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2 Well-ordered Lattice Structures in Crystals

Supplement

In a crystal the locations occupied by the atomsiolecules are described mathematically by

the lattice vectors
r=ma+mnb+nmnc (2.1)

Here, n, i, and i represent integer numbess b, andc are three fundamental translation
vectors. Here and in the following vectors are deddy bold symbols. All values of the
integers i, np, nzyield the lattice points of the crystal. (In (2v¢ assume that the origin of
the coordinate system is located at a lattice polifte translation vectoes b, c generate the
elementary cell (Fig. 2.9), which in turn yieldettrystal lattice by its spatial repetition. By a
special choice of the lengths of the three vedapls c of the elementary cell (lattice
constants) and of the three angles between therfirmiseseven fundamental types of crystal
lattices. If additional lattice points at specmatadtions of the elementary cell (middle of the
outer surfaces or its center) are added, one cam #tat a total of only 14 translational

lattices can be generated. These are the 14 Briatiees shown in Fig. 2.3

Figure 2.9: Elementary cell generated by the tedios vectors

ab,c.

Of course, the structure of crystals is usuallyenmymplex than that of one of the 14 Bravais
lattices. Here symmetry considerations play a atucle. The crystal lattice is reproduced
exactly following the fundamental symmetry openasiotranslation, rotation, reflection at a
mirror plane, and inversion (at a point). In theecaf the rotation operation one distinguishes,
how often the crystal lattice is reproduced dudngpmplete rotation byr2 One- , two- ,

three- , four- , and six-fold rotation axes aresilole, corresponding to rotations by, 2172,
2173, 2174, and 2v6, respectively. The combination of rotation, eeflon at a mirror plane,
and inversion specifies one of the 32 point grolpduding also the translation, one obtains

one of the 230 space groups characterizing anyatrgisucture.



The structure of crystals can be clarified usirgdiifraction of X-rays. It is the similarity of
the magnitude of the wavelength of the X-rays ahith® distance between the neighboring
objects in the crystal (lattice constant), whicbyades this opportunity by means of
interference. In the case of the diffraction of&§s, at each lattice point of the crystal a
spherically propagating electromagnetic wave isegated which interferes with the waves
originating at the neighboring lattice points. e tcase of two lattice points, the interference
pattern is shown schematically in Fig. 2.6, with thaxima and minima of the resulting total

wave amplitude depending on the propagation doecti

Looking at this situation in more detail, we comsithe (elastic) reflection of the wave at a
series of parallel lattice planes. Denoting theagise between neighboring lattice planes a,
and the angle between the planes and the direstithre incoming and of the outgoing wave
0 (see Fig. 2.10), the difference between the digt@overed by the waves reflected at two
neighboring planes is 2 a §inFor constructive interference, at which the amgeés of both
waves exactly add to each other, this distance bmisfjual to an integer multiple of the

wavelength\. This leads to the famous Bragg reflection law
2asi®= nA (2.2)

where n is an integer.

Figure 2.10: The reflection of the wave at two
parallel lattice planes separated from each othénd distance a results in the additional
distance 2 a sth covered by the wave reflected at the lower pl@ng the angle between the

planes and the incoming and the outgoing wave.

So far we have considered only a single serieaddlel lattice planes, all having the same
normal vector (vector oriented perpendicular toglames). However, in the case of a three-
dimensional crystal we deal also with other latptanes characterized by different normal
vectors. In general, the directions of constructinterference for differently oriented lattice

planes do not coincide, and a clear maximum difiacsignal at distinct diffraction angles



only appears in the case of special selected valutbe wavelength or frequency of the X-
rays. This is illustrated schematically in Fig. 2nd leads to the famous Laue diffraction
diagram, an example of which is shown in Fig. 2.1.

The phenomena associated with the wave propagat@spatially periodic (crystal) lattice
(periodic potential) can be described mathematsicgalk particularly simple way using the
concept of the reciprocal lattice. This concepidsed on the abstract mathematical wave-
vector space (Fourier space) and had been intrdducéhe American J. W. Gibbs. A wave
propagating along the x-direction can be writteth&scomplex function

F(x,t) = R eftx—eb (2.3)

Here t is the time ana the angular frequency. The wave number K is rélaighe
wavelengthA through the relation k =12/ A . In the case of three dimensions the function

(2.3) can be generalized yielding
F(,b) = R elkr-ot (2.4)

wherer = x +y +z and k =k, + ky + K, . The wave number k of the one-dimensional case

is replaced by the wave vectohaving the three componemtg Ky, k.
The reciprocal lattic& is defined in the following way
G=hA+hB+hC (2.5)

where hh , hp, hs represent integer numbers. The fundamental k&&q B, C are
connected with the translational vectarsb , ¢ of the elementary cell (see Fig. 2.9). They are

defined as follows

A:2T[bxc; Bzzncxa; C:2T[aXb

abxc abxc

(2.6)

abxc

We see thaf\ , B, C of the reciprocal lattice are oriented perpendictdawo fundamental

axes of the crystal lattice, respectively.

It can be shown that a function n)(reproducing exactly theeriodicity of the crystal
lattice, is obtained in the form

U(r) = X uge'¢F (2.7)



This function satisfies the periodicity condition
U(r +p)=U(r), (2.8)

wherep is a lattice vector of the form given in (2.1). tharmore, the Bragg condition for the
constructive interference between two waves seaitdry the crystal from the incoming wave

vectork into the outgoing wave vectér can simply be written as
K-k=G (2.9)

The simplicity of Egs. (2.7) and (2.9) illustratée advantage achieved by using the concept
of the reciprocal lattice.

The abstract wave-vector spakespace) with the reciprocal lattice is divided itie

Brillouin zones. The boundaries of the Brillouimes are obtained from the planes passing
perpendicularly through a reciprocal-lattice ve@bhalf of its value. Including larger and
larger reciprocal-lattice vectors in this constimct the first, second, third, etc. Brillouin
zones are found. In Fig. 2.11 we show the firsli&rin zone in the (two-dimensional) case of
the two fundamental vectofsandB oriented perpendicular to each other. As we wi ise

Chapter 4, the Brillouin zones play an importaé rfor the electronic band structure of

materials.
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Figure 2.11: Construction of the first Brillouiorze in the
(two-dimensional) case of the two fundamental nexdpl lattice vectorsA and B oriented
perpendicular to each other.




3 Permanent Movement in the Crystal Lattice

Supplement

The quantization of the vibrational energy of thenas or molecules in a crystal is clearly
demonstrated by the temperature dependence opé#uifis heat. According to the Einstein

model, the crystal energy U contained in the lattibrations is
U=3N<np>hw (3.2)

Here we assume a crystal consisting of N atomscélehere exist 3N degrees of freedom of
the vibrations. <> is the probability of a vibrational state witie angular frequenay
and the quantized enerdgyw being occupied. This probability is given by Bese-Einstein

distribution

1
<No> = Foier (3.2)

This energy distribution had been proposed foffitlsetime in the form of Planck’s famous
radiation law in the case of electromagnetic raoiatThe quantityh = h /2tis Planck’s
constant h divided by kg is Boltzmann’s constant, and T is the temperaturais
model Einstein had assumed only a single vibrédteguencyw = weto appear in Egs. (3.1)
and (3.2).

In the more accurate Debye model, instead of thglesiEinstein frequenoye: a continuous
frequency spectrum of the vibrations of the crykgtice is taken into account ranging
between zero and a maximum frequeospy referred to as Debye frequency. Now the

vibrational crystal energy is written as an intégnger all phonon frequencies
U =/""do D(®) < ney>hw (3.3)

Here D) is the number of vibrations per frequency intgraéso referred to as the density of
states. As an example, the spectral energy dewfsibe phonons in a germanium crystal is

shown in Fig. 3.4.

The density of states j is found by considering the number of elastieaigodes fitting

exactly into the volume of the crystal, say, intoude with the length L on each side. In



addition, the increment of the volumeKnspace with the frequency change miust be
taken into account. (We denote the phonon waveorgbilyK). In this way one finds [B¢) ~
o’ . Finally, inserting < g> from (3.2) into (3.3) the vibration energy of ttrystal is
obtained. The specific heat (at constant volumsd@ated with the lattice vibrations then

turns out to be

3 Zp 74 eZ
C=(Z)v= 9Nk (3) [ dz (3.4)

(e7-1)?

Here 6 =hwp/ks is the Debye temperature. The quantitylmakgT is introduced for
convenience. (= hwp/ksT =6/T ). At low temperatures ( T <&) the expression in (3.4)
yields the T dependence ofcin excellent agreement with the experimental ofz@ns.
On the other hand, at high temperatures ( B>*q. (3.4) yields ¢= const, and the classic

law of Du Long and Petit is reproduced again.

The thermal conductivitys associated with the lattice vibrations in a criystantimately
connected with the specific heat of the phononss an be seen from the simple formula for

the lattice componemds of the thermal conductivity obtained from kinetth@ory
KG=§vc£ (3.5)

Here v and are the velocity and mean free path of the phonons, respectively. C is the
phonon specific heat per volume. At very low temperatures the phonon mean free
path £ is limited by phonon scattering at the crystal surfaces, and ¢ becomes
temperature independent. In this regime we have C ~T? and, hence, from (3.5) kg ~

T3.

At higher temperatures an important process for the scattering of phonons is the
Umklapp process (U-process) due to Peierls. As a result of this process phonon
momentum is transferred back to the crystal. Denoting the phonon wave vectors

participating in this process by Ki, in the case of a U-process we have

Ki+K: = Ks+ G (3.6)



G is a reciprocal lattice vector. Processes with G =0 are referred to as N-processes. (In
the previous Chapter in the case of Eq. (2.9) we dealt already with a similar situation,

where photon momentum was exchanged with the crystal lattice during Bragg

reflection). U-processes become appreciable only when Ki+ Kz > % G . However, at

low temperatures phonons satisfying this condition are not thermally excited, and U-
processes are frozen out. At high temperatures ( T > 8 ) U-processes dominate. Their
number is proportional to the number of phonons, which in turn is proportional to
the temperature. Hence, for the phonon mean free path £ we have £ ~T™! . Since C is

constant in this regime, from (3.5) we find k¢ ~T™*.

We see that as a function of temperature the lattice thermal conductivity displays a

distinct maximum. This is shown schematically in Fig. 3.6.

The variations of the phonon frequency w with the phonon wave vector K is found
from a theoretical model, in which the crystal lattice is described in terms of point-
like masses occupying the lattice sites and connected with each other by means of
elastic springs. In the simplest case of a linear chain with the lattice constant a,
consisting of the same masses m connected with the same spring constant f, one

obtains the dispersion relation

w= (4—31/2 sin®2 (3.7)
" \m 2 )

Since we deal with a discrete lattice with theatise a between its neighbors, the

components of the wave vectér are limited within the range of the first Brillouzone, i.

e., in the case of the one-dimensional chain tadahge ‘:;T <K sg . In the limit of small

wave vectors one obtains from (3.7)

a? /2
w= (&) K (3.8)

m



2

1/
The factor (%3 ’ represents the sound velocity. Equation (3.8) indicates the

acoustic limit, and (3.7) is referred to as an acoustic mode. The three acoustic modes
(one longitudinal mode and two transverse modes) observed in a copper crystal
along a specific direction is shown in Fig. 3.5. (Because of the face-centered cubic
symmetry of copper, the location of the boundary of the first Brillouin zone differs

from that of a linear chain or of a simple cubic crystal with the lattice constant a ).

Because of the anisotropy of the elastic properties in a crystal, the ballistic
propagation of phonon energy shows a preference along distinct crystallographic
directions. This effect is referred to as phonon focusing and can be nicely
demonstrated by scanning over one crystal surface with a laser or electron beam. The
phonons generated in this way at the location irradiated by the beam are detected
using a small phonon detector attached to the opposite crystal surface. The principle

of this technique is explained in Fig. 3.7, and a typical result is presented in Fig. 3.1.



4 Electrical Conductor or Insulator

Supplement

The quantum mechanical theory of the electronsarystal requires the solution of the
Schrédinger Equation in the case of the periodystet lattice. Here the energy spectrum of
the electrons is determined by the periodic poaéht(r) due to the crystal atoms. The
Schrédinger Equation is

- A+ U0 ) = el (4.1)

Here m andy(r) are the mass and the wave function of the @esfrrespectivelyA
denotes the Laplace operator

oty L %y 9%y

Ay = x> dy? 0z2

ande the electron energy. The potential energy)Wgust
satisfy the periodicity condition (2.8).

In the theoretical treatment two important casegppiroximations are distinguished: the
bound-electron approximation (due to F. Bloch) Hrelfree-electron approximation (due to
R. E. Peierls). In both cases we are concernedwitiiythe electrons residing at the highest
available energy levels, and not with the lowerrmbstates in the individual atoms occupying

the lattice sites of the crystal.

In thebound-electron approximation the electrons with the highest energy are assumed
spend most of the time at a certain lattice atoqpegencing only an occasional transfer to a
neighboring lattice site because of the small atton between these sites. Their binding
energy at their specific lattice sites is assunoedokt much larger than their kinetic energy. In
this case the solution found by Bloch is basecheratomic wave functiorpq(r) of a bound
electron within a (single) free atom. Denoting éhectron coordinate hiyand the coordinate
of the atom (i. e., of the lattice site) py as his solution Bloch proposed the

superposition of the atomic wave functions @o(r —p) :
Yi(r) = Epe'™® go(r —p) (4.2)
This ansatz automatically yields the extended periodicity condition

y(r + p) = €™ yi(r) (4.3)

10



introducing the phase factor e .

With the wave function (4.2) the electron energy &k is found to be
& = €0 - o - P(cos ka +coska + cosla) (4.4)

Here €0 is the electron energy of the unperturbed individual single atom. The

correction o is

- o = [dt @j) [U(r) — Uy(r)] eo(r) (4.5)

U,(r) is the potential energy of the unperturbed individual atom. As seen in Fig. 4.5,
due to the presence of the atoms at the neighboring lattice sites we have U,(r) > U(r)
and, hence, a > 0 . So a represents an energy correction arising from the neighboring
atoms. The second correction in (4.4) is obtained by assuming for simplicity cubic
symmetry of the lattice, and by combining the contributions of the nearest neighbors
at the distances + a in x, y, and z-direction. The quantity p contains the interaction

between the nearest neighbors and is given by

- B = [dt @(r-a) [U) — Ua(r]) @o(r) (4.6)

Again, we note that in general § > 0.

Figure 4.5: Comparison of the potential energy of
an electron in the case of a single individual atom, Ua(r) (solid curve), and in the

presence of atoms at the neighboring lattice sites, U(r) (dashed curve).

From (4.4) we see that the lowest value of the energy is € =€o0- o - 63 . From the
highest valuee = o - o + 63 we note that the widtiAe of the energy band iae = 128 .

Because of the increasing overlap betwegy(r —a) and @q(r) with decreasing lattice

11



constant a , the quantity  and, hence, the band width Ae increases. This behavior is

shown schematically in Fig. 4.3 in the case of e@dimmensional chain.

So far, we have considered only the interactioaroftom at a specific lattice site with its
nearest neighbors. In order to increase the acgwfabe approximation, the interaction with

the next-nearest neighbors (and perhaps beyondhmag/to be included.

Concluding our discussion of the bound-electrorraximation, we see that the interaction
with the neighboring lattice atoms leads to a 8pgtof the energy levels of an individual
single atom into energy bands, the energy widthlath increases with decreasing distance

between the nearest neighbors.

Turning next to thdree-electron approximation, now we assume that the binding energy of
the electrons to a lattice atom is much smallen thair kinetic energy. Neglecting the
potential energy UW({ in the Schrédinger Equation (4.1), its solutieelgs the wave function
of free electrons

w(r) = e (4.7)
with the electron energy
e = h?k?/2m (4.8)

The wave function (4.7) represents a planar wavke thie wave vectdt . However, the
presence of a very small periodic potential U Eq. (4.1) becomes highly important, if the
wave vectok is close to the boundary of a Brillouin zone. A¢ boundary of a Brillouin
zone the wave vectdr exactly satisfies the Bragg condition (2.9), amel wave experiences
Bragg reflection. Taking as an exampe= G4/2 , the wave vector changes frdmto

k =k —=G1=-G4/2 due to Bragg reflection. This is illustratethematically in Fig. 4.6 .

N T e >+
k- Gl 0 k G1
Figure 4.6: Bragg reflection frork = Gy/2 to k'
=k —G]_: -G]_/Z .
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The solution of the Schroédinger Equation with tleeigdic potential W() can be written as a

superposition of plane waves

y(r) = Yo el (4.9)

Furthermore, expressing the small periodic potebija) of the crystal lattice in the form

given by Eq. (2.7), in the cade= G,/2 one obtains the electron energy
€ = & % ug, (4.10)

Between the energiesc + ug, andé&c - ug, there appears a forbidden energy gap, in

which the propagating-wave solution (4.9) doesaxidt. The spectral energy curs(g)
always approaches the Brillouin-zone boundarieb watro slope. The width of the forbidden
energy gap increases with increasing expansiorficest ug, , i. €., with increasing
potential energy UW( of the crystal lattice. The appearance of thibiftden energy gaps due
to Bragg reflection at the periodic potential of #trystal and a comparison with the case of

perfectly free electrons is shown in Fig. 4.2 .

The energy bands occupied by the electrons insargnd separated from each other by the
forbidden energy gaps immediately provide the answthe question whether a material is
an electrical conductor, insulator, or semicondydse first pointed out by A. H. Wilson.

Here the crucial argument relies on the fact thetgpential motion of the electrons along a
specific direction (of an applied electric field)anly possible, if the states of the electronic
energy spectrum relevant under the nonequilibriamtwecome occupied. The result depends
critically on the extent to which the upper enebgyds are filled up with electrons, and the

principle is explained in Fig. 4.4.

13



5 Metals Obey the Rules of Quantum Statistics

Supplement

We start by discussing the classical models deeelopainly by P. Drude and H. A. Lorentz.

In an electric fielce the electrons in a crystal experience the force
dk
F—ha— -eE (5.1)

Herek denotes the wave vector of the electrons, ané eldmentary chargel( is the
mechanical momentum of the electrons). Accordingtd), after the timat the wave vector
increases by the amoutik. In the absence of any scattering processesntriease\k would
become larger and largétowever,scattering of the electrons always occurs (duétmpns
or lattice imperfections), resulting in a limitache in which Eq. (5.1) is valid. This limited

time is the average timebetween collisions, and we have
hAk =F1 = mAv (5.2)

where m and\v are the electron mass and the drift velocity, respely. Together with

(5.1), the resulting electric current dengiig

i =n(eAv = n é% E (5.3)
where n is the electron density. With the eleatanductivitys from the relation =c E , we
obtain

c=nét/m (5.4)

We have found Ohm’s law, based on the assumpti@m @fverage relaxation time which is

independent of the electric fiekl.

Since in addition to their electric charge, eleatreransport heat energy, they also contribute
to the heat conductivity of electric conductorsnkke, the electric conductivity and the
electronic part of the heat conductivity are préojpoal to each other, as can be shown in the
following way. In a temperature gradient dT/dx rehexists a net energy-current density w

from the hot to the cold side given by

14



w=(2) ne(T[x—v1]) — e(T[x+vr])} (5.5 a)

w=nvTs (= ) (5.5 b)

with € denoting the particle energy. The idea of (5.5lustrated in Fig. 5.6.

Thigh Tlow
4\ vi=4{ vi=1{
| | |
| ! |
¥ % X+vt Fig. 5.6: Explanation of the origin of (5.5)

describing the heat flux. The arrows agdand Toy indicate the average electron energy.

The electron mean free path= vt represents the relevant length scale over wiieh t

average motion of the electrons up or down the &atpre gradient is affected. Using the

equipartition theorem

gzém\/2 :%kBT (5.6)
and with
de 3
&=k (5.7)

we obtain the energy-current density

2 TtT dT _ dT

3
w=-nGks) - o eax

(5.8)

Here we have introduced the thermal conductiwityof the electrons. Together with (5.4) we

find
Ke _ 9
L=—-=1 (ke/ef (5.9)

The ratio L is referred to as the Lorenz numbem@a after Ludwig Lorenz). (A more
accurate averaging procedure leads to the prefa@®rinstead of 9/4 ). The result

expressed in (5.9) is the famous Wiedemann-Framz la
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At this stage we have to deal with an importantcemt introduced by quantum mechanics,
namely the fact that the elementary particles siscblectrons are exactly identical and cannot
be distinguished from each other. The resultinghua statistics strongly deviates from the
classical (Maxwell-Boltzmann) statistics, as weddiscussed already in Chapter 3 in the
case of the Bose-Einstein distribution (3.2) apmyto elementary particles with zero or
integer angular momentum and valid for phononsratons. In the case of electrons we
deal with elementary particles having half-integegular momentum and following the
Fermi-Dirac statistics. An important consequendhas fermions must obey the Pauli

exclusion principle.

The Fermi-Dirac distribution function is

1
f(e) = e—cp)/kpT { 1 (5.10)

wheree is the particle energy ang: the Fermi energy or chemical potential. This fiorcis

shown schematically in Fig. 5.2. At T =0 and ¢ the function f€) drops abruptly from

the value of 1 to zero, whereas at T > 0 thipdareads over the energy interval of about
keT .

The Fermi-Dirac distribution of the electrons inrgstal leads to the important result that a
large portion of the electrons is “frozen in” enstigally and cannot participate in many
physical processes. Only the electrons in the gmamgge of aboutdl nearer remain
unaffected by this. This effective reduction of thumber of the relevant electrons is
particularly strong in the case in whichTk<< &g . The resulting reduction factorgk/ ¢

shows up immediately in the electronic componerihefspecific heat, representing a striking
demonstration of the role of quantum statisticxd®se of this factor, the specific heat of the
electrons is strongly reduced below the value etgokitom the classical theory. Furthermore,
it becomes proportional to the absolute temperature

Recalling Eq. (4.8) for the electron energy andsFg2 and 4.3 for the electronic energy-
band structure, we note that the electron waveov&atepresents an important physical
guantity. At this point it is advantageous to mdtve discussion intk-space introduced at the

end of Supplement 2. The energy states are occbyietectrons up to the Fermi enegyor
up to the Fermi wave vectig =hi (2 mep)*? (see Fig. 5.6). In general, in 3-dimensiokal

space the points at the end of the Fermi waveovgct constitute a (mostly anisotropic)
16



surface referred to as the Fermi surface. An examsphown in Fig. 5.1. The Fermi surface

represents one of the most important conceptseopliysics of electrical conductors.

k

0 ke Figure 5.7: The energy spectragk) of the electrons is
occupied up to the Fermi energyand to the Fermi wave vectiog. (It is assumed thagK

<<&f).

From Eq. (5.4) for the electric conductividywe note that the electric resistivjiy= 1/c is
proportional to the scattering rateé! , which determines the temperature dependenge of
Starting our discussion with pure metals, the ebexst are scattered predominantly by
phonons. At temperatures larger than the Debyeeaeamyred (T >>8) all phonon states are
occupied up to the Debye frequenoy, and the number of phonons per state is propation
to T. The latter can be seen from the distribu{@). Hence, in this regime one expgcts

T. On the other hand, at temperatures much below the Debye temperature 8 (T<<0)
the number of the occupied phonon states (contributing to the scattering rate 1)
increases proportional & , as we have seen before in the context of E4).(Bnother
factor proportional t@? arises because of the temperature dependent tndgif the
scattering angle. Altogether one fingls T® in this regime. This behavior represents the

famous Bloch-Grineisen law of the electrical resise. Its validity is shown in Fig. 5.3.

Electron scattering by crystal imperfections istaeoimportant contribution to the electric
resistivity. It becomes dominant at very low tengteres where the number of phonons is
negligibly small. In good approximation the sadttgrates i associated with the different

scattering mechanisms simply add to each other:
1 1
c= X (5.11)

This fact is referred to as Mathiessen’s rule.

17



Finally, we turn to the thermoelectric effects. TPatier effect is caused by the fact that an
electric current always transports the heat enefdlye moving charge carriers in addition to
their electric charge (see Fig. 5.4 a). The PetiefficientII is defined as follows

heat current density wy

I (5.12)

electric current density jx

At the location of the contact between two condigcd and B the amount of the Peltier heat
delivered or taken away per cross-sectional ardaiare is {I, — IIg) jx , leading to

heating or cooling depending on the electric curdamection.

In the case of the Seebeck effect we deal withiiteamal diffusion of the charge carriers of
an electric conductor in a temperature gradientixiT{see Fig. 5.4 b). Thermal diffusion is
caused by the thermal force  &T/dx acting on the particles, whergiSthe transport
entropy per particle. As a result, electric chargfespposite sign accumulate at both ends of
the conductor, and an electric field i generated. Under equilibrium the thermal fasce
balanced by the electrostatic force -ye(Eaking — e for the charges), and we have theefor

equation

dT _ _ _du
- 5Tz .eg = el (5.13)

where U is the electric potential. We find the Saxdcoefficient (thermoelectric power)

AU _ Sy
R (5.14)

S

Two conductors A and B soldered together at onef@ma a thermocouple, which can be
highly useful as a thermometer. The temperatuferéiiceAT between its two ends is found
from the potential differenc&U according toAU = (Sy — $) AT .

Detailed expressions for the thermoelectric cogffits are obtained from transport theory.
Here we do not pursue this any further, excepagotsat in metals the coefficients are

sensitively affected by the reduction facteilker , similarly as the electronic specific heat.

The Peltier coefficienil and the Seebeck coefficient S of a material almmected with each

other through the Thomson relation

M=TS (5.15)
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Relation (5.15) represents an example of the recifyr scheme of the transport coefficients

derived by L. Onsager.
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6 Less Can Be More: Semiconductors

Supplement

As we have discussed in Chapter 4 and have ilkestia Fig. 4.4 , it is the occupancy of the
states within the energy bands, which determinesygbe of an electric conductor. If there
exists an empty band energetically separated &dmwver completely filled band by a
sufficiently small energy gap, then charge carréeesthermally excited into the empty band,
where they can transport an electric current. Wa wéh a semiconductor. In this case the
thermal energy KT of the charge carriers represents the key enémgysemiconductor the

concentration of the charge carriers and, heneegléctric conductivity is much smaller than

in a metal.
EI
'cénd,uctionbén& 7
I Fermi energy _
0 - « 3
valenceband~. .~
Figure 6.11: Position of valence band and

conduction band along the energy axis for an unddirinsic) semiconductor.

In the case of the electrons thermally excited fthenvalence band into the conduction band
we havee - & >> kgT , and the Fermi-Dirac distribution (5.10) canrbplaced by the

Boltzmann distribution
f(e) = e~@—er)/ kT (6.1)

Using the energy scale indicated in Fig. 6.11 efleetron concentration in the conduction

band per volume turns out to be
n = 2 (@tmekg T/ h)*? e~(ec —er)/ kT (6.2)

me is the electron mass. We note that the electramsfierred into the conduction band are
missing in the valence band, where they represalesthaving the distribution() = 1 —fE).

The hole concentration in the valence band permaelis
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p = 2 (atm, ks T/ h?)*¥? e—er/ keT (6.3)

where mis the hole mass. The producp s independent of the Fermi energy :

np = 412ks T/ t*)® (me my)*? e~ec/ keT (6.4)
So far, we only consider intrinsic semiconductétence, we have

n=p=2@ kg T/ (me my)** esc/ 2keT (6.5)
From (6.2) and (6.3) one obtains

gi? e~Gc—er)/ kgT = 372 g=er/ kpT (6.6)

leading to

er = <+ 2 keT log(mym) 6.7)

2

In the case = m. we findeg = ¢/ 2, i. e., the Fermi energy is located in thedtedf

the energy gap.

Leaving the subject of the intrinsic semiconductars turn to the important case of the
doped semiconductors, i. e., to the presence afrdqn-doping) or acceptors (p-doping). The
energetic schematics is indicated in Fig. 6.2.dswhe doping of semiconductors, which had

opened the door to the many technical applicatibr@sacterizing modern electronics.

The much smaller concentration of charge carrresemiconductors compared to metals
leads to important phenomena which are absent talsa®©ne of the first objects
systematically studied (mainly by W. Schottky) vilas metal-semiconductor contact (see
Fig. 6.4). In order to establish equilibrium betwdmmth sides, electrons flow from the
semiconductor into the metal (we assume an n-tgpec®nductor), and a positive space
charge extending over a finite distance develoghersemiconductor. As a result a potential
rise appears at the contact, which must be overdyntiee electrons during current flow and
which depends on the voltage V applied to the ainfdhe contact represents a rectifier, and

the current | is given by

| = Is(e®V/ksT - 1) (6.8)

Is is the saturation current.
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The p-n junction shown schematically in Fig. 6.am®ther important semiconductor device.
It also shows rectifying behavior described agairEh. (6.8). The p-n junction has found
important applications in the junction transisteed Fig. 6.6 b).

Finally, we mention that in semiconductors the iti@electric effects are much larger than in
metals, essentially since the Boltzmann distribu{@® 1) is valid and the reduction factor
kgT/er of the Fermi-Dirac distribution is absent. Thenpiple of Peltier cooling and a four-

stage Peltier cascade is shown in Fig. 6.10.
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7 Circling Electrons in High Magnetic Fields

Supplement

The behavior of an electric charge g moving in gmedic field is dominated by the Lorentz

force
f_. = quxB (7.1)

acting on the charge g moving with veloocitin the magnetic flux density . From (7.1) we
see thaf, is oriented perpendicular to botrandB , and that it results in a circular orbit of
the charge (see Fig. 7.2). In the case of theredemtrrent density (5.3)= n (-e)Avy flowing
in x-direction through a conductor in the preseoica magnetic field oriented in z-direction,
the Lorentz force points in y-directidpn, = g Avyxx B . Here we have inserted the drift
velocity Avy into (7.1). Due tdy, positive and negative electric charges accumatetiee two
opposite edges of the conductor, respectively, kgge7.2 b) generating an electric fidkgl in
y-direction. Under stationary conditions the Loeefurcef,, is balanced by the electrostatic

force gEy, and we have

g AvyxB = gEy (7.2)
yielding

OE,0 = DAvcx BO= ﬁ ijB=RyjB (7.3)

Ey is referred to as the Hall electric field, and deal with the Hall effect. In (7.3) we have

taken g =-e. The coefficienlR Com is the Hall constant (expected to be negativén

case of g = -e ). We see that the Hall constantiges information on the concentration of

1
e

the moving charge carriers. We note that the sigheoHall electric field indicates the sign of
the moving electric charges. During the early dap®sitive sign of the Hall constant had
been observed sometimes, which represented a myseomalous Hall effect”) until the

concept of holes in the electronic band structuas astablished.

As indicated schematically in Fig. 7.2 ¢, the lrdreforce also results in an increase of the
electric resistivity in the presence of a magnggicl. At not too high magnetic fields this

resistivity increment varies proportional t6 B
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The quantum mechanical treatment of the electmotisa conduction band of a metal in the
presence of a strong magnetic field, first giverLbp. Landau, takes into account that the
Lorentz force (7.1) affects the energy spectrurthefelectrons in an important way. Whereas

in the absence of a magnetic field (B = 0) the gnepectrum is
=2 (k2 +k2+k?): B=0 (7.4)

in a magnetic field B = B£ 0 assumed in z-direction the energy spectrurnasged to

e =hw(L+1) +K2: B=B#0 (7.5)
2 2me 2 '
Here,t is an integer, gis the cyclotron mass of the electrons, and
B
W = o Y

is the angular cyclotron frequency. In the preseidbe magnetic field Bthe wave vectors

kx and k become irrelevant, and the corresponding statebic® to a new state showing
orbital motion. The states evenly filledkrspace in the absence of a magnetic field are now
redistributed filling what are called Landau cyland. An example is shown in Fig. 7.3. As we
see from (7.5), the Landau cylinders are sepaetedyetically from each other by the energy
hwy , which increases proportional to B. At the magnield B = 1 T a typical value iBwy =
107*eV.

The energy spectrum of the Landau cylinders isrigl@isplayed only if the orbital motion of
the electrons remains unperturbed by collisions witonons or impurities. So low
temperatures and highly pure crystals are requiceiis experimental observation, and the

condition
wt>1 (7.7)

must be satisfied, wheteis the scattering time. Furthermore, the theremalrgy T must

be sufficiently small:
keT < h o (7.8)

Noting that the enerdly w, separating two neighboring Landau cylinders in@esas
proportional to B, we see that with increasing netgrfield the number of Landau cylinders

available for occupation up to the Fermi energyobees smaller and smaller. As the
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magnetic field is increased monotonically the retiation of the electrons onto the Landau

cylinders leads to a periodic oscillation of theat@nergy of the electrons, their energy

passing through a minimum whemp =hw, £ and through a maximum when
er=how (€ + %) . As a result, other electronic properties sughf@ example, the

diamagnetism also oscillate as a function of thgma#c field.

The oscillation of the diamagnetism is referredsdhe de Haas - van Alphen effect. It turns
out that only the extremal cross sections of thenFeurface taken perpedicular to the
direction ofB contribute to this effect. The contributions dfa@her parts of the Fermi

surface drop out by cancelling each other.

The circular motion of the electrons in a magngéld leads to another type of quantum
effect in two-dimensional systems. In this caseltiedau cylinders are reduced to Landau
circles. Now we must look in more detail at the gignof states wK) in k-space. It is
obtained by using periodic boundary conditions.ifi@la crystal with the extension L along,
say, the x-axis, the boundary condition requires the wave** has the same values at x =
0 and x = L . Hence, we must haa/&“ = 1 or kL = n 2t wher n is an integer. The distance

Ak between two consecutive k-valuesAk = 2r/L , and we find
1 _ L
Wi(k) = o= = - (7.9)

Extending this to two dimensions, we obtain thesitgrof states per unit areakrspace

(excluding the electron spin)

Wa(k) = (Zi)2 (7.10)

In the two-dimensional case the density of stagesepergy interval, gf€) , is

dk L2
Dafe) = oK) 2k = = (5) 21k - (7.11)
and D(g) per unit area
Do(e) / L = m/ 2h?® (7.12)

25



The latter quantity is independent of the energkifig the energy interval w, between two
Landau levels (from (7.5) with, k= 0), the number of states per unit area and pedau level
is

eB

N = [Dz(s)/Lz]th:T (7.13)

For the Landau quantum structure to be clearly meske the conditions (7.7) and (7.8) must

be satisfied. This case is shown schematicallygn F6.

D,(e)/ 12

1 =4 h
0 12 372 5/2 112 B/ Po Figure 7.6: Density of states per

unit area, B(€) / L?, plotted versus the normalized energy h ox .

Turning now to the Hall effect (7.3), we find

E = (_el) — j2B (7.14)

where j =Il/w, with w being the width of the two-dimensial conductor. nis the number
of electrons per unit area. If the Fermi energpdated between two Landau levels, all
Landau levels below (above) are occupied (unoccupied). In this casem(7.14) is given

exactly by

B
n=zN =2 (7.15)

where z is an integer. The Hall resistangg R
Ry =— =-= (7.16)

Ryy depends only on the fundamental constants h amee we deal with the quantum Hall
effect discovered by K. von Klitzing (see Figs. @rid 7.4). For his experiment von Klitzing
used the two-dimensional electron gas prepardueagurface of a metal-oxide-semiconductor

field-effect transistor made from silicon.
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The preparation of a two-dimensional electron gagkperiments in high magnetic fields
continued to experience strong advances. Samppsud at the interface between GaAs
and ALGa;.xAs became prominent, because in this materialrd@tional quantum Hall effect
was discovered (see Fig. 7.5). A detailed theaktiscussion of this development is beyond

the scope of our supplementary treatment.

27



8 The Winner: Superconductors

Supplement

The discovery of the Meissner effect in 1933 reg@nésd a turning point in the field of
superconductivity, since it identified supercondkityt as the result of a phase transition and
it allowed to calculate the energy difference betmvthe normal and the superconducting
state. By carefully measuring the magnetic fieldrrtbe exterior of a superconductor,
Meissner had found that in the superconducting statexternal magnetic field is expelled

from a superconductor and that in its interiorriegnetic field is zero (see Fig. 8.5).

Because of the Meissner effect, the supercondustatg is established independent of the
path along which this state is reached. In Fig3 8v& have marked with point c the
superconducting state (below the critical tempeealg and the critical magnetic fieldd).

If we assume only infinite electric conductivitythut the Meissner effect, along the path
a-b-c the state with B = 0 will be established. Ondt®er hand, along the path.a-c

the state with B2 O of point d will be reached. It is only becau$¢he Meissner effect, that
the state with B = 0 is always established independf the previous path. (Here we have
assumed perfect reversibility of the superconduetod have neglected flux trapping due to
pinning). This demonstrates that superconduct@sraare than just mere perfect conductors
(infinite conductivity); the Meissner effect defsa a unique way the property of the

superconducting state.

He

X0
>

o Xx
3>

Tc T Figure 8.13: Path-independence of the superadimdu
state. Due to the Meissner effect, along the patdac as well as along-ab-. ¢ the final

state at point ¢ with B = 0 is established.

The thermodynamic treatment of the supercondugtirage transition, following the
discovery of the Meissner effect and first caroed by Gorter and Casimir in 1934, deals
with the Gibbs free energy density in the normaj) @d in the superconductingJGtate.
At the magnetic field H we have
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G(T.H) = G(T0) - f,' M(H) dH (8.1)

M(H) is the magnetization. In the case of the Megs®ffect (perfect diamagnetism) it is
1
M(H) = -— H (8.2)
47

The last term in (8.1) represents the work assediafth the magnetic field expulsion. We

obtain
G(T.H) = G(T.0) + o H (8.3)

Under equilibrium at H = §T) we have &T,Hc) = G(T,Hc) and on the other hand
Gn(T,Hc) = G(T,0). So in the case of H =cHwe find

GH(T.0) - G(T,0) == HA) (8.4)

for the difference in energy density between thenab and the superconducting state.

The magnetic flux expulsion due to the Meissnegatfis caused by a superconducting
shielding current flowing at the surface of theemgpnductor. The magnetic field generated
by this current exactly compensates the externghetzc field. This shielding surface current
extends over a certain layer thickness at the seyfsince its density must remain finite.
Hence, the magnetic field reaches zero in the sopductor only at a certain depth

referred to as the magnetic penetration depth.dBmsity of the shielding curreng,,jis

approximately given by
Js = He/ Am (8.5)

A phenomenological theory of the finite magnetiaogteation deptiA, was presented in 1935
by the brothers F. and H. London. For an outlinthefr theory we start with the force

equation for an electron

m% - (e)E (8.6)

without including a dissipative term. With the dgynef the superconducting current
js = (-e) Rvs (8.7)
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we obtain

Jjs Jjs
E=[m/Enss = tohn o (8.8)

where A, (called also London penetration depth, and ofeamoted by, ) has been

introduced in Eq. (8.5, can be expressed as
Al = m/ (b ns €) (8.9)

The quantities ygandvs are the density and the velocity of the superaotidg electrons,

respectively. gis the magnetic permeability of free space. With Meaxwell equation

0B

curlE = - ot (8.10)

we find from (8.8)

0B

—~ =0 (8.11)

Ho Am? curl %) +

It was the central idea of F. and H. London to edt€3.11) by removing the time derivative

and thereby postulating the new equation
HoAm? curljs + B = 0 (8.12)
With the Maxwell equation
curlH = j (8.13)
we then obtain

AH =+ H (8.14)

yielding the solution
H(X) = H(0) exp (-X An) (8.15)

Here we consider the geometry of a superconduitliogfthe half-space with x > 0 and
letting the coordinate x run (to the left) from thaface (at x = 0) into the interior of the

superconductorH is assumed perpendicular to the x-direction).
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Equations (8.8) and (8.12) are referred to asitbednd the second London equation,
respectively. In addition to the Maxwell equatidhgy apply to superconductors and
distinguish these substances from other matek&ajsation (8.15) indicates that the magnetic
field is exponentially screened from the interibasuperconductor, the screening taking

place within a surface layer of thickness. As T -~ Tcwe have g - 0 and, hencé\,, —» .

In addition to the magnetic penetration depth,dlexists a second important length in a
superconductor, the coherence lengtiThis length represents the minimal spatial dista
over which the superconducting property can chdsgatial rigidity). The two lengths,
andég play an important role at the interface betweeoranal and a superconducting region
(see Fig. 8.14).

+ § Figure 8.14: Variation of the density of the
superconducting electrons, ,;mand of the magnetic field H with the distananirthe

interface between a normal (N) and a supercondy8hregion.

Because of the finite extension of the coherencgthe , a superconducting region cannot
exist right up to the border separating it fromoamal region. Instead, it loses its
superconducting property and, hence, the superatinduicondensation energy, already at the
distance: from the border. This results in the positive ifgee energy” = (Hc?/ 8m) & .
However, the amount @4/ 8m A, must be subtracted from this value, since withi
magnetic penetration depil, no gain and, hence, no loss in condensation gragngears.

So for the wall energy associated with an interface between a normabasuperconducting

region one obtains
a = (H?/ 8m) (& - Am) (8.16)

Initially, one had thought thdtwould always be larger thag, , and thatt would always be

positive. However, around 1953 Abrikosov and Zavwaii for the first time discussed the
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possibility that& < A, and thatr can become negative. They reasoned thgt&@nd A, are
material properties, the case &§fbeing smaller tha\,, is a distinct possibility. Such
considerations then lead to the important distncbetween type-I (with > A, ) and type-II

(with & <A, ) superconductors.

In his subsequent theoretical analysis of typesxtesconductivity Abrikosov made the
important discovery of the Abrikosov flux-line la# and of the superconducting mixed state
(see Fig. 8.7). In the mixed state magnetic flardi each carrying a single magnetic flux
guantum penetrate into the superconductor, anM#igsner effect no longer exists. The
mixed state appears above the lower critical magfietd Hc1 , and it exists up to the upper
critical magnetic field s .

Abrikosov had found the flux-line lattice as a smno of the equations of the Ginzburg-
Landau theory of superconductivity. This theoryalig®s the superconducting state in terms
of a macroscopic quantum mechanical wave func@rantization of the magnetic flux
contained in the flux lines in units h/2e = B0&0~ > V s then results from the quantum
condition that the wave function must reproducelftsxactly after one turn around the flux
line. The magnetic flux lines are generated by stgelucting currents circulating around
their center. The radial dependence of the locgmatc field h, the densitysf the
superconducting electrons, and the superconductimgnt densitysjfor an isolated flux line

is shown schematically in Fig. 8.15.

ns
< |2A; —X f 2
/ r

=

Figure 8.15: Structure of an isolated flux lihecal
magnetic field h, density of the superconductireztbns g, and the circulating

superconducting current densigywersus the distance r from the axis of the flael
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A direct experimental demonstration of the quaatton of magnetic flux and of the
magnetic flux quantum h/2e as the smallest Umtagnetic flux in a superconductor has
been given in 1961 and is indicated in Fig. 8.&letailed explanation of the step structure
shown in Fig. 8.8b is illustrated in Fig. 8.16. Elein part (a) the superconducting shielding
current L is plotted versus the magnetic flux densityapplied parallel to the axis of the small
superconducting cylinder. The magnetic flux passimgugh the cross section of the cylinder
TR’B. ( R = cylinder radius) is given in units of thegmetic flux quantund, = h/2e . (The
vectorg, is oriented along the direction of the flux dendty. Initially, the shielding current
Is prevents the entry of magnetic flux into the cgenbore (Meissner effect). When the
magnetic field has reached the valug=B/(2niR?) , the shielding current tompensates
exactly half a flux quanturh,/2 within the cylinder (point (1)). Whenels increased further,
the shielding current feverses its sign (instead of continueing to gr@euth that exactly one
flux quantumd, exists in the cylinder (half of which is generabadis ; point (2)). During the
further increase of 8 OlTdecreases again until a 8¢,/(TR?) the state withsl= 0 is
reached (point (3)). Upon the further increase gthis process repeats itself. In this way the
steps in the number n of the magnetic flux quantaimvthe cylinder are generated (see Fig.
8.8b and Fig. 8.16b). The superposition of the iagphagnetic field (solid arrows) and the
magnetic field generated by(dashed arrows) is shown schematically in Fig684t the
three points (1) — (3) indicated in Fig. 8.16a. Du¢he entry of magnetic flux quargginto

the cylinder the shielding currentand the kinetic energy associated with it remamged.

(a) (b)

SA 3
n —
| A ] 2
1
n_Rz,,.Belq," | 0 1 Ly
3) -1 1 2 3
aR?*B,/ o,
@)
b T
(1) (2) 3) Figure 8.16: Experimental

demonstration of the magnetic flux quantizationdolagn the flux penetration into a small
superconducting cylinder. Part (a) shows the supehecting shielding curreng Versus the
magnetic flux density Bapplied parallel to the cylinder axis. Part (ljigates the number n

of the magnetic flux quanta within the cylinderss B . Part (c) illustrates the superposition
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of the applied magnetic field (solid arrows) and thagnetic field generated hy(dlashed

arrows) at the three points (1) — (3). Further itietae given in the text.

In 1962 Josephson made his famous predictiontatveakly coupled superconductors (a
“weak link” constituting what is now called a “J@eson junction”) shows important effects

described by the two Josephson equations

ls = lc siny (8.17)
oy _ E
x -2 (8.18)

Equations (8.17) and (8.18) are based on the conbep superconductivity is a
manifestation of a macroscopic quantum phenomemaincan be described in terms of an

order parameter or a wave function
y = Oyel® (8.19)

characterized by an amplitud&(r, t)lJand a phase(r, t). The current-phase relation (8.17)
indicates that the superconducting currgfiolving across a weak link is related to the phase
difference x =  ¢2 - ¢1 between the two sides of the junctiogid the critical current of

the particular junction geometry. The voltage-freey relation (8.18) contains the important
fact that a nonzero voltage V across the junctsaslways accompanied by a high-frequency
oscillatory superconducting current flow acrossjtmetion. The Josephson equations (8.17)
and (8.18) can be derived in different ways. Omévdgon due to Feynman starts from the
time-dependent Schrédinger equation for the twoenfanctionsy; andy, for the two
separated superconductors, respectively, and intiog an additional coupling between both

superconductors.

At the time the predictions by Josephson were lightprising and met with severe criticism.
In the meantime the “Josephson electronics” hasldped into an important subject in
physics and electrical engineering. The first expental demonstration of the
superconducting property of a weak contact betviwersuperconductors was reported by
Meissner and Holm in 1932. However, at the tingained only little attention (except
perhaps as an argument against Einstein’s modelpdrconductivity based erroneously on

“closed molecular chains” of the electrons).
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In 1958 the BCS theory (named after Bardeen, Co@melr Schrieffer) presented the first
microscopic theory of superconductivity. Its magature is the postulate of an attractive
interaction between two conduction electrons ofagiie momentum and spin resulting in the
formation of electron pairs, so called Cooper pdite attraction between the two electrons is
mediated by the vibrations of the atoms of thetathjattice. An early clue that phonons

would play an important role in superconductivigdhbeen provided in 1950 by the
discovery of the isotope effect in many supercotidgelements. This effect says that the
critical temperature Jdepends on the isotopic mass M of the lattice atfmiowing the

relation
Tc O1/M“ (8.20)

with the exponent =~ 0.5 . Because of the total spin of an individQabper pair being zero,
the Pauli principle does not apply, and all the @o@airs can occopy the same quantum

State.

Another important prediction of the BCS theoryhis £xistence of a gap in the energy
spectrum of the electrons at the Fermi energy.mpréssive demonstration of this energy
gap has been given by Giaever in 1960 in his fanauseling experiment (see Fig. 8.9).

The existence of magnetic flux lines each carrgrityx quantund, = h/2e in a type-Ii
superconductor has important consequences foe#iigtive losses in these materials. In the
presence of an applied electric current of denséigch flux quantum experiences the Lorentz
forcef. =] x ¢, . The resulting flux motion leads to dissipatioedes and the generation of

the flux-flow induced electric field
E =-vyxB (8.21)

Here, v, is the velocity of the flux-line motion. This Keflow process obeys the force

equation
jXo -nve=0 (8.22)

where n vy is the dissipative term anglis a damping coefficient. In (8.22) the forces are
given per unit length of flux line. From (8.21) af@&122) one obtains the flux-flow resistivity
as

Pr = $oB/n (8.23)
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In the preceding discussion we have simplifiedditigation by ignoring the effects caused by

flux pinning and by neglecting a force componeatliag to the flux-flow Hall effect.

9 The Big Surprise: High-temperature Superconduavity

Supplement

In the case of the cuprate (i.e. containing coppé@te) superconductors the formation of
Cooper pairs has clearly been established agahedsndamental principle of the
superconducting state. However, the microscopigrgamechanism remains still undecided

to date. In these materials the coherence lehtimuch shorter than in the classical
superconductors. This small valueZafof the order of the dimension of the crystalagmvic

unit cell, results in a high sensitivity of thesaterials to atomic defects and grain boundaries

acting as effective centers of flux pinning (segskB.4 and 9.5).

The spatial symmetry of the wave function of thghhiemperature superconductors
describing the superconducting ground state oCih@per pairs represents an important issue.
It is well established that in the cuprates theavianction strongly varies with the spatial
direction, and that it is dominated by the atomirhital. This is generally expressed by
plotting the wave function in the two-dimensioRaspace associated with the GuPlanes.
Such a polar plot is shown in Fig. 9.7 indicatihg four leaves of the d-orbital alternately
having positive and negative sign and displayirggritbdes and antinodes as a function of the
polar angle. The nodes and antinodes are fixedyalmn crystallographic directions as shown

in Fig. 9.7 in the case od,2_,2 symmetry. For comparison, we also show the (ipdtjo

wave function with s-wave symmetry, encounteredaligin the classical superconductors. A
schematic of the Cuplanes for identifying the directions of the nodesl antinodes,

respectively, is presented in Fig. 9.8 for the adse square Cugattice.
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Fig. 9.7: k-space representation{k,
cross-section) of the superconducting wave funatith s-wave symmetry (left) antlz_,.
symmetry (right). The latter symmetry dominatethia CuQ planes of the high-temperature

SUpGI’COﬂdUCtOI’S.

The positive and negative sign of thg:_,2. wave function appearing at different polar
angles, respectively, can have important conseseifdwo crystals with different
orientation are joined together with a well-defirggdin boundary (bicrystal technique, see
Fig. 9.5). The case where a positive lobe of theedanction encounters a negative lobe on
the other side of the junction is referred to asjanction. A closed loop containing suchra
junction presents a challenge to the uniquene#iseoivave function (frustration), since a sign
change of the wave function remains after a coraplation. In this case a half-integer
magnetic flux quantum is spontaneously generatédisioop by a circular superconducting

current (tricrystal experiment, see Fig. 9.6).
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Fig. 9.8: A schematic of a square GuO

lattice. The unit cell is emphasized by heavy lifd lattice constant a is indicated.

After MgB, superconducting material had been found in 200dgeame clear that the
discovery of unexpected new superconducting masasdar from over. The most recent

event was the report in January of 2008 from tloeigof Hideo Hosono in Japan, showing
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the existence of superconductivity in a layered mosenide material with a transition
temperature of 26 K. Subsequently, the study af tlew class of high-temperature
superconductors, referred to as iron pnictides pleas taken up worldwide with great
intensity. In the meantime a transition temperatdreve 50 K has been observed. The
information about this family of materials is aceing fast and, to quote a recent report, “the

situation changes daily”.

10 Magnetism: OrderAmong the Elementary Magnets

Supplement

In Chapter 7 we have discussed the oscillatiorieetliamagnetism due to the de Haas - van
Alphen effect and the existence of the Landau dgis in the energy spectrum of the
electrons. Generally speaking, the diamagnetisaiteegom the change of the orbital motion
of the electrons in an external magnetic fieldthis way it deals only with magnetic moments

induced by the magnetic flux densBy

The magnetism of a material is quantified in teohdgs magnetizatiom, defined as the

magnetic moment per unit volumd. is given by the relation
M = xB (10.1)

wherey is called the magnetic susceptibility. In the cakdiamagnetism we haye< 0. In a

magnetic field the electron orbits experience @@ssion motion at the Larmor frequency
w =eB/2m (10.2)

where m is the electron mass. As shown by Langévenl.armor precession motion of the

electrons results in a negative magnetic suscéptibi
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x O<P@> (10.3)

where <f> is the average square of the radial extensiomeoelectron distribution within

the atom.

The magnetic moment of the electron spin resulfsamagnetism. From the potential

energy
U=-uB=-uBcosB (10.4)

of a magnetic momenmnt in the magnetic field Langevin calculated the average <€os
from the classical Boltzmann distribution in théldwing way. @ is the angle between the
vectorsy andB). According to Boltzmann, the statistical probigpiof the orientation of the
magnetic momerm of the energy U is proportional to exp(-g18. Hence, one obtains (with

the element @ of the solid angle)

U

fexp(—kB—T) cos0 dQ

<cosf> = G (10.5)
Jexp Q) dQ
B f; exp(u B cos0/kgT) 2nsin® cos 6 dO 10.6
a fg[ exp (uBcos0/kgT) 2nsin 6 dO (10.6)
and after a few steps
1
<cos6> = coth x - Z = L(X); X =puB/ksT (20.7)
L(x) is referred to as the Langevin function. Thvermge magnetization <M> is
<M> = Nu <cosf> = Nu L(x) (10.8)

where N is the number of elementary magnetic moseper unit volume. A plot of L(X) is

shown in Fig. 10.6.

39



L(X) L(),() =x/3

0 3 o Fig. 10.6: Langevin function L(x) defined in

(10.7).

In the case x << 1 (high temperatures) we hage . x / 3, and we obtain

<M> = NP?B/3IgT =

=l0

B (10.9)

This is Curie’s law, and C = N/ 3 kg is referred to as Curie’s constant. On the othadha
in the case x >> 1 (low temperatures) the magatbiz saturates. We note that
paramagnetism deals with the reorientation of gxgsnagnetic moments in an external

magnetic field.

Whereas the result of Eq. (10.8) was obtained basdte concepts of classical physics,
within the framework of quantum theory the quartt@aof the direction of the elementary
spin must be taken into account. According to quantheory, the magnetic moment of an

isolated atom is

L =-gusd/h (10.10)
Here

Mg = eh/2m (10.11)

is the Bohr magnetod.is the total angular momentum given by the veabon sf the orbital

(L) and the sping) angular momentum:
J=L +S (10.12)
The factor g is the Landé g-factor

+](]+1)+ S(S+1)- L(L+1)

=1
g 210+1)

(10.13)
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In a magnetic field the quantized energy levelaroklementary magnetic moment are

U=mguwpB; m=J,J-1,3-2,,-J (10.14)
For a single spinand L=0 we haveat % and g=2:

U=+psB (10.15)
In thermal equilibrium the magnetization of thisotkevel system is

<M> = Npgtanh x; x sugB/kgT (10.16)
In the limit x << 1 (high temperatures) we obtain

<M> = Npg’B/ kT (10.17)
which is similar to Curie’s law.

In the general case, with 2J + 1 energy levatsm@ing to (10.14), in thermal equilibrium

the magnetization is
<M> = Npg By(X) ; X=ugB/kgT (10.18)

The function B(x) is referred to as the Brillouin function (ndtosvn here). In the limit X

<< 1 (high temperatures) the form of the Curie laM> [OB/T is obtained again.

The paramagnetism of the conduction electrons itralmespresents a special case. Because
of the validity of Fermi statistics only the framti ksT/erof the conduction electrons

contribute to paramagnetism. Multiplying (10.17}twthis factor, we obtain
<M> = Npg® B /&f (10.19)

and the proportionality t6~* has disappeared. This result is somewhat sinailtiret case of
the specific heat of the conduction electrons weeltiscussed in Chapter 5 and its

Supplement.

In the case of diamagnetism and paramagnetism we dealing with the response of a
system of magnetic moments to an external magfiekit Next we turn to another magnetic
phenomenon, namely the spontaneous order amongeti@agroments in the absence of an

external magnetic field: ferromagnetism.
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The complete theory of ferromagnetism had to athaitadvent of quantum mechanics.
However, a phenomenological theory was develope@dy in 1907 by Pierre Weiss. He
postulated the existence of an effective magnétid fvithin the crystal (“Weiss field”)
reaching high values up tolTesla. It is this effective magnetic field whidteh causes the

spatial ordering of the individual atomic or mollEzunagnetic moments.

For the Weiss field B we assume B = A M, whereA is a constant independent of the
temperature. In a cooperative way each individuadmetic moment experiences the average
magnetization of all the others (“mean-field appnaoation”). The ferromagnetic order
persists up to the Curie temperatueg Tabove which the ferromagnetic order disappeads a
the crystal becomes paramagnetic. Looking at th@npagnetic state (above) in the

presence of an external magnetic field, Be have

M =Xp (Ba+ Bw) = Xp (Ba + AM) (10.20)
with the paramagnetic susceptibiljty= C / T . From (10.20) we obtain

M(1-2A) = = Ba (10.21)
and

X:M/Ba=C/(T—-Eu) i Teu

CA; (T - Tcu from above) (10.22)
This is the Curie-Weiss law witpi * being linear in T. A more accurate treatment ydeld

X=C/(T-Tu)"*®; (T - Tcu from above) (10.23)
in agreement with experiment.

It was W. Heisenberg, who in 1928 presented tls¢ diuantum mechanical theory of
ferromagnetism. He introduced the concept of thehamge interaction between two atoms 1,

2 having the spi%; , S, resulting in the exchange energy (Heisenberg thode

U=-2J5"'S, (10.24)
with the exchange integral

J=[dry dr, v (r) v (1r2) V(i — 1)y, (1) y, (1) (10.25)
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In the case of ferromagnetism we have J > 0 , laegbarallel spin orientation is energetically
favored. The exact theoretical calculation of thehange integral J requires a detailed

treatment.

For obtaining the temperature dependence of thenatagtion M we use the “mean field

approximation” By =A M . For a two-level system (S = %2) we find fron® (16)

M = N g tanh (g A M / kgT) (10.26)
Introducing the quantities |M / (N pg) and & T/ Teu = ksT / (N pg® A) we obtain

m = tanh (m/ t) (20.27)

(Here we have noted = CA , with C = Npg“kg according to (10.17)). The
transcendental equation (10.27) can be solved graphas indicated schematically in Fig.
10.7 . In this way the temperature dependenceeofithignetization shown in Fig. 10.8 is
found. It corresponds to that of a second-ordesgh@nsition, where the magnetization plays

the role of the order parameter.

Usually, the saturation value of the magnetizasibrm - O is strongly reduced due to the
appearance of individual ferromagnetic domains witferent orientation, as shown

schematically in Fig. 10.2.

tanh m/t

1_
t=1/2

0 £ |
0 1 m Fig. 10.7: Schematics of the graphical solution of
the transcendental equation (10.27). At the ctippcent t = 1 the intersection is located at m =

0. In the case . O the intersection moves toward m=1.
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M(T) / M(0)

0 1 T/ T

Fig. 10.8: Normalized magnetization

(saturation value) plotted versus TdyT.

Deviations from the ferromagnetic ground statenmItmit of zero temperature, where all
spins are oriented exactly parallel to each otlwer due to the thermal excitation of spin
waves (see Fig. 10.1). Looking at a linear chaiN apins, all oriented parallel to each other,

according to (10.24) the total energy is

U=-2J0,S, Sp+1 (10.28)

yielding the energy of the ground state
Uo= -2NJ 8 (10.29)

As a possible excitation we consider the case evAaingle spin becomes oriented

antiparallel to its neighbors (Fig. 10. 1 b). Timekgy increasAU is

AU=2J3(28+2%) =838 (10.30)
(where in the bracket we have indicated the inteyaavith the left and right neighbor
seperately). Only a much smaller excitation enésgyeeded, if the change of the spin
orientation occurs gradually, and this is realizeterms of the spin waves (Fig. 10.1 c). Spin
waves represent oscillations of the spin orientatibe oscillations possessing the quantized
energyh w. These quantized energies are referred to asanagin the case of
ferromagnetic magnons the dispersion relation tainbd from the equation for the temporal
change of the angular momenta of the spins. Ihinfieof small excitation amplitudes one

finds the dispersion relation

hw=4JS (1--coska) (10.31)
where a is the lattice constant of the chainlatice wave number. In the limit of long

wavelengths (ka << 1) Eq. (10.31) yields

44



hw=2JSak? (10.32)
We note w OKk?, in contrast to the case of phonons, whefeK (see (3.7) and (3.8)).

The extension of these results to a three-dimeaslattice is straightforward.

The thermal excitation of magnons follows the B&sestein distribution law (3.2). The

energy of the magnons is

U=[doD(®) <n,> ho (10.33)

(analogous to (3.3)), where the integral extends twe 1. Brilouin zone. In the limit of low

temperatures (ka << 1) one finds dp(Jw"? and UOT>2. For the magnon specific heat
this yields
ou
Cv = (ﬁ)v aT3/2 (10.34)

The thermal excitation of magnons reduces the niemgi®n by the amount
AM = M(0) — M(T). One finds (F. Bloch 1931)

AM / M(0) OT3/? (10.35)

In addition to the parallel spin orientation of fiekeromagnetic order, there exists
antiferromagnetism with antiparallel spin oriematbetween the neighbors. In this case the
exchange integral (10.25) is negative. There edsst antiferromagnetic spin waves, having
the dispersion relation

hw=4|J| S |sinka| (10.36)

similar to the case of phonons (see (3.7)). Ifithi ka << 1 this yields

hw=4|J| S |ka| (10.37)
The contributions of the antiferromagnetic magninthe specific heat and to the heat

conductivity varies proportional to®*Th the limit of low temperatures.

In the technical applications of ferromagnetic mate the magnetic “hardness” represents an
important quality, and one distinguishes betweegmatcally soft and hard materials. The
magnetic hardness is quantified in terms of thefcive force”. The latter represents the
magnitude K of the magnetic field, at which the unmagnetiziadesof the material is
reestablished again, if this magnetic field is sggph second time in a direction opposite to
that of the original magnetization. This situatisshown schematically in Fig. 10.9 , where
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the magnetic flux density B is plotted versus thpli@d magnetic field H in the case of a
magnetically soft and hard material. A soft matetigplays a small value ofdand weak
hysteresis, whereas a hard material shows a lalge vf H and strong hysteresis.

magnetically
soft hard

([N |
o

H = coercive force

Br =remanence

Fig. 10.9: Magnetic flux
density B versus the applied magnetic field H i ¢thse of a magnetically soft (left side) and

magnetically hard (right side) material.

11 Nanostructures: Superlattices, Quantum Wiresand Quantum Dots

Supplement

As we have discussed in Chapter 2 and its Supplignmes crystal lattice the elementary cell
repeats itself in all three spatial directions,ayating a three-dimensional periodic structure.
This principle has been extended in the case dadrfatfices, where the composition of a
material is periodically modulated along one spaliiction (see Fig. 11.2). Such multi-
layered structures are fabricated using modernftinmtechnology.

In the Supplement of Chapter 2 we have introdubectoncept of the reciprocal lattice in
wave-vector spacé{space) and its partition into Brillouin zones (R2gl1). In Chapter 4

and its Supplement we have seen that Bragg refle¢kig. 4.6) occurs, if the wave vector

46



of the electrons reaches the boundary of a Brilaaine, resulting in the forbidden gaps in

the energy spectrum of the electrons (Fig. 4.2481

In the example shown in Fig. 2.11 Bragg reflectoours at the values k 1va and k = 17b

of the wave vectok , where a and b are the lattice constants ang y-direction,
respectively. In a superlattice, along the direcdits modulation, the (super)-lattice
constant is much larger than the lattice constatiteounderlying crystal lattice. Hence, Bragg
reflection is expected at a correspondingly muchlEnvalue of the electron wave vector
than the electron wave vector in crystal lattideading to relatively narrow energy bands
(“minibands”). It was the existence of these miniisand the new expected electrical
properties of the superlattices, which had motddke research in this field.

-7/a 0 m/a Fig. 11.9: Energy spectruatk) in the 1.

Brillouin zone extending between kr#a and k = i7a .

We consider a one-dimensional periodic chain afnatavith the lattice constant a . The
energy spectrum between the boundaries of theillolBn zone,Wa and a, is shown in

Fig. 11.9. Starting from the force equation (5vig, write
Ak
|E| =eEh (11.1)

In the absence of any scattering process, therete@r hole) gains momentum and energy in
the electric field until the value k®a is reached. Then the electron is transferau & =

1Wa to k = fta by means of Bragg reflection. At this point Wh&ve vector increases again
due to the force equation (5.1), and this procegsats itself resulting in periodic oscillations
of the electron (so called Bloch oscillations). bing the timeAt = 15 it takes to increase

the wave vector by the amoulk = 2rva corresponding to one cycle, we obtain from (11.1

2Wa=eEg/h (11.2)
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and
ws = 2Itg =eEah (11.3)

The angular frequenays represents the Bloch frequency. For the occurrehtiee Bloch
oscillations the mean electron scattering timmeust be sufficiently long, satisfying the

condition
wT>1 (11.4)

We see that for this phenomenon to appear we nighty/ipure materials and low
temperatures. Another important prerequisite is¢tadization of a large lattice constant a ,
which leads to a small energy width of the miniband a correspondingly large value @
according to(11.3). In the energy bands of typical crystaiselectrons always experience a
scattering process before they reach energetittedlyipper band edge in an electric field, and
Bloch oscillations are rendered impossible (see FL.3) by the intervening scattering

mechanisms.

The possible generation of Bloch oscillations ipesiattices results from the quantum
mechanical wave properties of the conduction ebestflike many other effects). A different
manifestation of these wave properties arisesarctse of electrical conductors with smaller
and smaller dimensions fabricated by means of nmod@notechnology. Eventually,
mesoscopic length scales are obtained, within whachcattering processes occur any more

(ballistic propagation, see Fig. 11.1 and 11.4).

The first treatment of ballistic electron transpartnesoscopic conductors (quantum wires) is
due to Landauer. We briefly outline the centrabidéhe quantum wire is assumed to be
placed along the x-direction. At both ends it iammected to electrodes with the energies

€+ % eV ande - %2 eV, respectively. Here V is the electric poia difference between both
electrodes. Treating both electron spins seperatatycurrent is

dky

|=-2ef

Vy [f(a +%eV, sF) — f(e —%eV, aF)]TUm (11.5)

Here we have used the abbreviation for the Ferstiidution function (5.10)

1

f(e.er) = emprmety 1

(11.6)
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and considered the current flow in both directibrsx and — x). The quantityyhis a
transmission coefficient containing the electroat®ring processes establishing the
equilibrium with the local electrochemical potehbéthe electrodes. In the quantum wire
itself scattering processes are assumed to betabééme voltage V and the temperature is

small, we have

(), eV a17a)

= -3(c - &) eV (11.7.b)

[f(s +%eV,8F) — f(e —%eV,sF)]

where 9(x) is the Dirac delta function. Using vx dkx = (1/h)de we finally obtain for

the conductance G

1 2e? _

The quantity Go = e?/h represents the quantum unit of conductance.

12 Defects in the Crystal Lattice: Useful or Hamful ?

Supplement

A certain degree of disorder must always exist ényatal by virtue of fundamental
considerations. In the following we present thertiedynamic arguments for the ineluctable
presence of lattice defects, taking the examplato€e vacancies. A vacancy is a location in

the crystal, where an atom of the lattice is mising
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We start with the free enthalpy of the crystal
G=U+pV-TS (12.1)

(U = internal energy; p = pressure; V = volume; Temperature; S = entropy). From (12.1)
we see that an increase of the entropy (causetsbyder) reduces the free enthalpy. Because
of the TS term in equation (12.1), the reductiothef free enthalpy becomes more and more
important at high temperatures. This is exactlyrdason for the appearance of disorder at

thermodynamic equilibrium in the crystal.

We consider a crystal with N identical atoms. Duéhie presence of n lattice vacancies the

free enthalpy G changes by the amount
AG(N, P, T =nU +npVa—nTS™ - T(N+n) S (12.2)

The proportionality to n of the terms in equatid2.Q) is valid only for values of n that are
small relative to N, i.e., n << N. Here b activation energy of vacancy formation; ¥
activation volume of vacany formation;'8" = change of the entropy of the lattice vibrations
per vacancy; s= mixing entropy of the particles. The mixing emyqer particle is defined
as

Sh=- kB ' Z] Xj In Xj (123)

where xis the atomic fraction of the component j . In tase of vacancies we have

_ n n N N

=ty nnn enn N (12.42)
~ Tint hia
~-ketins + kgin(l+3) (12.4 b)
- n, n n
N-kB(Nlnﬁ-ﬁ) (12.4 ¢)

(using again the approximation valid in the cas&mN ). In the case of equilibrium:

9 AG -

(E)p,T = Un + pVa - TS™ + kgTIn2 = 0 (12.5)
and

c(p, M= % = exp(S.""/kg) “ exp[- (Us + pVa) / keT] (12.6)
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From (12.6) we see that plots of log ¢ versusdt/Versus p yield straight lines (see Fig.
12.6). From the slope of the plot versus 1/T ont@iob W + p Va (Where the second term

generally can be neglected at p = 1 at ). Fronskbge of the plot versus p one obtains V

logc log |

yr 0 10tat P Fig. 12.6: Plots of log ¢
versus 1/T (left) and versus p (right), schemd#icccording to Eq. (12.6).

The strongly temperature dependent spontaneousajiemeof lattice vacancies under
thermodynamic equilibrium contributes also to tie&ume expansion of a crystal, in addition
to the standard phenomenon of thermal expansias.€ftect has been demonstrated in
famous experiments by Simmons and Baluffi, who careg the measured relative length
changeAL/L, of a crystal with the relative change of tlagtice constant)a/a, obtained from
X-ray diffraction. In Fig. 12.2 we show their meemments in the case of an aluminum

sample.

Lattice vacancies are able to move within the efysy means of diffusion. During an
elementary diffusion jump from one lattice siteatwother vacancies pass through an activated
state (located between two neighboring latticeskiteenoting the number of vacancies in the
activated state by  one obtains for the ratio/n an expression analogous to (12.6), where
the activation energy of motion gl the activation volume of motion,g\, and the change of

the vibrational entropy, &5 , appear:
n/n = exp(§""/ks) expl- (Us+ pVe) / keT] (12.7)

The temperature (and pressure) dependent congentaaid mobility of lattice vacancies
plays a crucial role in all diffusion processegipstals and represents a key quantity of solid
state chemistry.

In Chapter 12 other types of lattice defects sicimirstitials, color centers, and dislocations
are briefly discussed.
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Glossary (Electrons in Action)

Abrikosov Flux-Line Lattice: regular geometric arrangement of quantized magflatidines
(vortices) in a superconductor oriented along thection of the externally applied magnetic fidld.
exists in a- type-Il superconductor in the mixed state at miegiate magnetic fields between the
lower (at which magnetic flux lines start to appeeathe superconductor) and the upper critical

magnetic field (at which superconductivity vanighes

Aharonov - Bohm Effect: effect in a small multiply connected object (ringcglinder) due to the-
interference between the quantum mechanical waweifin of an electron in the different parts of the

object.

Antiferromagnetism: caused by the spontaneous antiparallel orientafidime spin magnetic

moments of the neighboring atoms or moleculesdrystal.

Ballistic Propagation: undisturbed propagation of a particle/wave withexgteriencing a scattering

process between source and detector.

Barkhausen Jumps:discontinuous change of the magnetization of imhligl ferromagnetic domains

during variation of an external magnetic field.

BCS Theory: microscopic theory of superconductivity developgdlbhn Bardeen, Leon Cooper, and
Robert Schrieffer. It assumes that two conductienteons are bound together forming Cooper

pairs, which obey- Bose-Einstein statistics and occupy a common gtatate. The energy of the
ground state is separated by an energy gap fromatmal-state energy of the electrons. In a Cooper

pair the attraction between the two electronsfescgééd by the — phonons in the superconductor.

Bitter Decoration Technique: method for the experimental observation of magradimain

structures. It was introduced by the American FsaBiter and works by sprinkling, say, small
ferromagnetic particles on the surface of the sanfdte particles then accumulate at the locatibns a
the surface, where the local magnetic field showsang spatial variation, for example, at the doma

boundaries.
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Bloch Ansatz: approximation of the quantum mechanical wave famctif the electrons in a crystal in
terms of the bound states of the atoms at theishai lattice sites of the crystal, in the case mhe

hopping process of the electrons between the aitms's only rarely.

Bloch Oscillation: oscillatory motion of the conduction electrons with narrow - energy band due
to an electric field, caused by Bragg reflection at the crystal lattice when thec&ons reach the

energy of the upper band edge.

Bloch Wall: region in a magnetic material between two magrdginains, in which the spin magnetic
moment rotates from the direction in a magnetic @ono the different direction in the neighboring

domain.

Boltzmann Statistics:applies to (classical) particles or objects, whiah be distinguished from each
other. It leads to the Boltzmann distribution of tumber <IN of particles having the energy:E

o~ Ej/kBT

<N> =N %, ¢ BT
N is the total number of particles; ks Boltzmann’s constant. Ei/k8T is referred to as the

Boltzmann factor.

Bose-Einstein Statisticsapplies to elementary particles, which are ideh&nd, hence, are
indistinguishable from each other, and which ha® or integer intrinsic angular momentum or spin.
These particles are referred to as “bosons”. Exasnpte — photons, - phononsp-particles

(helium nuclei), and the. Cooper pairs. The statistical average <N(E)> efdbcupation number N

in the case of the Bose-Einstein statistics is

1
e E-W/kpT _ 1

<N(E)> =

(E = energy; 1 = chemical potential). In the limit (E - 1) >3kthe Bose-Einstein distribution

approaches the- Boltzmann distribution.

Bragg Reflection:when in an electric field the conduction electroeesch the energy of the upper
band edge, they decelerate and reverse their teldtiis process results from the interaction ef th
electrons with the periodic potential of the cry$attice and is referred to as Bragg reflectiibms
named after William Henry and William Lawrence Bggd@ather and son), who had analyzed the

diffraction of X-rays by a crystal lattice.

Carbon Nano Tube:narrow cylinder formed by carbon atoms. There esiiggle-wall and multi-wall

carbon cylinders.
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Chemical Potential: it represents the energy per particle in a systepauicles (electrons, atoms,
molecules). At equilibrium it is the same for adlrpcles in the system. In the case of electrores in

solid, in the limit of zero temperature the cherhjmatential i is equal to the Fermi energgr (U =

€|:).

Coherence Length of a Superconductomminimum distance over which a material can chatge i

superconducting property.
Conduction Band: highest— energy band which is only partly filled with elems.

Cooper Pair: pair of two conduction electrons bound togetheabyattractive interaction. Cooper

pairs represent the key element of theBCS theory of superconductivity.

Critical Magnetic Field and Critical Temperature of a Superconductor:value of the magnetic

field and of the temperature, above which supergotinty vanishes.

Curie Law: it was discovered by Pierre Curie and states that & paramagnet the magnetic

moment changes proportional to the inverse temyerat

Cyclotron Motion: circular motion of electric charge carriers at tiyelotron frequencyc in a

magnetic field due to the action of the Lorentz force.

Debye Model of the Specific Heatit assumes the existence of a continuous frequemye of —
phonons in a crystal from zero frequency up to &imam frequency (phonon spectrum) and takes
into account the variation of the number of phoneecsupying the modes of the different phonon

frequencies with the temperature.

de Haas — van Alphen effectoscillatory dependence of the diamagnetism upon the magnetic field

due to the energy quantization of the conductiectedns in the form of the- Landau cylinders .

Diamagnetism: caused by the magnetic moment due to the orbitéibmof the electrons in a

magnetic field.

Diffraction: causes thehange of the direction of a propagating wave duée interaction of the

wave with an object or a geometric arrangemenb{#ats.

Dislocation: perturbation of the perfect order of a crystaidatby an additional atomic plane ending
within the crystal. Around a dislocation the crysadtice is distorted. Dislocations strongly irgloce

the mechanical strength of a material.
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Einstein Model of the Specific Heatit assumes a single vibrational frequergyf the lattice atoms
in a crystal and takes into account the variatiothe number of - phonons occupying this mode

with the temperature.

Electric Potential Gradient: spatial slope of the potential energy of an eleahiarge in an electric
field. The electric potential difference betweerm foints is referred to as the voltage between the

points.

Energy Bands:theydescribe the dependence of the energy of the etecin a crystal upon their
mechanical momentum. The exactly periodic structdite crystal lattice results in forbidden ranges
of the energy. The allowed energy ranges sepanathds way from each other are referred to as

energy bands.
Exciton: pair of a (negative) electron and a (positive) hinla semiconductor bound to each other.

Fermi-Dirac Statistics: applies to elementary particles, which are indgtishable from each other,
and which have half-integer intrinsic angular motnam or spin. These particles are referred to as
“fermions”. An important example are electrons ftwspin ¥2). Fermions must satisfy the Pauli
exclusion principle, which states that each quannachanical state of a system can be occupied at
most only by a single particle. The statisticalrage <N(E)> of the occupation number N in the

case of the Fermi-Dirac distribution is

1
cE-W/kET 1 1

<N(E)> =

(E = energy; 1 = chemical potential). In the limit (E - p) >3kthe Fermi-Dirac distribution
approaches the- Boltzmann distribution. In the case of fermiorng themical potential W is also

referred to as the Fermi energy ( L = &¢).

Fermi Energy &:: reference energy of the Fermi distribution describing the occupation of #tates
with low energy and how with increasing energy dtates become unoccupied. In the limit of zero

temperature all states bel@ware occupied and abogeunoccupied.

Fermi Surface: (2-dimensional) surface in (3-dimensional)k-space separating the occupied states
at low energies from the unoccupied states at digdigies. A sharp Fermi surfacekispace results if
the number of particles and, hence, thd-ermi energy in the system are large and the teatye is

low.

Ferromagnetism: caused by the spontaneous parallel orientationeo§pin magnetic moments of the

atoms or molecules in a crystal.
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Flux-Flow Resistance:lectrical resistance in a superconductor causetdognotion of magnetic

flux lines (vortices).

Flux Pinning: disruption of the motion of magnetic flux linesdrsuperconductor effected by local

inhomogeneities in the material, where the fluedéitbecome trapped.

Free-Electron Aproximation: treating the electrons in a crystal as nearly fraicles experiencing

only a weak perturbation due to the (small) pedgatitential of the crystal lattice.

Fullerenes:carbon molecules with an all-round completely atbseucture consisting of various

specific numbers of carbon atoms.

Giant Magnetoresistance:appears in the form of an extremely sensitive migfield dependence

of the electric resistance of specific multilaygustures of ferromagnetic layers.

Grain Boundary: location in a crystalline material, which separanelvidual single-crystalline

grains with a different crystal orientation.

Hall Effect: electric voltage (Hall voltage) generated by trectlc current flow in a magnetic field
due to the - Lorentz force acting upon the charge carriers. Hiakk voltage is directed perpendicular

to both the direction of the current flow and thmection of the magnetic field.

Hooke’s Law: proportionality between the elastic strain of aenat and the mechanical load, named

after the Englishman Robert Hooke.

Inelastic Scattering:a scattering process for which the energy of thenmng and the outgoing wave

(neutrons, X-rays, etc.) differs due to an energgdfer between the wave and the scattering object.

Interference: superposition of two or more propagating wavegjltieg) in a spatial pattern of

locations where the wave amplitudes add to or aabfrom each other.

Josephson Effectoccurs at the weak contact between two supercooduict the form of voltage
oscillations at high frequencies during electricrent flow above a critical value of the currenbeT
Josephson contact represents the device displaymgdamental relation between voltage and

frequency underlying the “Josephson voltage stafidar
Kelvin: unit of the absolute temperature scale. Zero Keteimesponds to minus 273.15 °Celsius.

k- Space or Wave-Vector Spacemathematical space taken up by thevave vector&. This
geometric concept is helpful for discussing thepprties of many-body systems such as electrons in

crystals & Fermi surface).
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Landau Cylinder: cylindrical region in —» k-space occupied by the electrons in a crystal]tregu
from the energy quantizationv for the electrons in a magnetic field. h is Plaadonstant andi¢
the cyclotron frequency. In the case of two-dimenal systems4 two-dimensional electron gas) the

Landau cylinders are reduced to Landau circles.

Lorentz Force: experienced by an electric charge moving in a magfield. The force is directed

perpendicular to both the direction of the motion ¢he direction of the magnetic field.

Magnetic Flux Quantum: quantized unit of the magnetic flux (magnetic fieddenclosed area)
passing through the area. In-a two-dimensional electron gas the magnetic fluxuian is h/e, in

the case of a superconductor it is h/2e .

Magnetic Penetration Depth of a Superconductorsmall distance by which a magnetic field
penetrates into a superconductor beyond its su(tedere the field is completely compensated by the

electric shielding current).
Magneto-Resistanceincrement of the electric resistarage to the presence of a magnetic field.
Magnon: energy quantum of a» spin wave.

Meissner Effect: (or Meissner-Ochsenfeld effect) expulsion of a nedigrfield from the interior of a
superconductor. It is effected by electric shigidimirrents flowing along the surface of the
superconductor within a thin layer having a thidsgiven by the- magnetic penetration depth. It is

named after Walther Meissner and Robert Ochsenfdid,discovered it.

Metal Fatigue: weakening of the mechanical strength of a matdrialto (in particular cyclical)
mechanical loads. It starts with hardly visible raaracks, which subsequently grow larger and larger

until the material breaks.

Micrometer: length unit of 16 meter.

Nanometer: length unit of 10 meter.

Nuclear Magnetism: spatial ordering of the magnetic moments associaittdthe nuclei.

Pancake Vortex:appears in form of a disk containing-a magnetic flux quantum in a highly
anisotropic superconductor, where the supercondtyctiriginates in distinct crystallographic planes
(for example, the copper-oxide planes in the cepnagh-temperature superconductors) and where the

magnetic field is oriented perpendicular to thenpka

Paramagnetism:caused by the spatial orientation of the intrirgigular momentum or spin of the

electrons along the direction of an applied magrfetid.
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Pauli Exclusion Principle: it applies to systems obeying the Fermi-Dirac statistics and states that

each quantum mechanical state can be occupiedsttamly by a single particle.

Phonon: energy quantum E =vhof a vibrational mode with the frequeneyf the lattice atoms in a

crystal. h is Planck’s constant h =6.628*J s .

Photoelectric Effect: emission of electrons from a metal surface irr&diatith light or more
generally with electromagnetic waves. Whereas tigegy of the emitted electrons is determined by
the frequency of the radiation, the number of leeteons is given only by the intensity of the

radiation.

Photon: energy quantum E =vtof an electromagnetic wave with the frequencyh is Planck’s
constant h =6.62610*Js.

Planck’'s Radiation Law: describes the spectral energy distribution of teeteomagnetic waves

within a cavity under equilibrium at temperatur¢ T Bose-Einstein distribution of the photons).

Quantized Electric Conductance:in a narrow one-dimensional channel (quantum vifre) -

ballistic propagation of electrons is quantizediiits of 2é/h .

Quantum Dot: artificial object being so small in all of its dim&ions (quasi zero-dimensional) such
that the quantum mechanical wave function of tkeetebns is dominated by its spatial size (likerin a

atom, why quantum dots are also referred to afitét atoms”).

Quantum Statistics: applies to elementary particles which cannot bengjsished from each other.
Depending on the angular momentum of the particies,distinguishes between Bose-Einstein

and - Fermi-Dirac statistics.

Radiation Damage:structural changes in a material effected by ifsosure to radiation

(electromagnetic waves, particles).
Specific Heat:change of thénternal energy associated with the change in teatpes.

Spin Wave: energetic excitation of the spin magnetic momems $pin lattice resulting in a deviation
from the exactly parallel (in the case of a ferrgnet) or antiparallel (in the case of an

antiferromagnet) orientation of neighboring spirgmatic moments.

Squid: SuperconductingQuantuml nterferenceédevice. It consists of a small superconducting loop
interrupted by Josephson contacts. It represeatstist sensitive device for measuring magnetic
fields.
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Superlattice: artificial structure in which two different metads semiconductors are alternately

stacked on top of each other with atomic regularity

Symmetry: characterizes an arrangemehbbjects (for example, atoms or molecules inyatet), the
arrangement being exactly reproduced followingaiertsymmetry) operations such as translation,

rotation, or mirror reflection.

Synchrotron Radiation: electromagnetic radiation emitted from electromsutating at high

velocities within an evacuated annular ring.

Tunnel Junction: a device in which two electrically conducting ¢fedes are separated from each
other by an extremely thin insulating layer, suwdt electric current flow through the junction gy

possible by means of the quantum mechanical tinghptocess of the charge carriers.

Two-dimensional Electron Gas:electrically conducting layer at the surface oémsonductor or at

the interface between two semiconductors.

Type-I and Type-Il Superconductor: classification according to the difference betwten -

magnetic penetration depth and the coherence length.
Valence Band:completely filled— energy band below the conduction band.

Wave Vektor: the inverse of the wavelengihmultiplied by 2tis defined as the wave number
k =2t/ A . In 3-dimensional space the direction of a prapiag wave is described by the wave vector
k = ks+ ky + k;, having the 3 componerks, k, , andk, along the directions of the 3 coordinate axes,

respectively.

Weiss Field:an effective magnetic field existing in a ferromatio material and postulated by Pierre

Weiss for explaining phenomenologically ferromagnetism.
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