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Theory of Infrared Absorption and Raman

Spectroscopy

Molecular vibrations can be excited via two physical mechanisms: the absorption

of light quanta and the inelastic scattering of photons (Fig. 2.1) (Herzberg 1945).

Direct absorption of photons is achieved by irradiation of molecules with poly-

chromatic light that includes photons of energy matching the energy difference

hnk between two vibrational energy levels, the initial (i, e.g., ground state) and

the final ( f , e.g., first excited state) vibrational state.

hnk ¼ hnf � hni ð2:1Þ

As these energy differences are in the order of 0.5 and 0.005 eV, light with wave-

lengths longer than 2.5 mm, that is infrared (IR) light, is sufficient to induce the

vibrational transitions. Thus, vibrational spectroscopy that is based on the direct

absorption of light quanta is denoted as IR absorption or IR spectroscopy.

The physical basis of IR light absorption is very similar to light absorption in

the ultraviolet (UV)–visible (vis) range, which causes electronic transitions or

combined electronic–vibrational (vibronic) transitions. Thus, UV–vis absorption

spectroscopy can, in principle, also provide information about molecular vibra-

tions. However, for molecules in the condensed phase at ambient temperature,

the vibrational fine structure of the absorption spectra is only poorly resolved , if

at all, such that vibrational spectroscopy of biomolecules by light absorption is re-

stricted to the IR range.
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Fig. 2.1 Illustration of the excitation of molecular vibrations in

IR (top) and Raman (bottom) spectroscopy. In IR spectroscopy,

the vibrational transitions are induced by absorption of light

quanta from a continuous light source in the IR spectral

region. Vibrational Raman transitions correspond to inelastic

scattering (nR; thin arrow) of the incident monochromatic light

ðn0Þ whereas the elastic scattering ðn0Þ is represented by the

thick arrow.



In contrast to IR spectroscopy, the scattering mechanism for exciting molecular

vibrations requires monochromatic irradiation. A portion of the incident photons

is scattered inelastically such that the energy of the scattered photons ðhnRÞ dif-
fers from that of the incident photons ðhn0Þ. According to the law of conversation

of energy, the energy difference corresponds to the energy change of the mole-

cule, which refers to the transition between two vibrational states. Thus, the en-

ergy differences

hn0 � hnR ¼ hnf � hni ð2:2Þ

lie in the same range as the transitions probed by the direct absorption of mid-IR

quanta, although photons of UV, visible, or near-infrared light are used to induce

scattering. This inelastic scattering of photons was first discovered by the Indian

scientist C. V. Raman in 1928 and is thus denoted as the Raman effect.

Vibrational transitions may be associated with rotational transitions that can

only be resolved in high resolution spectra of molecules in the gas phase and is,

therefore, not relevant for the vibrational spectroscopy of biomolecules. Thus,

vibration–rotation spectra will not be treated in this book.

Depending on the molecule, the same or different vibrational transitions are

probed in IR and Raman spectroscopy and both techniques provide complemen-

tary information in many instances. Hence, IR and Raman spectra are usually

plotted in an analogous way to facilitate comparison. The ordinate refers to the

extent of the absorbed (IR) or scattered (Raman) light. In IR absorption spectros-

copy, the amount of absorbed light is expressed in units of absorbance or, albeit

physically less correct but frequently used, in terms of the optical density. In

contrast, Raman intensities are measured in terms of counts per second, i.e., of

photons detected per second. As this value depends on many apparatus-specific

parameters, in most instances only relative intensities represent physically mean-

ingful quantities. Thus, the Raman intensity scale is typically expressed in terms

of arbitrary units or the scale is even omitted. The energy of the vibrational tran-

sition, expressed in terms of wavenumbers (cm�1), is given on the abscissa,

corresponding to the frequency of the absorbed light nabs in IR spectroscopy and

to the frequency difference between the exciting and scattered light, n0 � nR, in

Raman spectroscopy.

The principle sources of information in vibrational spectroscopy are the ener-

gies of the vibrational transitions and the strength of their interaction with the

IR or UV–vis radiation, i.e., the band intensities. Classical mechanics constitutes

the basis for describing the relationship between vibrational frequencies and the

molecular structure and force fields whereas quantum mechanics is indispens-

able for understanding the transition probabilities and thus the intensities of vi-

brational bands in the IR or Raman spectra.

2.1

Molecular Vibrations

As the starting point for introducing the concept of harmonic vibrations, it is in-

structive to consider molecules as an array of point masses that are connected
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with each other by mass-less springs representing the intramolecular interactions

between the atoms (Wilson et al. 1955). The simplest case is given by two masses,

mA and mB, corresponding to a diatomic molecule A–B. Upon displacement of

the spheres along the x-axis from the equilibrium position by Dx, a restoring

force Fx acts on the spheres, which according to Hooke’s law, is given by

Fx ¼ �f Dx ð2:3Þ

Here f is the spring or force constant, which is a measure of the rigidity of the

spring, that is, the strength of the bond. The potential energy V then depends on

the square of the displacement from the equilibrium position

V ¼ 1

2
f Dx2 ð2:4Þ

For the kinetic energy T of the oscillating motion one obtains

T ¼ 1

2
mðD _xxÞ2 ð2:5Þ

where m is the reduced mass defined by

m ¼ mA �mB

mA þmB
ð2:6Þ

Because of the conservation of energy, the sum of V and Tmust be constant, such

that the sum of the first derivatives of V and T is equal to zero, as expressed by

Eq. (2.7):

0 ¼ dT

dt
þ dV

dt
¼ 1

2

dðD _xx2Þ
dt

þ 1

2
f
dðDx2Þ

dt
ð2:7Þ

which eventually leads to the Newton equation of motion

d2Dx

dt2
þ f

m
Dx ¼ 0 ð2:8Þ

Equation (2.8) represents the differential equation for a harmonic motion with

the solution given by a sine or cosine function, i.e.,

Dx ¼ A � cosðotþ jÞ ð2:9Þ

where A, o, and j are the amplitude, circular frequency, and phase, respectively.

Combining Eq. (2.9) with its second derivative one obtains

d2Dx

dt2
þ o2Dx ¼ 0 ð2:10Þ
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such that comparison with Eq. (2.8) yields

o ¼

ffiffiffiffi
f

m

s
ð2:11Þ

Equation (2.11) describes what one intuitively expects: the circular frequency of

the harmonic vibration increases when the rigidity of the spring (or the strength

of the bond) increases but decreases with increasing masses of the spheres. In

order to express the circular frequency in wavenumbers (in cm�1), Eq. (2.11) has

to be divided by 2pc (with c given in cm s�1):

~nn ¼ 1

2pc

ffiffiffiffi
f

m

s
ð2:12Þ

In contrast to the straightforward treatment of a two-body system, including a

third sphere corresponding to a triatomic molecule clearly represents a concep-

tual challenge (Wilson et al. 1955). Let us consider a bent molecule such as H2O

as an example (Fig. 2.2). Following the same strategy as for the diatomic mole-

cule, we analyse the displacements of the individual atoms in terms of the restor-

ing forces. There are two questions to be answered. (a) What are the displace-

ments that lead to vibrations? (b) Are all possible displacements allowed?

In the Cartesian coordinate system, each atom can be displaced in the x-, y-,
and z-directions, corresponding to three degrees of freedom. Thus, a molecule of

N atoms ðaÞ has in total 3N degrees of freedom, but not all of them correspond

to vibrational degrees of freedom. If all atoms are displaced in the x-, y-, and z-
directions by the same increments, the entire molecule moves in a certain direc-

tion, representing one of the three translational degrees of freedom. Furthermore,

one can imagine displacements of the atoms that correspond to the rotation of

Fig. 2.2 Illustration of the vibrating H2O molecule represented by

spheres that are connected via springs of different strengths. The

tighter springs linking the large sphere (oxygen) with each of the small

spheres (hydrogen) symbolises the chemical bonds between two atoms,

whereas the looser spring refers to weaker interactions between two

atoms that are not connected via a chemical bond.
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the molecule. It can easily be seen that a nonlinear molecule (i.e., where the

atoms are not located along a straight line) has three rotational degrees of free-

dom, whereas there are only two for a linear molecule. Thus, the remaining

3N � 6 and 3N � 5 degrees of freedom correspond to the vibrations of a nonlin-

ear and a linear molecule, respectively. For the treatment of molecular vibrations

in terms of Cartesian coordinates, the rotational and translational degrees of free-

dom can be separated by choosing a rotating coordinate system with its origin in

the centre of mass of the molecule.

As an important implication of these considerations, we note that the vibra-

tional degrees of freedom and thus the number of molecular vibrations are

uniquely determined by the number of atoms in the molecule. In our example

of a nonlinear three-atomic molecule there are just 3 ð¼ 3 � 3� 6Þ vibrational de-
grees of freedom. Thus, molecular vibrations do not represent random motions

but well-defined displacements of the individual atoms. Consequently, one may

intuitively expect that these vibrations, which are denoted as normal modes, are

characteristic of a given molecule. The primary task of the normal mode analysis

is to decode the relationships between normal modes, specifically their frequen-

cies, and molecular properties.

2.1.1

Normal Modes

To determine the normal mode frequencies, we begin by expressing the kinetic

and potential energy in terms of the displacements of the Cartesian coordinates

for each atom a (Wilson et al. 1955). For the kinetic energy one obtains [see Eq.

(2.5)]

T ¼ 1

2

XN
a¼1

ma

dDxa
dt

� �2
þ dDya

dt

� �2
þ dDza

dt

� �2" #
ð2:13Þ

At this point it is convenient to introduce so-called mass-weighted Cartesian dis-

placement coordinates, which are defined according to

q1 ¼
ffiffiffiffiffiffiffi
m1
p

Dx1; q2 ¼
ffiffiffiffiffiffiffi
m1
p

Dy1; q3 ¼
ffiffiffiffiffiffiffi
m1
p

Dz1 for atom a ¼ 1

q4 ¼
ffiffiffiffiffiffiffi
m2
p

Dx2; q5 ¼
ffiffiffiffiffiffiffi
m2
p

Dy2; q6 ¼
ffiffiffiffiffiffiffi
m2
p

Dz2 for atom a ¼ 2 ð2:14Þ

and correspondingly for all other atoms such that one obtains 3N mass-weighted

Cartesian displacement coordinates. Substituting Eq. (2.14) in Eq. (2.13) simpli-

fies the expression for the kinetic energy to

T ¼ 1

2

X3N
i¼1

_qq2i ð2:15Þ

To derive the appropriate expression for the potential energy, V, is more

complicated as it has to take into account all possible interactions between the
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individual atoms, which primarily include the bonding interactions but also non-

bonding (electrostatic, van-der-Waals) interactions. For the three-atomic water

molecule in Fig. 2.2 this implies that the displacement of one hydrogen atom de-

pends on the attractive and repulsive forces of both the central oxygen and the

second hydrogen atom. Within the framework of the sphere–spring model we

therefore also have to connect both hydrogen ‘‘spheres’’ via a spring which, how-

ever, is less rigid than those connecting the hydrogen spheres with the oxygen.

It is convenient to expand the potential energy in a Taylor series in terms of the

displacement coordinates Dxi, Dyi, Dzi, which can be also expressed in terms of

the coordinates qi defined in Eq. (2.14).

V ¼ V0 þ
X3N
i¼1

qV

qqi

� �
0

qi þ
1

2

X3N
i; j¼1

q2V

qqiqq j

� �
0

qiq j þ � � � � � ð2:16Þ

The first term refers to the potential energy at equilibrium, which we can set

equal to zero as we are interested in changes to V brought about by displace-

ments of the individual atoms. At equilibrium, infinitesimal changes in qi do
not cause a change in V, such that the second term is also zero. For small dis-

placements qi within the harmonic approximation, higher order terms can be ne-

glected, such that Eq. (2.16) is simplified to

V G
1

2

X3N
i; j¼1

q2V

qqiqq j

� �
0

¼ 1

2

X3N
i; j¼1

fijqiq j ð2:17Þ

where fij are the force constants.

In books on classical mechanics it is shown that, in the absence of external and

non-conservative forces, Newton’s equations of motion can be written in the fol-

lowing form:

d

dt

qT

q _qq j
þ qV

qq j
¼ 0 ð2:18Þ

which yields

€qq j þ
X3N
i¼1

fijqi ¼ 0 ð2:19Þ

Equation (2.19) is equivalent to Eq. (2.10) for the diatomic harmonic oscillator, ex-

cept that it represents not just one but a set of 3N linear second-order differential

equations for which we can write the general solution, in analogy to Eq. (2.9),

qi ¼ Ai cosð
ffiffiffi
l
p

tþ jÞ ð2:20Þ
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Inserting Eq. (2.20) into Eq. (2.19) yields

�Ajlþ
X3N
i¼1

fijAi ¼ 0 ð2:21Þ

which corresponds to 3N linear equations for Aj. These equations only have a so-

lution different from zero if the 3N � 3N determinant vanishes (secular equation):

f11 � l f12 f13 � � � � � � � � f1; 3N
f21 f22 � l f23 � � � � � � � � f2; 3N
f31 f32 f33 � l � � � � � � � � f3; 3N

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
f3N; 1 f3N; 2 f3N; 3 � � � � � � � � f3N; 3N � l

������������

������������
¼ 0 ð2:22Þ

There are 3N solutions for l corresponding to 3N frequencies l1=2. As the sum-

mation has been made over all 3N degrees of freedom, 6 (5) of these solutions

refer to translational and rotational motions of the nonlinear (linear) molecules

and, therefore, must be zero. Thus, Eq. (2.22) yields only 3N � 6 ð3N � 5Þ non-
zero values for l. The proof for this is lengthy and is not shown here (Wilson

et al. 1955). The non-zero solutions correspond to the so-called normal modes.

Once the individual lk values have been determined, the amplitudes Ai for

each normal mode have to be determined on the basis of in Eq. (2.21).

ð f11 � lkÞA1k þ f12A2k þ � � � � � � � � þ f1; 3NA3N; k ¼ 0

f21A1k þ ð f22 � lkÞA2k þ � � � � � � � � þ f2; 3NA3N; k ¼ 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

f3N; 1A1k þ f3N; 2 þ � � � � � � � � þ ð f3N; 3N � lkÞA3N; k ¼ 0

ð2:23Þ

As Eq. (2.23) represents a set of homogeneous equations, only relative amplitudes

can be obtained and a normalisation is required, as will be discussed below. The

amplitudes Aik describe the character of a normal mode as they quantify the dis-

placements of each atom i in each normal mode k. Eqs. (2.20 and 2.23) imply that

in a given normal mode k all atoms vibrate in-phase and with the same frequency

ðlkÞ1=2, but with different amplitudes. Thus, it is always an approximation, albeit

a useful one in many instances, to characterise normal modes of polyatomic mole-

cules in terms of specific group vibrations, i.e., if only one coordinate dominates

the normal mode.

Although the treatment of normal modes in the Cartesian coordinate system is

straightforward, it has the disadvantage of distributing all information for a given

normal mode among 3N equations. In particular, for describing probabilities of

vibrational transitions [see Eq. (2.2)] a more compact presentation is desirable.

For this purpose, the mass-weighted Cartesian coordinates qi are converted into

normal coordinates Qk via an orthogonal transformation according to
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Qk ¼
X3N
i¼1

l ikqi ð2:24Þ

The transformation coefficients l ik are chosen such that T and V, expressed as a

function of Qk, adopt the same form as Eqs. (2.15 and 2.16) and the potential en-

ergy does not depend on cross products Qk �Qk 0 (with k0 k 0). The solution of

Newton’s equation of motion thus leads to

Qk ¼ Kk cosð
ffiffiffiffiffi
lk

p
tþ jkÞ ð2:25Þ

with arbitrary values of Kk and jk. The representation of molecular vibrations in

normal coordinates is particularly important for the quantum mechanical treat-

ment of the harmonic oscillator (Box 2A).

2.1.2

Internal Coordinates

The normal coordinate system is, mathematically, a very convenient system and,

moreover, is required for the quantum chemical treatment of vibrational transi-

tions. However, it is not a very illustrative system as molecular vibrations are usu-

ally imagined in terms of stretching or bending motions of molecules or parts of

molecules. Such motions cannot be intuitively deduced from a normal coordinate

or the array of mass-weighted Cartesian coordinates (Wilson et al. 1955). It is,

therefore, desirable to introduce a coordinate system that is based on ‘‘structural

elements’’ of molecules, such as bond lengths and angles, and torsional and out-

of-plane angles. These so-called internal coordinates are derived from Cartesian

displacement coordinates ðDxa;Dya;DzaÞ on the basis of the geometry of the mole-

cule.

The displacement of each atom a is defined by the vector ~rraðDxa;Dya;DzaÞ,
which is related to the internal coordinate St according to

St ¼
XN
a¼1

~ssta �~rra ð2:26Þ

The vector~ssta is chosen such that it points in the direction of the largest displace-

ment of~rra corresponding to the greatest increase in St. This statement is best il-

lustrated on the basis of the most simple internal coordinate, the bond stretching

coordinate (Fig. 2.3). A stretching coordinate is defined by two atoms ða ¼ 1; 2Þ.
Thus, for this coordinate the displacement of all other atoms is zero and the

sum in Eq. (2.26) only refers to two terms. The largest displacement from the

equilibrium positions occur along the axis of the bond assumed to be the x-axis

but in opposite directions for atom 1 and 2. Expressing ~sst1 and~sst2 in terms of

unit vectors we thus obtain

~sst1 ¼~ee21 ¼ �~ee12 and ~sst2 ¼~ee12 ð2:27Þ
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According to Eq. (2.26), the bond stretching coordinate Ss is then given by

Ss ¼ Dx1 � Dx2 ð2:28Þ

For the valence angle bending coordinate Sb we have to consider three atoms

(Fig. 2.3). To achieve the largest contribution to Sb, the displacements of atoms 1

and 2 and thus~sst1 and~sst2 are perpendicular to the vectors defining the respective

bonds between the atoms 1 and 3 and 2 and 3. A unit (infinitesimal) displace-

ment of atom 1 along~sst1 increases f by the amount of 1=r31. Geometric consider-

ations then yield

~sst1 ¼
~ee31 � cos f�~ee32

r31 � sin f
ð2:29Þ

and analogous expressions can be derived for~sst2 and~sst3.

~sst2 ¼
~ee32 � cos f�~ee31

r32 � sin f
ð2:30Þ

~sst3 ¼
½ðr31 � r32 cos fÞ~ee31 þ ðr32 � r31 cos fÞ~ee32�

r31r32 sin f
ð2:31Þ

Insertion of the Eqs. (2.29, 2.30, and 2.31) into Eq. (2.26) yields the internal coor-

dinate for the bending motion.

Further internal coordinates are the out-of-plane deformation and torsional co-

ordinates that refer to the angle between a bond and a plane and to a dihedral

angle, respectively. In both instances, four atoms are required to define these co-

ordinates (Wilson et al. 1955).

2.1.3

The FG-Matrix

For a molecule with 3N � 6 vibrational degrees of freedom, a complete set of in-

ternal coordinates includes 3N � 6 independent internal coordinates. The defini-

Fig. 2.3 Definition of internal coordinates: top, stretching

coordinate; and bottom, bending coordinate.
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tion of this set is straightforward for small molecules such as the triatomic non-

linear molecule in Fig. 2.2, for which two bond stretching and one bond angle de-

formation coordinates are necessary and sufficient. However, with the increasing

size of the molecules, definition of the coordinate set becomes more and more

complicated. Thus, it is of particular importance to choose systematic strategies

for selection of the internal coordinates. Appropriate protocols have been pro-

posed in the literature, however, sorting out independent and dependent internal

coordinates may represent a challenge in many instances (Wilson et al. 1955; Fo-

garasi et al. 1992). Such redundancies appear in particular in ring systems and

have to be removed by appropriate boundary conditions a posteriori.
The internal coordinates are independent of the masses of the atoms involved,

which are introduced by setting up the so-called G-matrix, which is derived in

Wilson et al. (1955). The elements of the G-matrix are given by

Gtt 0 ¼
XN
a¼1

ma~ssta �~sst 0a ð2:32Þ

where ma is the reciprocal mass of atom a.

The G-matrix now contains all the information on the chemical constitution

and the structure of the molecule. The elements Gtt 0 represent a t � t 0 matrix

with the number of internal coordinates t being equal to the number of vibra-

tional degrees of freedom. For a nonlinear three-atomic molecule (Fig. 2.2) the

G-matrix can be easily calculated using Eq. (2.32) on the basis of the~sst1 vectors

defined in Eqs. (2.27–2.31).

m1 þ m2 m3 cos f
�m3 sin f

r32

m3 cos f m2 þ m3
�m3 sin f

r31

�m3 sin f

r32

�m3 sin f

r31

m1

r 231
þ m2

r 232
� m3

1

r 231
þ 1

r 232
� 2 cos f

r31r32

 !

��������������

��������������
¼ G ð2:33Þ

In analogy to the treatment in the Cartesian and normal coordinate systems, the

next step is to derive expressions for the kinetic and potential energy in terms of

the internal coordinates (Wilson et al. 1955). The kinetic energy in terms of inter-

nal coordinates is given by

T ¼ 1

2

X
tt 0
ðG�1Þtt 0 _SSt

_SSt 0 ð2:34Þ

where ðG�1Þtt 0 are the elements of the inverse G-matrix [Eq. (2.33)]. The expres-

sion for the potential energy is written as

V ¼ 1

2

X
tt 0

Ftt 0StSt 0 ð2:35Þ
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The Newton equation of motion then adopts a form similar to Eq. (2.19), with the

solution for the differential equation given by

st ¼ At cosð
ffiffiffi
l
p

tþ jÞ ð2:36Þ

in analogy to Eq. (2.20). Thus, one obtains the secular equation

F11 � ðG�1Þ11l F12 � ðG�1Þ12l F13 � ðG�1Þ13l � � � � � � � � F1n � ðG�1Þ1nl
F21 � ðG�1Þ21l F22 � ðG�1Þ22l F23 � ðG�1Þ23l � � � � � � � � F2n � ðG�1Þ2nl
F31 � ðG�1Þ31l F32 � ðG�1Þ32l F33 � ðG�1Þ33l � � � � � � � � F3n � ðG�1Þ3nl
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Fn1 � ðG�1Þn1l Fn2 � ðG�1Þn2l Fn3 � ðG�1Þn3l � � � � � � � � Fnn � ðG�1Þnnl

�����������

�����������
¼ 0

ð2:37Þ

which can be expressed in a much simpler way through matrix formalism

jF �G�1lj ¼ 0 ð2:38Þ

Equation (2.38) is the so-called FG-matrix, which upon applying matrix algebra

can be re-written in various forms (Wilson et al. 1955).

The secular equations in Eq. (2.37) have t solutions for l from which the ‘‘fre-

quencies’’ (in wavenumbers) are obtained according to

~nn ¼ 1

2pc

ffiffiffi
l
p

ð2:39Þ

Once the eigenvalues lk have been evaluated, the nature of the normal mode has

to be determined by evaluating the relative amplitudes Atk. Using Eq. (2.35),

these quantities can be normalised with respect to the potential energy such that

the relative contributions of each internal coordinate t to all normal modes and

the relative contributions of all internal coordinates in each normal mode sum

up to one. This procedure allows for an illustrative description of the character

of the normal modes in terms of the potential energy distribution (PED, given

in %), e.g., x% of the stretching coordinate t1, y% of the bending coordinate t2,
etc.

Both the G- and the F-matrix are symmetric, that is Gtt 0 ¼ Gt 0t and Ftt 0 ¼ Ft 0 .

This corresponds to 1=2½vðvþ 1Þ� different Gtt 0 and Ftt 0 elements for a molecule

with v vibrational degrees of freedom. Whereas the Gtt 0 elements can be com-

puted readily when the structure of the molecule is known, the Ftt 0 elements are

not known a priori. Even for a simple three-atomic nonlinear molecule as de-

picted in Fig. 2.2, there are six different force constants: the stretching force con-

stants F11 and F22, referring to the bonds between the atoms 1 and 2 and the

atoms 2 and 3, respectively, the bending force constant F33, and the three interac-

tion force constants F12, F13, and F23, which are related to the interactions be-

tween the individual stretching and bending coordinates. On the other hand,

2.1 Molecular Vibrations 21



there are only three normal mode frequencies that can be determined experimen-

tally. This example illustrates the inherent problem of empirical vibrational anal-

ysis: the number of observables is always much smaller than the number of un-

known force constants.

In some instances, it is possible to utilise the symmetry properties of normal

modes (Box 2B) (Wilson et al. 1955; Cotton 1990). For symmetric molecules the

normal modes can be classified in terms of the symmetry species of the point

group to which the molecule belongs. Each point group is characterised by a set

of symmetry operations, such as the reflection in a mirror plane or an n-fold rota-

tion about an n-fold axis of symmetry. Now the individual normal modes are

either symmetric or antisymmetric to these operations. For instance, a normal

mode that is symmetric to all symmetry operations of the point group is denoted

as a totally symmetric mode and thus belongs to the totally symmetric species of

the point group. On the basis of group theory, it is possible to determine the

number of normal modes for each symmetry species of the point group. This

does not just facilitate computing the normal mode frequencies, because the sec-

ular determinant can be factorised. Moreover, one may predict IR and Raman

activity of the individual modes taking into account the symmetry properties of

the dipole moment and polarisability operator (vide infra) (Box 2C).
In biological systems, however, many of the molecules to be studied by vibra-

tional spectroscopy lack any symmetry element, such that application of group

theory to the analysis of vibrational spectra is restricted to only a few examples.

Thus, this topic will not be covered comprehensively in this tutorial, but inter-

ested reader should consult specialised monographs (see Box 2B) (Wilson et al.

1955; Cotton 1990).

Essential support for the empirical vibrational analysis is based on isotopically

labelled derivatives. A variation of the masses only alters the G-matrix and leaves

the F-matrix unchanged. For the simplest case of a diatomic molecule, Eq. (2.11)

shows that the frequency varies with the square root of the reciprocal reduced

mass. However, for a three-atomic molecule the situation is even more compli-

cated as the individual modes include contributions from three internal coordi-

nates, albeit to different extents. Thus, force constants may be fitted to the exper-

imental data set constituted by the vibrational frequencies of all isotopomers.

Whereas for simple molecules with up to 10 atoms this approach has been ap-

plied with considerable success, it rapidly approaches practical limitations with

an increasing number of atoms, because the synthetic efforts to produce a suffi-

ciently large number of isotopically labelled compounds becomes enormous.

Thus, the vibrational problem is inherently underdertimined.

Nevertheless, until the beginning of the 1990s, the empirical vibrational analy-

sis was the only practicable way to extract structural information from the spectra

of biological molecules such as porphyrins or retinals (Li et al. 1989, 1990a,

1990b; Curry et al. 1985). The starting point for this approach is a set of empirical

force constants that have been found to be appropriate for specific internal coor-

dinates. These force constants are derived from molecules for which a spectro-

scopic determination of the force field is facilitated due to the smaller size, higher
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symmetry, and the availability of appropriate isotopomers. Subsequently, the force

constant matrix of the molecule under consideration is simplified by appropriate

approximations, including the neglect of interaction force constants for internal

coordinates of widely separated parts of the molecule. Finally, the normal modes

are calculated for the presumed geometry (G-matrix) and adjustments of individ-

ual force constants are made to achieve the best possible agreement with the ex-

perimental data. This refinement represents the most critical step as it requires a

pre-assignment of the experimentally observed bands. Inconsistencies in the as-

signment and substantial deviations between calculated and experimental fre-

quencies that can only be removed by choosing unusual force constants may

then be taken as an indication that the presumed geometry was incorrect. The

procedure is then repeated on the basis of alternative molecular structures until

a satisfactory agreement between theory and experiment is achieved. It is fairly

obvious that the reliability of such a tedious procedure strongly depends on the

availability of a sufficiently large set of experimental data.

2.1.4

Quantum Chemical Calculations of the FG-Matrix

The alternative approach is to calculate the force constant matrix by quantum

chemical methods, which, due to progress in the development of the hardware

and efficient and user-friendly program packages, are nowadays applicable to

biological molecules, including molecules of more than 50 non-hydrogen atoms.

In these methods, an initial (‘‘guess’’) geometry of a molecule is set up and the

Schrödinger equation is solved in self-consistent field calculations, which lead

to the energy eigenvalues for this geometry. Systematic variations of internal co-

ordinates then eventually afford the geometry of lowest energy. This energy opti-

misation allows determination of the force constants by calculating the second

derivatives of the potential energy according to Eq. (2.17). Thus, all elements of

the F- and G-matrix can be computed and the normal modes are determined as

described above.

The most promising quantum chemical method is based on density functional

theory (DFT), which represents an excellent compromise between accuracy and

computational costs. Unlike Hartree–Fock procedures, DFT is directed to calcu-

lated electron densities rather than wavefunctions. Within this approach, the en-

ergy depends on the electron density and this dependency is included in a func-

tional. There are various functionals that have been suggested and tested for

calculating different observables. For calculations of vibrational frequencies, the

B3LYP functional is widely used and it was found to reproduce experimental

data in a satisfactory manner when using a standard 6-31G* basis set (Rauhut

and Pulay 1995). Nevertheless, the underlying approximations cause deviations

from the experimental frequencies that are approximately in the order of 4%, cor-

responding to a frequency uncertainty of ca.G60 cm�1 for modes between 1500

and 1700 cm�1. Considering a medium-sized molecule of 25 atoms, one may ex-

pect ca. 50 normal modes in the spectral region between 200 and 1700 cm�1 that
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is usually studied by IR and Raman spectroscopy. This corresponds to an average

density of modes of ca. 1 mode per 30 cm�1, such that an accuracy of 4% for the

calculated frequencies would not allow an unambiguous assignment for all exper-

imentally observed bands.

The errors associated with the DFT calculations result from insufficient consid-

eration of the electron correlation, and, more severely, from the harmonic approx-

imation. The latter effect, illustrated in Fig. 2.4, causes an overestimation of the

force constants, as the harmonic potential function is too narrow compared with

an anharmonic potential function. These deficiencies of the DFT approach are

systematic in nature such that they may be compensated a posteriori.
The simplest procedure is to correct the frequencies uniformly by multiplica-

tion with an empirical factor. This frequency scaling increases the accuracy of

the calculated frequencies to ca.G25 cm�1, which, however, is at the limit for an

unambiguous vibrational assignment for molecules that include up to 50 atoms.

The most reliable procedure to correct for the intrinsic deficiencies of the quan-

tum chemical calculations is to scale the force field directly. Using scaling factors

si that are specific for the various internal coordinates i, one obtains corrected

force constants ðFijÞs according to

ðFijÞs ¼
ffiffiffiffi
si
p ðFijÞ

ffiffiffiffi
sj
p ð2:40Þ

These scaling factors can be determined for small example molecules for which a

sound assignment of the experimental bands is established, such that the specific

correction factors can be adjusted to yield the best agreement between calculated

and experimental data (Rauhut and Pulay 1995; Magdó et al. 1999). The scaling

factors are characteristic of specific internal coordinates but not unique for an in-

dividual molecule. Thus, they can be transferred to the target molecule and used

without any further fine tuning. This concept of global scaling factors has been

shown to provide an accuracy of ca. G10 cm�1 for the calculated frequencies,

Fig. 2.4 Potential curves for a diatomic oscillator as a function of the

inter-atomic distance r. The solid line is a schematic representation of a

Morse potential function for an anharmonic oscillator whereas the

dotted line refers to the harmonic potential function.
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even for large molecules. Attention has to be paid in the case of hydrogen

bonded systems as here the 6-31G* basis set may not be sufficiently large (Mro-

ginski et al. 2005). Applying the global scaling approach, however, requires a co-

ordinate transformation of the force field from Cartesian to internal coordinates,

which is not a routine procedure in each case (vide supra).
Even on the basis of scaled quantum chemical force fields, the comparison with

the calculated frequencies alone does not allow for an unambiguous assignment

for many biologically molecules as large as, for example, tetrapyrroles or retinals.

Therefore, calculated band intensities are often required as additional assignment

criteria. Calculation of IR and Raman intensities is straightforward within the

software packages for quantum chemical methods used for the force field calcu-

lations. For resonance Raman intensity calculations, tailor-made solutions have to

be designed (see Section 2.2.3).

2.2

Intensities of Vibrational Bands

Besides the frequencies of a normal mode, the intensity of the vibrational band is

the second observable parameter in the vibrational spectrum. The intensity is

simply proportional to the probability of the transition from a vibrational energy

level n to the vibrational level m, typically (but not necessarily) corresponding to

the vibrational ground and excited states, respectively. To understand the proba-

bilities of transitions between different states that are induced by the interaction

of the molecule with electromagnetic radiation, quantum mechanical treatments

are required.

Generally, the transition probability Pnm is given by the square of the integral

Pnm ¼ hc�mjŴWjcni ð2:41Þ

where cn and cm are the wavefunctions for the vibrational states n and m, and ŴW

is the operator that describes the perturbation of the molecule by the electromag-

netic radiation. This operator is different for the physical processes in IR and

Raman spectroscopy and is obtained by first-order and second-order perturbation

theory, respectively.

2.2.1

Infrared Absorption

In IR spectroscopy, the transition n! m results from the absorption of a photon

and thus the process is controlled by the electrical dipole moment operator m̂mq,

which is defined by

m̂mq ¼
X
a

ea � qa ð2:42Þ
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where ea is the effective charge at the atom a and qa is the distance to the centre

of gravity of the molecule in Cartesian coordinates ðq ¼ x; y; zÞ (Wilson et al.

1955). The interaction with the radiation is given by the scalar product between

the vector of the electric field of the radiation and m̂mq. Averaging over all molecule

orientations, the IR intensity for this transition is expressed by

Inm; IR z ð½mx�2nm þ ½my�2nm þ ½mz�
2
nmÞ ð2:43Þ

where ½mq�nm is the integral

½mq�nm ¼ hc�mjm̂mqjcni ð2:44Þ

One can easily see that a vibrational transition n! m in the IR spectrum only

occurs if it is associated with a non-zero transition dipole moment ½mq�nm. To de-

cide whether or not, a normal mode is IR active, we expand m̂mq in a Taylor series

with respect to the normal coordinates Qk. Within the harmonic approximation,

the series is restricted to the linear terms

m̂mq ¼ m0
q þ

X3N�6
K¼1

m̂mk
qQ k ð2:45Þ

with

m̂mk
q ¼

qmq

qQk

� �
0

ð2:46Þ

With Eq. (2.41) the transition probability is then given by

½ m̂mq� ¼ hc�mjm̂mqjcni ¼ m0
qhc

�
mcniþ

X3N�6
k¼1

m̂mk
qhc

�
mjQkjcni ð2:47Þ

The first integral on the right-hand side of Eq. (2.47) is zero as the wavefunctions

cn and cm are orthogonal. Thus, a non-zero transition probability is only ob-

tained if two conditions are fulfilled. Firstly, the derivative of the dipole moment

with respect to the normal coordinate Qk in Eq. (2.47) must be non-zero, which

requires that the normal mode is associated with a change in the dipole moment.

Secondly, the integral hc�mjQkjcni must be non-zero, which is the situation when

the vibrational quantum numbers n and m differ by one. This implies that only

fundamentals are IR active within the harmonic approximation.

Equation (2.47) holds for all three Cartesian coordinates such that only one

non-zero transition dipole moment ½mq�nm ðq ¼ x; y; zÞ is sufficient to account for

the IR intensity of the normal mode Qk according to Eq. (2.43) (Box 2C). Using

unpolarised light and randomly oriented molecules, the experiment does not al-

low the conclusion to be made as to which of the components of the transition
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dipole moment contributes to the IR intensity. If, however, the probe light is lin-

early polarised, it is possible to address the individual components of the transi-

tion dipole moments. Then IR measurements may provide additional informa-

tion for the vibrational assignment, the orientation of the molecules with respect

to the plane of polarisation of the incident light, or the orientation of a molecular

building block within a macromolecule if the macromolecule itself is oriented.

Consider, for example, a sample of ellipsoidal molecules that are all oriented

with the long axis in z-direction (Fig. 2.5). The incident light, propagating in the

y-direction, can be polarised in z- or x-direction, corresponding to a parallel and

perpendicular orientation of electric field vector, respectively. Parallel polarised

light will thus specifically probe those vibrational modes that exhibit a transition

dipole moment in the z-direction, and the absorbance Apara is given by

Apara z jmmnj2z ð2:48Þ

If the molecules do not exhibit a preferential orientation in the xy plane, IR ab-

sorption of perpendicular polarised light depends on both the x- and the y-
component of transition dipole moment

Aperp z ðjmmnj2x þ jmmnj2yÞ ð2:49Þ

The quantities Apara and Aperp are combined in the dichroic ratio d which is de-

fined by

d ¼ Apara � Aperp

Apara þ Aperp
ð2:50Þ

and which may vary between 1 and �1 for the limiting cases of Aperp ¼ 0 and

Apara ¼ 0, respectively.

Fig. 2.5 IR dichroism of oriented molecules. The absorbance of light

polarised parallel to the long molecular axis Apara is given by the ratio

Ipara/I0; para whereas the perpendicular component is defined by

Iperp/I0; perp.
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2.2.2

Raman Scattering

Raman spectroscopy differs principally from IR spectroscopy in that it is based on

the scattering of photons by molecules rather than on the absorption of photons

(Fig. 2.6). This scattering process can be illustrated readily on the basis of classi-

cal physics. Consider a molecule interacting with an electromagnetic wave with

the electric field vector oscillating with the frequency n0

~EE ¼ ~EE0 cosð2pn0tÞ ð2:51Þ

The oscillating electric field can induce a dipole in the molecule

~mmind ¼ ~aaðnÞ � ~EE0 cosð2pn0tÞ ð2:52Þ

where ~aaðnÞ is the polarisability. This quantity, which is actually a tensor, varies

with time as it describes the response of the electron distribution to the move-

ments of the nuclei that oscillate with the normal mode frequency nk. Thus, we

can express ~aaðnÞ by

~aaðnÞ ¼ ~aa0ðn0Þ þ
q~aa

qQk

� �
0

ð2pnktÞ ð2:53Þ

Combining Eqs. (2.52 and 2.53) we obtain

~mmind ¼ ~EE0 ~aa0ðn0Þ þ
q~aa

qQk

� �
0

cosð2pnktÞ
� �

cosð2pn0tÞ ð2:54Þ

which eventually yields

Fig. 2.6 Energy diagram representing the elastic Rayleigh scattering

(centre) and the inelastic anti-Stokes (left) and Stokes (right) Raman

scattering with n0, nR, and nk referring to the frequencies of the incident

light, the Raman scattered light, and the molecular vibration,

respectively.

28 2 Theory of Infrared Absorption and Raman Spectroscopy



~mmind ¼ ~EE0

�
~aa0 cosð2pn0tÞ þ

q~aa

qQk

� �
0

Qk cos½2pðn0 þ nkÞt�

þ q~aa

dQk

� �
0

Qk cos½2pðn0 � nkÞt�
�

ð2:55Þ

The sum on the right side of Eq. (2.55) includes three terms corresponding to po-

larisabilities that depend on different frequencies, which are the frequency of the

incident radiation n0 and the frequencies ðn0 � nkÞ and ðn0 þ nkÞ that differ from
n0 by the frequency of the normal mode. Scattering that leaves the frequency of

the incident light unchanged is referred to as elastic or Rayleigh scattering where-

as the frequency-shifted (inelastic) scattering is referred to as Raman scattering

(Fig. 2.6). When the frequency of the scattered light is lower than n0, the molecule

remains in a higher vibrationally excited state (m > n for the transition n! m).

This process is denoted as Stokes scattering whereas anti-Stokes scattering refers

to ðn0 þ nkÞ and thus to m < n. At ambient temperature, thermal energy is lower

than the energies of most of the normal modes, such that molecules predomi-

nantly exists in the vibrational ground state and Stokes scattering represents the

most important case of Raman scattering.

The energy conservation for Raman scattering is not contained in the classical

treatment. It requires the quantum mechanical description of vibrational quan-

tum states interacting with electromagnetic radiation (Placzek 1934). The opera-

tor, which according to Eq. (2.41) determines the probability of the Raman transi-

tion n! m, is the polarisability âa with components defined by the molecule-fixed

coordinates x, y, z.

mind; x

mind; y
mind; z

2
4

3
5 ¼ axx axy axz

ayx ayy ayz

azx azy azz

2
64

3
75 � Ex

Ey

Ez

2
64

3
75 ð2:56Þ

It is useful to define the Raman scattering cross section for the vibrational n! m
transition sn!m by

In!m ¼ sn!mI0 ð2:57Þ

where I0 is the intensity of the incident radiation and In!m is the scattered inten-

sity integrated over all scattering angles and polarisation directions for a non-

oriented sample. The Raman cross section is correlated with the Raman polaris-

ability by

sn!m z ðn0 G nkÞ4 �
X
r; s

jar;sj2 ð2:58Þ

taking into account that the intensity for electric dipole radiation scales with the

fourth power of the frequency. The indices r and s denote the molecule-fixed co-

ordinates.
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The tensor properties of ars have consequences for the polarisation of the

Raman scattered light. This can easily be illustrated for molecules that are ori-

ented with respect to the electric field vector of the incident excitation radiation,

which is usually highly polarised laser light (Fig. 2.7). If we now refer the

molecule-fixed coordinate system to the directions of the electric field vector

(z-axis), of the propagation of the laser light (y-axis), and of the detection of the

scattered light (x-axis), the intensity of the Raman scattered radiation includes

two components, which are polarised parallel ðIparaÞ and perpendicular ðIperpÞ
with respect to the electric field vector of the incident light, and only depend on

the tensor components azz and ayz, respectively.

Ipara z jazzj2 � j~EEzj2

Iperp z jayzj2 � j~EEzj2
ð2:59Þ

Appropriate re-alignment of the oriented sample with respect to the laser beam

then allows the remaining tensor components to also be determined, taking into

account that the scattering tensor is symmetric, i.e., asr ¼ ars.

In the general case of non-oriented molecules, the relationship between the po-

larisation properties of the Raman scattered light and the scattering tensor is

more complicated and the individual tensor components cannot be determined

directly. For the depolarisation ratio r, which is defined by the ratio of perpendic-

ular polarised and parallel polarised Raman scattered light, one obtains

r ¼ Iperp
Ipara

¼ 3g2s þ 5g2as
45a2 þ 4g2s

ð2:60Þ

Fig. 2.7 Illustration of polarised Raman scattering in a 90�-scattering
geometry. Iperp and Ipara are the respective perpendicular and parallel

components of the Raman scattering with respect to the polarisation of

the incident monochromatic radiation.
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with the mean polarisability a and the symmetric ðgsÞ and antisymmetric ðgasÞ
anisotropy given by

a ¼ 1

3

X
rr

arr

g2s ¼
1

2

X
rs

ðarr � assÞ2 þ
3

4

X
rs

ðars þ asrÞ2 ð2:61Þ

g2as ¼
3

4

X
rs

ðars � asrÞ2

In the case of symmetric molecules, determination of polarisation ratios is a use-

ful tool for the vibrational assignment. For each symmetry species of a point

group, the character table indicates which of the individual tensor components

are zero and which are non-zero (Wilson et al. 1955; Czernuszewicz and Spiro

1999) (Box 2C). On this basis, it is not only possible to decide if the modes of

this species are Raman-active, but also to predict the polarisation ratio, which

can then be compared with the experimentally observed value.

As in IR absorption spectroscopy, a description of Raman intensities is only

possible on the basis of a quantum mechanical treatment (Placzek 1934). In

Raman scattering two photons are involved, hence second-order perturbation

theory is required. On the basis of Kramers–Heisenberg–Dirac’s dispersion

theory, the scattering tensor is expressed as

½anm�rs ¼
1

h

X
R; r

hnGjMrjRrihrRjMsjGmi

nRr � nk � n0 þ iGR
þ hrRjMsjGmihnGjMrjRri

nRr � nk þ n0 þ iGR

� �
ð2:62Þ

where MsðMrÞ is the electronic transition dipole moment in terms of a molecule-

fixed coordinate system (Albrecht 1961; Warshel and Dauber 1977). The symbols

n0 and nk denote the frequency of the excitation radiation and the normal mode

Qk, respectively (Fig. 2.6). The indices ‘‘R’’ and ‘‘r’’ refer to the respective elec-

tronic and vibrational (vibronic) states of the molecule and GR is a damping con-

stant that is related to the lifetime of the vibronic state Rr. Equation (2.62) repre-

sents a sum of integrals that describe the transitions nG! Rr and Rr ! Gm.

The sum indicates that for the Raman transition all vibronic states have to be con-

sidered. This implies that the scattering tensor and thus the Raman intensity is

controlled by the transition probabilities involving all vibronic states, even though

the initial and final states refer to the vibrational ground and excited states of the

electronic ground state.

In the general case, the energy of the exciting radiation hn0 is much lower than

the energy of any vibronic transition hnRr . Let us consider an example of a mole-

cule with the first four electronic transitions Ei at 300, 240, 200, and 180 nm.

Using an excitation line at 1064 nm and neglecting the damping terms, we can

determine the relative weights of the individual terms in the sum of Eq. (2.62),
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as given by the denominators, i.e., ðnRr � n0 � nkÞ�1 and ðnRr þ n0 � nkÞ�1 (Fig. 2.8).
One can easily see that under these conditions the contributions of the four elec-

tronic states to the scattering tensor are comparable, as shown for the normal

mode nk at 1500 cm�1. The situation is different when the excitation energy ap-

proaches the energy of an electronic transition. Then, for this specific transition

the term ðnRr � n0 � nkÞ�1 dominates over all other terms in the sum of Eq. (2.62).

This is demonstrated for n0 ¼ 30 960 cm�1 (323 nm) for which the contribution

from the first electronic transition is more than 10 times larger than that from

the second transition.

2.2.3

Resonance Raman Effect

The conditions under which n0 is close to the frequency of an electronic transition

refer to the resonance Raman (RR) effect, for which Eq. (2.62) consequently can

be simplified to

½anm�rs G
1

h

X
r

hnGjMrjRrihrRjMsjGmi

nRr � nk � n0 þ iGR

� �
ð2:63Þ

where summation is now restricted to the vibrational states r of the resonant elec-
tronically excited state (Albrecht 1961; Warshel and Dauber, 1977). In contrast to

Eq. (2.44), the wavefunctions of the integrals in Eq. (2.63) depend on the elec-

Fig. 2.8 Absorption spectrum of a molecule with four electronic

transitions (E1, E2, E3, and E4). The columns represent the frequency-

dependent weights of the electronic transitions to the scattering tensor

[Eq. (2.62)] for excitation lines at 1064 and 323 nm. The calculations

refer to a vibrational mode at 1500 cm�1.
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tronic and nuclear coordinates, which can be separated within the Born–

Oppenheimer approximation according to

hnGjMrjRri ¼ hnrihGjMrjRi ¼ hnriMGR; r ð2:64Þ

Here, integrals of the type hnri represent the Franck–Condon factors that are the

integrals over the products of two vibrational wavefunctions. With this approxi-

mation, Eq. (2.63) leads to

½anm�rs G
1

h

X
r

hnrihrmiMGR; rMGR;s

nRr � nk � n0 þ iGR

� �
ð2:65Þ

The electronic transition dipole moment components MGR; r which refer to the

electronic transition from the ground state G to the (resonant) electronically ex-

cited state R, can now be expanded in a Taylor series with respect to the normal

coordinates Qk.

MGR; rðQkÞ ¼ MGR; rðQ ð0Þk Þ þ
X
k

qMGR; r

qQk

� �
0

Qk þ � � � � � � ð2:66Þ

Within the harmonic approximation we neglect higher order terms and combine

Eqs. (2.65 and 2.66) to obtain the scattering tensor as the sum of two terms, the

so-called Albrecht’s A- and B-terms.

½anm�rs GArs þ Brs ð2:67Þ

with

Ars G
1

h

X
r

hnrihrmiM0
GR; rM

0
GR;s

nRr � nk � n0 þ iGR

 !
ð2:68Þ

where M0
GR; r and M0

GR;s are the components of transition dipole moment of the

vertical electronic transition G! R. The B-term is given by

Brs G
1

h

X
r

hnjQkjrihrmi
qMGR; r

qQk

� �
0

M0
GR;s

nRr � nk � n0 þ iGR
þ
hnrihrjQkjmi

qMGR; s

qQk

� �
0

M0
GR; r

nRr � nk � n0 þ iGR

0
B@

1
CA

ð2:69Þ

The A- and B-terms represent different scattering mechanisms; however, com-

mon to both terms is that the dominators rapidly decrease when the frequency

of the excitation line n0 approaches the frequency of an electronic transition.

Then both the A- and the B-terms and thus the RR intensity increase [Eqs. (2.57
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and 2.58)], albeit to a different extent depending on the character of the electronic

transitions and normal modes involved.

When the resonant electronic transition exhibits a large oscillator strength, that

is a large transition dipole moment M0
GR, the A-term, which scales with jM0

GRj
2,

increases more significantly than the B-term and thus becomes the leading

term. Then the enhancement of a normal mode depends on the Franck–Condon

factor products hnrihrmi (Franck–Condon enhancement). Whether or not, a

normal mode is resonance enhanced via the Franck–Condon mechanism, de-

pends on the geometry of the resonant excited state.

Consider, for example, ethylene, which exhibits a strong electronic absorption

band at ca. 200 nm, originating from the (first) allowed p! p� transition of the

CbC double bond. Population of the p� orbital leads to the lowering of the bond

order from 2 to 1, implying that in this excited state the CaC bond length in-

creases. Hence, the potential energy curve for the CaC distance is displaced in

this electronically excited state with respect to the ground state, as shown in Fig.

2.9, i.e., along the main internal coordinate of this normal mode. Now we must

consider the Franck–Condon factors that couple the wavefunctions of the ground

and excited state. According to Eq. (2.68), we have to sum up over those integrals

that involve all vibrational states of the electronic excited state, with their relative

weight being determined by the match with the excitation energy. For the sake of

simplicity we will restrict the discussion to the RR transition n! m exclusively

Fig. 2.9 Harmonic potential curves for the electronic ground (G)

and excited state (R), illustrating the situation for an excited state

displacement of Ds ¼ 0 (left) and Ds0 0 (right) for RR transitions from

the vibrational ground state Gn to the first vibrationally excited state

Gm via coupling to the vibronic state Rr.
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via the vibronic state Rr such that we only consider one term of the sum, i.e., the

integrals involving the vibronic state Rr (Fig. 2.9). The wavefunctions of the first

integral hnri have the same symmetry, but due to the potential curve displace-

ment in the direction of the internal coordinate of this mode the integral is non-

zero, albeit smaller than one. For the same reason, the wavefunctions of the inte-

gral hrmi that have different symmetries are not zero either. Similar considera-

tions hold for Franck–Condon factors involving other vibronic states. This im-

plies that a vibrational mode including the CbC stretching coordinate exhibits

non-zero Franck–Condon factor products and thus gains resonance Raman (RR)

intensity via the A-term scattering mechanism (Box 2C).

The situation is different for modes including the CaH stretching coordinate

(Fig. 2.9). As the CaH distance remains unaffected upon the p! p� electronic

transition, the origin of the corresponding potential curve is at the same position

in the electronic ground and excited states. In this instance the integral hnri will

be non-zero but the hrmi integral will vanish, implying that a pure CaH stretch-

ing mode will not be RR active. The fact that CaH stretching modes are Raman-

active instead just reflects the involvement of higher lying electronic transitions,

amongst which at least one is associated with a geometry change of the CaH

stretching coordinate.

The importance of excited-state displacements for the RR intensity can be gen-

eralised (Warshel and Dauber 1977). Only modes including at least one internal

coordinate that changes with the electronic transition can gain resonance enhanc-

ment via the A-term mechanism. The relationship between the excited state dis-

placement Ds and the A-term contribution to the scattering tensor can be approxi-

mated by

Az
jM0

GRj
2 � nk � Ds

ðnRr � n0 þ iGRÞðnRr � n0 þ nk þ iGRÞ
ð2:70Þ

This expression assumes that the normal modes do not change in the electronic

excited state, both with respect to their composition and with respect to the fre-

quency. Although this appears to be a severe restriction, Eq. (2.70) has been

shown to provide a good basis for qualitative predictions of the RR activity of

modes that are dominated by one internal coordinate, given that the nature of

the resonant excited state is known. The situation is much more complicated for

modes involving many internal coordinates to comparable extents, and a priori
predictions are impossible. The contributions from different internal coordinates

to Ds may have positive or negative sign, such that they can be additive or cancel

each other (Mroginski et al. 2003).

Calculation of RR intensities still represents a challenge as both ground state

(structure, vibrational frequencies) and excited state properties (excitation ener-

gies, structure) have to be treated. In a particularly promising concept, quantum

mechanical calculations are combined with the use of experimental data. Within

the framework of the so-called Transform theory, the frequency dependence of

the A-term of the scattering tensor [Eq. (2.70)] may be obtained by the Kramers–
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Kronig transformation of the absorption band (Peticolas and Rush 1995). The

electronic transition dipole moments M0
GR and the excited state displacements

of a given normal mode Ds are calculated by quantum chemical methods such

as time-dependent DFT. At present, these approaches are still fairly time-

consuming and, specifically, the calculation of excited state geometries, required

for determining Ds, is not trivial, even for relatively small molecules.

The crucial parameter that controls resonance enhancement via the B-term
scattering mechanism is the derivative of the electronic transition dipole moment

with respect to the normal mode (Albrecht 1961). This derivative is large for those

modes that can effectively couple to an electronic transition and thus may gain

RR intensity even when the resonant electronic transition is relatively weak. This

vibronic coupling enhancement may also be operative when the excitation fre-

quency is close to the frequencies of two electronic transitions.

An alternative approach to describe the Franck–Condon-type resonance en-

hancement (A-term scattering) has been developed by Heller who described the

scattering process in terms of wave-packet dynamics (Heller 1981). As the tempo-

ral evolution of the scattering process is much faster than the nuclear vibrations,

consideration of the summation over the multitude of vibronic eigenstates is def-

initely not necessary. The RR intensity is induced by the force qV=qQk exerted by

the excited state potential surface on the nuclear ground state configuration. This

force controls the temporal evolution of the ground state wavefunction jnðtÞi
after excitation to the excited state surface and before returning to the final state

jmi. The RR intensity for a given mode k is then given by

IRRðkÞz
ðy
0

jM2
GR � expðin0t� Gr tÞ � hmjnðtÞi dtj

� �2
ð2:71Þ

This expression is analogous to the square of Eq. (2.68). Furthermore, the treat-

ments of the RR scattering in the time-domain by Heller (Heller 1981) and in

the frequency domain via the Kramers–Heisenberg–Dirac dispersion relation

are linked to each other through the Fourier transform. Also, in the time-domain

treatment further simplifications can be introduced using similar assumptions as

those used for Eq. (2.70). The advantage of Heller’s approach is particularly evi-

dent for those instances where only a few internal coordinates exhibit large ex-

cited state displacements Ds and thus the RR spectrum is dominated only by a

couple of normal modes. For these modes the RR intensities does not only de-

pend on Ds but also on the magnitude of qV=qQk. The intensity ratio of two nor-

mal modes k and l is then given by

IRRðkÞ
IRRðlÞ

¼ nl

nk
� qV=qQk

qV=qQ l

� �2
A

n3k � D
2
k

n3l � D2
l

ð2:72Þ

This approach has been successfully employed to analyse the RR spectra of metal-

loproteins upon excitation in resonance with charge-transfer transitions (Blair

et al. 1985).
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The expressions in Eqs. (2.67–2.72) represent approximations that can be

employed when the contributions from one or two electronic transitions to the

scattering tensor become dominant. Consequently, there is no sharp borderline

between non-resonance Raman and RR scattering. Resonance enhancement sim-

ply means that the vibrational modes of a chromophore within a molecule selec-

tively gain intensity when the excitation line is in resonance with an electronic

transition. Such an enhancement does not necessarily require an exact frequency

match of the excitation and the electronic transition. Indeed, a closer inspection

of the frequency dependence of the Raman intensity reveals that a specific en-

hancement of these modes already occurs for excitation lines relatively far away

from the maximum of the electronic transition. This is illustrated by comparing

the frequency dependence of the Raman intensity under strictly non-resonance

conditions [Eqs. (2.57 and 2.58)] and the RR intensity provided by the A-term
scattering mechanism. In the latter, an approximate formula can be derived for

the Stokes scattering under pre-resonance conditions (Albrecht and Hutley

1971), i.e., when the damping constant [Eq. (2.68)] can be neglected

ðjnR � n0jg jGRjÞ,

Inm;RR z ðn0 � nkÞ4
ðn0 � nkÞ2ðn20 þ n2RÞ
ðn2R � n20Þ

2
ð2:73Þ

To compare the RR and Raman intensities, Eq. (2.73) has to be corrected for the

‘‘normal’’ n4-dependence of the radiation intensity [Eqs. (2.57 and 2.58)]

Inm;RR

Inm;Ra
z
ðn0 � nkÞ2ðn20 þ n2RÞ
ðn2R � n20Þ

2
ð2:74Þ

The ratio Inm;RR=Inm;Ra represents the resonance enhancement, which in Fig.

2.10 is plotted as a function of the frequency difference between the excitation

and the the electronic transition. It can be seen that the enhancement factor

solely associated with the frequency dependence of the scattering tensor strongly

increases for n0 ! nR and even for an energy gap of 5000 cm�1 it is nearly 500.

For more rigorous resonance conditions, for which Eq. (2.74) is no longer valid,

the resonance enhancement can reach 5–6 orders of magnitude, depending on

the other quantities that control the scattering tensor, i.e., the Franck–Condon

factor products, the square of the electronic transition dipole moment, and the

damping constant [Eq. (2.68)]. As a rule of thumb, the resonance enhancement

then scales with the square of the extinction coefficient of the electronic absorp-

tion band at the excitation line. Consequently, the sensitivity of Raman spectros-

copy increases greatly under resonance conditions and approaches that of UV–vis

absorption spectroscopy.

It should be emphasised at this point that the frequencies refer to the molecu-

lar structure in the initial electronic state, usually the electronic ground state, al-

though the RR intensities are sensitively controlled by the properties of the elec-

tronically excited state(s). Resonance enhancement represents the gain in Raman
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intensity for the vibrational bands of a chromophore as compared with strictly

non-resonance conditions. It is restricted to that part of the molecule in which

the resonant electronic transition is localised. Such a selective enhancement has

enormous practical implications when we are interested in studying the vibra-

tional spectrum of the specific constituents of a macromolecule, such as a cofac-

tor within a protein. Choosing appropriate excitation lines will then allow probing

the vibrational bands solely of the cofactor such that the non-resonant Raman

bands of the apo-protein can be effectively discriminated in most instances.

2.3

Surface Enhanced Vibrational Spectroscopy

Thirty years ago it was discovered accidentally that molecules adsorbed on rough

surfaces of certain metals may experience a drastic enhancement of the Raman

scattering. This unexpected finding immediately prompted intensive research ac-

tivities in this field. Initially, these studies were directed at elucidating the nature

of this enormous enhancement, which could be of several orders of magnitude.

Later, it was also recognised that this technique had a high potential for studying

molecules at interfaces. Since that time, the surface enhanced Raman scattering

(SERS) effect has become largely understood and this technique has found a

place not only in surface and interfacial science but also in biophysics. Moreover,

it was also noticed that the enhancement of vibrational bands at metal surfaces is

not restricted to Raman scattering but may also take place, albeit to a smaller

extent, in IR absorption, i.e., surface enhanced infrared absorption (SEIRA).

SERS and SEIRA have been observed at metal interfaces with solid, liquid, or

Fig. 2.10 Resonance enhancement IRR/IRa via the A-term mechanism

[Eq. (2.74)] as a function of the difference between the frequency of the

incident light n0 and the electronic transition nR.
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gas (vacuum) phases, but only the solid/solution interface is of relevance in bio-

logical applications. The enhancement is metal- and wavelength-specific, such

that for the typical spectral range of Raman and IR spectroscopy from 400 to

10000 nm, the metals that can be employed are Ag and Au.

2.3.1

Surface Enhanced Raman Effect

The SER effect can largely be understood on the basis of classical electromagnetic

theory (Kerker et al. 1980; Moskovits 1985). The starting point is the analysis of

light scattering and absorption by colloidal particles, which was considered about

a century ago by G. Mie (Mie 1908). In a first approximation, colloidal particles

can be represented as spheres. When the size of the particles is small with respect

to the wavelength of the incident light (Rayleigh limit), the electromagnetic field

can effectively couple with the collective vibrations of the ‘‘free electrons’’ of the

metal, which are denoted as surface plasmons (Kerker et al. 1980; Moskovits

1985). The incident electric field ~EE0ðn0Þ, oscillating with the frequency n0, induces

an electric dipole moment in the sphere and excites the surface plasmons, caus-

ing an additional electric field component ~EEindðn0Þ, normal to the surface in the

near-field of the sphere. Thus, the total electric field of the frequency n0 is then

expressed by

~EEtotðn0Þ ¼ ~EE0ðn0Þ þ ~EEindðn0Þ ð2:75Þ

Since ~EEindðn0Þ is a function of ~EE0ðn0Þ the enhancement of the electric field is given

by

FEðn0Þ ¼
j~EE0ðn0Þ þ ~EEindðn0Þj

j~EE0ðn0Þj
¼ j1þ 2g0j ð2:76Þ

The quantity g0 is related to the dielectric properties of the metal through

g0 ¼
~eerðn0Þ � 1

~eerðn0Þ þ 2
ð2:77Þ

Here ~eerðn0Þ is the frequency-dependent dielectric constant divided by the square

of the refractive index of the surrounding medium nsolv.

~eerðn0Þ ¼
ereðn0Þ þ ieimðn0Þ

n2
solv

ð2:78Þ

Equations (2.76–2.78) show that g0, and thus the field enhancement FEðn0Þ, be-
comes large if the real part of the relative dielectric constant approaches �2 and

the imaginary part is small. These conditions depend on the wavelength and are,
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within the Rayleigh limit, particularly well matched for Ag and Au colloids at

ca. 400 and 560 nm, respectively.

A molecule that is located in close proximity to the sphere is excited by the elec-

tric field ~EEtotðn0Þ, which may induce all possible photophysical and photochemical

processes, including Raman scattering. If the resonance conditions are fulfilled

for the incident light with n0, this will also be approximately the case for the fre-

quency of the Raman scattered light n0 G nk. Then, the electric field of the Raman

scattered light, ~EERaðn0 G nkÞ, of the normal mode k that is proportional to ~EEtotðn0Þ
also induces a secondary electric field component ~EERa; indðn0 G nkÞ in the metal

particle giving rise to a total electric field oscillating with n0 G nk in analogy to

Eq. (2.75). Thus, Eq. (2.76) holds for both the electric field of the exciting and

the Raman scattered light. As the intensity of the Raman scattered light in the

far field is proportional to j~EERa; totðn0 G nkÞj2, the total surface enhancement factor

of the Raman intensity is given by

FSERðn0 G nkÞ ¼ ½ð1þ 2g0Þð1þ 2gRaÞ�2 ð2:79Þ

Equation (2.79) indicates that even a field enhancement by a factor of 10 yields an

enhancement of the Raman intensity of more than 104.

These simple considerations hold for particles much smaller than the wave-

length and are thus independent of the shape and the size of the particles.

The enhancement at larger particles, however, is no longer shape- and size-

independent. One can show that, in general, larger spheres or ellipsoidal shapes

cause a red-shift of the wavelength of maximum enhancement. This is also true

for interacting particles, i.e., aggregated colloids.

A particularly large enhancement is predicted for tips of the type used in scan-

ning probe microscopy. These predictions have indeed been confirmed and uti-

lised in so-called tip-enhanced Raman spectroscopy (Kneipp et al. 2006). In this

technique, a sharp tip, as used for scanning tunnelling or atomic force micros-

copy, is brought into close proximity with that part of a molecular sample that is

in the focus of the incident laser beam. Only the molecules in the near-field of the

tip experience an enhancement of the Raman scattering.

For biological applications, metal electrodes represent more versatile SER-active

devices as they allow probing of potential-dependent processes by controlling

the electrode potential (Murgida and Hildebrandt 2004, 2005). The enhancement

mechanism on electrodes can be largely understood within the same theoreti-

cal framework as outlined above for the SER effect on metal colloids. A sub-

microscopic roughness of the electrode, typically generated by electrochemical

roughening (oxidation–reduction cycles), is a prerequisite for the SER effect on

metal electrodes. The scale of this roughness is comparable to the dimensions of

SER-active metal colloids, such that an SER-active electrode can be approximated

by an array of metal semispheres, for which a treatment of the field enhancement

similar to isolated metal spheres is possible. Taking into account that the scale of

roughness which is produced by electrochemical roughening of the electrode sur-

face is approximately the same as the dimension of SER-active colloids, one may
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approximate the roughness on electrodes by semi-spherical particles, or more ap-

propriately, by connected semi-spheres (Fig. 2.11). In SER experiments, the sur-

face roughness of electrodes is not uniform, corresponding to approximate semi-

sphere structures with a wide distribution of particle radii a0 (Fig. 2.12). Thus,

the experimentally observed wavelength-dependent surface enhancement is very

broad and may cover the entire spectral region from the resonance frequency at

the Rayleigh limit ða0 f l0Þ up to the infrared spectral region.

Fig. 2.11 Simplified view of a sub-microscopically rough metal surface

(thick solid line) approximating the surface roughness for semi-spheres

of radius a0. Molecules contributing to the SER scattering (hollow

spheres) are separated from the surface via spacers of length d.

Fig. 2.12 Atomic force microscopic picture of an electrochemically roughened silver electrode.
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In the relatively few instances for which the enhancement factor has been de-

termined on the basis of the number of scattering molecules, values of 105–106

have been reported, which can be understood within the framework of the elec-

tromagnetic theory. Enhancement factors of this magnitude drastically increase

the sensitivity of the Raman effect, such that SER spectroscopy represents a sen-

sitive tool for studying molecules in the adsorbed state. The sensitivity, and,

moreover, the selectivity can be further increased for molecules that exhibit an

electronic absorption in the visible region. Then it is possible to tune the excita-

tion frequency to be in resonance with both the electronic transition of the ad-

sorbate and the surface plasmons of the metal. Under these conditions, the mo-

lecular RR and the SER effect combine (surface enhanced resonance Raman

scattering – SERRS), such that it is readily possible to measure high quality spec-

tra of molecules even if they are adsorbed at sub-monomolecular coverage. In

fact, it has been shown that the effective quantum yield for the SERR process

may approach unity (Hildebrandt and Stockburger 1984) and thus offers the pos-

sibility to probe even single molecules (Kneipp et al. 2006). If the chromophore

associated with the resonant electronic transition is a cofactor in a protein, SERR

spectroscopy displays a two-fold selectivity, as it probes selectively the vibrational

spectrum of the cofactor of only the adsorbed molecules.

The electromagnetic theory of the SER effect implies that the enhancement is

not restricted to molecules attached directly to the metal, although it decays ac-

cording to the distance-dependence of dipole–dipole interactions. For spherical

colloids of radius a0 the decrease in the enhancement factor FSER with the dis-

tance d from the surface is given by

FSERðdÞ ¼ FSERð0Þ �
a0

a0 þ d

� �12
ð2:80Þ

where FSERð0Þ is the enhancement factor for molecules directly adsorbed onto the

metal surface. For a particle radius of 20 nm, the enhancement is then estimated

to decrease by a factor of ca. 10 when the molecule is separated by ca. 3.5 nm from

the surface (Fig. 2.13). This prediction is in agreement with experimental find-

ings and has also been verified for molecules immobilised on metal films and

electrodes. Moreover, the consequences of this distance-dependence are impor-

tant when applying SER spectroscopy to biological molecules. As direct interac-

tions with the metal, specifically with Ag, may cause denaturation of biomole-

cules, it is advisable to cover the metal surfaces with biocompatible coatings that

provide less harmful immobilisation conditions (see Section 4.3.6). The thickness

of the coatings is typically between 1 and 5 nm, hence the surface enhancement

is still sufficiently strong for the SER effect to be utilised (Murgida and Hilde-

brandt 2004, 2005).

In general, the electromagnetic theory provides a satisfactory explanation for

the SER effect. However, there are a few documented cases that point to an addi-

tional contribution, which is commonly denoted as the ‘‘chemical effect’’ (Otto
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2001). This effect is restricted to molecules chemisorbed on sites of atomic-scale

roughness, such as ad-atoms on a surface. Such surface complexes represent es-

sentially new compounds in which electronic transitions associated with the elec-

tronic states of the metal atom are involved. These transitions are analogous to

charge transfer transitions of transition metal complexes. Excitation in resonance

with such a transition leads to the enhancement of the Raman bands of the ad-

atom–molecule complex similar to the molecular RR mechanism. This chemical

effect has been demonstrated for small molecules under conditions where

atomic-scale roughness is preserved, such as on cold-deposited metal films in an

ultrahigh vacuum at low temperature. It may also play a role in so-called ‘‘hot

spots’’ generated with metal nanoparticles and assumed to be crucial for single-

molecule SER spectroscopy (Kneipp et al. 2006). The chemical effect can be ne-

glected for those devices in which the probe molecules are not in direct contact

with the metal surface, such as in SERR spectroscopy of protein-bound cofactors

or for devices including biocompatible coatings. For this reason and due to the

low magnitude of the enhancement (ca. 100), the importance of the chemical ef-

fect in SER (SERR) spectroscopy of biological systems is small.

2.3.2

Surface Enhanced Infrared Absorption

The electromagnetic theory also provides the conceptual framework for under-

standing enhanced absorption of radiation by molecules adsorbed on or in close

vicinity to Ag or Au surfaces. In this instance, the optically active metal surfaces

are created by electrodeless deposition of Ag or Au in the vacuum or in solution

(Osawa 1997). The thin metal films that are usually deposited on an optically in-

Fig. 2.13 Distance dependence of the surface enhancement for Raman

scattering [solid line – Eq. (2.80)] and IR absorption [dotted line –

Eq. (2.81)]. The surface roughness as defined in Fig. 2.11 is assumed

to be a0 ¼ 20 nm in each instance.
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ert support display a morphology of interconnected islands corresponding to a

roughness similar to that created on massive electrodes by electrochemical proce-

dures. The incident broad-band radiation induces an oscillating dipole in the

metal islands which, in analogy to Eq. (2.76), leads to an increase in the electric

field in the near-field, and thus to an enhanced absorption by molecules that are

located in close proximity to the film. As only the electric field component per-

pendicular to the metal surface is enhanced, SEIRA signals are not detectable

for vibrations associated with dipole moment changes parallel to the surface.

The enhancement is distinctly smaller than for SERS as only the field of the inci-

dent radiation is enhanced. However, for this reason the distance-dependence is

not as steep because it scales only with the sixth power of the distance with re-

spect to the centre of the island (Fig. 2.13).

FSEIRAðdÞ ¼ FSEIRAð0Þ �
a0

a0 þ d

� �6
ð2:81Þ

Even though enhancement factors are only between 102 and 103, the sensitivity

gain of the SEIRA is large enough to apply this technique to biological molecules

as the signals are detected in the difference mode (Ataka and Heberle 2003,

2004).

Box 2A

Quantum mechanical treatment of the harmonic oscillator

Transformation of the mass-weighted Cartesian coordinates qi into normal coordi-

nates Qk is carried out such that Qk �Qk 0 cross terms are avoided in the expression

for the kinetic and the potential energies [see Eq. (2.24)] (Wilson et al. 1995). Thus

the kinetic energy T and the potential energy V are given by

T ¼ 1

2

X3N�6
k¼1

_QQ2
k (2:A1)

and

V ¼ 1

2

X3N�6
k¼1

lkQ
2
k (2:A2)

in analogy to Eqs. (2.15 and 2.17).

Hence, the Schr€oodinger equation

� h2

8p2m
‘2cþ V̂Vc ¼ Ec (2:A3)
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Box 2A (continued)

adopts the form

� h2

8p2

X3N�6
k¼1

q2cv

qQ2
k

þ 1

2

X3N�6
k¼1

lk �Q2
kcv ¼ Evcv (2:A4)

Solving this differential equation leads to the eigenvalues of the vibrational states

given by

Ev ¼ vþ 1

2

� �
hnk (2:A5)

with the vibrational quantum number v ¼ 0; 1; 2 . . . : The eigenfunctions of Eq. (2.A4)

are expressed by

cv; k ¼ Nv; k �Hv; kðQkÞ � exp �
1

2
gkQ

2
k

� �
(2:A6)

where Nv; k is the normalisation constant

Nv; k ¼
ffiffiffiffi
gk

p

r
� 1

2v � v!

� �1/2
(2:A7)

The quantity gk is defined by

gk ¼
4 � p2nk

h
(2:A8)

Hv; k denotes the Hermitian polynom, which varies with the vibrational quantum num-

ber v. Only for v ¼ 0 is it equal to 1, whereas for v0 0 it becomes a function of Qk

(Atkins 2006). For v ¼ 1, Hv; k is equal to Hv; k ¼
ffiffiffiffi
gk
p �Qk and the order of the poly-

nom in terms of Qk increases with increasing v. This corresponds to the increasing

number of nodes of the wavefunction and thus affects its symmetry.

The vibrational wavefunctions actually have to be expressed as a product of the

wavefunctions of the individual normal coordinates. However, the less exact treatment

employed here for the sake of simplicity is appropriate to demonstrate the essential

consequences for the IR, Raman, and resonance Raman selection rules (see also Box

2C). For a more thorough treatment the reader is referred to the literature (Herzberg

1945; Wilson et al. 1955).
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Box 2B

Symmetry of molecules and vibrations

The symmetry of molecules is defined by a set of operations, which, when applied to

the molecule, produce an identical copy (Cotton 1990). To illustrate these transforma-

tions we will consider the water molecule as a simple example (Fig. 2.B1). The three

atoms of the molecule define a plane sxz, which is a symmetry plane; i.e., reflection at

this plane leaves the molecule unchanged. A second plane of reflection sxy is perpen-

dicular to sxz and bisects the bond angle. Furthermore, the intersection of both planes

defines a rotational axis C2. Upon rotation of the molecule around this axis by 2p/n

(n ¼ 2; two-fold axis). Other molecules may exhibit higher order rotational axes (e.g.,

a three-fold axis C3 in the carbonate ion), a centre of inversion i (e.g., SF6 with the

sulfur atom being the centre of inversion), or a rotation–reflection plane Sn corre-

sponding to the rotation around an n-fold axis and the subsequent reflection at the

plane perpendicular to the rotational axis. The reflections s, rotations Cn, rotation–

reflections Sn, and the inversion I, in addition to the identity operation E which, just

as a formal operation, leaves the molecule unchanged, constitute groups of symmetry

operations that allows classification of all molecules into so-called point groups.

The simplest situation, which holds for many biological molecules, is given if noth-

ing other than the identity operation applies. These molecules, which lack any sym-

metry, belong to the point group C1. Nevertheless, there are also molecular groups of

biological interest of higher symmetry, or whose geometry can be approximated by a

point group of higher symmetry. Our example H2O, which possesses two mirror

planes and a two-fold rotational axis, belongs to the point group C2v. The properties

Fig. 2.B1 Symmetry operations of the C2v point group, illustrated

for the example of the water molecule. The two-fold rotational axis

is denoted by C2, the two mirror planes are indicated by sxz and syz.
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Box 2B (continued)

of these groups and the implications for (vibrational) spectroscopy become evident

within the framework of group theory (Cotton 1990). Group theory by itself is a subject

of pure mathematics, but it can be applied to many different fields of physics and

physical chemistry. Therefore, all theorems used in the applications are based on for-

mal derivations. Nevertheless, we consider it important to demonstrate the benefits of

group theory by a more intuitive approach. Many aspects are taken from the book by

Wilson, Decius and Cross, in which the application of group theory to vibrational spec-

troscopy is treated extensively (Wilson et al. 1955).

All elements (all symmetry operations) of a point group can be represented by

matrices according to

x 0

y 0

z 0

0
B@

1
CA ¼ R11 R12 R13

R21 R22 R23

R31 R32 R33

0
B@

1
CA x

y

z

0
B@

1
CA (2:B1)

where Rij constitute the elements of the transformation matrix that transform the co-

ordinates of the molecule x, y, z into the coordinates x 0, y 0, and z 0. These transforma-

tions can be illustrated by the reflection at the zy plane (Fig. 2.B2). Whereas the z- and

y-coordinates remain unchanged, the x-coordinates just changes the sign such that

x 0 ¼ x. The transformation matrix is then given by

Fig. 2.B2 Transformation of P (solid circle) into P 0 (open circle)

by rotation around the z-axis (top) and by reflection through the

xz-plane (bottom).
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Box 2B (continued)

Rðsv; zyÞ ¼
�1 0 0

0 1 0

0 0 1

0
B@

1
CA (2:B2)

For an n-fold rotational axis perpendicular to the yx-plane (Fig. 2.B2) one obtains

z 0 ¼ z

x 0 ¼ x � cos(2p/n)� y � sin(2p/n) (2:B3)

y 0 ¼ x � sin(2p/n)þ y � cos(2p/n)

such that the transformation matrix yields

R(Cn) ¼
cos(2p/n) �sin(2p/n) 0

sin(2p/n) cos(2p/n)

0 0 1

0
B@

1
CA (2:B4)

These matrices describe the physical symmetry operations of the molecule.

As molecular vibrations involve distortions of the geometry, it is interesting to ask

how such distortions transform under the symmetry operations of the molecule. We

will take as an example the nitrate molecule, consisting of three oxygen atoms and

one nitrogen atom. The symmetry is the D3h point group (one 3-fold rotational axis,

one horizontal mirror plane, three vertical mirror planes, three two-fold rotational

axes, and the alternating 3-fold rotational axis obtained from the combination of the

normal three-fold axis with the horizontal mirror plane). The deformation of the mole-

cule is denoted by qI with i running from 1 to 3N (for nitrate it runs from 1 to 12). The

transformed displacements q j
0 can be obtained for each symmetry operation by the

linear equations

q j
0 ¼

X3N
i¼1

Rjiqi (2:B5)

Of course, the matrices Rji defined here are different from the 3� 3 matrices (2.B1)

describing the physical symmetry operations of the corresponding point group, al-

though they are closely related. They are ‘‘isomorphic’’ to each other. The 3N� 3N

matrices Rji (2.B5) are known as a representation of the point group, and the displace-

ments qi are termed the basis of this representation.

It can be shown that the matrix (2.B5) can be greatly simplified by a particular trans-

formation of the coordinate system according to

hi ¼
X3N
j

aijq j (2:B6)
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Box 2B (continued)

Then the matrix (2.B5) transforms into

R 0i 0 j 0 ¼
X3N
ij

ai 0 iRij(a
�1)jj 0 (2:B7)

where a�1 denotes the reciprocal of the transformation (2.B6).

For each symmetry operation R of a point group a transformation aij can be found

such that the transformed operation R contains only diagonal elements

h 0i ¼ R 0iihi (2:B8)

It is generally not possible to find a single transformation by which all operations of

a point group are converted into diagonal forms. However, as general derivations in

group theory show, there are transformations that simplify the matrices of all the sym-

metry operations of a point group considerably. If the cubic groups are excluded, the

corresponding matrices consist of diagonal elements and of blocks of 2� 2 matrices

such as:

R11

R22 R23

R32 R33

R3N�2; 3N�2 R3N�2; 3N�1

R3N�1; 3N�2 R3n�1; 3N�1

R3N3N

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(2:B9)

For the cubic groups there are also blocks of 3� 3, 4� 4, and 5� 5 matrices. It is

evident that there are different matrix representations determined by the transforma-

tion (2.B6). It is straightforward to show that what all these representations have in

common is that the trace of the matrices is the same, i.e.,

X3N
i

R 0ii ¼
X3N
i

Rii ¼ wR (2:B10)

This trace wR is called the character of the symmetry operation R.

Thus, in all these representations the symmetry operations are characterised by the

unique value of the traces of the matrices representing the corresponding operations.

If a representation is found such that all the matrices are of the form in Eq. (2.B9), the

representation is referred to as being completely reduced. The corresponding new ba-

sis has the property that it can be separated into sets that do not mix with each other

upon the various symmetry operations of this point group. Therefore, the transforma-

tion equations for the members of each set of the new basis can, by themselves, be
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Box 2B (continued)

regarded as a representation of the point group. As no transformation can further sim-

plify (reduce) the representation, it is termed an irreducible representation. Therefore,

a completely reduced representation as given by the matrices such as in Eq. (2.B9) is

made up of a number of irreducible representations and the character of the com-

pletely reduced representation (or of the reducible representation) is the sum of the

characters of the irreducible representations, i.e.,

wR ¼
X
g

n(g)w
(g)
R (2:B11)

where w
g
R is the character of the irreducible representation g with respect to the sym-

metry operation R, and n(g) specifies how often the representation g appears in the

completely reduced representation. It can be shown that

n(g) ¼ 1

g

X
R

w
g
RwR (2:B12)

where the sum extends over all symmetry operations of a point group and g gives the

number of symmetry operations.

An additional nomenclature has to be introduced. There are symmetry operations

that have the same various characters for the different irreducible representations.

These operations belong to the same class. A more formal definition for a class is

the following: if A, B, and X are members of a point group and if B ¼ X�1AX , then A

and B belong to the same class. It is easy to show that the equality of the characters of

A and B follows from the definition of character and from the rule of matrix multipli-

cation. In characterising a point group, it is, therefore, not necessary to give the char-

acters of all symmetry operations but it is sufficient to list them for each different

class of symmetry operations.

Using the classes of symmetry operations, Eq. (2.B12) can be rewritten as

n(g) ¼ 1

g

X
j

g jw
(g)
j wj (2:B13)

where g j is the number of elements (symmetry operations) within the class j, w
(g)
j is

the character of the representation g with respect to the class j, and wj is the character

of any one of the symmetry operations within class j with respect to the completely

reduced or reducible representation (as has been shown above, the character of a

symmetry operation is not changed by a transformation of the coordinate system).

The representation of a point group is characterised by the character of the trans-

formations making up this point group. Therefore, the transformation properties of

the irreducible representations, i.e., the characters, can be summarised in tabular

form. They are listed for the different point groups in books describing the application
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of group theory (e.g., Wilson et al. 1955). For the D3h point group, the character table

is

D3h E 2C3 3C2 sh 2S3 3sv

A01 1 1 1 1 1 1

A02 1 1 �1 1 1 �1
E 0 2 �1 0 2 �1 0

A001 1 1 1 �1 �1 �1
A002 1 1 �1 �1 �1 1

E 00 2 �1 0 �2 1 0

ð2:B14)

The symbol in the upper left corner denotes the point group. The first column contains

the various irreducible representations, in this case 6. The first row lists the various

symmetry operations (unity operation E, two rotations about the 3-fold axis, one hori-

zontal mirror plane sh, two alternating rotations about the 3-fold axis, and three verti-

cal mirror planes sv). The second column, describing the characters of the unity oper-

ation E for the various irreducible representations, gives the dimensionality of the

representation, i.e., the number of coordinates that may mix upon application of the

symmetry operations. The notation for the different representations is complex (Mulli-

can notation) and basically describes the symmetry properties upon certain basic sym-

metry operations of the different point groups. Here, it is sufficient to note that the

letters A and B refer to one-dimensional representations, the letters E and F to two-

dimensional and three-dimensional representations. Typically not all symmetry opera-

tions are listed, rather the classes together with the number of operations within the

particular class.

It is easy to see that for the D3h symmetry we obtain n(A01) ¼ 1; n(A002) ¼ 2;

n(E 0) ¼ 3; n(E 00) ¼ 1; n(A02) ¼ 1. It is important to mention that the D3h representation

of the displacements as the basis does not contain the A001 irreducible representation.

What is the connection for these symmetry considerations with vibrational spectros-

copy? It has been shown in Section 2.1.1 that the normal coordinates Qi involve a lin-

ear transformation such as (2.B6)

Qk ¼
X

l ikqi (2:B15)

It is straightforward to show that these normal coordinates form part of the irreduci-

ble representations making up the basis set of the displacements (see Wilson et al.

1955). In general, there are 6 additional representations, 3 for the translational and 3

for the rotational movements of the molecule as a whole. Thus, the normal coordi-

nates Qi just transform as irreducible representations, and their symmetry properties

are given by the character table.
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We now can further specify the Mullican notation as given in the character tables,

for the C2v geometry of water [Eq. (2.B16)] or for the D3h symmetry of nitrate [Eq.

(2.B14)]. As already mentioned the letters A and B refer to one-dimensional, E to

two-dimensional, and F to three-dimensional representations. Totally symmetric repre-

sentations for which all characters are 1 are denoted by A, A1, or A1g. The subscript

‘‘g’’ is the abbreviation for ‘‘gerade’’ indicating the symmetry with respect to inversion

whereas ‘‘ungerade’’ representations (denoted by the subscript ‘‘u’’) are antisymmet-

ric toward this symmetry operation.

C2v E C2 sv(xz) sv(yz)

A1 1 1 1 1

A2 1 1 �1 �1
B1 1 �1 1 �1
B2 1 �1 �1 1

ð2:B16)

As an example, we can now discuss the symmetry properties for the normal modes of

H2O. The three normal modes are schematically represented in Fig. 2.B3. The stretch-

ing and bending modes n1 and n2 are symmetric (character þ1) with respect to all

symmetry operations, i.e., the rotation and the two reflections, and thus belong to the

(totally symmetric) representation A1 [Eq. (2.B16)]. The stretching mode n3, however,

is anti-symmetric (character �1) to the rotation and the reflection with respect to the

yz-plane, such that it is grouped into the B1 representation.

Such a classification of the normal modes according to the symmetry properties can

also be obtained by transforming internal coordinates into symmetry coordinates. For

the water molecule, this transformation is relatively simple assuming an approximate

expression for the potential energy

2V ¼ Fr(r
2
1 þ r 22 )þ Faa

2 (2:B17)

where r1ðr2) and a are the stretching and bending coordinates, respectively. Fr and Fa
denote the corresponding stretching and bending force constants, whereas interaction

force constants are neglected. If we now define symmetry coordinates according to

Fig. 2.B3 Illustration of the three normal modes of water. The arrows

qualitatively indicate the directions of displacements of the individual

atoms in the normal modes.
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S1 ¼ a

S2 ¼
1ffiffiffi
2
p (r1 þ r2) (2:B18)

S2 ¼
1ffiffiffi
2
p (r1 � r2)

the potential energy [Eq. (2.B6)] is then expressed by

2V ¼ FaS
2
1 þ FrS

2
2 þ FrS

2
3 (2:B19)

Correspondingly, the kinetic energy is given in terms of these symmetry coordinates

2T ¼ Ma
_SS2
1 þ 2

ffiffiffi
2
p

Mar
_SS1 _SS2 þ (Mrr þMr) _SS

2
2 þ (Mr �Mrr) _SS

2
3 (2:B20)

where Mi are the reduced masses which constitute the inverse G-matrix.

With Eqs. (2.B19 and 2.B20) one obtains the secular equation

Fa �Mal �
ffiffiffi
2
p

Marl 0

�
ffiffiffi
2
p

Marl Fr � (Mr þMrr)l 0

0 0 Fr � (Mr �Mrr)l

�������
������� ¼ 0 (2:B21)

which factorises into two blocks, a 2� 2 matrix referring to the normal modes of the

A1 representation, and a 1� 1 matrix corresponding to the B1 mode.

An important goal of group theory applied to molecular vibrations is to determine

the number of normal modes n belonging to each irreducible representation g of the

point group. This procedure, which substantially facilitates the assignment of Raman

and infrared bands (vide infra), can be applied on the basis of Cartesian (displace-

ment) coordinates or internal (symmetry) coordinates. We have mentioned above

that the number of given irreducible representations appears in the completely re-

duced representation according to Eq. (2.B13), i.e.,

n(g) ¼ 1

g

X
j

g jw
(g)
j wj (2:B13)

This expression can be used to determine the number of normal modes in a certain

irreducible representation g, taking into account that expressions (2.B13) also contain

the 6 coordinates for translation and rotation. g j and w
(g)
j are obtained from the char-

acter tables such as Eqs. (2.B14 and 2.B16). wj has to be determined independently,

either by inspection of the effects of the symmetry operations on the displacement co-

ordinates, or by more efficient methods described in books on the application of

group theory.
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Let us consider the situation when the molecular vibrations are described in terms

of Cartesian displacement coordinates. It is clear that for a 3-atomic molecule wE
equals 9 ð3N). For a three-atomic molecule such as H2O, the values of wj are deter-

mined to be �1, 3, and 1 for the symmetry operations C2, sv; xz, and sv; yz, respectively.

With Eq. (2.B13) we obtain

nðA1Þ ¼
1

4
(1 � 1 � 9� 1 � 1 � 1þ 1 � 1 � 3þ 1 � 1 � 1) ¼ 3

nðA2Þ ¼
1

4
(1 � 1 � 9� 1 � 1 � 1� 1 � 1 � 3� 1 � 1 � 1) ¼ 1

nðB1Þ ¼
1

4
(1 � 1 � 9þ 1 � 1 � 1þ 1 � 1 � 3� 1 � 1 � 1) ¼ 3

(2:B22)

nðB2Þ ¼
1

4
(1 � 1 � 9þ 1 � 1 � 1� 1 � 1 � 3þ 1 � 1 � 1) ¼ 2

which can be summarised by

G ¼ 3A1 þ A2 þ 3B1 þ 2B2 (2:B23)

Thus, altogether we have 9 modes corresponding to the 3N ¼ 9 degrees of freedom.

To sort out the ‘‘modes’’ of zero frequency, we have to consider the symmetry proper-

ties of the translational and rotational degrees of freedom. Translation of the molecule

in z-direction (Tz) is symmetric with respect to all symmetry operations such that Tz is

assigned to the A1 symmetry species. Translation in the x- and y-directions is symmet-

ric with respect to sv; xz and sv; yz, respectively, but both are antisymmetric with respect

to C2. Thus, Tx and Ty belong to the symmetry species B1 and B2, respectively. Corre-

spondingly, one can show that rotation around the z-axis Rz is symmetric with respect

to C2 but antisymmetric with respect to both reflections. Likewise, we find that Rx and

Ry are antisymmetric to C2 but symmetric to sv; zx and sv; zy, respectively, such that for

these molecular motions the assignment to the symmetry species is also straightfor-

ward. Thus, we subtract the translations and rotations from the respective symmetry

species to obtain the true number of vibrational normal modes. This approach is

readily applicable to larger molecules and, moreover, it also holds for the internal co-

ordinate system. In this way, it is possible to factorise the FG-matrix into blocks corre-

sponding to the various symmetry species involved. The translational (Tx ; Ty; Tz) and

rotational (Rx ;Ry;Rz) coordinates are usually included into the character table, so one

obtains for the C2v symmetry.
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C2v E C2 s(xz) s(yz)

A1 1 1 1 1 Tz
A2 1 1 �1 �1 Rz

B1 1 �1 1 �1 Tx ; Ry

B2 1 �1 �1 1 Ty; Rx

ð2:B24)

For the real normal modes we obtain G(normal modes) ¼ 2A1 þ B1, as intuitively de-

rived for this simple molecule.

Box 2C

Symmetry-based selection rules

Symmetry considerations allow the determination of whether a normal mode Qk of

a molecule belonging to a certain point group ð0C1) is IR- or Raman-active. This es-

tablishes if the expressions for the transition dipole moment [Eq. (2.44)] and the scat-

tering tensor [Eq. (2.62)] are zero or non-zero. In symmetry terms this means: the

product, in which ŴW is the dipole moment or polarisability operator, must lead to a

symmetric function otherwise the integrals in Eqs. (2.44 and 2.62) vanish. Within the

framework of group theory (Cotton 1990; Wilson et al. 1955), the symmetry properties

of this product are expressed by the ‘‘direct product’’ of the irreducible representations

G ¼ Gn � GW � Gm (2:C1)

where Gn, Gm, and GW are the irreducible representations of the wavefunctions of the

initial, and the final states, and of the operator, respectively. The condition that the in-

tegral over the products in Eqs. (2.44 and 2.62) is non-zero requires that the direct

product has the totally symmetric irreducible representation.

Let us first consider the wavefunction of the vibrational ground state cn; k (v ¼ 0),

which we can express by the symmetric eigenfunction of the harmonic oscillator (see

Box 2A)

cn; k ¼ N0; k � exp �
1

2
gkQ

2
k

� �
(2:C2)

which is always totally symmetric. The actual ground state is the product of such func-

tions belonging to the various normal modes. However, because in a fundamental vi-

brational transition only one normal mode is involved, it is sufficient to consider only

the expression Eq. (2.C2). The situation is different if a transition to a combination

state has to be treated.

For the first vibrational excited state cm (v ¼ 1), however, the eigenfunction is given

by
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Box 2C (continued)

cm; k ¼ N1; k �
ffiffiffiffi
gk
p �Qk � exp �

1

2
gkQ

2
k

� �
(2:C3)

such that the symmetry of cm; k is given by the symmetry of Qk.

Now we can investigate the consequences for the IR transitions. In this instance,

the operator ŴW corresponds to the dipole moment operator [Eq. (2.44)], which has

three components corresponding to the Cartesian coordinates

mx ¼
X
a

ea � xa

my ¼
X
a

ea � ya (2:C4)

mz ¼
X
a

ea � za

Evidently, the operator m̂m transforms in the same manner as the Cartesian coordinates

or as the translations in the x-, y-, and z-directions. Thus, the irreducible representations

of mi, i.e., Gm, can be derived from the character table of the individual point groups.

To determine the symmetry product according to Eq. (2.C1), we use the multiplica-

tion properties of the irreducible representations (Wilson et al. 1955). For the non-

degenerate species A and B, these rules are fairly simple as A� A ¼ A and B� B ¼
A, whereas A� B ¼ B. Likewise, for the subscripts we have 1� 1 ¼ 1, 2� 2 ¼ 1 and

1� 2 ¼ 2 (except for D2 and D2h point groups) and g � g ¼ g, u� u ¼ g and

g � u ¼ u. On this basis, we can decide which of the vibrational modes of H2O are

IR-active. For the two A1 modes, with Eq. (2.C1) we obtain

GA1
(z) ¼ A1 � A1 � A1 ¼ A1

GA1
(y) ¼ A1 � B2 � A1 ¼ B2 (2:C5)

GA1
(x) ¼ A1 � B1 � A1 ¼ B1

implying that both A1 modes are IR-active but only the z-component of the dipole mo-

ment operator provides a non-zero contribution to the transition dipole moment. Cor-

respondingly, one obtains for the B1 mode

GB1
(z) ¼ A1 � A1 � B1 ¼ B1

GB1
(y) ¼ A1 � B2 � B1 ¼ A2 (2:C6)

GA1
(x) ¼ A1 � B1 � B1 ¼ A1

Thus, in this instance only the x-component of m̂m gives rise to the IR intensity.

Although the direct product formalism is general and in particular allows the treat-

ment of more complex transitions involving overtones and combinational levels, for the

fundamental transition there is an even simpler rule, which can be readily obtained.

It can be shown that the character of the direct product of two irreducible represen-

tations is the product of their characters. The condition that
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G ¼ Gn � GW � Gm (2:C1)

contains the totally symmetric representation can be rephrased to ask how many

times this representation is contained in G. According to Eq. (2.B12), this value, n(1),

is given by

n(1) ¼ 1

g

X
R

wnRðwWR wmR Þ (2:C7)

as the character of the totally symmetric representation, w
(1)
R , equals one for all opera-

tions R. Expression (2.C7) can be considered in such a way that nð1Þ represents the

number of times Gn is contained in the reducible representation GW � Gm.

Therefore, if Gn does occur, n(1) is greater than zero and the integral does not van-

ish. For the fundamental transition from the ground state (totally symmetric) to the

first excited vibronic level, one therefore arrives at the very simple statement that

such a transition is IR active if the corresponding normal coordinate belongs to the

same representations as those of Tx , Ty, or Tz.

In the same way we determine the Raman activity on the basis of the symmetry

properties of the operator for the polarisability tensor, Eq. (2.62). It can be shown (Wil-

son et al. 1955) that the components of this operator âaxx, âaxy, âaxz etc. transform as do

xx, xy, xz etc. Therefore, the transformation properties of the tensor can be derived in a

similar way as for the x-, y-, and z-coordinates themselves. These symmetry properties

are also listed in the character table, and Eq. (2.B24) is extended to

C2v E C2 sv(xz) sv(yz)

A1 1 1 1 1 Tz axx ; ayy; azz
A2 1 1 �1 �1 Rz axy

B1 1 �1 1 �1 Tx ; Ry axz

B2 1 �1 �1 1 Ty; Rx ayz

ð2:C8)

As shown in Chapter 2, the Raman scattering involves a change in the quantum num-

ber of a normal mode by 1, as in the infrared absorption. Therefore, the same method-

ology as for infrared absorption can be applied. Either the general direct product for-

malism can be used, or one can determine whether an element of the polarisability

operator belongs to the same representation as a normal mode. We readily find that

the A1 modes are Raman-active through the tensor components axx , ayy, and azz,

whereas the B1 mode gains Raman intensity through axz. By means of Eqs. (2.60 and

2.61), we can conclude that the A1 modes exhibit a very small depolarisation ratio

whereas this ratio is 0.75 for the B1 mode. Thus, symmetry consideration do not only

allow prediction for the Raman- and IR-activity of the normal modes but also provides

predictions for the depolarisation ratio, which in turn is particularly helpful for the vi-

brational assignments.
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Now we consider the RR activity. For the A-term [Eq. (2.68)], the RR intensity de-

pends on the electronic transition dipole moments M0
GR and the Franck–Condon fac-

tor products hnrihrmi. As the vibrational quantum number for the initial and final

wavefunctions differs by one, either the left or the right integral would vanish for

non-totally symmetric modes. Thus, only totally-symmetric modes gain intensity via

the A-term, given that the origins of the potential curves in the ground and electronic

excited state are displaced with respect to each other. The second prerequisite for A-

term RR intensity is defined by the symmetry properties of M0
GR

G ¼ GG � GW � GR (2:C9)

where the irreducible representation of the dipole moment operator GW corresponds

to that of the transition dipole moment as in the case of IR absorption [Eq. (2.C4)].

The electronic transition moment is non-zero if there is a component (in the x-, y-, or

z-direction) for which the direct product Eq. (2.C9) is totally symmetric.

As an example, we will discuss the p! p� electronic transitions of benzene, which

belongs to the D6h point group. The electronic configuration can be illustrated within

the H€uuckel approximation of molecular orbital theory (Fig. 2.C1). In the electronic

ground state, the three occupied p-orbitals are of a2u and e1g symmetry, leading to

the (a2u)
2(e1g)

4 configuration. As all occupied orbitals are completely filled, the

Fig. 2.C1 Electronic structure (left) and energy diagram for the

electronic transitions (right) of benzene (Straughan and Walker

1976). The electronic structure is qualitatively described in terms of

the H€uuckel molecular orbital approximation.
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ground state belongs to the totally symmetric species 1A1g where the superscript ‘‘1’’

indicates the singlet state. The lowest electronic excitation promotes an electron to

the e2u orbital resulting in the (a2u)
2(e1g)

3(e2u)
1 configuration (Fig. 2.C1). The direct

product of (e1g) and (e2u) then leads to symmetry properties of the three lowest ex-

cited states, i.e., 1B1u,
1B2u, and

1E1u (considering only the singlet transitions). Thus,

the irreducible representation of the corresponding electronic transition dipole mo-

ments are evaluated according to Eq. (2.C9) using the irreducible representations of

the dipole moment operator that are A2u (z) and E1u (x; y) within the D6h point group.

It can be verified that only the product A1g � E1u � E1u leads to a totally symmetric

species implying that only the 1E1u  1A1g transition, which is localised in the x,y-

plane, is symmetry-allowed. This transition in fact gives rise to a strong absorption

band at ca. 180 nm and excitation in resonance with this transitions provides a strong

enhancement of the Raman bands originating from totally-symmetric A1g modes.

Now we will consider the symmetry-based selection rules for the B-term scattering

mechanism. When the excitation is in resonance with a weak electronically excited

state R, the Herzberg–Teller approximation (Albrecht 1961) applies and Eq. (2.69) is

transformed into

BG
1

h

M0
GSM

0
GRHRS

nS � nR

X
r

hnjQkjrihrmiþ hnjrihrjQkjmi

nRr � nk � n0 þ iGR

� �
(2:C10)

where HRS is the vibronic coupling integral describing the mixing between the reso-

nant excited state R and a second (allowed) excited state S, and nS and nR are the fre-

quencies of the corresponding 0! 0 excitations.

Again, we restrict the discussion to the transition from the vibrational ground state

n (with v ¼ 0) to the first vibrational excited state m (with v ¼ 1), and inspect the in-

dividual terms in Eq. (2.C10) separately. The vibrational integrals that include the nor-

mal coordinate Qk , i.e., hnjQkjri and hrjQkjmi, are only non-zero if the symmetry

product of Qk with cm; k or cr; k is totally-symmetric. In addition, the integrals hnjri
and hrjmi must be non-zero, which is only fulfilled for cr; k having the same vibra-

tional quantum number as cn; k or cm; k. Finally, the integral HRS has to be large, which

is true for modes that can effectively couple the electronically excited states R and S.

Combining these three conditions, maximum enhancement via the B-term mechanism

is expected:

(i) for modes of the symmetry species given by the direct product of

the two electronic transitions that are involved

(ii) when the excitation line is in resonance with the weak 0! 0 or

0! 1 vibronic transition Rr

(iii) when the energy difference with respect to a second electronically

excited state S is small.

2.3 Surface Enhanced Vibrational Spectroscopy 59



References

Albrecht, A. C., 1961, ‘‘On the theory of

Raman intensities’’, J. Chem. Phys. 34,
1476–1484.

Albrecht, A. C., Hutley, M. C., 1971, ‘‘On the

dependence of vibrational Raman intensity

on the wavelength of incident light’’,

J. Chem. Phys. 55, 4438–4443.
Ataka, K., Heberle, J., 2003,

‘‘Electrochemically induced surface-

enhanced infrared difference absorption

(SEIDA) spectroscopy of a protein mono-

layer’’, J. Am. Chem. Soc. 125, 4986–4987.
Ataka, K., Heberle, J., 2004, ‘‘Functional

vibrational spectroscopy of a cytochrome c
monolayer: SEIDAS probes the interaction

with different surface-modified electrodes’’,

J. Am. Chem. Soc. 126, 9445–9457.
Atkins, P., 2006, ‘‘Physical Chemistry’’, Oxford

University Press, Oxford.

Blair, D. F., Campbell, G. W., Schoonover,

J. R., Chan, S. I., Gray, H. B., Malmström,

B. G., Pecht, I., Swanson, B. I., Woodruff,

W. H., Ch., W. K., English, A. M., Fry,

H. A., Lunn, V., Norton, K. A., 1985,

‘‘Resonance Raman studies of blue copper

proteins: Effect of temperature and isotope

substitutions. Structural and thermo-

dynamic implications’’, J. Am. Chem. Soc.
107, 5755–5766.

Cotton, F. A., 1990, ‘‘Chemical Applications of
Group Theory’’, Wiley, New York.

Curry, B., Palings, I., Broek, A. D., Pardoen,

J. A., Lugtenburg, J., Mathies, R., 1985,

‘‘Vibrational analysis of the retinal

isomers’’, in Adv. Infrared and Raman
Spectrosc. 12, Clark, R. J. H., Hester, R. E.

(Eds.), chap. 3, Wiley, Heyden, New York.

Czernuszewicz, R. S., Spiro, T. G., 1999,

‘‘IR, Raman, and resonance Raman

spectroscopy’’, in Inorganic Electronic
Structure and Spectroscopy, Solomon, E. I.,

Lever, A. B. P. (Eds.), Vol. 1, Wiley, New

York, pp. 353–441.

Fogarasi, G., Zhou, X., Taylor, P. W., Pulay,

P., 1992, ‘‘The calculation of ab-initio
molecular geometries: Efficient optimiza-

tion by natural internal coordinates and

empirical corrections of offset forces’’,

J. Am. Chem. Soc. 114, 8191–8201.
Heller, E. J., 1981, ‘‘The semi-classical way to

molecular spectroscopy’’, Acc. Chem. Res.
14, 368–375.

Herzberg, G., 1945, ‘‘Molecular Spectra and
Molecular Structure: II, Infrared and Raman
Spectra of Polyatomic Molecules’’, Van
Nostrand Reinhold, New York.

Hildebrandt, P., Stockburger, M., 1984,

‘‘Surface enhanced resonance Raman

spectroscopy of Rhodamine 6G adsorbed

on colloidal silver’’, J. Phys. Chem. 88,
5935–5944.

Kerker, M., Wang, D. S., Chew, S., 1980,

‘‘Surface enhanced Raman scattering

(SERS) by molecules adsorbed on spherical

particles’’, Appl. Opt. 19, 4159–4273.
Kneipp, K., Moskovits, M., Kneipp, H. (Eds.),

2006, ‘‘Surface-enhanced Raman scattering:

Physics and applications’’, Topics Appl.
Phys. 103, Springer, Berlin.

Li, X.-Y., Czernuszewicz, R. S., Kincaid, J. R.,

Spiro, T. G., 1989, ‘‘Consistent porphyrin

force field. 3. Out-of-plane modes in the

resonance Raman spectra of planar and

ruffled nickel octaethylporphyrin’’, J. Am.
Chem. Soc. 111, 7012–7023.

Li, X.-Y., Czernuszewicz, R. S., Kincaid, J. R.,

Su, Y. O., Spiro, T. G., 1990a, ‘‘Consistent

porphyrin force field. 1. Normal mode

analysis for nickel porphine and nickel

tetraphenylporphine from resonance

Raman and infrared spectra and isotope

shifts’’, J. Phys. Chem. 94, 31–47.
Li, X.-Y., Czernuszewicz, R. S., Kincaid, J. R.,

Stein, P., Spiro, T. G., 1990b, ‘‘Consistent

porphyrin force field. 2. Nickel octaethyl-

porphyrin skeletal and substituent mode

assignments from 15N, meso-d4, and

methylene-d16 Raman and infrared isotope

shifts’’, J. Phys. Chem. 94, 47–61.
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