
5 Transport in Magnetoplasmas

To complete the system of macroscopic equations in plasma physics we need to determine
values for the transport tensors,κe, κi, δ, η, and �νW appearing in the following equations:

qe = −κe · ∇Te − Teδ · j , qi = −κi · ∇Ti ,
η · j = E+ v×B− j×B

ene
+

∇pe
ene

+ δ · ∇Te ,
and = −2�νW ·· ∇v ,
which are equations (2.68), (2.59), and (2.72).

The tensorial character of the transport coefficients is due to the anisotropy caused by the
presence of the magnetic field, the measure of which is the magnitude of the dimensionless
number T ≡ ωcτ , where ωc is the cyclotron frequency and τ is the appropriate collision
interval. In the simplest treatment of transport it is possible to separate the effect of anisotropy
from that of isotropic transport (T = 0). Hence we shall begin by determining the scalar
coefficients κe, κi, δ, η, and �ν, for particles following linear paths, the first step being to
calculate the value of τ for the transport in question. Then the scalar coefficient, which is
a function of τ , is obtained and finally it is modified to accommodate the influence of the
magnetic field on the particle trajectories.

5.1 Coulomb collisions

5.1.1 Particle diffusion in electric microfields

As remarked in §2.1.3, the electric field E(r, t) appearing in Maxwell’s equations is a
macroscopic variable, defined by averaging over a macroscopic point, by which we mean an
infinitesimal volume containing a vast number of particles. We shall now reduce the time-
and length- scales of the description, and consider the effect of random microfields on the
motion of a typical particle, moving in a plasma without a (macroscopic) magnetic field. With
neutral particles, the forces at collisions are due to highly localized electric microfields, but in
a plasma the long range of the Coulomb force between charged particle extends the range of
the microfields to a Debye length λD, with an associated time-scale equal to the reciprocal of
the plasma frequency, ω−1

pe . These parameters, namely (see §§2.2.3 and 2.2.4)

λD =
(
ε0kBTe
nee2

)1
2

, ωpe =
(
nee

2

ε0me

)1
2

, (5.1)

play central roles in microfield processes.



132 5 Transport in Magnetoplasmas

b

g

ε

db

dε

g

g

χ

2

2

1

Figure 5.1: Binary encounter, repulsive force

A basic parameter in collision theory is the so-called 90◦ deflection impact parameter
b̄0. By an ‘impact parameter’ is meant the perpendicular distance of a pre-scattered particle
trajectory from the stationary reference particle in a binary encounter. In Fig. 5.1 ‘1’ is the
reference particle, and ‘2’, the scattered particle, has an initial velocity g relative to ‘1’ and,
when scattered through an angle χ, a final velocity g′. It is easily verified that |g| = |g′| = g,
say. The impact parameter b is defined in the figure; the azimuthal angle ε specifies the plane
in which ‘2’ moves. Clearly χ depends on both g and b. When χ = 90◦ for an average value
of g, b is equal to b̄0.

To find b̄0 one equates the electrostatic potential energy between colliding particles at
their closest, to their average kinetic energy. If the particles carry charges Ze and Z′e, the
potential energy is Z′Ze2/(4πε0b̄0) (see §5.1.2). By (1.19) the average kinetic energy for the
two particles is 3kBT . Hence

b̄0 =
|ZZ ′|e2

12πε0kBT
. (5.2)

The number of particles in a ‘Debye sphere’ is

nD = 4
3πλ

3
Dn , (5.3)

and so an alternative expression for b̄0 is

b̄0 =
|ZZ ′|λD

9nD

. (5.4)

For particles carrying the same charge, say Z = Z′ = 1, we can interpret b̄0 as being
the diameter of an equivalent solid, neutral particle, since colliding particles can penetrate no
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closer. By (1.1) a particleP will therefore move a distance

λ90◦ =
1

πb̄2

0
n

=
π

n

(

12ε0kBT

e2

)2

= 108nDλD (5.5)

between 90◦ collisions.
The average inter-particle distance d is

d = (2n)−1/3 =

(

2π

3

)1/3
λD

n
1/3

D

.

The plasmas of interest to us have temperatures high enough and densities low enough for the
following inequalities to be well satisfied:

λD

9nD

�

(

2π

3

)1/3
λD

n
1/3

D

� λD � 108nDλD ,

i.e.
b̄0 � d � λD � λ90◦ . (5.6)

It follows that a particle must travel a relatively long way to experience a 90◦ deflection,
and since it is influenced via its electric field by all the particles within a Debye sphere, the
vast majority of its interactions with other particles willinvolve quite small deflections. In
fact we shall find that the average electron collision frequency for momentum transfer is typi-
cally more than a hundred times the 90◦ collision frequency,(2kBTe/me)

1

2 λ−1

90◦
, which shows

how much more important are the accumulated effects of grazing collisions than is the occa-
sional abrupt collision. The Debye cylinder swept by a particleP in the distance∼ 10−2λ90◦

required for this momentum transfer, containsπλ 2

D
10−2λ90◦n ∼ n 2

D
particles(≥ 1013 in

a typical laboratory plasma). ThusP interacts with a vast number of particles per momen-
tum transfer time, and the binary event called a ‘collision’in a neutral gas is replaced by an
essentially continuous process in a plasma.

5.1.2 Particle orbits

We start by considering the relative motion of two particlesp1, p2 of massesm1, m2

moving in each other’s field of force. Let the particles be at position vectorsr1, r2 and exert
forcesF, −F on each other. Thenm1r̈1 = −F, m2r̈2 = F, so thatm1m2

(

r̈2 − r̈1

)

=
(m1 + m2)F, or

M r̈ = F
(

r ≡ r2 − r1, M ≡ m1m2/(m1 + m2)
)

.

Thus the motion ofp2 relative top1 is the same as the motion of a particle of massM (the
‘reduced’ mass) about a fixed centre of forceF. Specifyingr by polar coordinatesr, θ in the
plane of the orbit, we can write the conservation laws for momentum and energy as

r2θ̇ = const.= gb , 1

2
M

(

ṙ
2 + r2θ̇2

)

+ V = const.= 1

2
Mg2 , (5.7)

whereb is the impact parameter defined in Fig. 5.1,g is the constant relative velocity andV
is the potential energy (zero atr = ∞) of the forceF.
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Figure 5.2: Hyperbolic orbit of an electron (Z′ = −1) in the Coulomb field of an ion.

Let the electric charges on p1, p2 be Ze, Z ′e, then since (2.26), viz. ε0∇ ·E = Q, has the
solution

E =
q

4πε0
r
r3
, (5.8)

for the electric field at a vector distance r from a charge q, the force on p2 due to p1 is

F = Z ′eE = ZZ ′e2r/
(
4πε0r3

)
.

Hence

V = ZZ ′e2/
(
4πε0r

)
.

The impact parameter b0 is the positive number

b0 ≡ |ZZ ′|e2/
(
4πε0Mg2

)
. (5.9)

To be definite in the following, we shall assume that Z and Z′ have opposite signs; for the
other case it is necessary only to change the sign of b0 in the final expressions. Eliminating θ̇
from (5.7) we get

dr

dt
= ±g

(
1− b

2

r2
+

2b0
r

)1
2

,

the positive (negative) sign applying to the outgoing (incoming) trajectory, and using (5.7)1 to
remove the time dependence, we find that

dθ

dr
=

±b dr
r2[1− b2/r2 + 2b0/r]

1
2
.
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Choosing OX to be an axis of symmetry for the orbit of p, we obtain the integral

b2

rb0
= 1 + ε cos θ

(
ε ≡

(
1 + (b/b0)2

) 1
2

)
. (5.10)

Equation (5.10) describes a conic with eccentricity ε and focus at the origin. Since ε > 1,
it is a hyperbola, as illustrated for the case of an electron being scattered by an ion in Fig. 5.2.
Let θ0 be the angle between OX and the asymptotes of (5.10), then for the upper branch of the
conic, θ → π − θ0 as r →∞, whence cos θ0 = ε−1 or

tan θ0 = b/b0 . (5.11)

The scattering angle is given by (see Fig. 5.2)

χ = π − 2θ0 , (5.12)

so that if b < b0, χ > π/2 and we have ‘close’ collisions, while if b > b0, then χ < π/2 and
we have grazing or ‘distant’ collisions. The centre of mass C of the particles is at a distance
rc = m1r/(m1 +m2) from p2, so if r in (5.10) is replaced by (m1 +m2)rc/m1, it becomes
the polar equation of the orbit of p2 in the centre-of-mass frame. The limit θ → π − θ0 as
rc →∞ is unchanged, so χ is also the scattering angle in the CM frame.

5.1.3 The Rutherford scattering cross-section

Now suppose that instead of precise knowledge of the impact parameter b of p2, we know
only that it is incident on an element of area b db dε as shown in Fig. 5.3. The probability σ dΩ
that it is deflected into the solid angle dΩ = sinχdχdε is termed the differential cross-section
for the scattering collision. Of N incident particles per unit area per second, |b db dε|N will
be scattered into dΩ. By definition this number also equals σ dΩN . Hence σ dΩ = −b db dε,
the negative sign being necessary since db/dχ is negative.

From (5.11) and (5.12)

b = b0 cot 1
2χ, b

db

dχ
= − 1

2b
2
0

cos 1
2χ

sin3 1
2χ
, (5.13)

therefore

σ = − b

sinχ
db

dχ
=

b20
2 sinχ

cos 1
2χ

sin3 1
2χ
,

i.e.
σ(g, χ) =

b20
4 sin4 1

2χ
=
( ZZ ′e2

8πε0Mg sin2 1
2χ

)2

. (5.14)

This is the Rutherford scattering cross-section; it is evident that small-angle scattering is far
more probable than large deflections.
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Figure 5.3: Coulomb scattering

5.2 The Fokker-Planck equation

5.2.1 Friction and diffusion coefficients

Consider the particles comprising a fully-ionized plasma. Choose one of them to be a ‘test’
particle and suppose that the species to which it belongs has a velocity distribution f(r, w, t).
The long-range Coulomb forces between the test particle p and the ‘field’ particles within a
Debye distance will cause p to experience a multiplicity of ‘distant’ collisions, which as noted
above, will be far more numerous than close collisions. Consequently, almost all the changes
in direction and speed experienced by p will be small. Let p have an initial velocity w,
then after a small time interval ∆t, distant collisions will generate a random walk motion in
p, producing a cumulative change ∆w satisfying |∆w| � |w|. We are ignoring here the
non-random collisional contributions to ∆w, allowing them to enter in the usual way via the
convective terms in the kinetic equation (see remarks in §1.3.3).

Let P (w|∆w) denote the transition probability density that p experiences the change ∆w
in ∆t, then

f(r, w −∆w, t−∆t)× P (w −∆w|∆w) d(∆w)

is the number of particles like p that are deflected from the range (w − ∆w, w) into the
element (w, w+dw) owing to interactions occurring in (t−∆t, t). These particles contribute
to the number f(r, w, t) dw, and assuming that the process is Markovian, i.e. that no earlier
time-intervals contribute to this number, we obtain the Chapman-Kolmogorov equation,

f(r, w, t) =
∫
f(r,w −∆w, t−∆t)P (w −∆w|∆w) d(∆w) , (5.15)

where the integration is over all possible changes in the velocity vector. The time ∆t must
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be small enough for ∆w to remain quite small compared with w, but long enough compared
with the transit time of p over the correlation length for microfield fluctuations. For electrons
this lower limit is about ω−1

pe (see §2.2.3 and §4.6.3).
Expanding the integrand in (5.15) in a Taylor series to first order in ∆t and to second order

in ∆w, we obtain the approximate form

f(r, w, t) =
∫ {(

f −∆tDf
)
P (w|∆w)−∆w · ∂

∂w

[
f P (w|∆w)

]
+ 1

2∆w∆w ·· ∂2

∂w∂w

[
f P (w|∆w)

]}
d(∆w) ,

where Df is the rate of change of f following the bunch of particles through phase space
(see (1.90)) and the terms in the integrand are evaluated at (r, w, t). As the probability of a
transition of any kind occurring is unity,∫

P (w|∆w) d(∆w) = 1 .

Hence the leading term in the expression for f cancels with the left-side and the remaining
terms can be arranged as a kinetic equation for f :

Df = C ≡ − ∂

∂w
· (Af)+

1
2
∂2

∂w∂w ··
(
Bf
)
, (5.16)

in which

A = 〈∆w〉 ≡ 1
∆t

∫
∆wP (w|∆w) d(∆w) , (5.17)

and
B = 〈∆w∆w〉 ≡ 1

∆t

∫
∆w∆wP (w|∆w) d(∆w) . (5.18)

The expression in (5.16) for the collision term C is known as the Fokker-Planck equation.
Notice that it may be expressed as the divergence in velocity space of a ‘flow’ vector J,

C = − ∂

∂w
· J, J ≡ Af − 1

2
∂

∂w
· (Bf) . (5.19)

This vector describes the continuous flow of phase plane points due to the accumulation of
many small-angle collisions. The averages 〈∆w〉 and 〈∆w∆w〉 are termed the friction and
diffusion coefficients for reasons that will become clear below. To apply (5.16) to a plasma we
must calculate these averages for the case of Coulomb collisions.

In general there will be several types of field particles or scatterers influencing the test
particle p, including the species to which p itself belongs. We shall start by considering just
one type of scatterer, denoting its distribution function by fs

(
r, ws, t

)
. The probability that

a single scatterer deflects p into the solid angle dΩ = sinχdχdε (see Fig. 5.3) is σ(g, χ) dΩ,
where g = |w −ws| is the relative speed between the interacting particles and σ(g, χ) is the
Rutherford scattering cross-section. The corresponding scattering rate is gσ(g, χ) dΩ, i.e. of
a group of N incident particles, Ngσ(g, χ) dΩ will appear in dΩ. The assumption of small
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scattering angles allows us to superimpose linearly the contributions of all the scatterers lying
in the appropriate element dw of velocity space. Thus the total probability that p is scattered
into dΩ per second per unit volume is fs dws gσ(g, χ) dΩ. Hence the averages in (5.17) and
(5.18) are equivalent to

〈∆w〉 =
∫∫

∆w gσ(g, χ) dΩ fs dws =
∫ [

∆w
]
Ω
fs dws ,

〈∆w∆w〉 =
∫∫

∆w∆w gσ(g, χ) dΩ fs dws =
∫ [

∆w∆w
]
Ω
fs dws ,

 (5.20)

where [
∆w

]
Ω
≡
∫ 2π

0

∫
χ

∆w gσ(g, χ) sinχdχdε ,

[
∆w∆w

]
Ω
≡
∫ 2π

0

∫
χ

∆w∆w gσ(g, χ) sinχdχdε .

 (5.21)

When there are several types of scatterer, say s = 1, 2, . . ., the integrals in (5.20) are
required for each value of s and must be summed over s to give the averages. In the next
section we shall express these averages as velocity space gradients of two ‘super-potential’
functions.

5.2.2 Scattering in velocity space

Let the test particle p have mass m and velocities w, w′ before and after an elastic col-
lision with a scatterer having mass ms and velocities ws, w′

s before and after the collision.
Then with g = w −ws, g′ = w′ −w′

s, denoting the relative velocities and

G = (mw +msws)/(m+ms), G′ = (mw′ +msw′
s)/(m+ms),

denoting the centre of mass velocities, it is readily shown from the conservation of momentum
and energy that

G = G′, g = g′, w = G+
M

m
g

(
M ≡ mms

m+ms

)
. (5.22)

The angle between g and g′ is the scattering angle χ and since g is unchanged in magni-
tude by the collision, |∆g| = |g′−g| = 2g sin 1

2χ. Resolving the vector ∆g into a component
∆g1 parallel to g and components ∆g2 and ∆g3 perpendicular to g as shown in Fig. 5.4, we
have

∆g = 2g sin 1
2χ
(
− sin 1

2χ, cos 1
2χ cos ε, cos 1

2χ sin ε
)
. (5.23)

By (5.22),

w′ −w = (M/m)(g′ − g), i.e. ∆w = (M/m)∆g.
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Figure 5.4: Scattering in velocity space

The first average in (5.21) is now calculated using (5.14) and (5.23). The integrals con-
taining cos ε and sin ε vanish, leaving only a component parallel to the unit vector g/g. Thus
with χ lying in χmin ≤ χ ≤ χmax, we get

[
∆w

]
Ω

= −4π
M

m

(
b0g
)2 [ln sin 1

2χ
]χmax

χmin

g
g
. (5.24)

As χ is assumed to be small, 1
2π � χmax � χmin. The largest impact parameter b for which

the Coulomb force is effective is the Debye length λD (§2.2.4), so a reasonable assumption is
that χmin corresponds to b = λD. Then by (5.13)1, cot 1

2χmin ≈ 2/χmin = λD/b0. Therefore[
ln sin 1

2χ
]χmax

χmin

≈ (1− α) ln Λ
(
α = − ln 1

2χmax/ ln Λ
)
, (5.25)

where

Λ ≡ λD/b̄0 , (5.26)

and we have removed the weak dependence of the logarithm on particle velocity by replacing
b0 by an average value b̄0.

5.2.3 Super-potential functions

Provided that 1
2χmax is large enough, α � 1, when it follows from (5.9), (5.24), (5.25),

and (5.26) that

[
∆w

]
Ω

= −
(
ZZ ′e2

)2 ln Λ
4πε20Mm

g
g3

(
g = w −ws

)
. (5.27)
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Finally, by integrating over the field particles we obtain

〈∆w〉 = −Γ
m

M

∫
fs(ws)

w −ws
|w −ws|3

dws , (5.28)

where

Γ ≡
(
ZZ ′e2

)2 ln Λ
4πε20m2

. (5.29)

As

g · ∂g
∂w

= g
∂g

∂w
= g ,

we can write[
∆w

]
Ω

=
m

M
Γ
∂

∂w

(1
g

)
, (5.30)

and therefore

〈∆w〉 = Γ
∂H
∂w
, (5.31)

where

H ≡ m
M

∫
fs(ws)
|w −ws|

dws . (5.32)

This scalar functionH is the first of the two super-potentials, introduced by Rosenbluth, Mac-
Donald and Judd (1957).

A similar method is applied to the average 〈∆w∆w〉. First we calculate[
∆wi∆wj

]
Ω
, i, j = 1, 2, 3. The integration over ε eliminates the terms in which i and j

are not equal, and it is readily found that[
∆w2∆w2

]
Ω

=
[
∆w3∆w3

]
Ω

= Γ/g =
[
∆w1∆w1

]
Ω

ln Λ .

As ln Λ is typically between 10 and 20 in the plasmas of interest to us, we can neglect[
∆w1∆w1

]
Ω

compared with the other components, and as this quantity is the coefficient
of the tensor component gg/g2, by removing it we get

[
∆w∆w

]
Ω

=
Γ
g

(
11− gg/g2

)
. (5.33)

By
∂2g

∂w ∂w
=
∂

∂w

(g
g

)
=

1
g

(
11− gg/g2

)
, (5.34)

(5.33) can be expressed

[
∆w∆w

]
Ω

= Γ
∂2g

∂w ∂w
. (5.35)
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Now we introduce the second super-potential,

G ≡
∫
fs(ws) |w −ws| dws , (5.36)

then the average of (5.35) over the field particles gives

〈∆w∆w〉 = Γ
∂2G
∂w ∂w

. (5.37)

By (5.17), (5.18), (5.31), and (5.37) the Fokker-Planck equation may be expressed

C = −Γ
∂

∂w
·
(
f
∂H
∂w

)
+

Γ
2
∂2

∂w ∂w ··
(
f
∂2G
∂w ∂w

)
. (5.38)

In general, when there are several scatterers, we write H =
∑
sHs and G =

∑
s Gs, and a

separate kinetic equation, Dfs = Cs, is required for each species. As H and G are integrals,
we now have a set of rather complicated, coupled, integro-differential equations, which can
be solved accurately only by numerical computation.

Finally we note two useful relations involvingH and G. The first is

m

M
∇2

wG = 2H
(∇w ≡

∂

∂w

)
, (5.39)

which follows on integrating ∇2
wg = 2/g over the field particles. The second is the Poisson

equation

∇2
wH = −4π

m

M
fs(ws) , (5.40)

which is implied by (5.28) and (5.31).

5.3 Lorentzian plasma

5.3.1 Collisional loss rate

A hypothetical, fully-ionized gas with ions of infinite mass and no electron-electron in-
teractions, is known as a ‘Lorentzian’ plasma. This ideal medium approximates the situation
when the positive ions have a very high nuclear charge (Z � 1); it also provides an exact
algebraic theory for comparison purposes.

For electron-ion collisions,M = memi/(me +mi) → me as mi → ∞. The ions have
negligible random velocities, otherwise their temperature would tend to infinity with mi. We
shall take the laboratory frame to be fixed in the ion fluid so that fi(wi) = niδ(0), where
ni is the ion number density and δ(wi) is the delta function. In this case with m = me and
fs = fi in (5.32) and (5.36), we get H = ni/w and G = niw, where w is the electron speed.
Therefore (5.31), (5.33), and (5.37) yield

〈∆w〉 = −niΓ
w2

ŵ , 〈∆w∆w〉 =
niΓ
w

11⊥ , (5.41)




