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1 Fermat’s Principle and the Variational Calculus

In the seventeenth century light was believed to be a flow of corpuscules, ‘little bodies’;
their trajectories were called rays. Pierre de Fermat asserted that Nature was intrinsically
lazy and that those corpuscules ‘chose’ a trajectory that made their time of transit from point
to point a minimum. We refer to this anthropomorphism as Fermat’s Principle. It was a
successful hypothesis. With it, Fermat was able to derive the law of refraction, Snell’s law, in
an economical and precise way.1

The connection between Optics and the variational calculus came some years after Fermat
when the Swiss mathematician Jacob Bernoulli proposed a problem, the brachistochrone, and
offered a prize for its solution. Consider a rigid wire connecting a pair of points, fixed in space,
on which a bead slides under the force of gravity but without friction. The problem was to find
that shape of the wire for which the time of transit of the bead, from one point to the other, was
a minimum.2

The connection between geometrical optics and Fermat’s principle is clear. Jacob’s solution
was to calculate the vertical force on the bead, taking into account the constraint imposed by the
rigid wire. He related this force to an index of refraction function that depended on the height
of the bead on the wire. He partitioned the space between the initial and terminal points into
horizontal lamina each having a constant refractive index that was determined by its height.
Then he could use Snell’s law to trace a ray down from the initial point, resulting in a polygonal
ray path that approximated the desired solution. As the number of lamina increased and as
each thickness approached zero, the polygonal figure approached a continuous curve which
was the desired shape of the rigid wire. This curve turned out to be an arc of a cycloid.3

Jacob Bernoulli was very pleased with his solution, so much so that he awarded to himself
the prize that he had offered, and disregarded the efforts of his brother Jean, who also solved
the brachistochrone problem, from an entirely different point of view.

Jean made use of the newly discovered differential calculus and the fact that the first
derivative of a function vanishes at its maximum or minimum value. He expressed the time of
transit of the bead from the initial point to its terminal point as a an integral of the reciprocal
of its velocity. The first derivative of this integral must vanish at a minimum and he obtained
conditions that the solution curve must satisfy. Subsequently Leonard Euler extended Jean’s

1Sabra 1967, Chapter V. An account of the history and background of Fermat’s principle.
2Bliss 1925, pp. 65–72. Caratheodory 1989, pp. 235–236 uses the Hamiltonian which we will encounter in

Chapter 3. Woodhouse 1964, Chapters I and II provides a more detailed historical account. Courant & Robbins
1996, pp. 381–384. In Smith 1959, pp. 644–655 there is an English translation of Bernoulli’s original paper and
announcement.

3Bliss 1946, Chapter VI. Jean’s use of the calculus in generating the variational calculus.
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method to more general problems and obtained differential equations for their solution. Jean’s
method can rightfully be called the beginning of modern Calculus of Variations.4

It is natural to refer to a solution of a variational problem as an extremal arc or more
simply as an extremal. We will interpret the principle of Fermat in terms of the language of the
variational calculus and apply modern mathematics to that basic axiom of geometrical optics
and develop it as far as we can.

1.1 Rays in Inhomogeneous Media

We have seen that the basic assumption of geometrical optics is Fermat’s principle: A ray path
that connects two points in any medium is that path for which the time of transit is an extremum.
To be more explicit, out of the totality of all possible paths connecting the two points,A andB,
a ray is that unique path for which the time of transit is either a maximum or a minimum. Of
course if A and B are conjugates, if B is a perfect image of A, then the ray path is not unique;
every ray passing through A must also pass through B.

The time of transit between two points, A and B, is given by the equation

T =

B∫

A

dt =

B∫

A

ds

v
=

B∫

A

nds

c
, (1.1)

where c is the velocity of light in vacuo, v its velocity in the medium through which it propagates
and n the refractive index of that medium. The arc length along the ray or trajectory is s. The
optical medium is said to be homogeneous if n is constant; it is inhomogeneous but isotropic
if n is a function of position. It is anisotropic if the refractive index of the medium depends
on the ray’s direction.

The convention most used is to drop c from the equations and to use the optical path length
I , instead of the time of transit T , as the variational integral. Thus

I =

B∫

A

nds. (1.2)

In what follows we take the medium to be inhomogeneous so that the refractive index
is a function of position n = n(x, y, z). A possible path connecting A and B is given
parametrically by the three coordinate functions x(t), y(t), z(t) where the choice of the
parameter t is entirely arbitrary. IfA has the coordinates (a1, a2, a3) andB, (b1, b2, b3) then
it must be that

x(t0) = a1, y(t0) = a2, z(t0) = a3,

x(t1) = b1, y(t1) = b2, z(t1) = b3,
(1.3)

4Bliss 1946, Chapter I. Bolza 1961, Chapter 1. Clegg 1968, Chapter 3.
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so that

I(A, B) =

t1∫

t0

n(x, y, z)ds =

t1∫

t0

n(x, y, z)
ds

dt
dt, (1.4)

where the Pythagorean theorem gives us

ds

dt
= st =

√
x2

t + y2
t + z2

t . (1.5)

Here, the subscript (t) denotes differentiation with respect to the parameter t. This subscript
notation for both ordinary and partial differentiation will be used extensively in what follows.

In these terms then the problem is to find that curve, given by x(t), y(t), z(t), for which
I(A, B) is an extremum.

1.2 The Calculus of Variations

This problem is a special case of a more general problem that belongs to that body of mathe-
matics known as the Calculus of Variations. That more general problem is to find the curve in
space, given by y(x), z(x) for which the integral

I =

b∫

a

f
(
x, y(x), z(x), yx(x), zx(x)

)
dx, (1.6)

is an extremum. The function f is always known since it is determined by the nature of the
problem; for example, in Eq. 1.4, f is equal to n(x, y, z)ds/dt.

Here we need to find expressions for y(x) and z(x) that make Eq. 1.6 an extremum. First
assume that y(x) and z(x) represent a solution, a curve for which Eq. 1.6 is an extremum. In
addition let η(x), ζ(x) be any two functions, sufficiently differentiable, such that

η(a) = η(b) = 0,

ζ(a) = ζ(b) = 0.
(1.7)

Now form a one-parameter family of curves given by

y(x) = y(x) + h η(x), z(x) = z(x) + h ζ(x), (1.8)

where h is the parameter. By virtue of Eq. 1.7 these curves all pass through the end points
of the integral; when the parameter h is zero we have, by definition, the solution curve. We
replace y(x) and z(x) in the variational integral, Eq. 1.6, by using Eq. 1.8 to get

I(h) =
b∫

a

f
(
x, y(x) + h η(x), z(x) + h ζ(x),

yx(x) + h ηx(x), zx(x) + h ζx(x)
)
dx. (1.9)
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Because of our construction, if h = 0 then I is at an extremum value and, for that value of h,
dI/dh must vanish. We calculate this derivative, set it equal to zero and get, from Eq. 1.9

dI

dh

∣∣∣∣
h=0

=

b∫

a

{
∂f

∂y
η +

∂f

∂z
ζ +

∂f

∂yx
ηx +

∂f

∂zx
ζx

}
dx = 0. (1.10)

Apart from the properties given in Eq. 1.7, the functions η(x) and ζ(x) are entirely arbitrary,
a fact that will be important later.

We expand Eq. 1.10 using integration by parts. Recall that,

b∫

a

u dv = u v

∣∣∣∣∣
b

a

−
b∫

a

v du,

so that

b∫

a

∂f

∂y
η dx =

[
η

x∫

a

∂f

∂y
dx

]b

a

−
b∫

a

[ x∫

a

∂f

∂y
dx

]
ηxdx. (1.11)

Since η vanishes at a and b, the first term vanishes. In exactly the same way we get

b∫

a

∂f

∂z
ζ dx = −

b∫

a

[ x∫

a

∂f

∂z
dx

]
ζxdx. (1.12)

Substituting Eqs. 1.11 and 1.12 into Eq. 1.10 results in

b∫

a

{[ ∂f
∂yx

−
x∫

a

∂f

∂y
dx
]
ηx +

[ ∂f
∂zx

−
x∫

a

∂f

∂z
dx
]
ζx

}
dx = 0. (1.13)

Note that if the quantities in brackets are constant then the integral vanishes and the condition
is satisfied.

This condition is also sufficient. Recall that our choice of the functions η and ζ is com-
pletely arbitrary. For the integral to vanish for all possible choices of these functions then the
coefficients of their derivatives in Eq. 1.13 must be constant.5 We conclude that




∂f

∂yx
−

x∫

a

∂f

∂y
dx = constant

∂f

∂zx
−

x∫

a

∂f

∂z
dx = constant.

(1.14)

5Bliss 1946, pp. 10–11 calls this the Fundamental Lemma of the Calculus of Variations. I believe that the proof
given here is simpler.
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If f possesses second derivatives we get the Euler equations



d

dx

∂f

∂yx
= ∂f

∂y

d

dx

∂f

∂zx
= ∂f

∂z ,

(1.15)

a pair of simultaneous ordinary differential equations. Recall that f describes the nature of
the particular problem and therefore must be known. The solution is an extremal arc that
connects the fixed initial and terminal points. Each pair of these end points provide boundary
conditions that define a solution. The aggregate of all such solutions to Eq. 1.15 is called a
field of extremals.

We will need yet another relationship. The total derivative of f with respect to x is

df

dx
=
∂f

∂x
+
∂f

∂y
yx +

∂f

∂z
zx +

∂f

∂yx
yxx +

∂f

∂zx
zxx

=
∂f

∂x
+
[ d
dx

∂f

∂yx

]
yx +

[ d
dx

∂f

∂zx

]
zx +

∂f

∂yx
yxx +

∂f

∂zx
zxx

=
∂f

∂x
+

d

dx

[
yx

∂f

∂yx
+ zx

∂f

∂zx

]
, (1.16)

in which we use the Euler equations, Eq. 1.15 to get

∂f

∂x
=

d

dx

[
f − yx

∂f

∂yx
− zx

∂f

∂zx

]
. (1.17)

1.3 The Parametric Representation

The problem can also be expressed in parametric form.6 We represent the arcs connecting
the two end points, A and B, by the coordinate functions x(t), y(t) and z(t) of the arbitrary
parameter t. It must be that when t = a, all possible arcs must pass throughA and when t = b
they must all pass through B. With this proviso the variational integral becomes

I =

b∫

a

f
(
x(t), y(t), z(t), xt(t), yt(t), zt(t)

)
dt. (1.18)

It is important, indeed vital, to understand that the parameter t must be applied uniformly
to all of these possible paths connecting A to B. The choice of the parameter t is unimportant
and can be anything convenient.

However the choice of t cannot effect the statement of this variational problem and therefore
any transformation of t must leave the structure of Eq. 1.18 completely unchanged. To show
this 7 we use the reductio ad absurdum argument; we assume the contrary and demonstrate a
contradiction. First assume that f does indeed depend explicitly on t so that it takes the form

f = f
(
t, x(t), y(t), z(t), xt(t), yt(t), zt(t)

)
.

6Bliss 1946, Chapter V. Bolza 1961, Chapter IV. Clegg 1968, Chapter 7.
7Bliss 1946 Chapter V. Theorem 41.1.
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If we apply a linear transformation to t, say, t → τ+h, then the variational integrand becomes,

f
(
τ + h,x(τ + h),y(τ + h), z(τ + h),xτ (τ + h),yτ (τ + h),zτ (τ + h)

)
dτ.

Since the differential of τ cannot contain the constant h the transformed variational integrand
does not have the same structure as the original version. This contradiction proves that f cannot
depend on t explicitly.

We can take this a little further. Suppose the transform involves a factor as in, say, t → hτ
so that the variational integrand takes the form,

f
(
x(hτ), y(hτ) , z(hτ), xτ (hτ)/h, yτ (hτ)/h, zτ (hτ)/h

)
hdτ.

Compare this expression with the integrand in Eq. 1.18. For this expression to have the same
structure as the original variational integrand, f must be a homogeneous function8 of xt, yt, zt.
That is to say,

f
(
x, y, z, λxt, λyt, λzt

)
= λf

(
x, y, z, xt, yt, zt

)
.

Taking the derivative of this expression with respect to λ, then setting λ = 1, yields

f = xt
∂f

∂xt
+ yt

∂f

∂yt
+ zt

∂f

∂zt
, (1.19)

showing that f must indeed be a homogeneous function in (xt, yt, zt).
To summarize these results: A variational problem in terms of a parameter t cannot depend

on t explicitly; moreover f must be a homogeneous function in xt, yt and zt.
In Chapter 5, in which we look at partial differential equations, we will show that a general

solution of Eq. 1.19 is obtainable and that the solution is indeed homogeneous; the condition
is therefore sufficient as well as necessary. Observe that Eq. 1.19 is the analog of Eq. 1.17
which, in this parametric case, is trivial.

Again we assume a solution, x(t), y(t), z(t) and choose arbitrary functions ξ(t), η(t), ζ(t)
that vanish when t = a and when t = b, then form the variational integral

I(h) =

b∫

a

f(x̄+ hξ, ȳ + hη , z̄ + hζ , x̄t + hξt, ȳt + hηt, z̄t + hζt)dt. (1.20)

We go through the same steps as before and get




d

dt

∂f

∂xt
=
∂f

∂x

d

dt

∂f

∂yt
=
∂f

∂y

d

dt

∂f

∂zt
=
∂f

∂z
,

(1.21)

the Euler equations for the parametric case.
8Rektorys 1969, pp. 454–455.
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1.4 The Vector Notation

The vector notation simplifies greatly the results obtained for the parametric case. Suppose we
have some differentiable function f(x, y, z). Then its total differential is,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

(Of course f can have any number of independent variables but for our purposes three is exactly
right.) This can be written as a scalar product of two vectors,

df =
(
∂f

∂x
,
∂f

∂x
,
∂f

∂x

)
· (dx, dy, dz) .

The left vector we identify as the gradient of f

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
. (1.22)

If we let V = (x, y, z) then the total derivative in vector form is

df = ∇f · dV. (1.23)

When cast in vector form the results of the last section assume a much more compact form.
We first define the vector function of the parameter t,

P(t) =
(
x(t), y(t), z(t)

)
;

its derivative with respect to t must then be,

Pt(t) =
(
xt(t), yt(t), zt(t)

)
,

and the variational integral defined in Eq. 1.18 becomes

I =
∫
f(P, Pt)dt. (1.24)

Moreover, as was shown in the last section, f must not depend on t explicitly and it must also
be homogeneous in Pt.

Next, define two vector gradients according to Eq. 1.22

∇f =
(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

∇tf =
(
∂f

∂xt
,
∂f

∂yt
,
∂f

∂zt

)
.

(1.25)

Applying these to Eq. 1.21 we get the vector form of the Euler equations

d

dt
∇tf = ∇f. (1.26)

Because f is homogeneous in Pt it must be that f = ∇tf · Pt, this from Eq. 1.19.
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In conclusion one might say that the application of the Calculus ofVariations consists of two
parts; stating the question and getting its answer. The question part is finding the f -function
appropriate to the application. The solution to any of the forms of the Euler equations provides
the answer.

Of course this is only the briefest introduction to the variational calculus. We have dis-
cussed here only those elements that are directly relevant to problems that we will encounter
subsequently in geometrical optics, such as rays in inhomogeneous media which follows next.

1.5 The Inhomogeneous Optical Medium

Now we apply the version of the Euler equations in Eq. 1.26 to the problem of rays in a
medium in which the refractive index is a function of position 9 as indicated in Eqs. 1.4 and
1.5. Evidently f(P, Pt) = n(P)(ds/dt) = n(P)

√
P2

t which establishes f for this particular
problem.

We must emphasize that in this context P(t) is a vector function representing all possible
paths in the medium. Our problem is to find those particular paths that satisfy the Euler
equations; those are the rays in this medium.

We cannot use s as the parameter in the statement of the variational problem because each
possible arc will have a different geometrical length. A requirement for the application of these
methods is that the parameter be uniform for all such curves. But s is not uniform so we must
use a different parameter, say t, that is uniform over all possible arcs. This leads us to the
following expressions

∇f =
√

P2
t ∇n(P), ∇tf = n(P)

Pt√
P2

t

. (1.27)

Substituting these into Eq. 1.26, the vector form of the Euler equations, we get

d

dt

(
n(P)

Pt√
P2

t

)
=
√

P2
t ∇n(P). (1.28)

But ds/dt =
√

P2
t so that, reverting back to the arc length parameter s, Eq. 1.28 becomes

d

ds

(
n
dP
ds

)
= ∇n. (1.29)

This is the ray equation for an inhomogeneous medium. Provided that second derivatives exist,
it can be expanded further

nPss + (∇n · Ps)Ps = ∇n. (1.30)

As always, we use subscripts to signal differentiation.
Equations 1.29 and 1.30 are ordinary differential equations for rays in a medium whose

refractive index is a function of position and is continuous and differentiable in the variables
x, y, and z.An example of such is the fish eye of Maxwell which follows.

9Stavroudis 1972a, Chapter II. Luneburg 1964, pp. 164–172 discusses the special case where the medium has
central symmetry.
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1.6 The Maxwell Fish Eye

The ray equation, Eq. 1.29, works very well with Maxwell’s fish eye.10 The eye of a fish
operates in water, a medium with a refractive index much higher than that of air, yet its lens
is flat. This suggests that the eye of a fish, flat and immersed in a medium with a relatively
high refractive index, has a low optical power implying a long back focal distance. Yet the flat
structure includes the retina that then requires a short back focal distance. To explain away
this paradox Maxwell postulated that the optical medium of the fish eye had a refractive index
function in the following form

n(P) =
1

1 + P2 , (1.31)

so that its gradient is

∇n =
−2P

(1 + P2)2
. (1.32)

Plugging this into the ray equation, Eq. 1.29, yields

d

ds

[
Ps

1 + P2

]
=

−2P
(1 + P2)2

, (1.33)

which quickly becomes

(1 + P2)Pss − 2(P · Ps)Ps + 2P = 0, (1.34)

whose derivative is

(1 + P2)Psss − 2(P · Pss)Ps = 0. (1.35)

I do not know whether the fish eye is accurately described by this model or whether fish
are even aware of the existence of these equations but as an example of an application of the
Calculus of Variations to geometrical optics it will suffice.

We will contemplate these equations further in Chapter 2 which is concerned with the
Differential Geometry of Space Curves.

1.7 The Homogeneous Medium

We can use Eq. 1.30 to handle the case where the refractive index n is a constant so that all its
derivatives are zero. Then Eq. 1.30 degenerates to

Pss = 0, (1.36)

a linear, ordinary differential of order two in vector form whose general solution must be

P(s) = As+ B, (1.37)

where A and B are vector constants of integration.
This is clearly a straight line showing us (as if we didn’t already know!) that rays in

homogeneous, isotropic media are, indeed, the shortest distance between two points.
10Luneburg 1964, pp. 172–182. Stavroudis 1972a, Chapter IV.
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1.8 Anisotropic Media

In a certain sense the anisotropic medium is an analog of the inhomogeneous medium. In
the latter medium the refractive index is a function of position and it can be represented by
n = n(P) while in the anisotropic medium it depends on a ray direction11. If Ps is a unit
vector in the direction of a ray then it must be that n = n(Ps), superficially resembling the
inhomogeneous medium but making an enormous difference in the variational integral and the
Euler equations. Following Eq. 1.24 the variational integrand takes the form

f(Pt) = n(Ps)ds/dt = n

(
Pt√
P2

t

)√
P2

t , (1.38)

so that, in Eq. 1.26, ∇f = 0 and the Euler equation becomes

d

dt
∇tf =

d

dt
∇t

[
n

(
Pt√
P2

t

)√
P2

t

]
= 0. (1.39)

The leading component of the gradient is,

∂f

∂xt
=

∂

∂xt

[
n

(
Pt√
P2

t

)√
P2

t

]

=
√

P2
t

[
∂n

∂xs

P2
t − x2

t

(P2
t )3/2 − ∂n

∂ys

xt yt

(P2
t )3/2 − ∂n

∂zs

xt zt

(P2
t )3/2

]
+ n

xt√
x2

t

=
∂n

∂xs
− 1

P2xt

[
xt
∂n

∂xs
+ yt

∂n

∂ys
+ zs

∂n

∂zs

]
+ n

xt√
x2

t

=
∂n

∂xs
− xs

[
xs

∂n

∂xs
+ ys

∂n

∂ys
+ zs

∂n

∂zs

]
+ nxs

=
∂n

∂xs
− xs(Ps · ∇sn) + nxs.

We do the same thing with the other two partial derivatives in ∇tf to get




∂f

∂xt
=

∂n

∂xs
− xs(Ps · ∇sn) + nxs

∂f

∂yt
=

∂n

∂ys
− ys(Ps · ∇sn) + nys

∂f

∂zt
=

∂n

∂zs
− zs(Ps · ∇sn) + nzs,

(1.40)

or, in vector form

∇tf = ∇sn− Ps(Ps · ∇sn) + Psn

11Avendaño-Alejo and Stavroudis 2002.
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= Ps × (∇sn× Ps) + Psn. (1.41)

From Eq. 1.39 the derivative of Eq. 1.41 must vanish. It follows that there must exist a
vector A that is independent of t (and therefore independent of s) so that

Ps × (∇sn× Ps) + Psn = A. (1.42)

The scalar product of this with Ps yields

n = A · Ps. (1.43)

It follows from this that

∇sn = A. (1.44)

This is about as far as we can go without making contact with physical reality; without taking
into account the interaction of light with a physical medium.

From Eqs. 1.43 and 1.44 we can get

n = ∇sn · Ps, (1.45)

a linear, first order partial differential equation that indicates that n must be a homogeneous
function. But this is jumping the gun. We will show this and more in Chapter 5 on First Order
Partial Differential Equations.

In this chapter we have covered a great deal of territory. We have studied the Calculus
of Variations with fixed end points and its parametric representation and then on to a vector
notation. This was then applied to inhomogeneous optical media inhomogeneous in general
and to Maxwell’s fish eye in particular. We have shown that in a homogeneous medium rays
are straight lines. In a final brush with anisotropic media in we get inklings of some of the
basic flaws in geometrical optics. But we also have laid some foundations on which will be
erected new material in subsequent chapters.






