
1 Algorithms for Quantum Systems — Quantum Algorithms

Th. Beth, M. Grassl, D. Janzing, M. Rötteler, P. Wocjan, and R. Zeier

Institut für Algorithmen und Kognitive Systeme
Universität Karlsruhe
Germany

1.1 Introduction

Since the presentation of polynomial time quantum algorithms for discrete log and factoring
[Sho94] it is generally accepted that quantum computers may—at least for some problems—
outperform classical ones. But the field of quantum information processing does not only
have implications for computational problems. Using quantum mechanical systems for infor-
mation processing naturally leads to the problem of finding efficient ways to control quantum
mechanical systems.

Here we address several algorithmic aspects of quantum information processing in differ-
ent areas. First, the state of the art of quantum signal transforms which are at the core of a
huge class of quantum algorithms, namely hidden subgroup problems, is presented. Second,
we discuss aspects of quantum error-correcting codes, in particular an interesting view on
stabilizer codes which relates them to simple interaction Hamiltonians. The efficient imple-
mentation of unitary operations by given Hamiltonians is investigated next. Finally, results on
the simulation of one quantum mechanical system by another are discussed.

1.2 Fast Quantum Signal Transforms

A basic task in classical signal processing is to find fast algorithms which compute the matrix-
vector-product of a given transformation with an arbitrary input vector. Suppose that the input
is a vector of length N with complex entries. A transformation is said to have a fast algorithm
if the number of arithmetic operations needed to compute the matrix vector product—i. e.,
the number of additions and multiplications—is bounded by O(N log cN), for some constant
c. Amongst the most useful algorithms in computer science, physics, and engineering is the
discrete Fourier transform DFTN which is given by the unitary matrix

FN :=
1√
N

· [ωi·j]
i,j=0,...,N−1

,

where ω = e2πi/N denotes a primitive N -th root of unity. The computational complexity of
computing the product FN · x for an input vector x ∈ CN is O(N logN).

In quantum computing the unitary transformation FN is used in the following way. Sup-
pose that a system consisting of n qubits holds a normalized state vector |ψ〉 =

∑N
i=1 xi|i〉 ∈
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CN , where N := 2n. Note that here the information is encoded into the amplitudes of the
basis states. To this state the unitary transformation FN can be applied resulting in a state
FN |ψ〉. Unlike the situation in classical signal processing the components of |ψ〉 and FN |ψ〉
are not directly accessible; they merely can be extracted by (POVM) measurements. However,
for feature detecting purposes like the location of spectral peaks this approach is well-suited.

A quantum Fourier transform can be computed using O(log 2N) elementary operations.
This exponential speed-up compared to the classical complexity of the DFT, which surpris-
ingly enough is obtained by a direct adaptation of the classic Cooley-Tukey algorithm to the
quantum circuit model, is an essential indication for the power of quantum computing. This
becomes manifest in the fact that the ability to compute a DFT in polylogarithmic time is the
backbone of Shor’s algorithms for factoring and computing the discrete logarithm [Sho94].

A natural question is whether other signal transforms which have desirable feature ex-
traction properties in classical signal processing can be used for quantum algorithms. In a
series of works [PRB99, RPB99, KR00, ABH+01, KR01, Röt02] it has been shown that many
well-known signal transforms allow highly efficient realizations on a quantum computer. In
particular the following classes of unitary transformations have been shown to be efficiently
implementable on a quantum computer:

• Discrete Fourier transforms for finite abelian groups [ABH+01, Röt02].

• Generalized Fourier transforms for

– 2-groups with maximal cyclic normal subgroup [PRB99, Röt02].

– wreath products of the form G = A � Z2, where A is abelian [RB98, Röt02].

– Heisenberg groups over the finite fields F2n [Röt02].

• Discrete cosine and sine transforms of types I, II, III, and IV [RB99, KR01, Röt02].

• Discrete Hartley transforms [KR00, Röt02].

More precisely, we have shown that for discrete cosine transforms, discrete sine trans-
forms, and discrete Hartley transforms O(log 2N) elementary quantum gates are sufficient to
implement any of those transforms for input sequences of length N . The Fourier transforms
for finite groups which have been mentioned above have the same computational complexity,
except for the Heisenberg group where an implementation using O(log 3N) gates has been
found.

The underlying theory which allows to find efficient factorizations in the above mentioned
cases relies on two techniques which have been developed at the Institut für Algorithmen und
Kognitive Systeme. The first technique is the so-called method of symmetry-based matrix
factorizations. Here a matrix M ∈ Cn×n is said to have symmetry (G,φ, ψ) if φ and ψ are
representations of a finite group G and furthermore

φ(g) ·M = M · ψ(g), for all g ∈ G.

The importance of symmetry in connection with generalized Fourier transforms was first rec-
ognized in the work of Th. Beth [Bet84]. An important feature of this approach is that classical
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fast algorithms can be explained—and automatically derived—in terms of symmetry of ma-
trices [Min93, Egn97, Püs98].

In the thesis of M. Rötteler [Röt02] symmetry-based matrix factorizations have been taken
as a starting point for further optimizations. This has led to efficient implementations of
several generalized Fourier transforms, trigonometric transforms, and the Hartley transform.

A second technique has been developed by A. Klappenecker and M. Rötteler and is de-
scribed in [Röt02]and [KR03]. The basic idea is to reuse previously found factorizations for
the construction of higher level operations. A prime example is given by the problem of im-
plementing functions of unitary transformations, i. e., operations of the form f(U), where U
is a unitary transformation of finite order and f(U) is also unitary.

1.3 Quantum Error-correcting Codes

Owing to the high sensitivity of quantum mechanical systems to even small perturbations,
means of error protection are essential for any computation or communication process based
on quantum mechanics. A general theory of quantum error-correcting codes (QECC) has
been developed (see, e. g., [KL97]), but many algorithmic aspects are still open. The main
tasks are to find methods for constructing good QECC and efficient algorithms for encoding
and decoding, including the correction of the errors.

A large family of QECC can be derived from cyclic codes (see [GB99, GGB99, GB00]).
Those QECC admit various techniques for encoding and decoding, e. g., based on Fourier
transformations over finite fields and quantum shift registers [BG00]. An interesting new class
of QECC has been developed in cooperation with the group of G. Alber [ABC+01, AMD03].
Those so-called jump codes exploit side-information about the errors due to the emission
of quanta (quantum jumps). The side-information is obtained by continuously monitoring
the quantum system and recording which subsystem emitted, e. g., a photon. An interesting
connection to design theory leads to various constructions of jump codes [BCG+03].

Another new concept of QECC linking various groups in the Schwerpunktprogramm
QIV are so-called graph codes which have been introduced by D. Schlingemann and R. F.
Werner [SW02]. Similar to the cluster states used in the one-way quantum computer of
R. Raussendorf and H. J. Briegel [RB01], the basis states of a graph code are defined via
an interaction graph corresponding to the spin–spin coupling Hamiltonian which can be used
for encoding. Compared to the standard gate model of quantum computation, such a coupling
Hamiltonian yields a very efficient—intrinsically parallel—algorithm.

We have shown that the concepts of graph codes and that of so-called stabilizer codes are
equivalent, i. e., any graph code is a stabilizer code and vice versa [GKR02,Sch02,WSR+02].
In the following, we will present the main ideas used in the proof.

Starting from an α-dimensional Hilbert space H, a graph code is an αk-dimensional sub-
space Q of H⊗n which is spanned by the vectors

|x〉 =
1√
αn

∑

y∈F
n
pm

(k+n∏

j=1

j−1∏

i=1

χ(zi, zj)Γij

)
|y〉. (1.1)
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Here the dimension α is a prime power, i. e., α = pm for some prime number p. The basis
states |y〉 of H⊗n are labeled by vectors y ∈ F

n
pm over the finite field Fpm , and the encoded

states |x〉 are labeled by vectors x ∈ Fk
pm . The coefficients on the right hand side are given

by the values of a non-degenerate symmetric bicharacter χ on Fpm × Fpm , where z = (x, y).
Finally, the exponents Γij are given by the adjacency matrix Γ of a weighted undirected graph
with integral weights (corresponding to the coupling strength between the subsystems i and
j). Equivalently, the states (1.1) of the graph code Q can be expressed in the form

|x〉 =
1√
αn

∑

y∈F
n
pm

ζ(q(x+ y))|y〉, (1.2)

where ζ is a non-trivial additive character of Fp and q is a quadratic form on F
k+n
pm

∼=
F

m(k+n)
p . This isomorphism shows that it is sufficient to consider graphical quantum codes

which are defined over prime fields.
First we show that a graph code defined over the finite field Fp is a stabilizer code, i. e., a

joint eigenspace of an abelian subgroup of the error group G generated by

Xa :=
∑

y∈F n
p

|y + a〉〈y|, and Zd :=
∑

y∈F n
p

exp(2πi/p)dty|y〉〈y|,

for a, d ∈ F
n
p (cf. [KR02a,KR02b]). Starting from (1.2) one can show that the stabilizer of Q

is given by

SQ = {exp(2πi/p)q(a)XaZaMy | a ∈ F
n
p such that Ba = 0}.

The matrices My ∈ Fn×n
p and B ∈ Fk×n

p are submatrices of the adjacency matrix Γ defining
the quadratic form q which can be written as

Γ =
(
Mx B
Bt My

)
.

Additionally, the orthogonal projection onto the joint eigenspace for the eigenvalue 1 of the
operators in SQ coincides with Q, showing that Q indeed is a stabilizer code.

In order to show that any stabilizer code defined over the finite field Fpm can be realized as
a graph code, we first note that those stabilizer codes can equivalently be considered as stabi-
lizer codes over Fp (see [AK01]). To any stabilizer code corresponds a (classical) symplectic

code C over Fp2 . The generator matrix of C can be written as (X|Z) whereX,Z ∈ F
(n−k)×n
p

and XZt −ZXt = 0. As the code C is self-orthogonal, i. e., contained in the orthogonal code
C⊥ with respect to the symplectic inner product on F n

p2 , there exists a self-dual code D with

C ⊆ D = D⊥ ⊆ C⊥. We can choose a generator matrix for D of the form

G′ := (X ′|Z ′) =

(
X Z

X̃ Z̃

)

.

Similar to Gauß’ algorithm, the matrixG′ can be transformed into standard form ( I |C) where
C is symmetric [Gra02a, Gra02b]. Quantum mechanically, the transformations correspond to
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local unitary operations which do not change the error-correcting properties of the QECC.
Applying the same transformations to the subcode C of D, we obtain an equivalent code
whose generator matrix can be written as (D|DC) where D ∈ F(n−k)×n. Finally, we obtain
the symmetric matrix

Γ :=
(

0 B
Bt C

)
,

where DBt = 0. Using this matrix Γ as adjacency matrix in (1.1), we obtain a graph code
which is equivalent to the stabilizer code corresponding to C. Hence, for any stabilizer code
over Fpm there exists an equivalent graph code.

Figure 1.1: Non-isomorphic graphs which all yield graphical quantum codes that are equivalent
to the CSS code [[7, 1, 3]].

In general, the corresponding graph is not uniquely determined, as illustrated in Fig. 1.1.
All four graphs yield equivalent QECC, but the graphs are non-isomorphic. Therefore it is
not straightforward to relate basic properties of the graph and the error-correcting properties
of the resulting graph code. But the possibility to choose among different graphs results in
different interaction Hamiltonians which may yield more efficient algorithms for encoding (cf.
Section 1.5).

1.4 Efficient Decomposition of Quantum Operations into
Given One-parameter Groups

The time evolution of all quantum mechanical systems is governed by the Schrödinger equa-
tion. To control the time evolution of a concrete physical implementation, we apply different
Hamilton operators which are supposed to be time independent. This gives us the ability
to implement computational operators on the state space. Equipped with m one-parameter
groups

{t �→ exp(−ı̇H1t), t �→ exp(−ı̇H2t), . . . , t �→ exp(−ı̇Hmt)}

generated by the different Hamilton operators Hj , the goal is to build up each unitary U as a
product of elements of the given one-parameter groups:

U =
l∏

j=1

exp(−ı̇Hpj
tpj

), where Hpj
∈ {H1,H2, . . . ,Hm} and tpj

∈ R, tpj
> 0.
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As an efficiency measure we consider the minimal number of terms needed to express each
unitary as a product of the given one-parameter groups. This efficiency measure is called the
order of generation [Low71]. In a physical implementation of the given unitary operator this
corresponds to the number of switches between different Hamilton operators.

As a first step we derive conditions on the set of Hamilton operators to be universal, i.e.,
to be able to generate each unitary. From the work of Chow [Cho39] follows the Lie algebra
rank condition which states that each unitary can be implemented if the rank of the subalgebra
generated by the given Hamilton operators equals the dimension of the Lie algebra belonging
to the considered unitary operators. The work of Jurdjevic and Sussmann [JS72] states in
addition that the order of generation is finite if the Lie algebra rank condition is fulfilled. To
exclude—in the case of compact and connected Lie groups—the possibility of an infinite order
of generation in the closure the work in [D’A02] can be used.

We emphasize that the order of generation depends heavily on the given one-parameter
groups. The problem of determining bounds on the order of generation in the case of up
to three Hamilton operators from the su(2) was considered in [ZB02]. Describing Hamil-
ton operators as infinitesimal rotations of the Bloch sphere we can depict the application of
an Hamilton operator in the complex plane after a stereographic projection from the Bloch
sphere to the one-point compactification of the complex numbers. It is known [Gau19] that
under stereographic projection the rotations of the sphere correspond to rotational Möbius
transformations:

z �→ az − c̄

cz − ā
, where aā+ cc̄ = 1.

The orbit of a rotational Möbius transformation is an Apollonian circle in the complex plane.
Beginning with the case of two Hamilton operators—we suppose that the Lie algebra rank

condition is fulfilled—we follow [Low71] in order to derive bounds on the order of generation.
Since Hamilton operators are identified with infinitesimal rotations of the Bloch sphere, we
assume without loss of generality that one rotation axis is normalized to the z-axis and the
other rotation axis lies in the x-z-plane. The orbits of an Hamilton operator correspond to a
system of Apollonian circles in the complex plane. We track the alternating application of
the two Hamilton operators on the state space starting from zero in the complex plane, which
corresponds to the south pole of the Bloch sphere. Going from one circle to a tangent one
we use a greedy-type algorithm to cover all of the complex plane. Figure 1.2 shows tangent
circles corresponding to the alternating application of Hamilton operators to the state space
visualized in the complex plane. One further step in the alternating application of Hamilton
operators is necessary and sufficient to cover all of the complex plane in Figure 1.2.

By an analysis of figures similar to Figure 1.2 it is possible to get the minimal number of
terms in a product of two one-parameter groups needed to transform each point on the Bloch
sphere to the south pole, which corresponds in the complex plane to a transformation of each
complex number into zero. We obtain a bound on the order of generation adding one to this
minimal number. The reason for this is that each point of the Bloch sphere (and each point
in the complex plane) can be identified pointwise with right cosets of rotations of the Bloch
sphere representing all unitary operations. To distinguish the rotations in one coset in general
this additional step is necessary.
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In [Low71], figures similar to Figure 1.2 are analyzed. The analysis implies:

Theorem 1.1 Let α denote the angle between two Hamilton operators in the Bloch vector
representation and ξ the order of generation.

1. α = π/2 =⇒ ξ = 3 (Euler decomposition),

2. ∀ k ≥ 2 : π/(k + 1) ≤ α < π/k =⇒ ξ ≤ k + 2.
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Figure 1.2: As described in the text, the
figure shows tangent circles correspond-
ing to the alternating application of two
Hamilton operators to the state space vi-
sualized through stereographic projection
to the complex plane. One further step
in the alternating application of Hamil-
ton operators is necessary and sufficient
to cover all of the complex plane. Notice
that for better orientation one Apollonian
circle with infinite radius is pictured by a
vertical line. The angle between the rota-
tion axes in the Bloch sphere representa-
tion belonging to this figure is (2 · π/4 +

π/5)/3. In this case we get an order of
generation less than or equal to 6.

Figure 1.3: As in Figure 1.2 tan-
gent circles corresponding to the appli-
cation of three Hamilton operators to the
stereographically projected state space
are shown in the complex plane. To cover
all of the complex plane no further step
in the alternating application of Hamilton
operators is needed. Notice that for better
orientation two Apollonian circles with
infinite radius are shown by two lines. In
this example the angles between the ro-
tation axes are (2 · π/4 + π/5)/3, π/5,
and π/6. Though all angles are less than
or equal to the angle in example of Fig-
ure 1.2 we get a smaller upper bound of 5

steps.

The next step is to generalize the analysis from two to three Hamilton operators. Since we
have a third Hamilton operator we have to consider a third axis of rotation in the representation
of Hamilton operators as infinitesimal rotations of the Bloch sphere leading to a third system
of Apollonian circles. The three axes of rotation can be characterized by specifying the three
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angles α1, α2, and α3 between them. We get a valid triple of angles if

α3 ∈ [min {π − (α1 + α2), |α1 − α2|} , π/2] .

As in the case of two Hamilton operators it is important to determine the minimal number of
terms in a product of one-parameter groups necessary to transform each point in the complex
plane to zero. In Figure 1.3, the tangent circles describing the application of the different
Hamilton operators can be received from a similar greedy-type algorithm. As remarked in
Figure 1.3 we can get with this type of analysis better bounds on the order of generation when
using three Hamilton operators even though no greater angles between two rotation axes are
present. Summarizing, this is a first step towards a systematic and efficient implementation of
unitary operators.

1.5 Simulation of Hamiltonians

Historically, the first motivation for constructing a quantum computer was the efficient simula-
tion of quantum dynamics. Feynman observed a profound difference in the nature of physical
evolution governed by the laws of quantum physics as compared to the evolution under the
laws of classical physics. It appears that the simulation of general quantum dynamics by any
classical computers involves an unavoidable exponential slowdown in running time. There-
fore it would be an interesting application of quantum computers to simulate Hamiltonian
dynamics of many-particle systems. In our approach to this problem, we do not construct
sequences of quantum gates to simulate the Hamiltonian evolution of a quantum system. The
computational resource in our setting is the interaction of the qubits or qudits in the quantum
register. The natural time evolution according to this interaction is interspersed with external
control operations in such a way that the resulting dynamics is the evolution according to the
simulated Hamiltonian evolution. We have restricted ourselves to the mutual simulation of
Hamiltonians that are given by pair-interactions among n qudits.

The theoretical framework is as follows. The underlying Hilbert space of each subsystem
is d-dimensional and the joint space of n qudits is H = C

d ⊗ Cd ⊗ · · · ⊗ Cd. The (d2 − 1)-
dimensional Lie algebra of traceless Hermitian matrices of size d is denoted by su(d). We set
in the following m := d2 − 1. Let B = {σα | α := 1, . . . ,m} be an orthogonal basis of
su(d) with respect to the trace inner product 〈A|B〉 := tr(A†B)/d. We denote by σ(k)

α the
operator that acts as σα on the kth qudit and as identity on the other qudits. We represent the
interaction (which is assumed to contain only two-body terms) by a so-called coupling matrix
J = (Jkl;αβ) of size nm× nm such that

H =
∑

k<l

∑

αβ

Jkl;αβσ
(k)
α σ

(l)
β .

We chose the coupling matrix to be symmetric and set Jkk;αβ = 0 for all k. Now we use the
so-called fast control limit and assume that all operations in K = U(d)⊗U(d)⊗ · · · ⊗U(d)
can be performed arbitrarily fast, where U(d) denotes the group of unitary operations on a
qudit. This assumption is a good approximation if the external control operations act on a
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considerably smaller time scale than the natural evolution of the considered Hamiltonians.
For instance, this is the case for NMR-experiments.

A starting point for simulating an infinitesimal time evolution is that if a Hamiltonian H̃
can be written as the sum H̃ =

∑N
j=1Hj , then the concatenation of time evolutions according

to eachHj for a small time approximates the evolution according to H̃ by the Trotter formula.
This “average Hamiltonian approach” leads to the following definition [WJB02, WRJB02a,
JWB03].

Definition 1.2 Let H̃ be an arbitrary Hamiltonian. We say H̃ can be simulated by H with
time overhead τ , written H̃ ≤ τH , and N time steps if there are N positive real numbers τj
summing to τ and N control operations Uj ∈ K such that

H̃ =
N∑

j=1

τjU
†
jHUj , (1.3)

The time overhead gives the slowdown of the simulated interaction with respect to the system
Hamiltonian. Time optimal simulation leads therefore to a convex optimization problem.

To derive lower bounds on the time overhead and the number of time steps it is possible to
work with the coupling matrices instead of the Hamiltonians themselves. This is because the
condition in Eq. (1.3) translates into

J̃ =
N∑

j=1

τjOjJO
T
j , (1.4)

where Oj are orthogonal transformations corresponding to the local operations Uj for j =
1, . . . , N [WRJB02a]. The advantage is that the size of the coupling matrices grows only
linearly with n, whereas the size of the Hamiltonians grows exponentially.

Let H and H̃ be arbitrary Hamiltonians with coupling matrices J and J̃ , respectively. A
necessary condition that H can simulate H̃ with time overhead τ follows from Eq. (1.4) and
Uhlmann’s theorem [WJB02, WRJB02a]: If H̃ ≤ τH then we necessarily have

k∑

i=1

λi(J̃) ≤ τ
k∑

i=1

λi(J) ,

for k = 1, . . . , nm, where λ1(J̃) ≥ λ2(J̃) ≥ · · · ≥ λnm(J̃) and λ1(J) ≥ λ2(J) ≥ · · · ≥
λnm(J) denote the eigenvalues of J̃ and J , respectively. This so-called spectral majorization
criterion has still to be satisfied after rescaling the strengths Jkl;αβ and J̃kl;αβ of correspond-
ing interactions in H and H̃ by the same real factor skl ∈ R. The reason is that the same
sequence of local operations may be used for the rescaled problem.

One of the nicest applications of spectral majorization theory is to derive lower bounds
on time-reversal schemes [JWB02], i. e., to simulate −H when H is the quantum computer’s
Hamiltonian. This is the usual problem of efficient refocusing techniques in NMR. For the
case of coupled qubits, i. e., d = 2, we consider the HamiltonianH =

∑
k<l wklσ

(k)
z σ

(l)
z such



10 1 Algorithms for Quantum Systems — Quantum Algorithms

that all wkl are non-zero. We denote by K the matrix whose all diagonal entries are 0 and
whose all off-diagonal entries are 1. Then after rescaling the coupling between the qubits k
and l by −wkl we have J ′ := −K⊗diag(0, 0, 1) and J̃ ′ := K⊗diag(0, 0, 1). By considering
the largest eigenvalues of J ′ and J̃ ′ we obtain n − 1 as a lower bound on the time overhead
for time-reversal. A related problem is to switch off some interactions if there is an interaction
between all qudits, i. e., to reduce the interaction graph. Then the lower bounds on the time
overhead depend on the spectrum of the adjacency matrices corresponding to the graphs that
indicate the remaining interactions. The intuitive meaning of the time overhead is the factor
by which the remaining interactions are weakened.

The time overhead is not the only complexity measure for simulation schemes. The
number N of time steps is also of importance. We have presented a general method to ob-
tain lower bounds on the number of time steps by comparing the rank of coupling matri-
ces [JWB03]. Consider the problem to switch off an interaction with coupling matrix J , i. e.,∑

j τjOjJO
T
j = 0. By adding τA with an arbitrary matrix A to the equation we have

τA =
N∑

j=1

τjOj(J +OT
j AOj)OT

j .

By suitably choosing the matrix A it is possible to give an upper bound on the rank of each
term J +OT

j AOj . In this way we obtain lower bounds on N . Especially, the method yields a
classification of spin–spin interactions with respect to the complexity of the required schemes
for decoupling and time reversal [JWB02].

Upper bounds on the time overhead and the number of time steps for mutual simulation
of Hamiltonians have been constructed using selective decoupling techniques based on the
concepts of orthogonal arrays from combinatorics and nice error bases from quantum cod-
ing theory [WRJB02a, JWB03]. The assumption that all local operations are allowed can be
weakened. Finite groups of control operations to enable universal simulation of Hamiltonians
are characterized in [WRJB02b].
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