously drive the temperature lower
and the phase space density higher. The
results of evaporative cooling from the first
three groups that have obtained BEC have
shown that using this rf shaving technique,
it is much easier to select high-energy
atoms and waste them than it is to cool
them.

For the evaporation of the atoms, it is
important that atoms with an energy above

the cutoff are expelled from the trap. By
using RF-evaporation, one can expel the
atoms in all three dimensions equally and
thus obtain a true 3-D evaporation. In the
case of the time orbiting potential (TOP)
trap, the atoms are evaporated along the
outer side of the cloud that is exposed to
the highest magnetic field on the average.
This is a cylinder along the direction of
rotation axis of the magnetic field and thus
the evaporation takes place in 2-D.

Once the energy of the atoms becomes
very small, the atoms sag because of gravity
and the outer shell of the cloud is no longer
at a constant magnetic field. Atoms at the
bottom of the trap have the highest energy
and thus the evaporation becomes 1-D. In
case of harmonic confinement, Utrap =
U′′z2/2, the equipotential surface is at
z ≈ √

2ηkBT/U′′. Now, the gravitational
energy is given by Ugrav = mgz and
thus the limiting temperature for 1-D
evaporation to take place is given by [22]

kBT <
2η(mg)2

µB′′ (31)

For a curvature of B′′ = 500 T m−2, the
limiting temperature becomes 1 µK for 7Li,
10 µK for 23Na, and 150 µK for 87Rb. Below
this temperature, evaporation becomes
less efficient.

In the three experiments that obtained
BEC for the first time in 1995, the problem
of this ‘‘gravitational sag’’ was not known,
but it did not prevent the experimentalist
from observing BEC. The solution used
in those experiments was because of the
light mass (7Li), tight confinement (23Na),
and TOP trap (87Rb). In the last case, the
axis of rotation is in the z-direction and
thus the evaporation always remains 2-
D. Table 3 shows typical values of ρφ for
various situations.
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Tab. 3 Typical numbers for the phase space density as obtained in the
experiments aimed at achieving BEC. The different stages of cooling and
trapping the atoms are discussed in the text

Stages T λdeB n ρφ

Oven 300 ◦C 0.02 nm 1010 cm−3 10−16

Slowing 30 mK 2 nm 108 cm−3 10−12

Pre-cooling 1 mK 10 nm 109 cm−3 10−9

Trapping 1 mK 10 nm 1012 cm−3 10−6

Cooling 1 µK 0.3 µm 1011 cm−3 3 × 10−3

Evaporation 70 nK 1 µm 1012 cm−3 2.612

7
Conclusion

In this article, we have reviewed some
of the fundamentals of optical control of
atomic motion. The reader is cautioned
that this is by no means an exhaustive
review of the field, and that many impor-
tant and current topics have been omitted.
Much of the material here was taken from
our recent textbook [1], and the reader is
encouraged to consult that source for the
origin of many of the formulas presented
in the present text, as well as for further
reading and more detailed references to
the literature.

Glossary

Atomic Beam Slowing: Using laser light to
slow down the velocities of atoms in a
beam.

Bad Collisions: Inelastic scattering of
atoms leading to loss of atoms from the
trap during evaporation.

Beam Brightening: Increasing the bright-
ness of an atomic beam by using laser
cooling.

Bloch Oscillations: The oscillatory motion
of particles moving through a periodic

potential, predicted in the 1930s by Bloch
for electrons in solid state.

Bose–Einstein Condensation (BEC): New
state of matter theoretically described in
the 1920s by Bose and Einstein and
experimentally first observed in dilute
gases in 1996, where the interatomic
spacing is smaller than the deBroglie
wavelength of the atoms.

Brightness: The number of atoms emitted
from a source or in a beam per unit of
time, per unit of solid angle, and per unit
of area of the source.

Capture Range: The range in velocity,
where the optical forces are effective.

Damping Force: The optical force on atoms
that leads to damping of their velocity.

Dark-spot Magneto-optical Trap: Magneto-
optical trap, where in the center of the
trap the atoms are not kept in the cycling
transition, which reduces the loss of atoms
due to inelastic collisions.

Dipole Force Trap: Trap using the dipole
optical force to trap atoms.

Dipole Forces: The optical force on the
atom caused by the gradient of the light
shift of the atom.
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Doppler Cooling Limit: Limit of cooling
atoms given by the Doppler theory.

Doppler Cooling Techniques: Using the
Doppler shift and the detuning of the light
from atomic resonance in order to cool
atoms.

Doppler Theory: Theory describing the
cooling of two-level atoms by exploiting the
Doppler shift of the atoms in combination
with the detuning of the laser light from
resonance.

Ehrenfest Theorem: Theorem by Ehrenfest
making the correspondence between clas-
sical relations, like F = −gradV , and their
quantum-mechanical counterpart, in this
case 〈F〉 = −grad〈H〉.
Entropy: Thermodynamic measure of the
disorder in the system.

Evaporative Cooling: The preferential re-
moval of high-energy atoms from a gas
sample, thereby reducing the temperature
of the remaining atoms.

Far-off-resonance Traps: Dipole force trap,
where the light is far detuned from reso-
nance, which minimizes the scattering of
light due to spontaneous emission.

Fokker-Planck Equation: Equation describ-
ing the evolution of the atomic momentum
distribution under the combined influence
of force and diffusion.

Good Collisions: Elastic scattering of atoms
leading to the thermalization of the atoms
during evaluation.

Laser Cooling: Using the interaction be-
tween laser light and atoms to reduce the
average kinetic energy of the atoms.

lin ⊥ lin Cooling: Polarization gradient
cooling, where the two beams have
perpendicular, linear polarization.

Magnetic Traps: Traps where atoms are
trapped due to their magnetic moment by
an inhomogeneous magnetic field.

Magneto-optical Trap (MOT): Combination
of light forces and inhomogeneous mag-
netic field, leading to cooling and trapping
of atoms.

Majorana Losses: Loss of atoms from
magnetic traps, where the atoms in the
center of the trap undergo a motion-
induced transition to an untrapped state.

Multilevel Atoms: Atoms that have degen-
erate magnetic substates in ground and
excited state, which are coupled by laser
light.

Optical Bloch Equations (OBE): Relations
describing the evolution of the state vector
of the internal state of the atom due to the
interaction with laser light.

Optical Forces: The force induced on the
atom by laser light.

Optical Lattice: The periodic trapping po-
tential for atoms created by the interfer-
ence of laser beams.

Optical Molasses: Viscous damping of
the atomic velocities by the use of
counterpropagating laser beams.

Phase Space Density: Probability of find-
ing a particle in a certain region of space,
with a certain range of velocities.

Polarization Gradient Cooling: The use of
polarization gradients to cool atoms below
the Doppler limit.

Polarization Gradient: The interference
pattern that occurs when two counter-
propagating laser beams have different
polarization. The resulting polarization of
the light field is not constant in space, that
is, shows a gradient.
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Quadrupole Trap: The simplest magnetic
trap, where the magnetic field is generated
by two separated identical coils carrying
opposite currents.

Radiative Forces: The optical force on the
atom caused by the scattering of light.

Recoil Limit: Limit in laser cooling deter-
mined by the recoil by one photon on the
atom.

Saturation Intensity: Intensity of the light
where the rate for spontaneous emission
and the rate for stimulated emission are
equal.

Saturation Parameter: Ratio between the
intensity of the laser light and the
saturation intensity.

σ+-σ− Cooling: Polarization gradient cool-
ing, where the two beams have opposite,
circular polarization.

Sisyphus Cooling: The continuous trans-
fer of kinetic energy to potential en-
ergy in laser cooling, where the poten-
tial energy is radiated away by sponta-
neously emitted photons. A special case
of Sisyphus cooling is polarization gra-
dient cooling to sub-Doppler tempera-
ture.

Spontaneous Emission: The return of the
atom from the excited state to the ground
state by the emission of one photon in a
random direction.

Stimulated Emission: The return of the
atom from the excited state to the ground
state by the emission of one photon in the
direction of the laser light.

Sub-Doppler Cooling: Using laser cool-
ing techniques beyond the Doppler tech-
niques to cool atoms below the Doppler
limit.

s-wave Scattering: Scattering of atoms at
low temperatures, where only the lowest-
order partial wave is effective.

Temperature: A measure of the average
kinetic energy of the atoms, that is,
kBT/2 = 〈Ek〉.
Time-of-flight (TOF) Method: Technique to
determine the flight time of atoms over a
well-defined flight path in order to detect
the atomic velocity.

Time-orbiting Potential (TOP) trap: Mag-
netic quadrupole trap, where the zero of
the magnetic field oscillates in space in
order to reduce trap loss due to Majorana
flips.

Two-level Atoms: Hypothetical atoms that
only have one nondegenerate ground
state and one nondegenerate excited state,
which are resonant with the laser light.
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1
Introduction

Semiconductor lasers have now grown to
be key components in modern photonics
technology, most notably as light sources
in fiber-optic telecommunications systems
and optical disk systems. They have
also found an increasing number of
applications ranging from instruments
such as bar code scanners and computer
printers to solid-state laser pumps and
measuring and sensoring equipment for
engineering use.

Semiconductor lasers have the following
features that distinguish them from other
lasers.

1. Compactness: The typical size of a laser
chip is 300 × 200 × 100 µm3. The small
chip contains all the ingredients of a laser
structure: a resonator, a waveguide, an
active medium, and a p-n junction to pump
the active medium.
2. High efficiency: Semiconductor lasers
can be driven by low electrical power
[(several tens of mA) × (1–2 V)]. The

efficiency of converting electrical power
into optical power is several tens of
percent, which should be compared with
that of 0.1% or less for gas and other
lasers.
3. Capability for high-speed direct modula-
tion: Light output can be modulated at
frequencies of 10 GHz or more simply by
modulating the pumping current.

4. Wide emission spectrum: The emission
wavelength is determined by the band-
gap energy of the active-layer material.
The blue-near-infrared region is covered
by III–V compounds. The infrared re-
gion (3–30 µm) is covered by IV–VI
compounds.

5. High reliability: Semiconductor lasers
have become highly reliable devices be-
cause of the remarkable improvement in
crystal quality, although rapid degradation
was a great problem at the early stage of
their development.

6. Sensitivity to temperature: The threshold
current and the lasing wavelength strongly
depend on temperature. This is a disadvan-
tage for most applications. On the other
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hand, wavelength tunability is useful in
spectroscopic research.

This article is intended to serve as a
useful reference for those who wish to
grasp the basic concepts of semiconductor
lasers and utilize them in engineering and
research activities. Following this intro-
duction is a brief history of semiconductor
lasers. Next, the operation principles of
semiconductor lasers are described in re-
lation to their structures and materials.
The fourth section presents a general view
of fundamental operation characteristics
covering the static, spectral, and dynamic
aspects. The fifth section gives the cur-
rent state of the art in semiconductor
laser technology by reviewing up-to-date
devices incorporating new structures and
new functions. Because of the limited
space, citation of published papers has
been kept to a minimum. Several books
listed in the (Further Reading) section can
be consulted both for further study and for
access to the relevant published papers.

2
History

The advent of semiconductor injection
lasers dates back to 1962, only two years
later than the first achievement of laser
action in ruby, when stimulated emis-
sion from forward-biased GaAs diodes
was demonstrated [1–3]. The stimulated
emission resulted from the radiative re-
combination of electrons and holes in
the direct-gap semiconductor GaAs. The
electrons and holes were injected by for-
ward bias into the depletion region in
the vicinity of the p-n junction. Optical
feedback was provided by polished facets
perpendicular to the junction plane. The
demonstration of GaAs lasers prompted

the exploration of many other III–V
and IV–VI compound semi-conductors.
Unfortunately, these early homojunction
devices, consisting of a single semicon-
ductor, were not considered for serious
applications since continuous operation
at room temperature was not feasible be-
cause of their high threshold current den-
sities for lasing (several tens of kA cm−2).

A breakthrough was brought about in
1970 by employing a double heterostruc-
ture grown by liquid-phase epitaxy [4, 5].
In the double heterostructure, stimulated
emission occurred only within a thin ac-
tive layer of GaAs sandwiched between
p- and n-doped AlGaAs layers that have
a wider band gap. The threshold current
density was dramatically reduced to several
kA cm−2 or less, and continuous opera-
tion at room temperature was eventually
accomplished. The invention of the dou-
ble heterostructure was obviously the most
important step in the history of the devel-
opment of semiconductor lasers toward
practical utility. For the invention of het-
erostructure, Alferov and Kroemer were
honored with a Nobel Prize in physics in
2000, while Alferov, Hayashi and Panish
shared the Kyoto Prize in 2001.

There still remained, however, a trou-
blesome problem of degradation; the reli-
ability of the early double-heterostructure
devices was very poor and many of them
stopped their continuous operation within
a few or several tens of minutes. For-
tunately, intensive investigations of the
degradation mechanism led to the identi-
fication of the causes of major failure: the
recombination-enhanced growth of dis-
locations, and facet erosion [6 Part B,
Chapter 8]. These studies have revealed
that a long operating life is obtained by
eliminating dislocation generation during
material growth and device processing and
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by coating the mirror facets with dielectric
thin films.

Another task undertaken in parallel
with the improvement of reliability was
the stabilization of the optical mode in
the lateral transverse direction (parallel
to the junction plane). It had been
recognized by the late 1970s that the
lateral-mode instability often observed at
higher output powers was detrimental
to most applications and that such an
instability could be effectively suppressed
by incorporating a built-in refractive-index
profile in the lateral direction [7]. A large
number of laser structures have been
proposed and demonstrated to introduce
lateral variations of the refractive index.

As a result of these research and develop-
ment efforts during the first two decades,
the maturity of AlGaAs lasers reached the
stage of practical use in printers and disk
players early in the 1980s. Meanwhile, the
rapid reduction of transmission loss in
optical fibers achieved during the 1970s
stimulated intensive development efforts
on GaInPAs lasers, which have emission
wavelengths (1.3–1.55 µm) in the low-loss
and dispersion-free region of silica fibers.
During the first half of the 1980s, GaIn-
PAs lasers emerged as indispensable light
sources in telecommunications systems
using silica fibers (see OPTICAL COMMUNI-

CATIONS).
Progress has continued to date in both

device structures and materials. In the
following, let us look at some major topics.

The idea of utilizing periodic gratings
incorporated in a laser medium as a
means of optical feedback was proposed
by Kogelnik and Shank in [8]. Distributed-
feedback and distributed-Bragg-reflector
semiconductor lasers utilizing this prin-
ciple have since become the major device
structures used in long-haul, high bit-rate
telecommunications systems because of

the stable single–longitudinal-mode oscil-
lation they exhibit even under high-speed
modulation.

Recent advances in growth technol-
ogy of semiconductor ultrathin layers by
molecular-beam epitaxy and metal-organic
vapor-phase epitaxy have also created a
new class of laser structures. Quantum-
well lasers incorporating such ultrathin
active layers (∼20 nm or less) have been
shown to display a variety of superior laser
characteristics, such as low-threshold cur-
rents and wide modulation bandwidths,
which are attributed to the size quanti-
zation of electrons in the ultrathin active
layers [9]. Quantum-well structures as well
as multiple quantum-well structures are
now commonly employed in most semi-
conductor lasers.

In the visible spectrum, GaInP lasers
were first commercialized as red-emitting
lasers (0.63–0.69 µm) in 1988 by Sony,
Toshiba, and NEC. They are now exten-
sively used in DVD systems. Blue–green
laser emission was achieved first in
ZnCdSe lasers [10] and then in InGaN
lasers [11, 12]. InGaN blue lasers are be-
ing employed in second-generation DVD
players (see DATA STORAGE, OPTICAL).

3
Structures, Materials, and Operation
Principles

3.1
Double Heterostructure

A semiconductor laser is a diode, as
shown schematically in Fig. 1. When a
forward current is passed through the p-n
junction, electrons and holes injected into
the active region from the n and p regions
respectively, recombine to emit radiation.
The wavelength λ of the radiation is
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Fig. 1 Schematic illustration of a double-heterostructure semiconductor laser

basically determined by the relation λ ∼
hc/Eg, where h is the Planck constant, c is
the light velocity, and Eg is the band-gap
energy of the active-region material.

For low injection currents, light is emit-
ted through spontaneous emission. In
order for lasing to take place, a suf-
ficiently high concentration of carriers
must be accumulated within the active re-
gion to induce population inversion. This
is effectively accomplished by adopting
a double-heterojunction (DH) structure,
where a thin active layer, typically ∼0.1 µm
thick, but as thin as 10 nm in quantum-
well lasers, is sandwiched between n- and
p-type cladding layers, which have wider
band gaps than the active layer. Electrons
and holes injected into the active layer
through the heterojunctions are confined
within the thin active layer by the poten-
tial barriers at the heteroboundaries, as
illustrated in Fig. 2(a). The DH structure
forms an efficient optical waveguide as
well, because of the refractive-index dif-
ference between the active and cladding
layers shown in Figs. 2(b) and 2(c). Thus,

the DH structure facilitates the interaction
needed for laser action between the optical
field and the injected carriers.

Let us use a GaAs(active)/AlxGa1−xAs
(cladding) DH structure as an example.
The dependence of the band-gap energy of
AlxGa1−xAs on the AlAs mole fraction x
can be approximated for x < 0.42 (direct-
gap region) by [6 Part A, p. 193].

Eg = 1.424 + 1.247x eV. (1)

The energy-gap difference between the
active and cladding layers �Eg is divided
into the band discontinuities �Ec in the
conduction band and �Ev in the valence
band according to [13].

�Ec ∼ 0.62�Eg (2)

and
�Ev ∼ 0.38�Eg. (3)

The efficiency of the carrier confinement
depends strongly on the magnitude of
the band discontinuity. The AlAs mole
fraction x of the cladding layers is usually
chosen to be greater than that of the active
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Fig. 2 Diagram illustrating carrier confinement and
waveguiding in a double heterostructure (a) Energy-band
diagram at high forward bias; (b) refractive-index distribution;
(c) light intensity distribution. Ec and Ev: The edges of the
conduction and valence bands. V: Applied voltage. d:
Active-layer thickness (∼0.1 µm). �: Confinement factor

layer by ∼0.3. This gives rise to a �Ec
approximately 10 times as large as the
room-temperature thermal energy, which
is sufficient to suppress electron diffusion
over the heterobarriers. The hole leakage
current is less important because of the
smaller diffusion constant for holes.

The characteristics of a three-layer slab
waveguide are conveniently described in
terms of the normalized waveguide thick-
ness D, defined as

D =
(

2π

λ

)
d
√

η2
a − η2

c , (4)

where ηa and ηc are the refractive indices of
the active and cladding layers respectively
and d is the active-layer thickness. For
example, the condition that a waveguide

supports only the lowest-order fundamen-
tal mode is expressed as

D < π. (5)

Meanwhile, the refractive index of
AlxGa1−xAs, η(x), can be approximated
for a light wavelength of ∼0.9 µm by [6,
Part A, p. 45]

η(x) = 3.590 − 0.710x + 0.091x2. (6)

Thus, for a waveguide with a GaAs
active layer surrounded by Al0.3Ga0.7As
layers and a wavelength λ of 0.87 µm, the
condition of Eq. (5) simply becomes

d < 0.36 µm. (7)
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Since the thickness d is typically 0.1
to 0.2 µm, the single, fundamental-mode
condition is almost always satisfied in
practical devices.

The confinement factor �, defined as the
fraction of the electromagnetic energy of
the guided mode that exists within the
active layer, is an important parameter
representing the extent to which the
waveguide mode is confined to the active
layer. � for a fundamental mode is
approximately given by [14]

� ∼ D2

2 + D2 . (8)

For a GaAs/Al0.3Ga0.7As waveguide
with d = 0.1 µm, � ∼ 0.27.

3.2
Fabry–Pérot Cavity

In addition to the optical gain, optical
feedback is the other ingredient for laser
oscillation. This is provided by a pair
of mirror facets at both ends of the
devices. These facets are normally formed
simply by cleaving the crystal. Since the
refractive index of major semiconductor
laser materials is ∼3.6, the reflectivity
of the mirror is ∼0.3. This is very low
compared to other types of lasers but is
still sufficient to provide optical feedback
in semiconductor lasers.

3.3
Lasing Threshold Condition

When a sufficient number of electrons
and holes is accumulated to form an
inverted population, the active region
exhibits optical gain and can amplify
light passing through it since stimulated
emission overcomes interband absorption.
The condition for self-sustained laser
oscillation to occur is that the light makes

a full round trip in the cavity without
attenuation; that is, the optical gain should
equal the losses both inside the cavity and
through the partially reflecting end facets.
Thus, the gain coefficient at threshold gth
is given by the relation

�gth = �αa + (1 − �)αc + αs︸ ︷︷ ︸
αi

+1

L
ln

1

R
.

(9)

Here, αa and αc denote the losses in
the active and cladding layers respectively,
due to free-carrier absorption. αs accounts
for scattering loss due to heterointerfacial
imperfections. The first three loss terms
on the right-hand side combined are
termed internal loss αi and add up to 10
to 20 cm−1 [6, Part A, p. 174–176]. The
reflection loss L−1 ln R−1 due to output
coupling (∼40 cm−1 for L ∼ 300 µm, R ∼
0.3) is normally the largest among the
loss terms. Despite the fact that both
the internal and the reflection losses are
exceptionally large as compared to other
lasers, lasing is brought about by virtue of
the high optical gain in semiconductors.

It is not an easy task to analyze precisely
the optical gain spectrum in semiconduc-
tor lasers. Fortunately, however, we can
utilize a phenomenological linear relation-
ship between the maximum gain g (the
peak value of the gain spectrum for a given
carrier density) and the injected carrier
density n,

g(n) = ∂g

∂n
(n − nt), (10)

to a good approximation [15–17]. Here,
∂g/∂n is termed differential gain, and nt

denotes the carrier density required to
achieve transparency where stimulated
emission balances against interband ab-
sorption corresponding to the onset of
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population inversion. For GaAs lasers,

∂g

∂n
∼ 3.5 × 10−16 cm2 (11)

and

nt ∼ 1.5 × 1018 cm−3. (12)

Substituting Eqs. (10) to (12) into
Eq. (9) and assuming that � = 0.27, αi =
10 cm−1, and L−1 ln R−1 = 40 cm−1, we
get a threshold carrier density nth of
∼2 × 1018 cm−3.

The threshold current density Jth is
expressed as

Jth = ednth

τs
, (13)

where τs is the carrier lifetime due to
spontaneous emission. Assuming that
τs = 2–4 ns and d = 0.1 µm, we ob-
tain a threshold current density Jth or
∼1 kA cm−2.

3.4
Stripe Geometry

Most modern semiconductor lasers adopt
a stripe geometry, where current is injected
only within a narrow region beneath a
stripe contact several µm wide, in order
to keep the threshold current low and to
control the optical field distribution in the
lateral direction. As compared with broad-
area lasers, where the entire laser chip
is excited, the threshold current of the
stripe-geometry lasers is reduced roughly
proportional to the area of the contact.

Figure 3(a) shows the simplest form of
the stripe geometry [18]. Lasing occurs in
a limited region of the active layer beneath
the stripe contact where a high density of
current flows. Such lasers are termed gain-
guided lasers because the optical intensity
distribution in the lateral direction (x

Electrode
Insulator

p -cladding layer

p -burying layer

Active layer
n -burying layer

n -cladding layer

n -substrate

Electrode

Electrode
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p -cladding layer
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n -cladding layer
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Electrode
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y

z
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(b)

w

w

Fig. 3 Two representative examples of
stripe-geometry lasers (front view of the end
facet) (a) Stripe-contact laser; (b) Buried
heterostructure (BH) laser. W: Stripe width
(2–10 µm)

direction) is determined by the gain profile
produced by carrier density distribution.

Devices incorporating a built-in refr-
active-index variation in the lateral di-
rection are termed index-guided lasers.
Figure 3(b) shows the structure of a buried
heterostructure (BH) laser [19] as a repre-
sentative example of index-guided lasers.
The active region is surrounded by materi-
als with lower refractive indices in both the
vertical (y) and lateral (x) transverse direc-
tions, thus forming a waveguide structure
in both directions. In the BH laser, the
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width of current flow is delineated by the
p-n junction formed by the burying layers,
which is reverse biased when the active
region is forward biased.

3.5
Materials and Emission Wavelengths

Semiconductor-laser materials that have
been studied range over III–V, IV–VI,
and II–VI compounds as listed in Table 1.

3.5.1 III–V Compounds
III–V compounds are the most impor-
tant and popular laser materials [6, Part
B, Chapter 5]. In particular, AlGaAs (ac-
tive layer)/AlGaAs (cladding layer)/GaAs
(substrate) lasers emitting at 0.7 to
0.9 µm and GaInP/AlGaInP/GaAs lasers
emitting at 0.63 to 0.69 µm are exten-
sively used in optical disk systems and

laser printers. GaInPAs/InP/InP lasers
emitting at 1.2 to 1.6 µm are used
in fiber-optic communications systems.
GaInN/AlGaN/sapphire lasers emitting
at 0.38 to 0.45 µm are starting to be
used in second-generation DVD players.
All of them exhibit low-threshold, room-
temperature continuous wave (cw) opera-
tion with high reliability.

The common features among them are
as follows:

1. The active layer consists of direct-gap
materials.

2. Binary compounds (GaAs, InP) are
used as the substrate except for
GaInN/AlGaN/sapphire lasers, for
which GaN substrate will be used in
the future.

3. The active and cladding layers have
nearly the same lattice constant as the
substrate.

Tab. 1 Major semiconductor-laser materials and their emission
wavelengths

Materials (active/cladding/substrate) Emission
wavelengths [µm]

III–V compounds
AlGaAs/AlGaAs/GaAs 0.7–0.9
GaInPAs/InP/InP 1.2–1.6
GaInP/AlGaInP/GaAs 0.66–0.69
GaInPAs/GaInP/GaAs or GaPAs 0.65–0.9
GaInPAs/AlGaAs/GaAs 0.62–0.9
AlGaAsSb/AlGaAsSb/GaSb 1.1–1.7
GaInAsSb/AlGaAsSb/GaSb or InAs 2–4
InPAsSb/InPAsSb/GaSb or InAs 2–4
GaInAs(strained)/AlGaAs/GaAs 0.9–1.1
GaInPAs(strained)/GaInPAs/InP ∼1.55
GaInN/AlGaN/sapphire 0.38–0.45

IV–VI compounds
PbSnTe/PbSnSeTe/PbTe 6–30
PbSSe/PbS/PbS 4–7
PbEuTe/PbEuTe/PbTe 3–6

II–VI compounds
ZnCdSe/ZnSSe/GaAs ∼0.5
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The use of direct-gap semiconductors,
featuring efficient radiative recombina-
tion, as the active-region material (1) is
essential in achieving laser action. Fea-
tures 2 and 3 are related to the crystal
quality of the hetero-interfaces. To min-
imize the generation of lattice defects that
may impair the device reliability, the lat-
tice parameter of the active and cladding
layers should be matched to that of the
high-quality binary substrate (the lattice-
matching condition). The lattice parameter
of AlxGa1−xAs is essentially independent
of alloy concentration x. This is the only
exception in ternary alloys, arising from
the fortuity that GaAs and AlAs have
virtually the same lattice parameter, the
difference being as small as ∼0.1%. In
quaternary alloys like GaxIn1−xPyAs1−y

and AlxGayIn1−x−yP, the band-gap en-
ergy can be tuned in a certain range
for a fixed lattice parameter by choos-
ing appropriate pairs of x and y values.
The design of lattice-matched DH struc-
tures is facilitated by taking advantage
of this degree of freedom in quater-
nary alloys. In some quantum-well struc-
tures, a certain degree of strain in the
active material caused by inevitably or
deliberately introduced slight lattice mis-
matching is used to provide better laser
performance.

3.5.2 IV–VI Compounds
PbSnTe and PbSSe lasers emitting in the
infrared region (3–30 µm) [20] are used in
high-resolution gas spectroscopy and in air
pollution monitoring. These lasers operate
only at cryogenic temperatures. However,
an appreciable spectral tuning is feasible
by simply changing temperature and injec-
tion current, which is extremely desirable
for spectroscopy.

3.5.3 II–VI Compounds
ZnCdSe/ZnSSe/ZnMgSSe/GaAs quan-
tum-well lasers emitting in the blue–green
spectral region emerged around 1991 as
a result of success in overcoming the
difficulty of p-type doping into these ma-
terials. [10, 21] Despite extensive efforts,
however, these lasers have never attained
device life times exceeding several hun-
dred hours and hence have not been put
into practical use.

4
Fundamental Characteristics

In this section, several aspects of fun-
damental characteristics are described.
Numerical examples are given based on
AlGaAs (λ ∼ 0.8 µm) and GaInPAs (λ ∼
1.3 µm) lasers.

4.1
Light–Current Characteristics

Figure 4 shows an example of output
power (P) versus DC injection current (I)
characteristics. The ordinate is the light
power emitted from one end facet, and
essentially the same power is emitted from
the other end facet.

The threshold current at room temper-
ature is typically several tens of mA. The
dependence of the threshold current Ith on
device temperature T is phenomenologi-
cally expressed as

Ith ∝ exp
(

T

T0

)
, (14)

where T0 is a constant referred to as
the characteristic temperature and takes
a value of 100 to 150 and 50 to
80 K for AlGaAs and GaInPAs lasers,
respectively.
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curve in an AlGaAs laser

The light power emitted by injection
above threshold is expressed as

P = h̄ωl
I − Ith

e
ηi

1
2 L−1 ln(1/R)

αi + L−1 ln(1/R)
. (15)

Here, (I − Ith)/e is the rate of excess
carrier injection beyond the threshold. ηi
is the internal quantum efficiency repre-
senting the fraction of injected carriers
that recombine radiatively and gener-
ate photons of energy h̄ωl. The fac-
tor 1/2L−1 ln R−1/(αi + L−1 ln R−1) repre-
sents the fraction of the generated photons
that are coupled out of the cavity through
one of the end facets. From Eq. (15), the
differential efficiency ηD, defined as the
slope of output power versus current curve
above threshold, is written as

ηD = �P

�I
= h̄ωl

e
ηi

1
2 L−1 ln(1/R)

αi + L−1 ln(1/R)
.

(16)

The differential external quantum effi-
ciency ηext, defined as the ratio of the
number of photons coupled out to the
number of carriers injected, is given by

ηext = �P/h̄ωl

�I/e
= ηi

1
2 L−1 ln(1/R)

αi + L−1 ln(1/R)
.

(17)

Above threshold, the stimulated emis-
sion predominates over the nonradia-
tive processes and ηi ∼ 1. Typical val-
ues of L = 300 µm, R = 0.3, and αi =
20 cm−1 give ηext ∼ 0.3. Since h̄ωl ∼ Eg,
ηD ∼ (Eg/e)ηext. For GaAs lasers (Eg =
1.424 eV), we get ηD ∼ 0.4 W/A.

The maximum rating for output power
is typically 5 to 30 mW. Figure 5 shows
schematically the three phenomena that
determine the maximum power rating.

1. Kink: The nonlinearity in the curve
of light versus current caused by lateral-
mode instability is referred to as a kink.
Since a kink is often associated with a
beam-profile shift and the generation of
intensity noise, lasers cannot be used
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Current

Li
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t o
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t

Fig. 5 Schematic illustration of the three
phenomena occurring at high injection levels



1262 Lasers, Semiconductor

in the kink region for most applica-
tions. The lateral-mode instability arises
from the optical power dependence of
the refractive index. By incorporating a
refractive-index profile in the lateral di-
rection to form a waveguide, the power
level for kink generation can be apprecia-
bly increased.

2. Catastrophic optical damage: For opti-
cal power densities higher than several
MW cm−2, the end facets of semiconduc-
tor lasers may be melted. This results in
a sudden decrease of output power and
failure of the device. The catastrophic dam-
age is considered to be brought about by
the enhanced light absorption associated
with surface states at the end facets. The
importance of this process seems to de-
pend on materials and photon energies.
In GaInPAs lasers (λ ∼ 1.3 µm), the catas-
trophic optical damage practically does not
occur.
3. Thermally induced saturation: Heating
of the junction under high current in-
jections raises the threshold current.
This may lead to saturation of output
power with an increase in injection cur-
rent, especially in lasers with lower T0
values.

4.2
Beam Profile and Polarization

Typical radiation intensity patterns of laser
diodes are shown in Figs. 6 and 7. Shown
in Fig. 6 are the near-field patterns, that
is, the spatial distributions of optical
intensity on the end facet in the direc-
tions (a) perpendicular and (b) parallel to
the junction plane. The far-field pattern
(Fig. 7) is the angular distribution of radi-
ant intensity measured at distances several
mm or more away from the facet, which
is mathematically a Fourier transform of
the near-field pattern. The single-lobed
radiation patterns show that the trans-
verse mode of the device is single and
fundamental. Transverse-mode-stabilized
lasers incorporating appropriate waveg-
uide structures exhibit such beam profiles
stably up to reasonable output power
levels.

Normally, the angular width or beam
divergence (the full width at half maxi-
mum) perpendicular to the junction, θ⊥
(20◦ –60◦), is larger than that parallel to
the junction θ⊥ (10◦ –30◦) since the near-
field spot is an ellipsoid because of the
large difference between the stripe width
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Fig. 6 Near-field optical intensity patterns (a) perpendicular; (b) parallel to the
junction plane
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Fig. 7 Far-field radiant intensity patterns (a) perpendicular; (b) parallel to the junction plane

(several µm) and the active-layer thickness
(∼0.1 µm). θ⊥ can be reduced by adopting
thinner active layers; then, most of the op-
tical energy penetrates into the cladding
layers, increasing the spot size perpendic-
ular to the junction.

The output beam from gain-guided
lasers can be considerably astigmatic;
the beam waist perpendicular to the
junction plane is located essentially on
the end facet, while the virtual beam
waist along the junction plane is formed
in the cavity at a position several tens
of µm behind the end facet. This is
brought about by the difference of the
waveguiding mechanism between the two
directions. In contrast, in index-guided
lasers, the beam waist, both parallel and
perpendicular to the junction plane, is
located within several µm of the facet.
The astigmatism should be taken into
consideration when the beam is coupled
into lenses.

The laser beam is linearly polarized
along the junction plane. This is because,
in a slab waveguide, the facet reflectivity for
the TE mode is higher than that for the TM
mode [22]. Since the gain needed to reach
threshold depends on the facet reflectivity
(see Eq. (9)), the TE mode is selected for

oscillation in DH lasers because of the
higher reflectivity.

4.3
Spectral Characteristics

Figure 8 shows the variations of lasing
spectrum with output power in an index-
guided AlGaAs laser. At lower powers,
the laser oscillates in several longitudinal
modes. Here, the longitudinal-mode wave-
length λN is determined by the relation

(
1

2

λN

η

)
N = L (N : positive integers),

(18)

where η is the effective refractive index of
the waveguide and L is the cavity length.
The mode spacing �λ is given by

�λ = λ2

2ηgL
, (19)

where ηg = η − (∂η/∂λ)λ is the group in-
dex. �λ is typically 3 Å (λ = 0.8 µm)–8 Å
(λ = 1.3 µm) for L = 300 µm.

As injection is increased, the laser
power tends to concentrate in a single-
longitudinal mode, while the power in the
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Fig. 8 Lasing wavelength versus injection
current characteristics in an AlGaAs laser

remaining modes saturates. This is com-
mon among index-guided lasers. Gain-
guided lasers, in contrast, tend to exhibit
multiple–longitudinal-mode spectra even
at higher powers.

It can be seen in Fig. 8 that the lasing
wavelength shifts toward longer wave-
lengths as the output power is increased.
This is induced by the temperature rise
in the active region with the increase
in injection current. Shown in Fig. 9 is
an example of the wavelength shift due
to a heat sink temperature change at a
fixed injection current. Each longitudinal-
mode shifts at a rate of 0.5 Å K−1 (λ ∼
0.8 µm)–0.8 Å K−1 (λ ∼ 1.3 µm) because
of the temperature dependence of the
refractive index. In addition, the lasing
wavelength jumps toward longer wave-
lengths, as temperature is raised, at
a rate of 2 Å K−1 (λ ∼ 0.8 µm)–5 Å K−1

(λ ∼ 1.3 µm). This is caused by the tem-
perature dependence of the band-gap
energy.
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Fig. 9 Temperature dependence of the lasing
wavelength

At ranges of temperature and bias cur-
rent where the oscillation mode jumps to
a neighboring mode, it is often observed
that the lasing is randomly switched be-
tween the two longitudinal modes. The
random switching is associated with a
large-intensity noise since the output
power is different between modes by
(0.1–1%). Some devices exhibit hysteresis
in the lasing wavelength versus tem-
perature and/or injection-current charac-
teristics. These phenomena have been
interpreted in terms of nonlinear mode
coupling among longitudinal modes [17].

The spectral linewidth of a single-
longitudinal mode is inversely propor-
tional to the output power to a good ap-
proximation. The product of the linewidth
�f and the output power P is typically in
the range of 1 to 100 MHz mW. This value
is 10 to 50 times larger than �fST obtained
from the well-known Schawlow–Townes
formula. An analysis shows that the en-
hancement is expressed as [23]

�f = �fST(1 + α2), (20)

where α is the linewidth enhancement
factor defined as

α = −4π

λ

(∂η/dn)

(∂g/dn)
(21)
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by the derivatives of the refractive index
η and the gain g with respect to the car-
rier density n. α represents the magnitude
of the amplitude-phase coupling, inher-
ent in semiconductor lasers, originating
from the strong dependence of the re-
fractive index on the carrier density. The
linewidth is determined not only by the
direct phase fluctuation caused by spon-
taneous emission but there also exists an
additional contribution from the ampli-
tude fluctuation since it is coupled into
the phase fluctuation through the carrier
density fluctuation.

α takes a value of 2 to 6 depending
on the active-region material, the injected
carrier density, and the lasing photon
energy [24], while in most gas and solid-
state lasers, α can be virtually taken to
be zero. This is because the gain spec-
trum in semiconductor lasers based on
a band-to-band transition is asymmetric
with respect to the gain-peak frequency
(corresponding to the laser frequency) and,
as a consequence, the associated refractive
index in the vicinity of the lasing fre-
quency varies appreciably with the injected
carrier density. In contrast, in ordinary
lasers where the lasing transition takes
place between two discrete levels, the gain
spectrum is symmetric and the associated
refractive-index dispersion crosses zero at
the lasing frequency. The nonzero value of
this parameter affects a number of semi-
conductor laser characteristics including
linewidth broadening, lateral-mode insta-
bility, and frequency chirping.

4.4
Dynamic Characteristics

The capability of direct-current modula-
tion is one of the important advantages of
semiconductor lasers. The laser response
to a stepwise current pulse is schematically
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Fig. 10 Laser response to a staircase injection
current. τd: Turn-on delay time. fr: Relaxation
oscillation frequency

shown in Fig. 10. There is a delay time τd
for the turn-on of lasing because a finite
time is required before the injection car-
riers are accumulated to form population
inversion. τd is approximated by [25]

τd = τs

√
Ith

I
tanh−1

√
Ith

I
, (22)

where τs is the carrier lifetime at threshold
(∼2 ns), Ith is the threshold current, and
I is the current pulse height. τd can be
reduced by prebiasing the laser. Then τd
is expressed by the DC bias current I0

(<Ith) as

τd = τs

√
Ith

I

(
tanh−1

√
Ith

I

− tanh−1

√
I0

I

)
. (23)

After the onset of laser oscillation, re-
laxation oscillations are generated for a
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time interval of several nanoseconds be-
fore the steady state is attained. The
relaxation oscillation occurs because of
the resonant interaction between pho-
tons and carriers; the energy stored in
the cavity is transferred back and forth
between the photon and carrier subsys-
tems. Therefore, the periodic oscillation
of the laser output is accompanied by a
modulation of carrier density. The tem-
poral variation of gain spectrum caused
by the carrier density modulation leads
to a multiple–longitudinal-mode oscilla-
tion. Furthermore, the frequency of each
individual mode is modulated because
of the carrier-density–dependent refrac-
tive index, leading to a broadening of
the time-averaged spectral linewidth. This
phenomenon is referred to as frequency
chirping. The magnitude of the chirping is
governed by the linewidth enhancement
factor α.

When a laser is biased above threshold,
the bandwidth of the dynamic response
of the laser is essentially determined by
the relaxation oscillation frequency fr. Let
�I(ω)eiωt be a small-amplitude sinusoidal
current superimposed on a DC bias I0

(>Ith). Then the photon density inside
the active region is made up of a DC
component S0 and an AC component
�S(ψ)eiωt. The magnitude of the mod-
ulated component �S(ω) is analyzed to
be [26]

�S(ω) = �τpω
2
r

−ω2 + iω� + ω2
r

�I(ω)

eVa
. (24)

Here, the angular relaxation oscillation
frequency ωr is given by

ωr = 2π fr =
√

S0

τp

c

ηg

∂g

∂n
. (25)

� represents the damping of the relax-
ation oscillation and is given by

� = 1

τs
+ S0

c

ng

∂g

∂n
. (26)

τp is the photon lifetime of the cavity
(∼2 ps) expressed as

τ−1
p = c

ηg

[
αi + 1

L
ln

(
1

R

)]
. (27)

Va denotes the active-region volume. The
magnitude of the modulated component
of output power �P(ω) is proportional to
�S(ω); that is,

�P(ω) = 1

2

c

ηg
h̄ωl

1

L
ln

(
1

R

)
�S(ω)

Va

�
.

(28)

Figure 11 shows an example of relative
modulation response |�P(ω)/�P(0)| =
ω2

r /[(ω2 − ω2
r )

2 − ω2�2]1/2. A flat re-
sponse at modulation frequencies less
than fr is followed by a peak at fr and a
sharp drop at modulation frequencies ex-
ceeding fr. Therefore fr is the uppermost
useful modulation frequency. fr is propor-
tional to the square root of output power
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Fig. 11 Calculated small-signal modulation
response. fr is chosen to be 1.3 GHz
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P and typically takes a value of 3 to 5 GHz
at P = 10 mW. In practice, however, the
modulation bandwidth may be limited by
the electrical parasitics associated with a
specific device structure that leads to a
rolloff in the modulation response. The
cutoff frequency due to the parasitic rolloff
varies 3 to 30 GHz depending on the device
structure.

5
New Structures and Functions

5.1
Quantum-well Lasers

Quantum-well (QW) lasers have an ac-
tive region composed of ultrathin lay-
ers (∼20 nm thick or less) forming
narrow potential wells for injected car-
riers. Illustrated in Fig. 12 are the
two representative examples of the
active-region structures in AlGaAs QW
lasers. Lasers comprising multiple wells
(Fig. 12a) are termed multiple-quantum-
well (MQW) lasers [27, 28]. Shown in
Fig. 12(b) is the active region of a

GRIN (graded index)–SCH (separate con-
finement heterostructure)–SQW (single-
quantum-well) laser [27, 28]. In the latter
structure, the injected carriers are confined
in the SQW, while the laser light is guided
by the GRIN waveguide, thus ensuring
an effective interaction between carriers
and light without resort to multiple-well
structure.

The quantization of electronic states in
the well gives rise to a variety of superior
laser characteristics over the conventional
lasers with bulk active region. A major
benefit is the reduction of the threshold
current. Figure 13 helps us understand the
low-threshold characteristics of QW lasers,
where the energy distributions of the
density of states and the injected carriers
are compared between a bulk material and
a QW structure. As the parabolic density
of states in the bulk material changes into
the staircase density of states in the QW
structure, the energy distribution of the
injected carriers narrows. The narrower
energy distribution of the injected carriers
leads to a narrower gain spectrum, with a
higher peak gain value for a given carrier
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Fig. 12 Two representative examples of active-region structures in AlGaAs quantum-well (QW)
lasers (a) Multiple-quantum well (MQW) laser; (b) Graded index (GRIN)–separate confinement
heterostructure (SCH)–single-quantum-well (SQW) laser
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density. Because of the staircase density
of states, however, optical gain in QW
lasers saturates for higher injection levels.
Since the saturated gain value depends
on the number of QW layers, SQW is
preferable for high-Q cavities while MQW
structure should be employed for lossy
cavities. A threshold current as low as
0.55 mA has been demonstrated in a
high-reflectivity coated (R ∼ 0.8) GRIN-
SCH-SQW laser [29]. The narrowing of the
gain spectrum in QW lasers as compared
to bulk lasers is accompanied by an
enhancement of ∂g/∂n (nearly doubled)
and a reduction of α (see Eq. (21)). This
leads to an enhancement of modulation
bandwidths (see Eq. (25)) and a reduction
of linewidths (see Eqs. (20) and (21)) under
both DC and pulsed excitation [30].

The DH structure is generally formed
by successive epitaxial growth of materi-
als lattice-matched to the substrate. The
lattice-matching condition imposes severe
limitations on the combination of DH
structure materials. However, the limita-
tion is alleviated to a certain extent if the
grown layer is thin enough to be elasti-
cally strained without any generation of
dislocations. Applying this principle to the
active region, we can obtain lasers whose
emission wavelengths cannot be realized
by lattice-matched systems. In QW lasers

comprising a strained GaxIn1−xAs well
and AlGaAs cladding layers grown on
a GaAs substrate, laser emission at 0.9
to 1.1µm can be realized by varying the
composition x and the well width. This
wavelength region corresponds to the gap
between AlGaAs and GaInPAs laser wave-
lengths and is fit for such applications
as the excitation of Er-doped fibers and
blue–green light generation by the second-
harmonic generation technique.

Furthermore, it is predicted theoret-
ically that the strain is beneficial in
obtaining such good laser properties as
low-threshold currents, high-relaxation os-
cillation frequencies, and low linewidth-
enhancement factors [31, 32]. This is re-
lated to the strain-induced alleviation of
the asymmetry in the density of states be-
tween the conduction and valence bands.
The strain effects on high-speed modula-
tion characteristics in GaInPAs lasers are
now being studied experimentally.

5.2
Distributed-feedback and Distributed
Bragg-reflector Lasers

In place of mirror facets in Fabry–Pérot
cavities, periodic gratings incorporated
within laser waveguides can be uti-
lized as a means of optical feedback.
Integrated optical feedback from the
periodic grating provides strong wave-
length selectivity. Devices incorporating
the grating in the pumped region are
termed distributed-feedback (DFB) lasers
(Fig. 14a), while those incorporating the
grating in the passive region are termed
distributed Bragg-reflector (DBR) lasers
(Fig. 14b) [33]. By virtue of the strong wave-
length selectivity, DFB and DBR lasers
oscillate in a single-longitudinal mode
even under high-speed modulation, in
contrast to Fabry–Pérot lasers, which
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Fig. 14 (a) Distributed-feedback (DFB);
(b) distributed Bragg-reflector (DBR) lasers

exhibit multiple–longitudinal-mode oscil-
lation when pulsed rapidly. This is an
advantageous feature for optical data trans-
mission using fibers because the spec-
tral width determines the maximum bit
rate transmitted in the presence of fiber-
chromatic dispersion.

The carrier-density dependence of the
refractive index can be exploited to provide
wavelength tunability to the periodic grat-
ings [34]. Illustrated in Fig. 15 is a tunable

Active region Tuning region

I1 I2 I3

Active layer Waveguide

Fig. 15 Wavelength-tunable distributed
Bragg-reflector (DBR) laser

laser utilizing this principle, which can
be tuned continuously over a wavelength
range of several nanometers. Here, the
Bragg wavelength of the DBR structure,
at which the reflection loss is minimized,
is tuned by the injection current I3. The
current I2 is adjusted so that one of the res-
onant wavelengths of the cavity is brought
into coincidence to the Bragg wavelength.
Thus, by choosing appropriate pairs of I2

and I3, the oscillation wavelength can be
varied continuously without mode jump-
ing. Tunable lasers are expected to be used
in future wavelength-division multiplexing
communications systems.

5.3
Semiconductor-laser Arrays

The major drawbacks of semiconductor
lasers, the relatively low output powers,
and the conspicuous beam divergence
can be alleviated by integrating multiple
laser stripes into an array as shown in
Fig. 16. The stripes are closely spaced so
that the radiation from neighboring stripes
is coupled to form coherent modes of
the entire array. The array modes, often
referred to as supermodes, are phase-
locked combinations of the individual
stripe modes and are characterized by
the phase relationship between the optical
fields supported by adjacent stripes. If
an array is properly designed so that

Fig. 16 Semiconductor-laser array
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one particular supermode, which is a
uniphase superposition of the individual
stripe modes (so called 0◦ shift mode),
is excited, a single-lobed, low-divergence
beam is attained; the divergence angle θ‖
is approximated by the relation θ‖ ∼ λ/Ns,
where s is the center-to-center separation
of adjacent stripes and N is the number of
stripes.

A serious problem in the performance of
laser arrays is their liability to multisuper-
mode oscillation; the difference among the
modal gains of the individual supermodes
is so small that the lateral-mode behavior of
an array is susceptible to spatial hole burn-
ing and temperature distribution in the
lateral direction induced at high-excitation
levels. The multisupermode oscillation is
generally accompanied by a multilobed
output beam, which greatly reduces the
utility of arrays for most potential applica-
tions. The maximum output power for the
single-lobed beam operation is typically
300 to 500 mW.

5.4
Surface-emitting Lasers

Conventional semiconductor lasers utiliz-
ing cleaved end facets as a means of optical
feedback are not fit for monolithic inte-
gration. For monolithic integration, it is
desirable to have laser output normal to the
wafer surface. Illustrated in Fig. 17 is the
basic configuration of a surface-emitting
laser incorporating two mirrors parallel to
the surface to form a vertical cavity typically
5 to 10 µm long [35]. It is crucially impor-
tant to increase the reflectivity of mirrors,
since the reflection loss otherwise becomes
very high because of the very short gain
region. Bragg reflectors composed of mul-
tilayered semiconductors or dielectrics can
be exploited to provide reflectivities exceed-
ing 95%. Carrier injection is performed

Light output

Electrode

Electrode

Active region

DBR

DBR

Fig. 17 Vertical-cavity Surface-emitting Laser

through a pair of electrodes in the upper
and lower surfaces to excite a cylindrical
active region typically of 10-µm diameter,
1 to 3 µm thick.

The surface-emitting laser has sev-
eral advantages over the conventional
edge-emitting laser, such as the capabil-
ity of being integrated on a wafer to
form a two-dimensional densely packed
laser array, the feasibility of stable
single–longitudinal-mode operation be-
cause of the large mode spacing due
to the short cavity length, and the at-
tainability of a narrow circular output
beam.

6
Summary

We have reviewed the history and the state
of the art of semiconductor lasers. We note
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here that their successful development is
the result of contributions of scientists
and engineers from a number of fields,
including semiconductor physics, quan-
tum electronics, crystal growth, processing
technologies, and system applications, as
is most notably represented by the appli-
cation to the fiber-optic communications
systems.

Ongoing research and development ac-
tivities indicate that the same will be true
in the future. There is growing inter-
est in improving laser characteristics by
miniaturizing device structures. The nat-
ural extension of the QW lasers will be
quantum wire and box lasers, where we
can take advantage of the two- and three-
dimensional quantization of electronic
systems. Researchers in quantum optics
are interested in the physics of microcavity
semiconductor lasers, which have cavity
lengths comparable to light wavelength.
Such a microcavity will drastically alter
the nature of spontaneous emission and
can lead to ultralow-threshold (∼1 µA or
less), low-noise, and high-speed lasers. In
order to convert the microcavity lasers as
well as the quantum wire and box lasers
from a laboratory curiosity to a practical
light source, further progress in growth
and processing technology of semicon-
ductor microstructures is indispensable.
Integration of these superior devices will
find new application fields such as optical
interconnection in large-scale-integration
circuits and two-dimensional information
processing.

Glossary

Active Layer: A layer, typically ∼0.1 µm
thick in which stimulated emission occurs.

Cladding Layers: Layers that sandwich an
active layer made of materials that have
wider band gaps than the active layer, p
and n doped to facilitate carrier injection
into the active layer.

Distributed Bragg Reflector Laser: A laser
incorporating a periodic grating at both
ends of the cavity as a means of opti-
cal feedback.

Distributed-feedback Laser: A laser incor-
porating a periodic grating in the vicinity
of the active layer as a means of opti-
cal feedback.

Double Heterojunction Structure: An
active-region structure in which an ac-
tive layer of one material is sandwiched
between two cladding layers of an-
other material.

Gain-guided Laser: A laser in which the
optical field distribution in the transverse
direction is determined by the gain profile
produced by carrier density distribution.

Index-guided Laser: A laser in which the
optical field distribution in the transverse
direction is determined by a built-in
refractive-index profile.

Linewidth-enhancement Factor: The ratio
between the carrier-induced variations of
the real and imaginary parts of susceptibil-
ity χ (n), i.e.,

α = ∂ [Reχ(n)]/∂n

∂ [Imχ(n)]/∂n
, (29)

where n is the carrier density. An equiva-
lent expression is given in Eq. (21).

Phase-locked Laser Array: An array of
stripe lasers spaced closely so that a
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phase-locked oscillation among the laser
stripes is attained.

Quantum-well Laser: A laser that has ultra-
thin active layers forming narrow potential
wells for injected carriers and giving rise
to a size quantization of the electronic
states.

Stripe-geometry Laser: A laser in which the
current is injected only within a narrow
region beneath a stripe contact several
µm wide.

Surface-emitting Laser: A laser that emits
light normal to the wafer surface.
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