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1.1 Introduction

Information theory establishes a framework for any kind of communication and information
processing. It allows us to derive bounds on the complexity or costs of tasks such as storing
information using the minimal amount of space or sending data over a noisy channel. It
provides means to quantify information. So one may ask, “How much does someone know
about what somebody else knows?”—a question which is important in cryptographic context.
Before studying the new aspects that quantum mechanics adds to information theory in later
chapters, we will have a brief look at the basics of classical information theory in the next
section.

While information theory provides an answer to the question how fast one can send infor-
mation over a noisy channel, it usually does not give a constructive solution to this task. This
is a problem error correction deals with. In Section 1.3 we give a short introduction to linear
blocks codes, laying ground for the discussion of error-correcting codes for quantum systems
in Chapter 7.

1.2 Basics of Classical Information Theory

1.2.1 Abstract communication system

The foundations of information theory have been laid by Claude Shannon in his landmark pa-
per “A Mathematical Theory of Communication” [Sha48]. In that paper, Shannon introduces
the basic mathematical concepts for communication systems and proves two fundamental cod-
ing theorems. Here we mainly follow his approach.

The first important observation of Shannon is that although the process of communication
is intended to transfer a message with some meaning, the design of a communication system
can abstract from any meaning:

The fundamental problem of communication is that of reproducing at one point ei-
ther exactly or approximately a message selected at another point. Frequently the
messages have meaning; that is they refer to or are correlated according to some
system with certain physical or conceptual entities. These semantic aspects of com-
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munication are irrelevant to the engineering problem. The significant aspect is that
the actual message is one selected from a set of possible messages. The system
must be designed to operate for each possible selection, not just the one which will
actually be chosen since this is unknown at the time of design.

Additionally, we can to some extent abstract from the physical channel that is used to transmit
the message. For this, we introduce a transmitter and a receiver that convert the messages
into some physical signal and vice versa. The general layout of such a communication system
is illustrated in Fig. 1.1. Given a channel and an information source, the basic problem is
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Figure 1.1. Schematic diagram of a general communication system.

to transmit the messages produced by the information source through the channel as efficient
and as reliable as possible. Efficient means that we can send as much information as possible
per use of the channel, and reliable means that, despite the disturbance due to the noise added
by the channel, the original message is (with high probability) reproduced by the receiver.
Shannon has shown that one can treat the two problems separately. First we will consider
a noiseless channel which transmits every input perfectly, and then we will deal with noisy
channels. For simplicity, we will consider only discrete channels here, i.e., both the input and
the output of the channel, as well as those of the transmitter and receiver, are symbols of a
finite discrete set.

1.2.2 The discrete noiseless channel

For a channel that transmits its inputs perfectly, the goal in the design of a communication
system is to maximize its efficiency, i.e., the amount of information that can be sent through
the channel per time. Usually it is assumed that for each channel input the transmission
takes the same amount of time. Then we want to maximize the throughput per channel use.
Otherwise, we first have to consider how many symbols we can send through the channel per
time. Following [Sha48], we define

Definition 1.1 (capacity of a discrete noiseless channel) The capacity C of a discrete channel
is given by

C = lim
T→∞

log2 N(T )
T

,
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where N(T ) is the number of allowed signals of duration T .

If we use the symbols x1, . . . , xn with durations t1, . . . , tn, then we get the recursive
equation

N(t) = N(t− t1) + (t− t2) + · · ·+ N(t− tn),

as we can partition the sequences of duration t by, say, the last symbol. For large t, N(t) tends
to Xt

0 where X0 is the largest real solution of the characteristic equation

X−t1 + X−t2 + · · ·+ X−tn = 1. (1.1)

Summarizing, we get

Lemma 1.1 The capacity of a discrete noiseless channel with symbols x1, . . . , xn with dura-
tions t1, . . . , tn is

C = log2 X0,

where X0 is the largest real solution of (1.1).

In order to maximize the efficiency of the communication system, we additionally need a
measure for the amount of information that is produced by the source. Recall that we abstract
from the meaning of a message, i.e., a single message does not provide any information.
Instead, we always consider a set of possible symbols, and each of the symbols will occur
with some probability. The less frequent a symbol, the more surprising is its occurrence
and hence it bears more information. The amount of information of a source is described as
follows:

Definition 1.2 (Shannon entropy) Let a source S emit the symbols x1, . . . , xn with probabil-
ities p(x1), . . . , p(xn). Then the Shannon entropy of the source is given by

H(S) = −
n∑

i=1

p(xi) log2 p(xi).

In this definition we have assumed that the symbols are emitted independently, i.e., the
probability of receiving a sequence xi1xi2 · · ·xim of length m is given by

p(xi1xi2 · · ·xim) = p(xi1 )p(xi2) · · · p(xim).

If there are some correlations between the symbols, the entropy of the source decreases when
the original symbols are combined to new symbols. This is a consequence of the fact that
the entropy is maximal when all probabilities are equal. As an example we may consider any
natural language. The entropy depends on whether we consider the single-letter entropy, the
pairs or triples of letters, whole words, or even sentences. Of course, the entropy does also
depend on the language itself.

From now on, we fix the alphabet of the information source and assume that there are no
correlations between the symbols. A very important concept in information theory is that of
ε-typical words.
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Theorem 1.1 (ε-typical words) Let S be a source with entropy H(S). Given any ε > 0 and
δ > 0, we can find an N0 such that the sequences of any length N ≥ N0 fall into two classes:

1. A set whose total probability is less than ε.

2. The remainder, all of whose members have probability p satisfying the inequality
∣∣∣∣
− log2 p

N
−H(S)

∣∣∣∣ < δ.

Asymptotically, this means that a sequence either occurs with negligible probability, i.e.,
is nontypical, or it is a so-called ε-typical word, which are approximately equally distributed.

Fixing the length N one can order the sequences by decreasing probability. For 0 < q < 1,
we define n(q) as the minimum number of sequences of length N that accumulate a total
probability q. Shannon has shown that in the limit of large N , this fraction is independent
of q:

Theorem 1.2

lim
N→∞

log2 n(q)
N

= H(S) for 0 < q < 1.

The quantity log2 n(q) can be interpreted as the number of bits that are required to describe
a sequence when considering only the most probable sequences with total probability q. From
Theorem 1.1 we get that even for the finite length N , almost all words can be described in this
way. The bounds for sending arbitrary sequences through the channel are given by Shannon’s
first fundamental coding theorem:

Theorem 1.3 (noiseless coding theorem) Given a source with entropy H (in bits per symbol)
and a channel with capacity C (in bits per second), it is possible to encode the output of the
source in such a way as to transmit at the average rate C

H − ε symbols per second over the
channel where ε > 0 is arbitrarily small.

Conversely, it is not possible to transmit at an average rate greater than C
H .

The small defect ε compared to the maximal achievable transmission speed is due to the
small extra information that is needed to encode the nontypical words of the source. An
efficient scheme for encoding the output of the source is e.g. the so-called Huffman cod-
ing [Huf52]. In view of Theorem 1.1, one can also ignore the nontypical words which have a
negligible total probability ε in the encoding, resulting in a small error (lossy data compres-
sion).

1.2.3 The discrete noisy channel

A discrete noisy channel maps an input symbol xi from the (finite) input alphabet X to an
output symbol yj from the output alphabet Y . A common assumption is that the channel is
memoryless, i.e., the probability of observing a symbol yj depends only on the last channel
input xi and nothing else. The size of the input and output alphabet need not be the same, as
depicted in Fig. 1.2. Given the channel output yj , the task for the receiver is to determine the
most likely input xi to the channel. For this we consider how much information the channel
output provides about the channel input. First we define some general quantities for pairs of
random variables (see, e.g., [CT91]).
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Figure 1.2. Schematic representation of a discrete memoryless channel. Arrows correspond to
transitions with nonzero probability p(yj|xi).

Definition 1.3 (joint entropy) The joint entropy H(X, Y ) of a pair of discrete random vari-
ables X and Y with joint distribution p(x, y) is defined as

H(X, Y ) = −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(x, y).

For the joint entropy, we consider the channel input and the channel output together as one
symbol.

Definition 1.4 (conditional entropy) The conditional entropy H(Y |X) of a pair of discrete
random variables X and Y with joint distribution p(x, y) is defined as

H(Y |X) =
∑

x∈X
p(x)H(Y |X = x)

= −
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log2 p(y|x)

= −
∑

x∈X

∑

y∈Y
p(x, y) log2 p(y|x).

The conditional entropy is a measure for the information that we additionally get when
considering both X and Y together, and not only X . This is reflected by the following chain
rule (see [CT91, Theorem 2.2.1]).

Theorem 1.4 (chain rule)

H(X, Y ) = H(X) + H(Y |X).

Another important quantity in information theory is the mutual information.

Definition 1.5 (mutual information) The mutual information I(X ; Y ) of a pair of discrete
random variables X and Y is defined as

I(X ; Y ) = H(X) + H(Y )−H(X, Y ).



8 1 Classical Information Theory and Classical Error Correction

�

�

�

�

�

�

�

�I(X; Y )

H(X|Y )

H(Y |X)

H(X, Y )���
���

���
H(X)

���
H(Y )

Figure 1.3. Relationship between entropy and mutual information.

The relationship between entropy and mutual information is illustrated in Fig. 1.3. From
Theorem 1.4 we get the following equivalent expressions for the mutual information:

I(X ; Y ) = H(X) + H(Y )−H(X, Y )
= H(X)−H(X |Y )
= H(Y )−H(Y |X).

With this preparation, we are ready to define the capacity of a noisy discrete memoryless
channel.

Definition 1.6 (capacity of a noisy discrete memoryless channel) The capacity of a discrete
memoryless channel with joint input–output distribution p(x, y) is defined as

C := max
p(x)

I(X ; Y ) = max
p(x)

(
H(X)−H(X |Y )

)
,

where the maximum is taken over all possible input distributions.

The justification of this definition is provided by Shannon’s second fundamental coding
theorem.

Theorem 1.5 (noisy coding theorem) Let S be a source with entropy H(S) and let a discrete
memoryless channel have the capacity C. If H(S) < C, then there exists an encoding scheme
such that the output of the source can be transmitted over the channel with an arbitrarily small
frequency of errors.

For the proof of this theorem, one considers a particular set of encoding schemes and then
averages the frequency of errors. This average can be made arbitrarily small, implying that at
least one of the encoding schemes must have a negligible error probability.

Before we turn our attention to the explicit construction of error-correcting codes, we
consider a particular interesting channel.

Example 1.1 (binary symmetric channel (BSC)) The BSC maps the input symbols {0, 1} to
the output symbols {0, 1}. With probability 1 − p, the symbol is transmitted correctly; with
probability p the output symbol is flipped (see Fig. 1.4).
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For the capacity of the BSC, we compute

I(X ; Y ) = H(Y )−H(Y |X)

= H(Y )−
∑

p(x)H(Y |X = x)

= H(Y )−
∑

p(x)H(p)

= H(Y )−H(p)
≤ 1−H(p). (1.2)

Here we have used the binary entropy function H(p) defined as

H(p) := −p log2 p− (1− p) log2(1 − p).

The last inequality follows from the fact that the entropy of the binary variable Y is at most
1. From (1.2) it follows that the capacity of a BSC is at most 1 − H(p), and if the input
distribution is uniform, this maximal capacity is achieved.
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Figure 1.4. The binary symmetric channel (BSC) and its generalization, the uniform symmetric
channel (USC). Each symbol is transmitted correctly with probability 1− p. In case of an error,
each of the other symbols is equally likely.

The generalization of the BSC to more than one input symbol is shown in Fig. 1.4. Again,
a symbol is transmitted correctly with probability 1 − p. If an error occurs, each of the, say,
m − 1 other symbols is equally likely, i.e., it occurs with probability q = p/(m− 1). These
types of channels are extremal in the sense that the transition probabilities only depend on
whether a symbol is transmitted correctly or not. Hence an incorrect symbol bears minimal
information about the input symbol. Any deviation from this symmetry results in an increased
capacity.

1.3 Linear Block Codes

1.3.1 Repetition code

When sending information over a noisy channel, on the highest level of abstraction we dis-
tinguish only the cases whether a symbol is transmitted correctly or not. Then the difference
between the input sequence and the output sequence is measured by the Hamming distance.
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Definition 1.7 (Hamming distance/weight) The Hamming distance between two sequences
x = (x1 . . . xn) and y = (y1 . . . yn) is the number of positions where x and y differ, i.e.,

dHamming(x,y) :=
∣∣{i : 1 ≤ i ≤ n | xi �= yi}

∣∣.

If the alphabet contains a special symbol 0, we can also define the Hamming weight of a
sequence which equals the number of nonzero positions.

In order to be able to correct errors, we use only a subset of all possible sequences. In
particular, we may take a subset of all possible sequences of length n.

Definition 1.8 (block code) A block code B of length n is a subset of all possible sequences
of length n over an alphabetA, i.e., B ⊆ An. The rate of the code is

R =
log |B|
log |An| =

log |B|
n log |A| ,

i.e., the average number of symbols encoded by a codeword.

The simplest code that can be used to detect or correct errors is the repetition code. A
repetition code with rate 1/2 transmits every symbol twice. At the receiver, the two symbols
are compared, and if they differ, an error is detected. Using this code over a channel with error
probability p, the probability of an undetected error is p2. Sending more than two copies of
each symbol, we can decrease the probability of an undetected error even more. But at the
same time, the rate of the code decreases since the number of codewords remains fixed while
the length of the code increases.

A repetition code can not only be used to detect errors, but also to correct errors. For this,
we send three copies of each symbols, i.e., we have a repetition code with rate 1/3. At the
receiver, the three symbols are compared. If at most one symbol is wrong, the two error-free
symbols agree and we assume that the corresponding symbol is correct. Again, increasing the
number of copies sent increases the number of errors that can be corrected. For the general
situation, we consider the distance between two words of the block code B.

Definition 1.9 (minimum distance) The minimum distance of a block code B is the minimum
number of positions in which two distinct codewords differ, i.e.

dmin(B) := min{dHamming(x,y) : x,y ∈ B | x �= y}.

The error-correcting ability of a code is related to its minimum distance.

Theorem 1.6 Let B be a block code with minimum Hamming distance d. Then one can either
detect any error that acts on no more than d positions or correct any error that acts on no
more than �(d− 1)/2� positions.

Proof . From the definition of the minimum distance of the code B it follows that at least d
positions have to be changed in oder to transform one codeword into another. Hence any error
acting on less than d − 1 positions can be detected. If strictly less than d/2 positions are
changed, there will be a unique codeword which is closest in the Hamming distance. Hence
up to �(d− 1)/2� errors can be corrected. The situation is illustrated in Fig. 1.5.
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Figure 1.5. Geometry of the codewords. Any sphere of radius dmin − 1 around a codeword
contains exactly one codeword. The spheres of radius �(dmin − 1)/2� are disjoint.

1.3.2 Finite fields

For a general block code B over a alphabet A, we have to make a list of all codewords,
i.e., the description of the code is proportional to its size. In order to get a more efficient
description—and thereby more efficient algorithms for encoding and decoding—we impose
some additional structure. In particular, we require that the elements of the alphabet have the
algebraic structure of a field, i.e., we can add, substract, and multiply any two elements, and
every nonzero element has an inverse. First we consider a finite field whose size is a prime
number.

Proposition 1.1 (prime field) The integers modulo a prime number p form a finite field Fp

with p elements.

Proof . It is clear that the modulo operation is a ring homorphism, i.e., it is compatible with
addition, subtraction, and multiplication. It remains to show that any nonzero element has a
multiplicative inverse. As p is a prime number, for any nonzero element b we have gcd(p, b) =
1. By the extended Euclidean algorithm (see Table 1.1), there exist integers s and t such that
1 = gcd(p, b) = sp + tb. Hence we get tb = 1 mod p, i.e. t is the multiplicative inverse of b
modulo p.

The smallest field is the binary field F2 which has only two elements 0 and 1. Note that
the integers modulo a composite number do not form a field as some nonzero elements do not
have a multiplicative inverse. For example, for the integers modulo 4 we have 2·2 = 0 mod 4.

In order to construct a field whose size is not a prime number, one uses the following
construction.

Proposition 1.2 (extension field) Let Fp be a finite field with p elements, p prime. If f(X) ∈
Fp[X ] is an irreducible polynomial of degree m, then the polynomials in Fp[X ] modulo f(X)
form a finite field Fq with q = pm elements.

Proof . The remainder of the division by the polynomial f(X) of degree m can be any poly-
nomial of degree strictly less than m. Hence we obtain pm different elements. Again addition,
subtraction, and multiplication of two elements are performed over the polynomial ring and
the result is reduced modulo f(X). For the computation of the multiplicative inverse, we use
the extended Euclidean algorithms of Table 1.1. The condition that f(X) is an irreducible



12 1 Classical Information Theory and Classical Error Correction

Table 1.1. The extended Euclidean algorithm (see [AHU74]).

EUCLID(a0,a1)
s0 ← 1; t0 ← 0;
s1 ← 0; t1 ← 1;
i← 1;
while ai does not divide ai−1 do

q ← ai−1 div ai;
ai+1 ← ai−1 − qai;
si+1 ← si−1 − qsi;
ti+1 ← ti−1 − qti;
i← i + 1;

end while
return ai, si, ti;

end

polynomial implies that f(X) cannot be written as the product of two nonconstant polynomi-
als. So again, for any nonzero element b(X) we have gcd(b(X), p(X)) = 1.

It can be shown that for any prime number p and for any positive integer m there exists an
irreducible polynomial of degree p over Fp, i.e., for any prime power q = pm, there exists a
finite field of that size. Furthermore, it can be shown that any finite field can be obtained by
the construction of Proposition 1.2. Hence we get (see, e.g., [Jun93])

Theorem 1.7 A finite field of size s exists if and only if s is a prime power, i.e., s = pm for
some prime number p and some positive integer m.

Example 1.2 The polynomial f(X) = X2 + X + 1 has no zero over the integers mod-
ulo 2 and is hence irreducible. The resulting field F4 = F2[X ]/(f(X)) has four elements
{0, 1, X, X +1} which may also be denoted as F4 = {0, 1, ω, ω2} where ω is a root of f(X),
i.e., ω2 + ω + 1 = 0.

Example 1.3 The polynomial f(X) = X2 + 1 has no zero over the integers modulo 3 and is
hence irreducible. The resulting field F9 = F3[X ]/(f(X)) has nine elements {0, 1, 2, X, X+
1, X +2, 2X, 2X+1, 2X +2}. Note that here the powers of a root α of f(X) do not generate
all nonzero elements as α2 = −1 and hence α4 = 1. Instead we may use the powers of the
element β = α + 1.

1.3.3 Generator and parity check matrix

In order to get a more efficient description of a block code B of length n we consider only
codes whose alphabet is a finite field Fq . Furthermore, we require that the code C forms a
linear vector space over the field Fq, i.e.,

∀x,y ∈ B∀α, β ∈ F : αx + βy ∈ B.

This implies that the code has qk elements for some k, 0 ≤ k ≤ n. We will use the notation
B = [n, k]q. Instead of listing all qk elements, it is sufficient to specify a basis of k linear
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independent vectors in F
n
q . Alternatively, the linear space B can be given as the solution of

n− k linearly independent homogeneous equations.

Definition 1.10 (generator matrix/parity check matrix) A generator matrix of a linear code
B = [n, k]q over the field Fq is a matrix G with k rows and n columns of full rank whose
row-span is the code.

A parity check matrix of a linear code B = [n, k]q is a matrix H with n − k rows and n
columns of full rank whose row null-space is the code.

The generator matrix with k × n entries provides a compact description of a code with qk

elements. Moreover, encoding of information sequences i ∈ F
k
q of length k corresponds to

the linear map given by G, i.e.,

i 
→ c := iG.

The parity check matrix H can be used to check whether a vector lies in the code.

Proposition 1.3 (error syndrome) Let H be a parity check matrix of a linear codeB = [n, k]q.
Then a vector v ∈ F

n
q is a codeword if and only if the error syndrome s given by

s := vHt

is zero. Moreover, the syndrome s depends only on the error.

Proof . The code B is the row null-space of H , i.e., for any codeword c ∈ B we get cHt = 0.
If v is a codeword with errors, we can always write v = c + e, where v is a codeword and e
corresponds to the error. Then we compute

s = vHt = (c + e)Ht = cHt + eHt = eHt.

The reason for defining the parity check matrix H as a matrix with n columns and n− k
rows and not as its transpose is motivated by the following.

Proposition 1.4 (dual code) Let B = [n, k]q be a linear code over the finite field Fq . Then the
dual code B⊥ is a code of length n and dimension n− k given by

B⊥ =
{
v : v ∈ F

n
q | v · c = 0 for all c ∈ B}

.

Here v ·c =
∑n

i=1 vici denotes the Euclidean inner product on F
n
q . If G is a generator matrix

and H a parity check matrix for B, then G is a parity check matrix and H is a generator
matrix for B⊥.

As we have seen in Theorem 1.6, the minimum distance of a code is a criterion for its error-
correcting ability. For linear codes, the minimum distance equals the minimum Hamming
weight of the nonzero codewords as

dHamming(x,y) = dHamming(x− y,y−y) = dHamming(x− y,0) = wgtHamming(x− y).

The minimum Hamming weight of a linear code can be computed using the parity check
matrix.
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Proposition 1.5 If any d−1 columns in the parity check matrix H of a linear code are linearly
independent, then the minimum distance of the code is at least d.

Proof . Assume that we have a nonzero codeword c with Hamming weight d − 1, i.e. there
are d− 1 nonzero positions i1, . . . , id−1 in c. From cHt = 0 it follows that ci1h

(i1) + · · ·+
cid−1h

(id−1) = 0, where h(i) denotes the ith column of H . This contradicts the fact that any
d− 1 columns in H are lineaarly independent.

1.3.4 Hamming codes

The last proposition can be used to construct codes. For a single-error-correcting code, we
require d ≥ 3. This implies that any two columns in H have to be linearly independent, i.e.,
no column is a scalar muliple of another column. If we fix the redundancy m = n − k, it is
possible to find (qm − 1)/(q − 1) vectors with this properties which can be combined to a
parity check matrix H . This construction gives the following class of single-error-correcting
codes (see [Ham86, MS77])

Proposition 1.6 (Hamming code) The mth Hamming code over Fq is a linear code of length
n = (qm − 1)/(q − 1) and dimension k = (qm − 1)/(q − 1) −m. The parity check matrix
H is formed by all normalized nonzero vectors of length m, i.e., the first nonzero coordinate
of the vectors is 1. The minimum distance of the code is 3.

For binary Hamming codes, the parity check matrix H consists of all 2m − 1 nonzero
vectors of length m. If we order those columns in such a way that the ith column equals the
binary expansion bin(i) of i, error correction is particularly easy. If e is an error of weight 1,
then the syndrome s = eHt equals the ith column of H and hence the binary expansion of i.
Therefore, the syndrome directly provides the position of the error.

Example 1.4 The third binary Hamming code has parameters [7, 4, 3]. The parity check
matrix is

H =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 .

For an error at the fifth position, we have e = (0, 0, 0, 0, 1, 0, 0) and s = eH = (1, 0, 1) =
bin(i).

Usually, a received vector will be decoded as the codeword which is closest in the Ham-
ming distance. In general, decoding an arbitary linear binary code is an NP hard prob-
lem [BMvT78]. More precisely, it was shown that it is an NP complete problem to decide
whether there is a vector e ∈ F

n
2 which corresponds to a given syndrom s ∈ F

k
2 and whose

Hamming weight is at most w. Hence we cannot expect to have an efficient general algorithm
for decoding.

Instead, by exhaustive search we can precompute an error vector of minimal Hamming
weight corresponding to each syndrome. For this, we first arrange all codewords as the first
row of an array, where the all-zero codeword is the first element. Among the remaining
vectors of length n, we pick a vector e1 with minimal Hamming weight. This vector is the
first element of the next row in our array. The remaining entries of this row are obtained by
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adding the vector e1 to the corresponding codeword in the first row. This guarantees that all
elements of a row correspond to the same syndrome. We proceed until all qn vectors have
been arranged into an array with qn−k rows and qk columns, the so-called standard array.
The elements in the first column of the standard array are called coset leaders, having minimal
Hamming weight among all vectors in a row. Table 1.2 shows the standard array of a binary
code B = [7, 3, 4] which is the dual of the Hamming code of Example 1.4. Actually, the code
B is a subcode of the Hamming code. In the first row, 16 codewords are listed. For the next
seven rows, the coset leader is the unique vector of Hamming weight 1 in each coset, reflecting
the fact that the code can correct a single error. For the next seven rows, the coset leader has
weight 2, but each coset contains three vectors of weight 2. Hence decoding succeeds only in
one out of three cases. In the final row, we have even seven vectors of weight 3.

Table 1.2. Standard array for decoding the code B = [7, 3, 4], the dual of a binary Hamming
code.

0000000 0001111 0110011 0111100 1010101 1011010 1100110 1101001

0000001 0001110 0110010 0111101 1010100 1011011 1100111 1101000
0000010 0001101 0110001 0111110 1010111 1011000 1100100 1101011
0000100 0001011 0110111 0111000 1010001 1011110 1100010 1101101
0001000 0000111 0111011 0110100 1011101 1010010 1101110 1100001
0010000 0011111 0100011 0101100 1000101 1001010 1110110 1111001
0100000 0101111 0010011 0011100 1110101 1111010 1000110 1001001
1000000 1001111 1110011 1111100 0010101 0011010 0100110 0101001

0110000 0111111 0000011 0001100 1100101 1101010 1010110 1011001
1000001 1001110 1110010 1111101 0010100 0011011 0100111 0101000
1000010 1001101 1110001 1111110 0010111 0011000 0100100 0101011
1000100 1001011 1110111 1111000 0010001 0011110 0100010 0101101
1001000 1000111 1111011 1110100 0011101 0010010 0101110 0100001
1010000 1011111 1100011 1101100 0000101 0001010 0110110 0111001
1100000 1101111 1010011 1011100 0110101 0111010 0000110 0001001

1110000 1111111 1000011 1001100 0100101 0101010 0010110 0011001

1.4 Further Aspects

We have seen that the Hamming code is a code for which the correction of errors is rather
simple, but it can only correct a single error. On the other hand, using an arbitary linear
code, the problem of error correction is NP complete. But luckily, there are other families
of error-correcting codes for which efficient algorithms exist to correct at least all errors of
bounded weight. More about these codes can be found in any textbook on coding theory or
the book by MacWilliams and Sloane [MS77], which is an excellent reference for the theory
of error-correcting codes.
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