
1 

 

 

         

Rudolf Huebener       

Electrons in Action :  Roads to Modern Computers and Electronics 

 

Supplements : Introduction 

The author had written this book to tell about the many fascinating advances during the last 

century in our understanding of the physical properties of materials, which are highly relevant 

for modern technology and industry. In particular the role of the individual people and quite 
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the readers of the book would welcome if mathematical treatments were kept out and mainly 

the fundamental concepts were presented. 
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supplementary text would be available containing a more detailed (and mathematical) 

treatment of the subjects discussed in the book. It is this goal, which motivated publisher and 

author to provide the following supplements online. We hope that in this way the book will be 

interesting for an extended readership.  

In the same spirit I have added at the end a glossary explaining some specific subjects raised 

in the book. 
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2   Well-ordered Lattice Structures in Crystals 

Supplement 

In a crystal the locations occupied by the atoms or molecules are described mathematically by 

the lattice vectors 

  r = n1 a + n2 b + n3 c        (2.1) 

Here, n1 , n2 , and n3 represent integer numbers. a, b, and c are three fundamental translation 

vectors. Here and in the following vectors are denoted by bold symbols. All values of the 

integers n1 , n2 , n3 yield the lattice points of the crystal. (In (2.1) we assume that the origin of 

the coordinate system is located at a lattice point). The translation vectors a, b, c generate the 

elementary cell (Fig. 2.9), which in turn yields the crystal lattice by its spatial repetition. By a 

special choice of the lengths of the three vectors a, b, c of the elementary cell (lattice 

constants) and of the three angles between them one finds seven fundamental types of crystal 

lattices. If additional lattice points at special locations of the elementary cell (middle of the 

outer surfaces or its center) are added, one can show that a total of only 14 translational 

lattices can be generated. These are the 14 Bravais lattices shown in Fig. 2.3 

Figure 2.9:  Elementary cell generated by the translation vectors 

a, b, c . 

Of course, the structure of crystals is usually more complex than that of one of the 14 Bravais 

lattices. Here symmetry considerations play a crucial role. The crystal lattice is reproduced 

exactly following the fundamental symmetry operations: translation, rotation, reflection at a 

mirror plane, and inversion (at a point). In the case of the rotation operation one distinguishes, 

how often the crystal lattice is reproduced during a complete rotation by 2π. One- , two- , 

three- , four- , and six-fold rotation axes are possible, corresponding to rotations by 2π, 2π/2, 

2π/3, 2π/4, and 2π/6, respectively. The combination of rotation, reflection at a mirror plane, 

and inversion specifies one of the 32 point groups. Including also the translation, one obtains 

one of the 230 space groups characterizing any crystal structure. 
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The structure of crystals can be clarified using the diffraction of X-rays. It is the similarity of 

the magnitude of the wavelength of the X-rays and of the distance between the neighboring 

objects in the crystal (lattice constant), which provides this opportunity by means of 

interference. In the case of the diffraction of X-rays, at each lattice point of the crystal a 

spherically propagating electromagnetic wave is generated which interferes with the waves 

originating at the neighboring lattice points. In the case of two lattice points, the interference 

pattern is shown schematically in Fig. 2.6, with the maxima and minima of the resulting total 

wave amplitude depending on the propagation direction.  

Looking at this situation in more detail, we consider the (elastic) reflection of the wave at a 

series of parallel lattice planes. Denoting the distance between neighboring lattice planes a, 

and the angle between the planes and the direction of the incoming and of the outgoing wave 

θ (see Fig. 2.10), the difference between the distance covered by the waves reflected at two 

neighboring planes is 2 a sinθ . For constructive interference, at which the amplitudes of both 

waves exactly add to each other, this distance must be equal to an integer multiple of the 

wavelength λ. This leads to the famous Bragg reflection law 

  2 a sinθ =  n λ         (2.2) 

where n is an integer. 

Figure 2.10:  The reflection of the wave at two 

parallel lattice planes separated from each other by the distance a results in the additional 

distance  2 a sinθ  covered by the wave reflected at the lower plane. θ is the angle between the 

planes and the incoming and the outgoing wave. 

So far we have considered only a single series of parallel lattice planes, all having the same 

normal vector (vector oriented perpendicular to the planes). However, in the case of a three-

dimensional crystal we deal also with other lattice planes characterized by different normal 

vectors. In general, the directions of constructive interference for differently oriented lattice 

planes do not coincide, and a clear maximum diffraction signal at distinct diffraction angles 
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only appears in the case of special selected values of the wavelength or frequency of the X-

rays. This is illustrated schematically in Fig. 2.7 and leads to the famous Laue diffraction 

diagram, an example of which is shown in Fig. 2.1.  

The phenomena associated with the wave propagation in a spatially periodic (crystal) lattice 

(periodic potential) can be described mathematically in a particularly simple way using the 

concept of the reciprocal lattice. This concept is based on the abstract mathematical wave-

vector space (Fourier space) and had been introduced by the American J. W. Gibbs. A wave 

propagating along the x-direction can be written as the complex function 

  F(x,t) = Fo ������ω��        (2.3) 

Here t is the time and ω the angular frequency. The wave number k is related to the 

wavelength  λ through the relation k = 2π / λ . In the case of three dimensions the function 

(2.3) can be generalized yielding 

  F(r ,t) = Fo ���	 �� ω��                                                                                    (2.4) 

where  r =  x + y + z  and  k = kx + ky + kz . The wave number k of the one-dimensional case 

is replaced by the wave vector k having the three components kx, ky, kz .  

The reciprocal lattice G is defined in the following way 

  G = h1 A + h2 B + h3 C       (2.5) 

where h1 , h2 , h3 represent integer  numbers.  The fundamental vectors  A ,  B ,  C are 

connected with the translational vectors a , b , c of the elementary cell (see Fig. 2.9). They are 

defined as follows 

  A = 2π 
� � 

� � � 
 ;    B = 2π 


 � �
� � � 
 ;    C = 2π 

� � �
� � � 
    (2.6) 

We see that A , B , C  of the reciprocal lattice are oriented perpendicular to two fundamental 

axes of the crystal lattice, respectively.  

It can be shown that a function  U(r ), reproducing exactly the  periodicity of the crystal 

lattice, is obtained in the form  

  U(r ) =  ∑ u�� �� � �        (2.7) 
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This function satisfies the periodicity condition   

U( r + ρρρρ) = U(r ) ,         (2.8) 

where ρρρρ is a lattice vector of the form given in (2.1). Furthermore, the Bragg condition for the 

constructive interference between two waves scattered  by the crystal from the incoming wave 

vector k into the outgoing wave vector k´ can simply be written as  

  k´ - k = G         (2.9) 

The simplicity of Eqs. (2.7) and (2.9) illustrates the advantage achieved by using the concept 

of the reciprocal lattice. 

The abstract wave-vector space (k-space) with the reciprocal lattice is divided into the 

Brillouin zones. The boundaries of the Brillouin zones are obtained from the planes passing 

perpendicularly through a reciprocal-lattice vector at half of its value. Including larger and 

larger reciprocal-lattice vectors in this construction, the first, second, third, etc. Brillouin 

zones are found. In Fig. 2.11 we show the first Brillouin zone in the (two-dimensional) case of 

the two fundamental vectors A and B oriented perpendicular to each other. As we will see in 

Chapter 4, the Brillouin zones play an important role for the electronic band structure of 

materials.  

Figure 2.11:  Construction of the first Brillouin zone in the 

(two-dimensional) case of the two fundamental reciprocal lattice vectors  A  and  B  oriented 

perpendicular to each other. 
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3   Permanent Movement in the Crystal Lattice 

Supplement 

The quantization of the vibrational energy of the atoms or molecules in a crystal is clearly 

demonstrated by the temperature dependence of the specific heat. According to the Einstein 

model, the crystal energy U contained in the lattice vibrations is 

  U = 3 N < nω > ħω        (3.1) 

Here we assume a crystal consisting of N atoms. Hence, there exist 3N degrees of freedom of 

the vibrations.  < nω >  is the probability of a vibrational state  with the angular frequency ω 

and the quantized energy  ħω  being occupied. This probability is given by the Bose-Einstein 

distribution 

  < nω > = 
�

�ħ�/��� ��        (3.2) 

This energy distribution had been proposed for the first time in the form of Planck’s famous 

radiation law in the case of electromagnetic radiation. The quantity ħ = h /2π is Planck’s 

constant  h  divided by  2π .  kB  is Boltzmann’s constant, and T is the temperature. In his 

model Einstein had assumed only a single vibration frequency ω = ωE to appear in Eqs. (3.1) 

and (3.2).  

In the more accurate Debye model, instead of the single Einstein frequency ωE  a continuous 

frequency spectrum of the vibrations of the crystal lattice is taken into account ranging 

between zero and a maximum frequency ωD  referred to as Debye frequency. Now the 

vibrational crystal energy is written as an integral over all phonon frequencies  

  U = � dω D�ω� � �� 
! ω > ħω      (3.3) 

Here D(ω) is the number of vibrations per frequency interval, also referred to as the density of 

states. As an example, the spectral energy density of the phonons in a germanium crystal is 

shown in Fig. 3.4.  

The density of states D(ω) is found by considering the number of elastic eigenmodes fitting 

exactly into the volume of the crystal, say, into a cube with the length L on each side. In 
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addition, the increment of the volume in K -space with the frequency change  dω must be 

taken into account. (We denote the phonon wave vectors by K ). In this way one finds  D(ω) ~ 

ω2 . Finally, inserting < nω > from (3.2) into (3.3) the vibration energy of the crystal is 

obtained. The specific heat (at constant volume) associated with the lattice vibrations then 

turns out to be 

  CV = ( 
∂ "
∂ # �V  =  9 N kB  $#

θ
%& � '( )* �+��+���,

-.
!        (3.4) 

Here  θ = ħωD/kB  is the Debye temperature. The quantity z = ħω/kBT is introduced for 

convenience. ( zD = ħωD/kBT = θ/T ). At low temperatures ( T << θ ) the expression in (3.4) 

yields the T3 dependence of  cV  in excellent agreement with the experimental observations. 

On the other hand, at high temperatures ( T >> θ ) Eq. (3.4) yields cV = const, and the classic 

law of Du Long and Petit is reproduced again.  

The thermal conductivity κG associated with the lattice vibrations in a crystal is intimately 

connected with the specific heat of the phonons. This can be seen from the simple formula for 

the lattice component κG of the thermal conductivity obtained from kinetic theory 

  κG  = 
�
& v C ℓ         (3.5) 

Here v and ℓ are the velocity and mean free path of the phonons, respectively.  C is the 

phonon specific heat per volume. At very low temperatures the phonon mean free 

path ℓ  is limited by phonon scattering at the crystal surfaces, and ℓ becomes 

temperature independent. In this regime we have  C ~ T& and, hence, from (3.5)  κG  ~ 

T& . 

At higher temperatures an important process for the scattering of phonons is the 

Umklapp process (U-process) due to Peierls. As a result of this process phonon 

momentum is transferred back to the crystal. Denoting the phonon wave vectors 

participating in this process by Ki , in the case of a U-process we have  

  K1 + K2  =  K3 ± G        (3.6) 
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G is a reciprocal lattice vector. Processes with G = 0 are referred to as N-processes. (In 

the previous Chapter in the case of Eq. (2.9) we dealt already with a similar situation, 

where photon momentum was exchanged with the crystal lattice during Bragg 

reflection). U-processes become appreciable only when  K1 + K2  ≥ 
�
0 G . However, at 

low temperatures phonons satisfying this condition are not thermally excited, and U-

processes are frozen out. At high temperatures ( T > θ ) U-processes dominate. Their 

number is proportional to the number of phonons, which in turn is proportional to 

the temperature. Hence, for the phonon mean free path ℓ we have  ℓ ~ T�� . Since C is 

constant in this regime, from (3.5) we find κG  ~ T�� . 

We see that as a function of temperature the lattice thermal conductivity displays a 

distinct maximum. This is shown schematically in Fig. 3.6.  

The variations of the phonon frequency ω with the phonon wave vector K is found 

from a theoretical model, in which the crystal lattice is described in terms of point-

like masses occupying the lattice sites and connected with each other by means of 

elastic springs. In the simplest case of a linear chain with the lattice constant a, 

consisting of the same masses  m  connected with the same spring constant f , one 

obtains the dispersion  relation 

  ω =  $1 23%
� 04

 sin 
5 6
0         (3.7) 

Since we deal with a discrete lattice with the distance  a  between its neighbors, the 

components of the wave vector  K  are limited within the range of the first Brillouin zone, i. 

e., in the case of the one-dimensional chain to the range  - 
π

6  ≤ K ≤ 
π

6  . In the limit of small 

wave vectors one obtains from (3.7)  

  ω =  $7, 23 %
� 04

  K        (3.8) 
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The factor  $7, 23 %
� 04

 represents the sound velocity. Equation (3.8) indicates the 

acoustic limit, and (3.7) is referred to as an acoustic mode. The three acoustic modes 

(one longitudinal mode and two transverse modes) observed in a copper crystal 

along a specific direction is shown in Fig. 3.5. (Because of the face-centered cubic 

symmetry of copper, the location of the boundary of the first Brillouin zone differs 

from that of a linear chain or of a simple cubic crystal with the lattice constant  a ).  

Because of the anisotropy of the elastic properties in a crystal, the ballistic 

propagation of phonon energy shows a preference along distinct crystallographic 

directions. This effect is referred to as phonon focusing and can be nicely 

demonstrated by scanning over one crystal surface with a laser or electron beam. The 

phonons generated in this way at the location irradiated by the beam are detected 

using a small phonon detector attached to the opposite crystal surface. The principle 

of this technique is explained in Fig. 3.7, and a typical result is presented in Fig. 3.1.  
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4   Electrical Conductor or Insulator 

Supplement 

The quantum mechanical theory of the electrons in a crystal requires the solution of the 

Schrödinger Equation in the case of the periodic crystal lattice. Here the energy spectrum of 

the electrons is determined by the periodic potential U(r ) due to the crystal atoms. The 

Schrödinger Equation is 

- 
ћ,
09 ∆ψ(r)  +  U(r ) ψ(r )   =   ε ψ(r )     (4.1) 

Here m and ψ(r )  are the mass and the wave function of the electrons, respectively.  ∆  

denotes the Laplace operator 

∆ψ =  
:,;
:�,   +  

:,;
:<,   +  

:,;
:),    and ε the electron energy. The potential energy U(r ) must 

satisfy the periodicity condition  (2.8).  

In the theoretical treatment two important cases of approximations are distinguished: the 

bound-electron approximation (due to F. Bloch) and the free-electron approximation (due to 

R. E. Peierls). In both cases we are concerned only with the electrons residing at the highest 

available energy levels, and not with the lower bound states in the individual atoms occupying 

the lattice sites of the crystal. 

In the bound-electron approximation the electrons with the highest energy are assumed to 

spend most of the time at a certain lattice atom, experiencing only an occasional transfer to a 

neighboring lattice site because of the small interaction between these sites. Their binding 

energy at their specific lattice sites is assumed to be much larger than their kinetic energy. In 

this case the solution found by Bloch is based on the atomic wave function  φ>(r)  of  a bound 

electron within a (single) free atom. Denoting the electron coordinate by r  and the coordinate 

of the atom (i. e., of the lattice site) by ρ , as his solution Bloch proposed the 

superposition of the atomic wave functions  φO(r  – ρ) : 

  ψk(r)  =  ∑ �?	@ @  φO(r  – ρ)       (4.2) 

This ansatz automatically yields the extended periodicity condition 

  ψk(r + ρ)  =  �?	@  ψk(r)                    (4.3) 
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introducing the phase factor  �?	@  .  

With the wave function (4.2) the electron energy εk is found to be  

εk  =  εO  -  α  -  2β(cos kxa  + cos kya  +  cos kza)    (4.4) 

Here εO  is the electron energy of the unperturbed individual single atom. The 

correction α is  

- α  =  � dτ  φ>B (r) CU��� E U6���F φO(r)               (4.5) 

 U6��� is the potential energy of the unperturbed individual atom. As seen in Fig. 4.5, 

due to the presence of the atoms at the neighboring lattice sites we have U6��� > U(r) 

and, hence, α > 0 . So α represents an energy correction arising from the neighboring 

atoms. The second correction in (4.4) is obtained by assuming for simplicity cubic 

symmetry of the lattice, and by combining the contributions of the nearest neighbors 

at the distances  ± a in x, y, and z-direction. The quantity β contains the interaction 

between the nearest neighbors and is given by  

- β  =  �dτ  φ>B (r - a) CU��� E U6��F� φ>(r)      (4.6) 

Again, we note that in general β > 0 .  

Figure 4.5:  Comparison of the potential energy of 

an electron in the case of a single individual atom, Ua(r)  (solid curve), and in the 

presence of atoms at the neighboring lattice sites, U(r)  (dashed curve). 

From (4.4) we see that the lowest value of the energy is  ε = εO - α - 6β . From the 

highest value  ε = εO - α + 6β we note that the width  ∆ε of the energy band is  ∆ε  =  12 β . 

Because of the increasing overlap between  φ>B �� E ��  and  φ>(r)  with decreasing lattice 
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constant a , the quantity β  and, hence, the band width ∆ε  increases. This behavior is 

shown schematically in Fig. 4.3 in the case of a one-dimensional chain.  

So far, we have considered only the interaction of an atom at a specific lattice site with its 

nearest neighbors. In order to increase the accuracy of the approximation, the interaction with 

the next-nearest neighbors (and perhaps beyond) may have to be included.  

Concluding our discussion of the bound-electron approximation, we see that the interaction 

with the neighboring lattice atoms leads to a splitting of the energy levels of an individual 

single atom into energy bands, the energy width of which increases with decreasing distance 

between the nearest neighbors.  

Turning next to the free-electron approximation, now we assume that the binding energy of 

the electrons to a lattice atom is much smaller than their kinetic energy. Neglecting the 

potential energy U(r ) in the Schrödinger Equation (4.1), its solution yields the wave function 

of free electrons 

  ψ(r )  =  e?	�                                                     (4.7) 

with the electron energy 

  ε  =  ћ0k0 / 2m                                                          (4.8) 

The wave function (4.7) represents a planar wave with the wave vector k . However, the 

presence of a very small periodic potential U(r ) in Eq. (4.1) becomes highly important, if the 

wave vector k is close to the boundary of a Brillouin zone. At the boundary of a Brillouin 

zone the wave vector k exactly satisfies the Bragg condition (2.9), and the wave experiences 

Bragg reflection. Taking as an example  k = G1/2 ,  the wave vector changes from  k  to        

k ’ = k – G1 = - G1/2  due to Bragg reflection. This is illustrated schematically in Fig. 4.6 . 

Figure 4.6:  Bragg reflection from  k = G1/2  to  k ’ 

= k – G1 = - G1/2 . 
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The solution of the Schrödinger Equation with the periodic potential  U(r )  can be written as a 

superposition of plane waves  

  ψ(r )  =  ∑ c		  e?	�                                                                                         (4.9) 

Furthermore, expressing the small periodic potential U(r )  of the crystal lattice in the form 

given by Eq. (2.7), in the case  k = G1/2  one obtains the electron energy 

  ε  =  εk  ±  u�J                                                                                             (4.10) 

Between the energies  εk  +  u�J  and  εk  -  u�J  there appears a forbidden energy gap, in 

which the propagating-wave solution (4.9) does not exist. The spectral energy curve ε(k) 

always approaches the Brillouin-zone boundaries with zero slope. The width of the forbidden 

energy gap increases with increasing expansion coefficient   u�J , i. e., with increasing 

potential energy U(r ) of the  crystal lattice. The appearance of the forbidden energy gaps due 

to Bragg reflection at the periodic potential of the crystal and a comparison with the case of 

perfectly free electrons is shown in Fig. 4.2 . 

The energy bands occupied by the electrons in a crystal and separated from each other by the 

forbidden energy gaps immediately provide the answer to the question whether a material is 

an electrical conductor, insulator, or semiconductor, as first pointed out by A. H. Wilson. 

Here the crucial argument relies on the fact that preferential motion of the electrons along a 

specific direction (of an applied electric field) is only possible, if the states of the electronic 

energy spectrum relevant under the nonequilibrium can become occupied. The result depends 

critically on the extent to which the upper energy bands are filled up with electrons, and the 

principle is explained in Fig. 4.4.    
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5   Metals Obey the Rules of Quantum Statistics 

Supplement 

We start by discussing the classical models developed mainly by P. Drude and H. A. Lorentz. 

In an electric field E the electrons in a crystal experience the force 

  F =  ħ 
K	
K� L     - e E                                                                                    (5.1) 

Here k denotes the wave vector of the electrons, and e the elementary charge. (ħk is the 

mechanical momentum of the electrons). According to (5.1), after the time ∆t the wave vector 

increases by the amount ∆k. In the absence of any scattering processes this increase ∆k would 

become larger and larger. However, scattering of the electrons always occurs (due to phonons 

or lattice imperfections), resulting in a limited time in which Eq. (5.1) is valid. This limited 

time is the average time τ between collisions, and we have 

   ħ ∆k  = F τ  =  m ∆v                 (5.2) 

where m and ∆v  are the electron mass and the drift velocity, respectively. Together with 

(5.1), the resulting electric current density j  is 

  j  =  n (-e) ∆v  =  n e2 
M
9 E                (5.3) 

where  n is the electron density. With the electric conductivity σ from the relation j  = σ E , we 

obtain  

  σ  =  n e2 τ / m                     (5.4) 

We have found Ohm’s law, based on the assumption of an average relaxation time τ , which is 

independent of the electric field E .  

Since in addition to their electric charge, electrons transport heat energy, they also contribute 

to the heat conductivity of electric conductors. Hence, the electric conductivity and the 

electronic part of the heat conductivity are proportional to each other, as can be shown in the 

following way. In a temperature gradient dT/dx  there exists a net energy-current density w 

from the hot to the cold side given by 
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  w = (½) n v Nε�TCx E v τF� E  ε�TCx Q v τF�R                        (5.5 a)

  w = n v2 τ 
Kε
K#  �E 

K#
K� �                (5.5 b) 

with ε denoting the particle energy. The idea of (5.5) is illustrated in Fig. 5.6. 

Fig. 5.6:  Explanation of the origin of (5.5) 

describing the heat flux. The arrows at Thigh and Tlow  indicate the average electron energy. 

The electron mean free path  ℓ = v τ  represents the relevant length scale over which the 

average motion of the electrons up or down the temperature gradient is affected. Using the 

equipartition theorem 

     ε = 
�
0 m v2  =  

&
0 kB T        (5.6) 

and with 

  
Kε
K# = cV = 

&
0 kB                    (5.7) 

we obtain the energy-current density 

  w  =  - n ( &0 kB )2  
S #
9    

K#
K�  =  - κe 

K#
K�        (5.8) 

Here we have introduced the thermal conductivity  κe  of the electrons. Together with (5.4) we 

find 

  L  ≡  
TU
V #  =  

W
1  (kB/e)2                                                                                   (5.9) 

The ratio L is referred to as the Lorenz number (named after Ludwig Lorenz). (A more 

accurate averaging procedure leads to the prefactor π2/3  instead of  9/4 ). The result 

expressed in (5.9) is the famous Wiedemann-Franz law.  
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At this stage we have to deal with an important concept introduced by quantum mechanics, 

namely the fact that the elementary particles such as electrons are exactly identical and cannot 

be distinguished from each other. The resulting quantum statistics strongly deviates from the 

classical (Maxwell-Boltzmann) statistics, as we have discussed already in Chapter 3 in the 

case of the Bose-Einstein distribution (3.2) applying to elementary particles with zero or 

integer angular momentum and valid for phonons and photons. In the case of electrons we 

deal with elementary particles having half-integer angular momentum and following the 

Fermi-Dirac statistics. An important consequence is that fermions must obey the Pauli 

exclusion principle. 

The Fermi-Dirac distribution function is  

  f(ε)  =  
�

��εXεY�/��� Z  �                                                                                (5.10) 

where ε is the particle energy and  εF  the Fermi energy or chemical potential. This function is 

shown schematically in Fig. 5.2. At  T = 0  and ε = εF  the function f(ε)  drops abruptly  from 

the value of 1 to zero, whereas at  T > 0  this drop spreads over the energy interval of about 

kBT .   

The Fermi-Dirac distribution of the electrons in a crystal leads to the important result that a 

large portion of the electrons is “frozen in” energetically and cannot participate in many 

physical processes. Only the electrons in the energy range of about kBT near εF remain 

unaffected by this.  This effective reduction of the number of the relevant electrons is 

particularly strong in the case in which kBT << εF . The resulting reduction factor  kBT / εF 

shows up immediately in the electronic component of the specific heat, representing a striking 

demonstration of the role of quantum statistics. Because of this factor, the specific heat of the 

electrons is strongly reduced below the value expected from the classical theory. Furthermore, 

it becomes proportional to the absolute temperature.  

Recalling Eq. (4.8) for the electron energy and Figs. 4.2 and 4.3 for the electronic energy-

band structure, we note that the electron wave vector k represents an important physical 

quantity. At this point it is advantageous to move the discussion into k-space introduced at the 

end of Supplement 2. The energy states are occupied by electrons up to the Fermi energy εF or 

up to the Fermi wave vector kF = 
�
ħ   (2 m εF)

1/2  (see Fig. 5.6). In general, in 3-dimensional k-

space the points at the end of  the Fermi wave vectors kF constitute a (mostly anisotropic) 
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surface referred to as the Fermi surface. An example is shown in Fig. 5.1. The Fermi surface 

represents one of the most important concepts of the physics of electrical conductors. 

Figure  5.7:  The energy spectrum ε(k) of the electrons is 

occupied up to the Fermi energy εF and to the Fermi wave vector kF . (It is assumed that kBT 

<< εF ). 

From Eq. (5.4) for the electric conductivity σ we note that the electric resistivity ρ = 1/σ is 

proportional to the scattering rate [�� , which determines the temperature dependence of ρ . 

Starting our discussion with pure metals, the electrons are scattered predominantly by 

phonons. At temperatures larger than the Debye temperature θ (T >> θ)  all phonon states are 

occupied up to the Debye frequency ωD , and the number of phonons per state is proportional 

to T. The latter can be seen from the distribution (3.2). Hence, in this regime one expects ρ ~ 

T. On the other hand, at temperatures much below the Debye temperature θ (T<<θ) 

the number of the occupied phonon states (contributing to the scattering rate [��) 
increases proportional to T& , as we have seen before in the context of Eq. (3.4). Another 

factor proportional to T0  arises because of the temperature dependent magnitude of the 

scattering angle. Altogether one finds ρ ~ T\ in this regime. This behavior represents the 

famous Bloch-Grüneisen law of the electrical resistance. Its validity is shown in Fig. 5.3.  

Electron scattering by crystal imperfections is another important contribution to the electric 

resistivity. It becomes dominant at very low temperatures where the number of phonons is 

negligibly small. In good approximation the sacttering rates 1/τi  associated with the different 

scattering mechanisms simply add to each other: 

  
�
S  =  ∑ �

S]�                                                                                      (5.11) 

This fact is referred to as Mathiessen’s rule. 
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Finally, we turn to the thermoelectric effects. The Peltier effect is caused by the fact that an 

electric current always transports the heat energy of the moving charge carriers in addition to 

their electric charge (see Fig. 5.4 a). The Peltier coefficient П is defined as follows 

  П ≡ 
^�6� _`aa�b� K�bc?�< de 
�f�_�a?_ _`aa�b� K�bc?�< ge                (5.12) 

At the location of the contact between two conductors A and B the amount of the Peltier heat 

delivered or taken away per cross-sectional area and time is  (Пi E Пj� j� , leading to 

heating or cooling depending on the electric current direction.  

In the case of the Seebeck effect we deal with the thermal diffusion of the charge carriers of 

an electric conductor in a temperature gradient dT/dx  (see Fig. 5.4 b). Thermal diffusion is 

caused by the thermal force  - Str dT/dx  acting on the particles, where Str is the transport 

entropy per particle. As a result, electric charges of opposite sign accumulate at both ends of 

the conductor, and an electric field Ex is generated. Under equilibrium the thermal force is 

balanced  by the electrostatic force  - e Ex  (taking – e for the charges), and we have the force 

equation 

- Str  
K#
K�  =  - e Ex  =  e 

K"
K�                  (5.13) 

where U is the electric potential. We find the Seebeck coefficient (thermoelectric power) 

  S  ≡  
∆"
∆#  =  - 

mno
�                                                                                            (5.14) 

Two conductors A and B soldered together at one end form a thermocouple, which can be 

highly useful as a thermometer. The temperature difference ∆T between its two ends is found 

from the potential difference ∆U according to  ∆U = (SA – SB) ∆T .  

Detailed expressions for the thermoelectric coefficients are obtained from transport theory. 

Here we do not pursue this any further, except to say that in metals the coefficients are 

sensitively affected by the reduction factor kBT/εF , similarly as the electronic specific heat.  

The Peltier coefficient П and the Seebeck coefficient S of a material are connected with each 

other through the Thomson relation 

  П  =  T S                (5.15) 
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Relation (5.15) represents an example of the reciprocity scheme of the transport coefficients 

derived by L. Onsager.  
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6   Less Can Be More: Semiconductors 

Supplement 

As we have discussed in Chapter 4 and have illustrated in Fig. 4.4 , it is the occupancy of the 

states within the energy bands, which determines the type of an electric conductor. If there 

exists  an empty band energetically separated from a lower completely filled band by a 

sufficiently small energy gap, then charge carriers are thermally excited into the empty band, 

where they can transport an electric current. We deal with a semiconductor. In this case the 

thermal energy kBT of the charge carriers represents the key energy. In a semiconductor the 

concentration of the charge carriers and, hence, the electric conductivity is much smaller than 

in a metal.  

Figure 6.11:  Position of valence band and 

conduction band along the energy axis for an undoped (intrinsic) semiconductor.  

In the case of the electrons thermally excited from the valence band into the conduction band 

we have  ε - εF >> kBT , and the Fermi-Dirac distribution (5.10) can be replaced by the 

Boltzmann distribution  

  f (ε)  =  e��ε � εY �/  ��#                   (6.1) 

Using the energy scale indicated in Fig. 6.11 , the electron concentration in the conduction 

band per volume turns out to be 

  n  =  2 (2π me kB T/ h2)3/2 e��εp � εY �/  ��#                 (6.2) 

me is the electron mass. We note that the electrons transferred into the conduction band are 

missing in the valence band, where they represent holes having the distribution fh(ε) = 1 –f(ε). 

The hole concentration in the valence band per volume is 
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  p  =  2 (2π mh kB T/ h2)3/2 e�εY/  ��#                 (6.3) 

where  mh is the hole mass. The product  n p is independent of the Fermi energy εq  : 

                     n p  =  4  (2π  kB T/ h2)3 (me mh)
3/2 e�εp/  ��#                                              (6.4) 

So far, we only consider intrinsic semiconductors. Hence, we have 

  n  =  p =  2 (2π  kB T/ h2)3/2 (me mh)
3/4  e�εp/ 0 ��#                                   (6.5) 

From (6.2) and (6.3) one obtains 

                        me
3/2  e��εp � εY �/  ��#    =  mh

3/2 e�εY/  ��#                                               (6.6) 

leading to  

                        εq  L  εp0   +  
&
1  kBT log(mh/me)              (6.7) 

In the case  mh =  me  we find εq =  εr/ 2 , i. e., the Fermi energy is located in the middle of 

the energy gap.  

Leaving the subject of the intrinsic semiconductors, we turn to the important case of the 

doped semiconductors, i. e., to the presence of donors (n-doping) or acceptors (p-doping). The 

energetic schematics is indicated in Fig. 6.2. It was the doping of semiconductors, which had 

opened the door to the many technical applications characterizing modern electronics. 

The much smaller concentration of charge carriers in semiconductors compared to metals 

leads to important phenomena which are absent in metals. One of the first objects 

systematically studied (mainly by W. Schottky) was the metal-semiconductor contact (see 

Fig. 6.4). In order to establish equilibrium between both sides, electrons flow from the 

semiconductor into the metal (we assume an n-type semiconductor), and a positive space 

charge extending over a finite distance develops in the semiconductor. As a result a potential 

rise appears at the contact, which must be overcome by the electrons during current flow and 

which depends on the voltage V applied to the contact. The contact represents a rectifier, and 

the current I is given by 

  I  =  IS ( e�s/��#  -  1 )       (6.8) 

IS  is the saturation current.  
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The p-n junction shown schematically in Fig. 6.5 is another important semiconductor device. 

It also shows rectifying behavior described again by Eq. (6.8). The p-n junction has found 

important applications in the junction transistor (see Fig. 6.6 b).  

Finally, we mention that in semiconductors the thermoelectric effects are much larger than in 

metals, essentially since the Boltzmann distribution (6.1) is valid and the reduction factor 

kBT/εF  of the Fermi-Dirac distribution is absent. The principle of Peltier cooling and a four-

stage Peltier cascade is shown in Fig. 6.10.  
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7   Circling Electrons in High Magnetic Fields 

Supplement 

The behavior of an electric charge q moving in a magnetic field is dominated by the Lorentz 

force 

  fL  =   q v x B         (7.1) 

acting on the charge q moving with velocity v in the magnetic flux density B . From (7.1) we 

see that fL is oriented perpendicular to both v and B , and that it results in a circular orbit of 

the charge (see Fig. 7.2). In the case of the electric current density (5.3) j = n (-e) ∆vx flowing 

in x-direction through a conductor in the presence of a magnetic field oriented in z-direction, 

the Lorentz force points in y-direction fLy = q  ∆vx x B . Here we have inserted the drift 

velocity ∆vx into (7.1). Due to fLy positive and negative electric charges accumulate at the two 

opposite edges of the conductor, respectively, (see Fig. 7.2 b) generating an electric field Ey in 

y-direction. Under stationary conditions the Lorentz force fLy is balanced by the electrostatic 

force  q Ey , and we have 

  q  ∆vx x B  =   q Ey        (7.2) 

yielding 

  Ey  =  ∆vx x B =  
�

����b  j B  ≡  RH  j B     (7.3) 

Ey  is referred to as the Hall electric field, and we deal with the Hall effect. In (7.3) we have 

taken  q = -e . The coefficient RH = 
�

����b  is the Hall constant  (expected to be negative in the 

case of q = -e ). We see that the Hall constant provides information on the concentration of 

the moving charge carriers. We note that the sign of the Hall electric field indicates the sign of 

the moving electric charges. During the early days a positive sign of the Hall constant had 

been observed sometimes, which represented a mystery (“anomalous Hall effect”) until the 

concept of holes in the electronic band structure was established.  

As indicated schematically in Fig. 7.2 c , the Lorentz force also results in an increase of the 

electric resistivity in the presence of a magnetic field. At not too high magnetic fields this 

resistivity increment varies proportional to B2 . 
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The quantum mechanical treatment of the electrons in the conduction band of a metal in the 

presence of a strong magnetic field, first given by L. D. Landau, takes into account that the 

Lorentz force (7.1) affects the energy spectrum of the electrons in an important way. Whereas 

in the absence of a magnetic field (B = 0) the energy spectrum is 

  ε  =  
ħ ,
09U ( kx

2  +  ky
2  +  kz

2 )  ;     B = 0             (7.4) 

in a magnetic field B = Bz ≠ 0  assumed in z-direction the energy spectrum is changed to 

  ε  =  ħωc ( ℓ + 
�
0 )  +  

ħ ,
03t kz

2  ;     B = Bz ≠ 0             (7.5) 

Here, ℓ  is an integer, mc is the cyclotron mass of the electrons, and 

  ωc  =  
� j
3t                                                                                                    (7.6) 

is the angular cyclotron frequency. In the presence of the magnetic field Bz the wave vectors 

kx and ky become irrelevant, and the corresponding states combine to a new state showing 

orbital motion. The states evenly filled in k-space in the absence of a magnetic field are now 

redistributed filling what are called Landau cylinders. An example is shown in Fig. 7.3. As we 

see from (7.5), the Landau cylinders are separated energetically from each other by the energy 

ħωc , which increases proportional to B. At the magnetic field B = 1 T a typical value is ħωc ≈ 

10�1 eV.  

The energy spectrum of the Landau cylinders is clearly displayed only if the orbital motion of 

the electrons remains unperturbed by collisions with phonons or impurities. So low 

temperatures and highly pure crystals are required for its experimental observation, and the 

condition 

  ωc  τ  >  1                (7.7) 

must be satisfied, where τ  is the scattering time. Furthermore, the thermal energy kBT must 

be sufficiently small: 

  kBT  <  ħ ωc                (7.8) 

Noting that the energy ħ ωc  separating two neighboring Landau cylinders increases 

proportional to B, we see that with increasing magnetic field the number of Landau cylinders 

available for occupation up to the Fermi energy becomes smaller and smaller. As the 
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magnetic field is increased monotonically the redistribution of the electrons onto the Landau 

cylinders leads to a periodic oscillation of the total energy of the electrons, their energy 

passing through a minimum when  εF  = ħωc ℓ  and through a maximum when                        

εF = ħωc ( ℓ + 
�
0) . As a result, other electronic properties such as, for example, the 

diamagnetism also oscillate as a function of the magnetic field.  

The oscillation of the diamagnetism is referred to as the de Haas - van Alphen effect. It turns 

out that only the extremal cross sections of the Fermi surface taken perpedicular to the 

direction of B contribute to this effect. The contributions of all other parts of the Fermi 

surface drop out by cancelling each other.  

The circular motion of the electrons in a magnetic field leads to another type of quantum 

effect in two-dimensional systems. In this case the Landau cylinders are reduced to Landau 

circles. Now we must look in more detail at the density of states w(k) in k-space. It is 

obtained by using periodic boundary conditions. Taking a crystal with the extension L along, 

say, the x-axis, the boundary condition requires that the wave e?�� has the same values at x = 

0 and x = L . Hence, we must have e?�w = 1 or  kL = n 2π, wher n is an integer. The distance 

∆k between two consecutive k-values is  ∆k = 2π/L , and we find 

  w1(k)  =  
�
∆�    =  

w
0π                                                                                  (7.9) 

Extending this to two dimensions, we obtain the density of states per unit area in k-space 

(excluding the electron spin)  

  w2(k)  =  $ w0π%
0
                                                                                            (7.10)   

In the two-dimensional case the density of states per energy interval, D2(ε) , is  

  D2(ε)  =  w2(k)  2πk 
K�
Kε  =  $ w0π%

0  2πk 3ћ, �                                             (7.11) 

and D2(ε)  per unit area 

  D2(ε) / L2  =  m / 2πћ2                (7.12) 
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The latter quantity is independent of the energy. Taking the energy interval ħ ωc between two 

Landau levels (from (7.5) with kz = 0), the number of states per unit area and per Landau level 

is 

  N  =  [ D2(ε) / L2 ] ħ ωc  =  
� j
^                                                          (7.13) 

For the Landau quantum structure to be clearly observed, the conditions (7.7) and (7.8) must 

be satisfied. This case is shown schematically in Fig. 7.6.  

Figure 7.6:   Density of states per 

unit area, D2(ε) / L2 , plotted versus the normalized energy   ε / ħ ωc  . 

Turning now to the Hall effect (7.3), we find 

  Ey  =  
�

���� b,  j2 B                                                                                       (7.14) 

where  j2 = I/w ,  with w being the width of the two-dimensional conductor. n2 is the number 

of electrons per unit area. If the Fermi energy is located between two Landau levels, all 

Landau levels below (above) εF are occupied (unoccupied). In this case n2  in (7.14) is given 

exactly by 

  n2  =  z N  =  z 
� j
^                                                                          (7.15) 

where z is an integer. The Hall resistance Rxy  is 

  Rxy  =  
yz
g,   =  

�
) 
^
�,                                                                                   (7.16)  

Rxy depends only on the fundamental constants h and e , and we deal with the quantum Hall 

effect discovered by K. von Klitzing (see Figs. 7.1 and 7.4). For his experiment von Klitzing 

used the two-dimensional electron gas prepared at the surface of a metal-oxide-semiconductor 

field-effect transistor made from silicon.  
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The preparation of a two-dimensional electron gas for experiments in high magnetic fields 

continued to experience strong advances. Samples prepared at the interface between GaAs 

and AlxGa1-xAs became prominent, because in this material the fractional quantum Hall effect 

was discovered (see Fig. 7.5). A detailed theoretical discussion of this development is beyond 

the scope of our supplementary treatment.    
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8   The Winner: Superconductors 

Supplement 

The discovery of the Meissner effect in 1933 represented a turning point in the field of 

superconductivity, since it identified superconductivity as the result of a phase transition and 

it allowed to calculate the energy difference between the normal and the superconducting 

state. By carefully measuring the magnetic field near the exterior of a superconductor, 

Meissner had found that in the superconducting state an external magnetic field is expelled 

from a superconductor and that in its interior the magnetic field is zero (see Fig. 8.5).  

Because of the Meissner effect, the superconducting state is established independent of the 

path along which this state is reached. In Fig. 8.13 we have marked with point c the 

superconducting state (below the critical temperature TC and the critical magnetic field HC ). 

If we assume only infinite electric conductivity without the Meissner effect, along the path  

a→b→c  the state with B = 0 will be established. On the other hand, along the path a→d→c  

the state with B ≠ 0 of point d will be reached. It is only because of the Meissner effect, that 

the state with B = 0 is always established independent of the previous path. (Here we have 

assumed perfect reversibility of the superconductor  and have neglected flux trapping due to 

pinning). This demonstrates that superconductors are more than just mere perfect conductors 

(infinite conductivity); the Meissner effect defines in a unique way the property of the 

superconducting state. 

Figure  8.13:   Path-independence of the superconducting 

state. Due to the Meissner effect, along the path a→d→c  as well as along a→b→c  the final 

state at point c  with B = 0 is established. 

The thermodynamic treatment of the superconducting phase transition, following the 

discovery of the Meissner effect and first carried out by Gorter and Casimir in 1934, deals 

with the Gibbs free energy density in the normal (Gn) and in the superconducting (Gs) state. 

At the magnetic field H we have 
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  Gs(T,H)  =  Gs(T,0)  -  � M�H�  dH}
!               (8.1) 

M(H) is the magnetization. In the case of the Meissner effect (perfect diamagnetism) it is 

  M(H)  =  - 
�
1π  H        (8.2)   

The last term in (8.1) represents the work associated with the magnetic field expulsion. We 

obtain 

  Gs(T,H)  =  Gs(T,0)  +  
�
~π  H

2      (8.3) 

Under equilibrium at  H  =  HC(T) we have  Gn(T,HC)  =  Gs(T,HC)  and on the other hand 

Gn(T,HC)  =  Gn(T,0) . So in the case of  H = HC  we find 

  Gn(T,0)  -  Gs(T,0)  =  
�
~π  HC

2(T)      (8.4) 

for the difference in energy density between the normal and the superconducting state. 

The magnetic flux expulsion due to the Meissner effect is caused by a superconducting 

shielding current flowing at the surface of the superconductor. The magnetic field generated 

by this current exactly compensates the external magnetic field. This shielding surface current 

extends over a certain layer thickness at the surface, since its density must remain finite. 

Hence, the magnetic field reaches zero in the superconductor only at a certain depth λm 

referred to as the magnetic penetration depth. The density of the shielding current, js , is 

approximately given by 

  js  =  HC / λm          (8.5) 

A phenomenological theory of the finite magnetic penetration depth λm was presented in 1935 

by the brothers F. and H. London. For an outline of their theory we start with the force 

equation for an electron 

  m 
∂��
∂ �   =  (-e) E                                                                                              (8.6) 

without including a dissipative term. With the density of the superconducting current 

  j s  =  (-e) ns vs          (8.7) 



30 

 

 

we obtain 

  E  =  [m / (e2 ns)] 
∂��
∂ �  =  µo λm

2 
∂��
∂ �        (8.8) 

where  λm (called also London penetration depth, and often denoted by λL) has been 

introduced in Eq. (8.5). λm can be expressed as 

  λm
2  =  m / (µo ns e

2)        (8.9) 

The quantities ns and vs  are the density and the velocity of the superconducting electrons, 

respectively. µo is the magnetic permeability of free space. With the Maxwell equation 

  curl E  =  -  
∂ �
∂ �                                                                                (8.10)  

we find from (8.8) 

  µo λm
2  curl (

∂��
∂ � )  +   

∂ �
∂ �    =  0                     (8.11)   

It was the central idea of F. and H. London to extend (8.11) by removing the time derivative 

and thereby postulating the new equation 

   µo λm
2  curl j s  +  B  =  0              (8.12) 

With the Maxwell equation 

  curl H  =  j                  (8.13) 

we then obtain 

  ∆ H  =  
�
λ�,
  �                                                                                             (8.14) 

yielding the solution 

  H(x)  =  H(0) exp (-x / λm)               (8.15) 

Here we consider the geometry of a superconductor filling the half-space with x > 0 and 

letting the coordinate x run (to the left) from the surface (at x = 0) into the interior of the 

superconductor. (H is assumed perpendicular to the x-direction).  



31 

 

 

Equations (8.8) and (8.12) are referred to as the first and the second London equation, 

respectively. In addition to the Maxwell equations they apply to superconductors and 

distinguish these substances from other materials. Equation (8.15) indicates that the magnetic 

field is exponentially screened from the interior of a superconductor, the screening taking 

place within a surface layer of thickness λm . As T → TC we have ns → 0 and, hence, λm → ∞.  

In addition to the magnetic penetration depth, there exists a second important length in a 

superconductor, the coherence length ξ . This length represents the minimal spatial distance 

over which the superconducting property can change (spatial rigidity). The two lengths λm 

and ξ play an important role at the interface between a normal and a superconducting region 

(see Fig. 8.14).  

Figure  8.14:  Variation of the density of the 

superconducting electrons, ns , and of the magnetic field H with the distance from the 

interface between a normal (N) and a superconducting (S) region. 

Because of the finite extension of the coherence length ξ , a superconducting region cannot 

exist right up to the border separating it from a normal region. Instead, it loses its 

superconducting property and, hence, the superconducting condensation energy, already at the 

distance ξ from the border. This results in the positive interface energy α´ = (HC
2 / 8π) ξ . 

However, the amount (HC
2 / 8π) λm  must be subtracted from this value, since within the 

magnetic penetration depth λm  no gain and, hence, no loss in condensation energy appears. 

So for the wall energy α associated with an interface between a normal and a superconducting 

region one obtains 

  α  =  (HC
2 / 8π) (ξ - λm)                (8.16) 

Initially, one had thought that ξ would always be larger than λm , and that α would always be 

positive. However, around 1953 Abrikosov and Zavaritzkii for the first time discussed the 
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possibility that  ξ < λm  and that α can become negative. They reasoned that if  ξ  and  λm  are 

material properties, the case of  ξ  being smaller than  λm  is a distinct possibility. Such 

considerations  then lead to the important distinction between type-I (with ξ > λm ) and type-II 

(with ξ < λm ) superconductors.  

In his subsequent theoretical analysis of type-II superconductivity Abrikosov made the 

important discovery of the Abrikosov flux-line lattice and of the superconducting mixed state 

(see Fig. 8.7). In the mixed state magnetic flux lines each carrying a single magnetic flux 

quantum penetrate into the superconductor, and the Meissner effect no longer exists. The 

mixed state appears above the lower critical magnetic field HC1 , and it exists up to the upper 

critical magnetic field HC2 .  

Abrikosov had found the flux-line lattice as a solution of the equations of the Ginzburg-

Landau theory of superconductivity. This theory describes the superconducting state in terms 

of a macroscopic quantum mechanical wave function. Quantization of the magnetic flux 

contained in the flux lines in units  h/2e  =  2.068 . 10� �\  V s  then results from the quantum 

condition that the wave function must reproduce itself exactly after one turn around the flux 

line. The magnetic flux lines are generated by superconducting currents circulating around 

their center. The radial dependence of the local magnetic field h, the density ns of the 

superconducting electrons, and the superconducting current density js for an isolated flux line 

is shown schematically in Fig. 8.15. 

Figure  8.15:  Structure of an isolated flux line. Local 

magnetic field h, density of the superconducting electrons ns , and the circulating 

superconducting current density js versus the distance r from the axis of the flux line. 
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  A direct experimental demonstration of the quantization of magnetic flux and of the 

magnetic flux quantum  h/2e  as the smallest unit of magnetic flux in a superconductor has 

been given in 1961 and is indicated in Fig. 8.8. A detailed explanation of the step structure 

shown in Fig. 8.8b is illustrated in Fig. 8.16. Here, in part (a) the superconducting shielding 

current Is is plotted versus the magnetic flux density Be applied parallel to the axis of the small 

superconducting cylinder. The magnetic flux passing through the cross section of the cylinder 

πR2Be  ( R = cylinder radius) is given in units of the magnetic flux quantum ϕo = h/2e . (The 

vector φo  is oriented along the direction of the flux density B ).  Initially, the shielding current 

Is prevents the entry of magnetic flux into the cylinder bore (Meissner effect). When the 

magnetic field has reached the value  Be = ϕo/(2πR2) ,  the shielding current Is compensates 

exactly half a flux quantum ϕo/2 within the cylinder (point (1)). When Be is increased further, 

the shielding current Is reverses its sign (instead of continueing to grow), such that exactly one 

flux quantum ϕo exists in the cylinder (half of which is generated by Is ; point (2)). During the 

further increase of Be , Isdecreases again until at Be = ϕo/(πR2)  the state with Is = 0 is 

reached (point (3)). Upon the further increase of Be this process repeats itself. In this way the 

steps in the number n of the magnetic flux quanta within the cylinder are generated (see Fig. 

8.8b and Fig. 8.16b). The superposition of the applied magnetic field (solid arrows) and the 

magnetic field generated by Is (dashed arrows) is shown schematically in Fig. 8.16c at the 

three points (1) – (3) indicated in Fig. 8.16a. Due to the entry of magnetic flux quanta ϕo into 

the cylinder the shielding current Is and the kinetic energy associated with it remains limited. 

Figure  8.16:  Experimental 

demonstration of the magnetic flux quantization based on the flux penetration into a small 

superconducting cylinder. Part (a) shows the superconducting shielding current Is versus the 

magnetic flux density Be applied parallel to the cylinder axis. Part (b) indicates the number n 

of the magnetic flux quanta within the cylinder versus Be . Part (c) illustrates the superposition 
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of the applied magnetic field (solid arrows) and the magnetic field generated by Is (dashed 

arrows) at the three points (1) – (3). Further details are given in the text. 

 In 1962 Josephson made his famous prediction that two weakly coupled superconductors (a 

“weak link” constituting what is now called a “Josephson junction”) shows important effects 

described by the two Josephson equations 

  Is  =  IC  sin χ                (8.17) 

  
∂χ

∂�  =  
0�
ћ   V                (8.18) 

Equations (8.17) and (8.18) are based on the concept, that superconductivity is a 

manifestation of a macroscopic quantum phenomenon that can be described in terms of an 

order parameter or a  wave function 

  ψ  =  ψe?ϕ               (8.19) 

characterized by an amplitude ψ(r , t) and a phase ϕ(r , t). The current-phase relation (8.17) 

indicates that the superconducting current Is flowing across a weak link is related to the phase 

difference   χ =       ϕ2 - ϕ1 between the two sides of the junction. IC is the critical current of 

the particular junction geometry. The voltage-frequency relation (8.18) contains the important 

fact that a nonzero voltage V across the junction is always accompanied by a high-frequency 

oscillatory superconducting current flow across the junction. The Josephson equations (8.17) 

and (8.18) can be derived in different ways. One derivation due to Feynman starts from the 

time-dependent Schrödinger equation for the two wave functions ψ1 and ψ2 for the two 

separated superconductors, respectively, and introducing an additional coupling between both 

superconductors.  

At the time the predictions by Josephson were highly surprising and met with severe criticism. 

In the meantime the “Josephson electronics” has developed into an important subject in 

physics and electrical engineering. The first experimental demonstration of the 

superconducting property of a weak contact between two superconductors was reported by 

Meissner and Holm in 1932. However, at the time it gained only little attention (except 

perhaps as an argument against Einstein’s model of superconductivity based erroneously on 

“closed molecular chains” of the electrons).  
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In 1958 the BCS theory (named after Bardeen, Cooper, and Schrieffer) presented the first 

microscopic theory of superconductivity. Its main feature is the postulate of an attractive 

interaction between two conduction electrons of opposite momentum and spin resulting in the 

formation of electron pairs, so called Cooper pairs. The attraction between the two electrons is 

mediated by the vibrations of the atoms of the crystal lattice. An early clue that phonons 

would play an important role in superconductivity had been provided in 1950 by the 

discovery of the isotope effect in many superconducting elements. This effect says that the 

critical temperature TC depends on the isotopic mass M of the lattice atoms following the 

relation 

  TC  ∼  1 / M�            (8.20) 

with the exponent α ≈  0.5 . Because of the total spin of an individual Cooper pair being zero, 

the Pauli principle does not apply, and all the Cooper pairs can occopy the same quantum 

state.  

Another important prediction of the BCS theory is the existence of a gap in the energy 

spectrum of the electrons at the Fermi energy. An impressive demonstration of this energy 

gap has been given by Giaever in 1960 in his famous tunneling experiment (see Fig. 8.9).  

The existence of magnetic flux lines each carrying a flux quantum ϕo = h/2e in a type-II 

superconductor has important consequences for the resistive losses in these materials. In the 

presence of an applied electric current of density j  each flux quantum experiences the Lorentz 

force fL = j  x ϕϕϕϕo . The resulting flux motion leads to dissipative losses and the generation of 

the flux-flow induced electric field 

  E  =  - vϕ x B                  (8.21) 

Here,   vϕ  is the velocity of the flux-line motion. This flux-flow process obeys the force 

equation 

  j x ϕϕϕϕo  -  η vϕ  =  0       (8.22) 

where  η vϕ   is the dissipative term and η is a damping coefficient. In (8.22) the forces are 

given per unit length of flux line. From (8.21) and (8.22) one obtains the flux-flow resistivity 

as 

  ρf  =  ϕo B / η      (8.23) 
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In the preceding discussion we have simplified the situation by ignoring the effects caused by 

flux pinning and by neglecting a force component leading to the flux-flow Hall effect.  

 

 

           

 

 

9   The Big Surprise: High-temperature Superconductivity 

Supplement 

In the case of the cuprate (i.e. containing copper oxide) superconductors the formation of 

Cooper pairs has clearly been established again as the fundamental principle of the 

superconducting state. However, the microscopic pairing mechanism remains still undecided 

to date. In these materials the coherence length ξ is much shorter than in the classical 

superconductors. This small value of ξ , of the order of the dimension of the crystallographic 

unit cell, results in a high sensitivity of these materials to  atomic defects and grain boundaries 

acting as effective centers of flux pinning (see Figs. 9.4 and 9.5).  

The spatial symmetry of the wave function of the high-temperature superconductors 

describing the superconducting ground state of the Cooper pairs represents an important issue. 

It is well established that in the cuprates the wave function strongly varies with the spatial 

direction, and that it is dominated by the atomic d-orbital. This is generally expressed by 

plotting the wave function in the two-dimensional k-space associated with the CuO2  planes. 

Such a polar plot is shown in Fig. 9.7 indicating the four leaves of the d-orbital alternately 

having positive and negative sign and displaying the nodes and antinodes as a function of the 

polar angle. The nodes and antinodes are fixed along the crystallographic directions as shown 

in Fig. 9.7 in the case of  d�,�<, symmetry. For comparison, we also show the (isotropic) 

wave function with s-wave symmetry, encountered usually in the classical superconductors. A 

schematic of the CuO2 planes for identifying the directions of the nodes and antinodes, 

respectively, is presented in Fig. 9.8 for the case of a square CuO2 lattice.  
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Fig. 9.7:  k-space representation (kx-ky 

cross-section) of the superconducting wave function with s-wave symmetry (left) and d�,�<, 
symmetry (right). The latter symmetry dominates in the CuO2 planes of the high-temperature 

superconductors. 

The positive and negative sign of the  d�,�<, wave function appearing at different polar 

angles, respectively, can have important consequences, if two crystals with different 

orientation are joined together with a well-defined grain boundary (bicrystal technique, see 

Fig. 9.5). The case where a positive lobe of the wave function encounters a negative lobe on 

the other side of the junction is referred to as a π-junction. A closed loop containing such a π- 

junction presents a challenge to the uniqueness of the wave function (frustration), since a sign 

change of the wave function remains after a complete rotation. In this case a half-integer 

magnetic flux quantum is spontaneously generated in this loop by a circular superconducting 

current (tricrystal experiment, see Fig. 9.6). 

Fig. 9.8:  A schematic of a square CuO2 

lattice. The unit cell is emphasized by heavy lines. The lattice constant a is indicated. 

After MgB2 superconducting material had been found in 2001, it became clear that the 

discovery of unexpected new superconducting materials is far from over. The most recent 

event was the report in January of 2008 from the group of Hideo Hosono in Japan, showing 
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the existence of superconductivity in a layered iron arsenide material with a transition 

temperature of 26 K. Subsequently, the study of this new class of high-temperature 

superconductors, referred to as iron pnictides, has been taken up worldwide  with great 

intensity. In the meantime a transition temperature above 50 K has been observed. The 

information about this family of materials is accrueing fast and, to quote a recent report, “the 

situation changes daily”.  

 

 

 

 

            

          

10   Magnetism: OrderAmong the Elementary Magnets 

Supplement 

In Chapter 7 we have discussed the oscillations of the diamagnetism due to the de Haas - van 

Alphen effect and the existence of the Landau cylinders in the energy spectrum of the 

electrons. Generally speaking, the diamagnetism results from the change of the orbital motion 

of the electrons in an external magnetic field. In this way it deals only with magnetic moments 

induced by the magnetic flux density B. 

The magnetism of a material is quantified in terms of its magnetization M , defined as the 

magnetic moment per unit volume. M is given by the relation 

  M  =  χ B                (10.1) 

where χ is called the magnetic susceptibility. In the case of diamagnetism we have χ < 0. In a 

magnetic field the electron orbits experience a precession motion at the Larmor frequency 

  ωL  =  e B / 2m               (10.2) 

where m is the electron mass. As shown by Langevin, the Larmor precession motion of the 

electrons results in a negative magnetic susceptibility 
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              -χ   ∼  < r2 >                (10.3) 

where  < r2 >  is the average square of the radial extension of the electron distribution within 

the atom.  

The magnetic moment of the electron spin results in paramagnetism. From the potential 

energy 

  U  =  - µµµµ . B =  - µ B cos θ            (10.4) 

of a magnetic moment µµµµ in the magnetic field B Langevin calculated the average <cos θ> 

from the classical Boltzmann distribution in the following way. (θ is the angle between the 

vectors µµµµ and B).  According to Boltzmann, the statistical probability of the orientation of the 

magnetic moment µµµµ of the energy U is proportional to exp(-U/kBT). Hence, one obtains (with 

the element dΩ of the solid angle) 

  <cos θ>  =  
������ �

���� _�c θ  KΩ
���� �� �

 ����  KΩ
              (10.5) 

      =  
� ����µ j _�c θ/��#� 0π c?b θ _�c θ  Kθπ

�
� ��� �µ j _�c θ/��#� 0π c?b θ Kθπ

�
                             (10.6) 

and after a few steps 

  <cos θ>  =  coth x  -  
�
�  ≡  L(x) ;     x  =  µ B / kB T              (10.7) 

L(x) is referred to as the Langevin function. The average magnetization <M> is 

  <M>  =  N µ <cos θ>  =  N µ  L(x)           (10.8) 

where N is the number of elementary magnetic moments µ per unit volume. A plot of L(x) is 

shown in Fig. 10.6. 
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Fig. 10.6:  Langevin function L(x) defined in 

(10.7). 

 In the case  x << 1 (high temperatures) we have  L(x) ≈  x / 3 , and we obtain 

  <M>  =  N µ2 B / 3 kBT  =  
r
#  B          (10.9) 

This is Curie’s law, and  C = N µ2 / 3 kB  is referred to as Curie’s constant. On the other hand, 

in the case  x >> 1 (low temperatures) the magnetization saturates. We note that 

paramagnetism deals with the reorientation of existing magnetic moments in an external 

magnetic field.  

Whereas the result of Eq. (10.8) was obtained based on the concepts of classical physics, 

within the framework of quantum theory the quantization of the direction of the elementary 

spin must be taken into account. According to quantum theory, the magnetic moment of an 

isolated atom is 

  µµµµ  =  - g µB J / ħ           (10.10) 

Here  

  µB  =  e ħ / 2 m          (10.11) 

is the Bohr magneton. J is the total angular momentum given by the vector sum of the orbital 

(L ) and the spin (S) angular momentum: 

  J  =  L  +  S          (10.12) 

The factor g is the Landé g-factor 

  g  =  1  +  
���Z��Z m�mZ��� w�wZ��

0 � ��Z��           (10.13) 
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In a magnetic field the quantized energy levels of an elementary magnetic moment are 

  U  =  mJ g µB B  ;   mJ  =  J, J – 1, J – 2,  …  , - J     (10.14) 

For a single spin and  L = 0  we have mJ  =  ± ½  and  g = 2 : 

  U  =  ± µB B          (10.15) 

In thermal equilibrium the magnetization of this two-level system is 

  <M>  =  N µB tanh x ;  x  = µB B / kB T      (10.16) 

In the limit x << 1 (high temperatures) we obtain 

  <M>  =  N µB
2 B / kB T        (10.17) 

which is similar to Curie’s law. 

In the general case, with  2J + 1  energy levels according to (10.14), in thermal equilibrium 

the magnetization is 

  <M>  =  N µB BJ(x) ;       x = µB B / kB T      (10.18) 

The function BJ(x) is referred to as the Brillouin function (not shown here). In the limit      x 

<< 1 (high temperatures) the form of the Curie law  <M> ∼ B/T  is obtained again. 

The paramagnetism of the conduction electrons in metals represents a special case. Because 

of the validity of Fermi statistics only the fraction  kBT/εF of the conduction electrons 

contribute to paramagnetism. Multiplying (10.17) with this factor, we obtain 

  <M> = N µB
2 B / εF        (10.19) 

and the proportionality to T�� has disappeared. This result is somewhat similar to the case of 

the specific heat of the conduction electrons we have discussed in Chapter 5 and its 

Supplement.  

In the case of diamagnetism and paramagnetism we were dealing with the response of a 

system of magnetic moments to an external magnetic field. Next we turn to another magnetic 

phenomenon, namely the spontaneous order among magnetic moments in the absence of an 

external magnetic field: ferromagnetism. 



42 

 

 

The complete theory of ferromagnetism had to await the advent of quantum mechanics. 

However, a phenomenological theory was developed already in 1907 by Pierre Weiss. He 

postulated the existence of an effective magnetic field within the crystal (“Weiss field”) 

reaching high values up to 103 Tesla. It is this effective magnetic field which then causes the 

spatial ordering of the individual atomic or molecular magnetic moments.  

For the Weiss field BW  we assume BW  =  λ M , where λ is a constant independent of the 

temperature. In a cooperative way each individual magnetic moment experiences the average 

magnetization of all the others (“mean-field approximation”). The ferromagnetic order 

persists up to the Curie temperature TCU , above which the ferromagnetic order disappears and 

the crystal becomes paramagnetic. Looking at the paramagnetic state (above TCU) in the 

presence of an external magnetic field Ba , we have  

  M = χp (Ba + BW) = χp (Ba + λM)             (10.20) 

with the paramagnetic susceptibility χp = C / T . From (10.20) we obtain  

  M (1 - 
r
# λ)  =  

r
#  Ba              (10.21) 

and 

  χ = M / Ba = C / (T – TCU)  ;  TCU  ≡  C λ ;  (T → TCU  from above)       (10.22)  

This is the Curie-Weiss law with χ� � being linear in T. A more accurate treatment yields  

  χ = C / (T – TCU)1.33   ;   (T → TCU  from above)                 (10.23) 

in agreement with experiment.  

It was W. Heisenberg, who in 1928 presented the first quantum mechanical theory of 

ferromagnetism. He introduced the concept of the exchange interaction between two atoms 1 , 

2  having the spin S1 , S2 , resulting in the exchange energy (Heisenberg model) 

  U =  - 2 J S1 
. S2             (10.24) 

with the exchange integral 

  J = �d ��  d �0  ψ6B���� ψ�B � ��� V��� E ��� ψ����� ψ�����                  (10.25) 
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In the case of ferromagnetism we have J > 0 , and the parallel spin orientation is energetically 

favored. The exact theoretical calculation of the exchange integral J requires a detailed 

treatment.  

For obtaining the temperature dependence of the magnetization M we use the “mean field 

approximation” BW = λ M . For a two-level system (S = ½) we find from (10.16) 

  M = N µB tanh (µB λ M / kBT)        (10.26) 

Introducing the quantities  m ≡ M / (N µB) and  t ≡ T / TCU = kBT / (N µB
2 λ) we obtain 

  m = tanh (m / t)          (10.27) 

(Here we have noted  TCU = C λ , with  C = N µB
2/kB  according to (10.17)). The 

transcendental equation (10.27) can be solved graphically as indicated schematically in Fig. 

10.7 . In this way the temperature dependence of the magnetization shown in Fig. 10.8 is 

found. It corresponds to that of a second-order phase transition, where the magnetization plays 

the role of the order parameter. 

Usually, the saturation value of the magnetization at  T → 0  is strongly reduced due to the 

appearance of individual ferromagnetic domains with different orientation, as shown 

schematically in Fig. 10.2. 

 

Fig. 10.7:  Schematics of the graphical solution of 

the transcendental equation (10.27). At the critical point t = 1 the intersection is located at m = 

0. In the case t → 0 the intersection moves toward  m = 1 .  
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Fig. 10.8:  Normalized magnetization 

(saturation value) plotted versus T / TCU . 

Deviations from the ferromagnetic ground state in the limit of zero temperature, where all 

spins are oriented exactly parallel to each other, are due to the thermal excitation of spin 

waves (see Fig. 10.1). Looking at a linear chain of N spins, all oriented parallel to each other, 

according to (10.24) the total energy is 

  U = - 2 J ∑ ������  ��Z�        (10.28) 

yielding the energy of the ground state 

  UO =  - 2 N J S2         (10.29) 

 As a possible excitation we consider the case where a single spin becomes oriented 

antiparallel to its neighbors (Fig. 10. 1 b). The energy increase ∆U is 

  ∆U =  2 J (2S2 + 2S2)  =  8 J S2       (10.30)       

(where in the bracket we have indicated the interaction with the left and right neighbor 

seperately). Only a much smaller excitation energy is needed, if the change of the spin 

orientation occurs gradually, and this is realized in terms of the spin waves (Fig. 10.1 c). Spin 

waves represent oscillations of the spin orientation, the oscillations possessing the quantized 

energy  ħ ω . These quantized energies are referred to as magnons. In the case of 

ferromagnetic magnons the dispersion relation is obtained from the equation for the temporal 

change of the angular momenta of the spins. In the limit of small excitation amplitudes one 

finds the dispersion relation 

   ħ ω = 4 J S (1 – cos ka)          (10.31)    

where  a  is the lattice constant of the chain and k the wave number. In the limit of long 

wavelengths (ka << 1) Eq. (10.31) yields 
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  ħ ω = 2 J S a2 k2           (10.32) 

We note  ω ∼ k2 , in contrast to the case of phonons, where ω ∼ K (see (3.7) and (3.8)).  

The extension of these results to a three-dimensional lattice is straightforward.  

The thermal excitation of magnons follows the Bose-Einstein distribution law (3.2). The 

energy of the magnons is 

  U = �dω D�ω� � nω �  ħ ω                                     (10.33)  

(analogous to (3.3)), where the integral extends over the 1. Brilouin zone. In the limit of low 

temperatures (ka << 1) one finds  D(ω) ∼ ω1/2  and  U ∼ T5/2 . For the magnon specific heat 

this yields 

  CV  =  ( 
∂ "
∂ # �V   ∼ T&/0                                                                         (10.34) 

The thermal excitation of magnons reduces the magnetization by the amount                       

∆M = M(0) – M(T). One finds (F. Bloch 1931) 

  ∆M / M(0) ∼ T&/0                                                                               (10.35)     

In addition to the parallel spin orientation of the ferromagnetic order, there exists 

antiferromagnetism with antiparallel spin orientation between the neighbors. In this case the 

exchange integral (10.25) is negative. There exist also antiferromagnetic spin waves, having 

the dispersion relation 

  ħ ω = 4 | J |  S  | sin ka |       (10.36) 

similar to the case of phonons (see (3.7)). In the limit ka << 1 this yields 

  ħ ω = 4 | J |  S  | ka |        (10.37)    

The contributions of the antiferromagnetic magnons to the specific heat and to the heat 

conductivity varies proportional to T3 in the limit of low temperatures.  

In the technical applications of ferromagnetic materials the magnetic “hardness” represents an 

important quality, and one distinguishes between magnetically soft and hard materials. The 

magnetic hardness is quantified in terms of the “coercive force”. The latter represents the 

magnitude HC of the magnetic field, at which the unmagnetized state of the material is 

reestablished again, if this magnetic field is applied a second time in a direction opposite to 

that of the original magnetization. This situation is shown schematically in Fig. 10.9 , where 
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the magnetic flux density B is plotted versus the applied magnetic field H in the case of a 

magnetically soft and hard material. A soft material displays a small value of HC and weak 

hysteresis, whereas a hard material shows a large value of HC and strong hysteresis.  

Fig. 10.9:  Magnetic flux 

density B versus the applied magnetic field H in the case of a magnetically soft (left side) and 

magnetically hard (right side) material. 

   

 

 

11   Nanostructures: Superlattices, Quantum Wires, and Quantum Dots 

Supplement 

As we have discussed in Chapter 2 and its Supplement, in a crystal lattice the elementary cell 

repeats itself in all three spatial directions, generating a three-dimensional periodic structure. 

This principle has been extended in the case of superlattices, where the composition of a 

material is periodically modulated along one spatial direction (see Fig. 11.2). Such multi-

layered structures are fabricated using modern thin-film technology.  

In the Supplement of Chapter 2 we have introduced the concept of the reciprocal lattice in 

wave-vector space (k-space) and its partition into Brillouin zones (Fig. 2.11). In Chapter 4 

and its Supplement we have seen that Bragg reflection (Fig. 4.6) occurs, if the wave vector k 
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of the electrons reaches the boundary of a Brillouin zone, resulting in the forbidden gaps in 

the energy spectrum of the electrons (Fig. 4.2 and 4.3).  

In the example shown in Fig. 2.11 Bragg reflection occurs at the values kx = π/a and ky = π/b 

of the wave vector k , where  a  and  b  are the lattice constants in x- and y-direction, 

respectively. In a superlattice, along the direction of its modulation, the (super)-lattice 

constant is much larger than the lattice constant of the underlying crystal lattice. Hence, Bragg 

reflection is expected at a correspondingly much smaller value of the electron wave vector 

than the electron wave vector in crystal lattices, leading to relatively narrow energy bands 

(“minibands”). It was the existence of these minibands and the new expected electrical 

properties of the superlattices, which had motivated the research in this field. 

Fig. 11.9:  Energy spectrum ε(k) in the 1. 

Brillouin zone extending between k = π/a and k = - π/a . 

We consider a one-dimensional periodic chain of atoms with the lattice constant  a . The 

energy spectrum between the boundaries of the 1. Brillouin zone, π/a  and  -π/a , is shown in 

Fig. 11.9. Starting from the force equation (5.1), we write 

  |∆�
∆� | = e E / ħ             (11.1) 

In the absence of any scattering process, the electron (or hole) gains momentum and energy in 

the electric field until the value k = π/a  is reached. Then the electron is transferred from k = 

π/a  to k = -π/a  by means of Bragg reflection. At this point the wave vector increases again 

due to the force equation (5.1), and this process repeats itself resulting in periodic oscillations 

of the electron (so called Bloch oscillations). Denoting the time  ∆t ≡ τB  it takes to increase 

the wave vector by the amount ∆k = 2π/a corresponding to one cycle, we obtain from (11.1) 

  2π/a = e E τB / ħ             (11.2) 
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and 

  ωB  ≡  2π/τB  = e E a / ħ            (11.3) 

The angular frequency ωB  represents the Bloch frequency. For the occurrence of the Bloch 

oscillations the mean electron scattering time τ must be sufficiently long, satisfying the 

condition 

  ωB τ >> 1                (11.4) 

We see that for this phenomenon to appear we need highly pure materials and low 

temperatures. Another important prerequisite is the realization of a large lattice constant a , 

which leads to a small energy width of the miniband and a correspondingly large value of  ωB 

according to  (11.3). In the energy bands of typical crystals the electrons always experience a 

scattering process before they reach energetically the upper band edge in an electric field, and 

Bloch oscillations are rendered  impossible (see Fig. 11.3) by the intervening scattering 

mechanisms.  

The possible generation of Bloch oscillations in superlattices results from the quantum 

mechanical wave properties of the conduction electrons (like many other effects). A different 

manifestation of these wave properties arises in the case of electrical conductors with smaller 

and smaller dimensions fabricated by means of modern nanotechnology. Eventually, 

mesoscopic length scales are obtained, within which no scattering processes occur any more 

(ballistic propagation, see Fig. 11.1 and 11.4).  

The first treatment of ballistic electron transport in mesoscopic conductors (quantum wires) is 

due to Landauer. We briefly outline the central idea. The quantum wire is assumed to be 

placed along the x-direction. At both ends it is connected to electrodes with the energies         

ε + ½ eV  and  ε - ½ eV , respectively. Here V is the electric potential difference between both 

electrodes. Treating both electron spins seperately, the current is 

  I = - 2e � ���0π  v�  �f $ε Q
�
0 eV, εq% E  f�ε E

�
0 eV, εq� � Ttrm     (11.5)  

Here we have used the abbreviation for the Fermi distribution function (5.10) 

  f(ε , εF )  ≡   
�

��εXεY�/��� Z  �                                                                     (11.6) 
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and considered the current flow in both directions ( + x and – x). The quantity Ttrm is a 

transmission coefficient containing the electron scattering processes establishing the 

equilibrium with the local electrochemical potential of the electrodes. In the quantum wire 

itself scattering processes are assumed to be absent.  If the voltage V and the temperature is 

small, we have  

  �f $ε Q �
0 eV, εq% E  f�ε E

�
0 eV, εq� � =  $:2:ε%s�! eV        (11.7 a) 

  =  - δ(ε - εF) eV                  (11.7.b) 

where δ(x) is the Dirac delta function. Using  vX dkX = (1/ħ)dε we finally obtain for 

the conductance G  

  G = 
�
s L 

0�,
^   T�a3  =  2 GO Ttrm              (11.8) 

The quantity GO = e2/h  represents the quantum unit of conductance. 

 

 

 

 

 

 

 

 

 12   Defects in the Crystal Lattice: Useful or Harmful ? 

Supplement 

A certain degree of disorder must always exist in a crystal by virtue of fundamental 

considerations. In the following we present the thermodynamic arguments for the ineluctable 

presence of lattice defects, taking the example of lattice vacancies. A vacancy is a location in 

the crystal, where an atom of the lattice is mising.  
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We start with the free enthalpy of the crystal 

  G  =  U  +  p V  -  T S       (12.1) 

(U = internal energy; p = pressure; V = volume; T = temperature; S = entropy). From (12.1) 

we see that an increase of the entropy (caused by disorder) reduces the free enthalpy. Because 

of the TS term in equation (12.1), the reduction of the free enthalpy becomes more and more 

important at high temperatures. This is exactly the reason for the appearance of disorder at 

thermodynamic equilibrium in the crystal.  

We consider a crystal with N identical atoms. Due to the presence of n lattice vacancies the 

free enthalpy G changes by the amount  

  ∆G(n, p, T) = n UA  +  n p VA  –  n T SA
vibr  -  T (N + n) Sm                (12.2) 

The proportionality to n of the terms in equation (12.2) is valid only for  values of n that are 

small relative to N, i.e.,  n << N. Here   UA = activation energy of vacancy formation; VA = 

activation volume of vacany formation; SA
vibr = change of the entropy of the lattice vibrations 

per vacancy; Sm = mixing entropy of the particles. The mixing entropy per particle is defined 

as 

  Sm = - kB .  ∑ xgg  ln xg                                       (12.3) 

where xj is the atomic fraction of the component j . In the case of vacancies we have 

  Sm = - kB 
b

bZ� ln
b
bZ�    -  kB 

�
bZ� ln 

�
bZ�       (12.4 a) 

        ≈ - kB 
b
� ln 

b
�   +   kB ln(1 + 

b
�)     (12.4 b) 

        ≈  - kB (
b
� ln 

b
�  -  

b
� )      (12.4 c) 

(using again the approximation valid in the case n << N ). In the case of equilibrium: 

  $: ∆ :b %p,T  =  UA  +  p VA  -  T SA
vibr  +  kBT ln 

b
�  =  0  (12.5) 

and 

  c(p, T) ≡  
b��,#�
�   =  exp(SA

vibr/kB) . exp[- (UA + pVA) / kBT]          (12.6) 
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From (12.6) we see that plots of  log c  versus 1/T or versus  p  yield straight lines (see Fig. 

12.6). From the slope of the plot versus 1/T one obtains  UA + p VA (where the second term 

generally can be neglected at p = 1 at ). From the slope of the plot versus p one obtains VA. 

Fig. 12.6:  Plots of  log c  

versus 1/T (left) and versus  p (right), schematically according to Eq. (12.6).  

The strongly temperature dependent spontaneous generation of lattice vacancies under 

thermodynamic equilibrium contributes also to the volume expansion of a crystal, in addition 

to the standard phenomenon of thermal expansion. This effect has been demonstrated in 

famous experiments by Simmons and Baluffi, who compared the measured relative length 

change, ∆L/L, of a crystal with the relative change of the lattice constant, ∆a/a, obtained from 

X-ray diffraction. In Fig. 12.2 we show their measurements in the case of an aluminum 

sample.  

Lattice vacancies are able to move within the crystal by means of diffusion. During an 

elementary diffusion jump from one lattice site to another vacancies pass through an activated 

state (located between two neighboring lattice sites). Denoting the number of vacancies in the 

activated state by n* ,  one obtains for the ratio n*/n  an expression analogous to (12.6), where 

the activation energy of motion, UB , the activation volume of motion, VB , and the change of 

the vibrational entropy, SB
vibr , appear: 

  n*/n  =  exp(SB
vibr/kB) . exp[- (UB + pVB) / kBT]         (12.7) 

The temperature (and pressure) dependent concentration and mobility of lattice vacancies 

plays a crucial role in all diffusion processes in crystals and represents a key quantity of solid 

state chemistry.  

In Chapter 12 other types of lattice defects such as interstitials, color centers, and dislocations 

are briefly discussed.  
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Glossary    (Electrons in Action) 

 

Abrikosov Flux-Line Lattice: regular geometric arrangement of quantized magnetic flux lines 

(vortices) in a superconductor oriented along the direction of the externally applied magnetic field. It 

exists in a → type-II superconductor in the mixed state at intermediate magnetic fields between the 

lower (at which magnetic flux lines start to appear in the superconductor) and the upper critical 

magnetic field (at which superconductivity vanishes).   

Aharonov - Bohm Effect: effect in a small multiply connected object (ring or cylinder) due to the  → 

interference between the quantum mechanical wave function of an electron in the different parts of the 

object.  

Antiferromagnetism: caused by the spontaneous antiparallel orientation of the spin magnetic 

moments of the neighboring atoms or molecules in a crystal. 

Ballistic Propagation: undisturbed propagation of a particle/wave without experiencing a scattering 

process between source and detector. 

Barkhausen Jumps: discontinuous change of the magnetization of individual ferromagnetic domains 

during variation of an external magnetic field. 

BCS Theory: microscopic theory of superconductivity developed by John Bardeen, Leon Cooper, and 

Robert Schrieffer. It assumes that two conduction electrons are bound together forming  → Cooper 

pairs, which obey  → Bose-Einstein statistics and occupy a common ground state. The energy of the 

ground state is separated by an energy gap from the normal-state energy of the electrons. In a Cooper 

pair the attraction between the two electrons is effected by the  → phonons in the superconductor.  

Bitter Decoration Technique: method for the experimental observation of magnetic domain 

structures. It was introduced by the American Francis Bitter and works by sprinkling, say, small 

ferromagnetic particles on the surface of the sample. The particles then accumulate at the locations at 

the surface, where the local magnetic field shows a strong spatial variation, for example, at the domain 

boundaries.  
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Bloch Ansatz: approximation of the quantum mechanical wave function of the electrons in a crystal in 

terms of the bound states of the atoms at the individual lattice sites of the crystal, in the case when a 

hopping process of the electrons between the sites occurs only rarely. 

Bloch Oscillation: oscillatory motion of the conduction electrons within a narrow  → energy band due 

to an electric field, caused by  → Bragg reflection at the crystal lattice when the electrons reach the 

energy of the upper band edge.  

Bloch Wall: region in a magnetic material between two magnetic domains, in which the spin magnetic 

moment rotates from the direction in a magnetic domain to the different direction in the neighboring 

domain. 

Boltzmann Statistics: applies to (classical) particles or objects, which can be distinguished from each 

other. It leads to the Boltzmann distribution of the number  <Nj>  of particles having the energy Ej : 

 <Nj>  =  N   
�E¡¢ £¤¥⁄

∑ �E¡¢ £¤¥⁄¢
 

N is the total number of particles. kB  is Boltzmann’s constant. ��§¨ �©ª⁄  is referred to as the 

Boltzmann factor.  

Bose-Einstein Statistics: applies to elementary particles, which are identical and, hence, are 

indistinguishable from each other, and which have zero or integer intrinsic angular momentum or spin. 

These particles are referred to as “bosons”. Examples are  → photons,  → phonons, α-particles 

(helium nuclei), and the → Cooper pairs. The statistical average <N(E)> of the occupation number N 

in the case of the Bose-Einstein statistics is  

 <N(E)>  =   
�

«�¬X­� ®©¯⁄  �  � 

(E = energy; µ = → chemical potential). In the limit  (E - µ) >> kBT the Bose-Einstein distribution 

approaches the  → Boltzmann distribution. 

Bragg Reflection: when in an electric field the conduction electrons reach the energy of the upper 

band edge, they decelerate and reverse their velocity. This process results from the interaction of the 

electrons with the periodic potential of the crystal lattice  and is referred to as Bragg reflection. It is 

named after William Henry and William Lawrence Bragg (father and son), who had analyzed the  → 

diffraction of X-rays by a crystal lattice.  

Carbon Nano Tube: narrow cylinder formed by carbon atoms. There exist single-wall and multi-wall 

carbon cylinders. 
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Chemical Potential: it represents the energy per particle in a system of particles (electrons, atoms, 

molecules). At equilibrium it is the same for all particles in the system. In the case of electrons in a 

solid, in the limit of zero temperature the chemical potential µ is equal to the → Fermi energy εF  (µ = 

εF).                 

Coherence Length of a Superconductor: minimum distance over which a material can change its 

superconducting property. 

Conduction Band: highest → energy band which is only partly filled with electrons. 

Cooper Pair: pair of two conduction electrons bound together by an attractive interaction. Cooper 

pairs represent the key element of the  → BCS theory of superconductivity. 

Critical Magnetic Field and Critical Temperature of  a Superconductor: value of the magnetic 

field and of the temperature, above which superconductivity vanishes. 

Curie Law: it was discovered by Pierre Curie and states that in a  → paramagnet the magnetic 

moment changes proportional to the inverse temperature.  

Cyclotron Motion: circular motion of electric charge carriers at the cyclotron frequency  νC  in a 

magnetic field due to the action of the  → Lorentz force. 

Debye Model of the Specific Heat: it assumes the existence of a continuous frequency range of  → 

phonons in a crystal from zero frequency up to a maximum frequency (phonon spectrum) and takes 

into account the variation of the number of phonons occupying the modes of the different phonon 

frequencies with the temperature. 

de Haas – van Alphen effect: oscillatory dependence of the → diamagnetism upon the magnetic field 

due to the energy quantization of the conduction electrons in the form of the  → Landau cylinders .  

Diamagnetism: caused by the magnetic moment due to the orbital motion of the electrons in a 

magnetic field.  

Diffraction: causes the change of the direction of a propagating wave due to the interaction of the 

wave with an object or a geometric arrangement of objects. 

Dislocation: perturbation of the perfect order of a crystal lattice by an additional atomic plane ending 

within the crystal. Around a dislocation the crystal lattice is distorted. Dislocations strongly influence 

the mechanical strength of a material. 
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Einstein Model of the Specific Heat: it assumes a single vibrational frequency νE of the lattice atoms 

in a crystal and takes into account the variation of the number of  → phonons occupying this mode 

with the temperature. 

Electric Potential Gradient: spatial slope of the potential energy of an electric charge in an electric 

field. The electric potential difference between two points is referred to as the voltage between the 

points. 

Energy Bands: they describe the dependence of the energy of the electrons in a crystal upon their 

mechanical momentum. The exactly periodic structure of the crystal lattice results in forbidden ranges 

of the energy. The allowed energy ranges separated in this way from each other are referred to as 

energy bands. 

Exciton: pair of a (negative) electron and a (positive) hole in a semiconductor  bound to each other. 

Fermi-Dirac Statistics: applies to elementary particles, which are indistinguishable from each other, 

and which have half-integer intrinsic angular momentum  or spin. These particles are referred to as 

“fermions”. An important example are electrons (with spin ½). Fermions must satisfy the Pauli 

exclusion principle, which states that each quantum mechanical state of a system can be occupied at 

most only by a single particle. The statistical average  <N(E)>  of the occupation number  N  in the 

case of the Fermi-Dirac distribution is 

  <N(E)>  =   
�

«�¬X­� ®©¯⁄  Z  � 

(E = energy;  µ = → chemical potential). In the limit  (E - µ) >> kBT the Fermi-Dirac distribution 

approaches the  → Boltzmann distribution. In the case of fermions, the chemical potential µ is also 

referred to as the Fermi energy εF  ( µ ≡ εF ).  

Fermi Energy εεεεF: reference energy of the → Fermi distribution describing the occupation of the states 

with low energy and how with increasing energy the states become unoccupied. In the limit of zero 

temperature all states below εF are occupied and above εF unoccupied. 

Fermi Surface: (2-dimensional) surface in (3-dimensional) → k-space separating the occupied states 

at low energies from the unoccupied states at high energies. A sharp Fermi surface in k-space results if 

the number of particles and, hence, the → Fermi energy in the system are large and the temperature is 

low.  

Ferromagnetism: caused by the spontaneous parallel orientation of the spin magnetic moments of the 

atoms or molecules in a crystal.  
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Flux-Flow Resistance: electrical resistance in a superconductor caused by the motion of magnetic 

flux lines (vortices).  

Flux Pinning: disruption of the motion of magnetic flux lines in a superconductor effected by local 

inhomogeneities in the material, where the flux lines become trapped.  

Free-Electron Aproximation: treating the electrons in a crystal as nearly free particles experiencing 

only a weak perturbation due to the (small) periodic potential of the crystal lattice. 

Fullerenes: carbon molecules with an all-round completely closed structure consisting of various 

specific numbers of carbon atoms.  

Giant Magnetoresistance: appears in the form of an extremely sensitive magnetic-field dependence 

of the electric resistance of specific multilayer structures of ferromagnetic layers.  

Grain Boundary: location in a crystalline material, which separates individual single-crystalline 

grains with a different crystal orientation.  

Hall Effect: electric voltage (Hall voltage) generated by the electric current flow in a magnetic field 

due to the  → Lorentz force acting upon the charge carriers. The Hall voltage is directed perpendicular 

to both the direction of the current flow and the direction of the magnetic field. 

Hooke’s Law: proportionality between the elastic strain of a material and the mechanical load, named 

after the Englishman Robert Hooke.  

Inelastic Scattering: a scattering process for which the energy of the incoming and the outgoing wave 

(neutrons, X-rays, etc.) differs due to an energy transfer between the wave and the scattering object.  

Interference: superposition of two or more propagating waves, resulting in a spatial pattern of 

locations where the wave amplitudes add to or subtract from each other. 

Josephson Effect: occurs at the weak contact between two superconductors in the form of voltage 

oscillations at high frequencies during electric current flow above a critical value of the current. The 

Josephson contact represents the device displaying a fundamental relation between voltage and 

frequency underlying the “Josephson voltage standard”.  

Kelvin: unit of the absolute temperature scale. Zero Kelvin corresponds to minus 273.15 °Celsius. 

k- Space or Wave-Vector Space: mathematical space taken up by the → wave vectors k. This 

geometric concept is helpful for discussing the properties of many-body systems such as electrons in 

crystals (→ Fermi surface).  
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Landau Cylinder: cylindrical region in  → k-space occupied by the electrons in a crystal, resulting 

from the energy quantization  hνC  for the electrons in a magnetic field. h is Planck’s constant and  νC   

the cyclotron frequency. In the case of two-dimensional systems (→ two-dimensional electron gas) the 

Landau cylinders are reduced to Landau circles.  

Lorentz Force: experienced by an electric charge moving in a magnetic field. The force is directed 

perpendicular to both the direction of the motion and the direction of the magnetic field.  

Magnetic Flux Quantum: quantized unit of the magnetic flux (magnetic field  ×  enclosed area) 

passing through the area. In a  → two-dimensional electron gas the magnetic flux quantum is  h/e, in 

the case of a superconductor it is h/2e .  

Magnetic Penetration Depth of a Superconductor: small distance by which a magnetic field 

penetrates into a superconductor beyond its surface (before the field is completely compensated by the 

electric shielding current). 

Magneto-Resistance: increment of the electric resistance due to the presence of a magnetic field. 

Magnon: energy quantum of a  → spin wave. 

Meissner Effect: (or Meissner-Ochsenfeld effect) expulsion of a magnetic field from the interior of a 

superconductor. It is effected by electric shielding currents flowing along the surface of the 

superconductor within a thin layer having a thickness given by the  → magnetic penetration depth. It is 

named after Walther Meissner and Robert Ochsenfeld, who discovered it.  

Metal Fatigue: weakening of the mechanical strength of a material due to (in particular cyclical) 

mechanical loads. It starts with hardly visible microcracks, which subsequently grow larger and larger 

until the material breaks.  

Micrometer: length unit of  10-6 meter. 

Nanometer: length unit of  10-9 meter. 

Nuclear Magnetism: spatial ordering of the magnetic moments associated with the nuclei.  

Pancake Vortex: appears in form of a disk containing a  → magnetic flux quantum in a highly 

anisotropic superconductor, where the superconductivity originates in distinct crystallographic planes 

(for example, the copper-oxide planes in the cuprate high-temperature superconductors) and where the 

magnetic field is oriented perpendicular to the planes.  

Paramagnetism: caused by the spatial orientation of the intrinsic angular momentum or spin of the 

electrons along the direction of an applied magnetic field.  
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Pauli Exclusion Principle: it applies to systems obeying the  → Fermi-Dirac statistics and states that 

each quantum mechanical state can be occupied at most only by a single particle.  

Phonon: energy quantum E = hν of a vibrational mode with the frequency ν of the lattice atoms in a 

crystal. h is Planck’s constant  h = 6.626 . 10- 34 J s . 

Photoelectric Effect: emission of electrons from a metal surface irradiated with light or more 

generally with electromagnetic waves. Whereas the energy of the emitted electrons is determined by 

the frequency of the radiation, the number of the electrons is given only by the intensity of the 

radiation. 

Photon: energy quantum  E = hν of an electromagnetic wave with the frequency ν.  h is Planck’s 

constant  h = 6.626 . 10- 34 J s . 

Planck’s Radiation Law: describes the spectral energy distribution of the electromagnetic waves 

within a cavity under equilibrium at temperature T (→ Bose-Einstein distribution of the photons).  

Quantized Electric Conductance: in a narrow one-dimensional channel (quantum wire) the  → 

ballistic propagation of electrons is quantized in units of  2e2 / h .  

Quantum Dot: artificial object being so small in all of its dimensions (quasi zero-dimensional) such 

that the quantum mechanical wave function of the electrons is dominated by its spatial size (like in an 

atom, why quantum dots are also referred to as “artificial atoms”).  

Quantum Statistics: applies to elementary particles which cannot be distinguished from each other. 

Depending on the angular momentum of the particles, one distinguishes between  → Bose-Einstein 

and → Fermi-Dirac statistics. 

Radiation Damage: structural changes in a material effected by its exposure to radiation 

(electromagnetic waves, particles).  

Specific Heat: change of the internal energy associated with the change in temperature. 

Spin Wave: energetic excitation of the spin magnetic moments in a spin lattice resulting in a deviation 

from the exactly parallel (in the case of a ferromagnet) or antiparallel (in the case of an 

antiferromagnet) orientation of neighboring spin magnetic moments.  

Squid: Superconducting Quantum Interference Device. It consists of a small superconducting loop 

interrupted by Josephson contacts. It represents the most sensitive device for measuring magnetic 

fields. 
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Superlattice: artificial structure in which two different metals or semiconductors are alternately 

stacked on top of each other with atomic regularity.  

Symmetry: characterizes an arrangement of objects (for example, atoms or molecules in a crystal), the 

arrangement being exactly reproduced following certain (symmetry) operations such as translation, 

rotation, or mirror reflection.  

Synchrotron Radiation: electromagnetic radiation emitted from electrons circulating at high 

velocities within an evacuated annular ring. 

Tunnel Junction: a  device in which two electrically conducting electrodes are separated from each 

other by an extremely thin insulating layer, such that electric current flow through the junction is only 

possible by means of the quantum  mechanical tunneling process of the charge carriers. 

Two-dimensional Electron Gas: electrically conducting layer at the surface of a semiconductor or at 

the interface between two semiconductors. 

Type-I and Type-II Superconductor: classification according to the difference between the  → 

magnetic penetration depth and the  → coherence length. 

Valence Band: completely filled → energy band below the → conduction band.  

Wave Vektor: the inverse of the wavelength λ multiplied by 2π is defined as the wave number  

k = 2π / λ . In 3-dimensional space the direction of a propagating wave is described by the wave vector 

k = kx + ky + kz , having the 3 components kx , ky , and kz along the directions of the 3 coordinate axes, 

respectively.  

Weiss Field: an effective magnetic field existing in a ferromagnetic material and postulated by Pierre 

Weiss for explaining phenomenologically → ferromagnetism.  

 

 

 

 

 


