
1 Introduction

1.1 Basic Aims and Methods

The problems of the thermodynamic and kinetic description of equilibrium phase transitions
of first order are discussed in various original publications and manuals. It may seem that the
commonly employed general approach to the different forms of phase transitions based on
Gibbs’s theory is quite sufficient for most cases of application and further detailed analyses
are not required. On the other hand, it is easy to notice that crystal–liquid phase equilibria and
phase transitions (the terms phase transition and phase equilibrium are often employed here
with a similar meaning except for the cases when the transformation kinetics is studied) are not
as thoroughly analyzed as compared to the liquid–vapor phase transition. In the latter case,
the existence of a critical point in the coexistence of two fluid phases defines characteristic
scales of thermodynamic variables (volume, temperature, pressure, entropy and energy) and
allows one to introduce the concepts of corresponding states and thermodynamic similarity of
various substances.

For the crystal–liquid phase transitions of simple substances the situation is different. The
melting lines were found not to contain with the increase of temperature a fundamental singu-
larity like the liquid–vapor critical point. This feature makes impossible the natural choice of
some scaling parameters similar to the liquid–vapor phase transition. But one can implement
another approach to the problem, which is based on the low-temperature asymptotic behavior
of the melting lines of substances of normal type. Such a procedure requires one to include
into the thermodynamic consideration the behavior of the respective phases at metastable con-
ditions. The mere fact of considering systems at such conditions represents one of the dis-
tiguishing features of the present book. Here the problem of similarities and differences of
crystal–liquid and liquid–vapor phase transitions in single-component systems is the central
problem under consideration. In this analysis, much attention is devoted to the revelation of
the thermodynamic similarity in the behavior of different substances at the phase transitions.
The reason for this is that similarity concepts exhibit the very general deep properties of a
class of effects retaining some particular differences in behavior in other particular respects.
The more complete is the understanding of the nature of the effects considered the more com-
pletely and clearly the similarity in the behavior can be exhibited. In the present work, the
mentioned connection is clearly demonstrated in application both to liquid–vapor and crystal–
liquid phase transitions first in application to the behavior of one-component systems. In the
final chapter, the analysis is then extended to crystal–liquid–vapor and liquid–liquid phase
equilibria in two-component systems analyzed from the same point of view.

The present work is written employing basically the framework of phenomenological ther-
modynamics. The application of statistical-mechanical approaches, e.g., by utilizing Gibbs’s
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canonical ensemble method, would have required the introduction of various assumptions
and approximations into the analysis, inevitable in order to obtain concrete results. Here we
concentrate on the analysis of the general features leaving detailed statistical-mechanical con-
siderations to future investigations or referring to the existing literature.

1.2 States of Aggregation. Phase Diagrams and the
Clausius–Clapeyron Equation

First-order phase transitions are characterized by a jump of the first-order derivatives of the
Gibbs thermodynamic potential and by the existence of metastable states of each of the phases.
An example is given in Fig. 1.1.

Figure 1.1: Phase diagram of a one-component system with crystal, liquid and vapor phases. By
(C), the critical point of the liquid–vapor equilibrium is specified, (A) denotes the triple point.
The dashed parts of the phase coexistence curves show their continuation into the respective
metastable states.

Figure 1.1 shows a (p, T )-phase diagram of different states of aggregation of a single-
component substance with a crystal phase, where the melting of the latter is characterized by
a positive slope of the equilibrium crystal–liquid coexistence curve. The line of coexistence
of liquid and vapor is terminated at the critical point denoted in the figure by C. In the critical
point, the liquid and vapor phases become identical. The dashed parts of the curves show the
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extensions of phase equilibrium curves into the range of the respective metastable states of the
coexisting phases.

The line of phase equilibrium for a homogeneous single-component system is defined by
equality of the chemical potentials at the same values of temperature and pressure in both
phases. For the liquid–vapor coexistence curve we have

µL(T, p) = µV (T, p) . (1.1)

Here µL and µV are the chemical potentials of the liquid and the vapor, respectively, T is the
temperature and p is the pressure.

By taking the derivative of Eq. (1.1) along the liquid–vapor equilibrium curve and, taking
into account the relations (∂µ/∂T )p = −s, (∂µ/∂p)T = v, we get the Clausius–Clapeyron
equation

dp

dTLV
=

∆sLV

∆vLV
, (1.2)

where ∆sLV = sL − sV and ∆vLV = vL − vV are the jumps of specific entropy and volume
in the phase transition. Both differences on the right-hand side of Eq. (1.2) are positive and
the inequality (dp/dTLV ) > 0 holds.

Similarly one can write the Clausius–Clapeyron equation for crystal–liquid phase equilib-
rium. The entropy of the liquid is greater than the entropy of the crystal, ∆sSL = sL−sS > 0,
so the slope of the melting line is determined by the sign of the difference ∆vSL. Substances,
obeying the inequalities ∆vSL > 0 and dp/dTSL > 0, are called normally melting. Here we
will consider only such normally melting substances.

1.3 Metastable States. Relaxation via Nucleation

The curve as determined by Eq. (1.1) can be interpreted as a line of intersection of two sur-
faces in the (T, p, µ)-space. For both of these surfaces, this line is not a singular one. This
property implies the possibility of a smooth extension of both phases into the regions of their
metastable states. Figure 1.2 shows the trace of the surfaces for the crystalline µS(T, p) and
liquid µL(T, p) phases on the plane p = constant. The point O of the intersection of the lines
L′L and SS′ corresponds to the phase equilibrium at the given pressure. For the parts OL′ and
OS′ the chemical potential has a higher value than for the competing phase at the same values
of T and p.

The relative stability of the phases is determined by the relation between the values of µS

and µL. The more stable phase corresponds to the lower value of the chemical potential. The
state of the phase, having at the given temperature and pressure higher values of the chemical
potential, is called metastable. The phase in this condition is stable with respect to small
(continuous) changes of the thermodynamic parameters and has a finite lifetime. Metastable
states are unstable with respect to large-scale disturbances which lead to the formation of
viable new phase nuclei. The metastable state is destroyed by nucleation and growth of the
nuclei of a new phase which is more stable at the given values of temperature and pressure. In
a system which is free of impurities initiating the phase transformation, nucleation takes place
due to thermal fluctuations.
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Figure 1.2: Behavior of the chemical potential of the crystalline (SS′) and liquid (LL′) phases
in dependence on temperature on the surface p = constant near the temperature of the phase
transition, T0.

Metastable states and their quasi-static changes can be described by the equations of equi-
librium thermodynamics. In order to allow such a description, the system should obey the
following conditions [1]

{ti} � texp < τ̄ , (1.3)

where ti is the characteristic time of relaxation of the system under consideration with respect
to the i-th state parameter (temperature, pressure, etc.), texp is the characteristic time of the
experiment (the time required to transfer the system into the metastable state and to carry
out the subsequent experimental observations), τ̄ is the mean waiting time for the formation
of a nucleus of a more stable phase. The left part of the inequality in Eq. (1.3) guarantees
the quasi-static character of the thermodynamic properties of the metastable phase. For such
kinds of changes, the relations of equilibrium thermodynamics are fulfilled. This statement
means that the system can be smoothly transformed into the metastable state without the
occurrence of some kind of specific behavior in its properties at the point of the equilibrium
phase transformation, if the system remains homogeneous. The latter condition is ensured by
the right part of the inequality in Eq. (1.3).

The transfer of the system into metastable states is accompanied by a decrease of the
thermodynamic stability of the respective phases. The equilibrium condition of the thermo-
dynamic system (with respect to small (continuous) changes of the state parameters) requires
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the second variation of the specific internal energy u(s, v) to be positive [2], i.e.

δ2u =
(

∂2u

∂s2

)
(δs)2 + 2

(
∂2u

∂s∂v

)
δsδv +

(
∂2u

∂v2

)
(δv)2 > 0 . (1.4)

The inequality Eq. (1.4) holds true when the determinant, composed from the coefficients of
the real-valued quadratic form Eq. (1.4), and its principal minors are positive

D =

∣∣∣∣∣∣∣∣∣

∂2u
∂s2

∂2u

∂s∂v

∂2u
∂s∂v

∂2u
∂v2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(
∂T
∂s

)
v

(
∂T
∂v

)
s

(
∂T
∂v

)
s

−
(

∂p
∂v

)
s

∣∣∣∣∣∣∣∣
> 0 , (1.5)

(
∂T

∂s

)
v

=
T

cv
> 0 , −

(
∂p

∂v

)
s

> 0 , (1.6)

where cv is the isochoric heat capacity. The derivatives in Eqs. (1.6) are called the adiabatic
stability coefficients [3]. Zero values of the determinant D define the boundary of the ther-
modynamic phase stability with respect to continuous changes of the thermodynamic state
parameters: this boundary is denoted as the spinodal.

The connection between the isodynamic partial derivatives and the stability determinant,
D, is given by the following expressions [3]

(
∂T

∂s

)
p

= − D

(∂p/∂v)s
, (1.7)

−
(

∂p

∂v

)
T

=
D

(∂T/∂s)v
. (1.8)

The stability conditions Eqs. (1.5) and (1.6) are thus reduced to the positivity of the isodynamic
partial derivatives

(
∂T

∂s

)
p

=
T

cp
> 0 , (1.9)

−
(

∂p

∂v

)
T

= (vβT )−1 > 0 , (1.10)

which are also called isodynamic stability coefficients. Here cp is the isobaric heat capacity
and βT is the isothermal compressibility. Zero values of the derivatives Eqs. (1.9) and (1.10)
correspond to the spinodal of the system. Conditions (1.9) and (1.10) allow us to estimate the
thermodynamic stability of the system and the distance to the spinodal by properties which
may be obtained directly through experiment.
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1.4 Phase Transformations in a Metastable Phase.
Homogeneous Nucleation

The depth of entering the region of metastable states is naturally connected with the difference
of the chemical potentials of the phases at given temperature and pressure. For example, for
the supercooled liquid we have (see Fig. 1.2)

∆µSL = µL − µS . (1.11)

This value is a measure of the instability of the liquid phase and characterizes the driving
force of the phase transformation. The difference of the chemical potentials, ∆µSL, can be
expressed through the values of thermodynamic parameters which can be measured directly
experimentally, i.e., via the corresponding deviation from the point of the equilibrium phase
transition with respect to temperature, ∆T , and pressure, ∆p [1]. For small deviations from
phase equilibrium, the value ∆µSL can be represented as

∆µSL =

[(
∂µL

∂T

)
p

−
(

∂µS

∂T

)
p

]
∆T −

[(
∂µL

∂p

)
T

−
(

∂µS

∂p

)
T

]
∆p

= (sL − sS)∆T − (vL − vS)∆p . (1.12)

Here s and v are the specific entropy and volume at the temperature, T , and pressure, p, and the
indices S and L refer to the crystal and the liquid, respectively. Expressions like Eq. (1.12) are
also valid in cases when the depth of entering the metastable state region cannot be considered
as small. In such cases, the values of entropy and volume for the crystal and the liquid are
defined as mean values in the interval of supercooling.

The formation of a new phase in a metastable liquid is connected with overcoming the
energetic barrier, the work of formation of a nucleus of critical size. If in a metastable system
nuclei with sizes above the critical one are formed, then their further growth is governed
thermodynamically. The process of formation of the first viable nucleus represents in this
way the starting point of the phase transformation in the system. One way of describing
processes of formation of clusters of supercritical sizes is homogeneous nucleation theory.
Homogeneous nucleation theory presumes that the processes of formation and growth of new
phase nuclei are the result of heterophase fluctuations proceeding by thermal fluctuations in
the otherwise homogeneous ambient phase. The principal constituent parts of this theory were
formulated first by Gibbs [4]. He was also the first to suggest that the thermodynamic stability
of a metastable state should be related to the work of critical nucleus formation, W∗. Provided
a critical vapor nucleus is formed in a metastable liquid, Gibbs’s theory yields the following
expression for the work of critical cluster formation

W∗ =
16π

3
σ3

LV

(p′′ − p′)2
, (1.13)

where

p′′ − p′ =
2σLV

r∗
(1.14)
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is the difference of the pressure inside (p′′) and outside (p′) a spherical nucleus of critical size
(with a radius r∗) and σLV is the surface tension of the liquid–vapor equilibrium interface.
Eq. (1.14) is the condition of mechanical equilibrium in the superheated liquid–vapor system
nucleus, denoted commonly as the Young–Laplace equation.

Volmer [5] has formulated the expression for the work of critical nucleus formation in the
following widely equivalent way

W∗ =
16π

3
σ3

LV v2
V

(∆µLV )2
, (1.15)

where, in application to boiling of liquids, vV is the specific volume of the vapor phase, ∆µLV

is the difference of the chemical potentials of liquid and vapor phases at given pressure and
temperature. In application to crystallization of liquids and taking into account Eq. (1.12) one
can rewrite the expression for the work of critical crystal nucleus formation in a supercooled
melt at given external pressure in the following form [6]

W∗ =
16π

3
σ3

SLv2
S

(∆µSL)2
=

16π

3
σ3

SLv2
S

(∆sSL)2(∆T )2
, (1.16)

where σSL is the surface tension of the crystal–melt interface. In order to describe the state
of an equilibrium crystallite in a melt, an effective surface tension is usually introduced by
substituting the facetted shape of the crystal by a sphere of a radius r having the same volume
as the crystal in its equilibrium shape [6]. The values vS , ∆sSL, and σSL in Eq. (1.16) are
supposed to be equal to the respective macroscopic state parameters of the newly evolving
phase in equilibrium with the ambient phase. The above considerations are the essence of
the thermodynamic approximation for the work of critical cluster formation in homogeneous
nucleation theory.

The value W∗ in Eq. (1.16) characterizes the height of the Gibbs free energy barrier which
the system should overcome due to fluctuations. Increasing the depth of entering the region
of metastable states, we decrease this barrier. Therefore, the probability of overcoming the
barrier due to thermal fluctuations is increased. Dividing W∗ by the mean energy of ther-
mal motion per degree of freedom, kBT , where kB is the Boltzmann constant, one gets a
natural dimensionless measure for the height of the barrier, denoted commonly as the Gibbs
number, G∗

G∗ =
W∗
kBT

. (1.17)

The Gibbs number, G∗, plays an important role in the theory of homogeneous nucleation. It
determines to a large extent the value of the steady-state nucleation rate, J . The nucleation
rate, J , is determined as the mean number of viable nuclei formed in a unit volume at unit
time. For steady-state conditions, the expression for J can be represented in the following
way

J = N1B1 exp (−G∗) , (1.18)

where N1 is the number of molecules in a unit volume of the liquid and B1 is a kinetic
pre-factor characterizing the mean rate of passing the range of near-critical nucleus sizes in
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cluster size space. For liquids with low viscosity, the parameter B1 changes only slightly
with an increase of the degree of supercooling, ∆T . By the order of magnitude, we have
N1 ≈ 1028 m−3, B1 ≈ 1010–1011 s−1. From Eqs. (1.16)–(1.18) we may conclude that a
small change of supercooling, ∆T , of the liquid significantly influences the nucleation rate, J .
Thus, the value of J is increased by 9 orders of magnitude for mercury (Hg) and by 4 orders of
magnitude for tin (Sn) when the supercooling is increased by 10 K starting from ∆T = 52 K
(for Hg) and 122 K (for Sn) [6].

Figure 1.3: Binodal curve (1), line of accessible superheating (2) and spinodal curve (3) of hex-
ane. The circles on curve (2) refer to experimental measurements of the accessible superheating,
C denotes the critical point.

The searches for the detailed expressions for J were connected with the construction and
the solution of the set of kinetic equations describing the evolution of an ensemble of nuclei
of subcritical sizes. This way of formulating homogeneous nucleation theory is described, for
example, in the works of Volmer [5], Zeldovich [7], and Frenkel [8]. The model, based on
the diffusion model of the nucleation process, turned out to be universal, independent with
respect to the nature of the phases capable of coexistence and metastability. This general
character is proven, for example, by the systematic investigations of homogeneous nucleation
in superheated liquids [1] and supercooled melts [6].

Equations (1.15)–(1.18) clearly exhibit the strong nonlinear dependence of the nucleation
rate on the “driving force” of the phase transition, ∆µ. It results in a very fast increase of J
with an increase of ∆µ. By this reason, the process of homogeneous nucleation exhibits
features widely similar to some threshold phenomenon. Only after some certain degree of
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supersaturation is reached can perceptible nucleation be observed. Once this threshold is
passed, the further increase of supersaturation leads to a dramatic increase of J .

Although the intensity of nucleation processes in a superheated liquid is increased with an
approach to the spinodal, the degree of stability of the system with respect to discontinuous
(heterophase) variations of its state is not directly determined by the stability of the system
to relatively small homophase fluctuations. For processes of nucleation, connected with dis-
continuous (heterophase) fluctuations, the measure of stability is the mean waiting time, τ̄ ,
for occurrence of a viable nucleus in a metastable system of a volume, V . This mean waiting
time is connected with the nucleation rate via the relation [1, 6]

τ̄ = (J · V )−1 . (1.19)

It depends significantly on the interfacial tension, σ, and is not directly related to the isody-
namic stability coefficients −(∂p/∂v)T and (∂T/∂s)p.

Figure 1.4: Family of curves corresponding to an unstable equilibrium for a heterogeneous state
consisting of a cluster in the otherwise homogeneous ambient phase for different values of the
radius, r, of a spherical bubble in superheated hexane. By pLV , the macroscopic binodal is
specified corresponding to r → ∞. The other curves are drawn for the following values of r:
(1) r = 50 nm, (2) r = 10 nm, (3) r = 5 nm, (4) r = 3 nm. Curve (5) is the spinodal curve of
liquid hexane.

In Fig. 1.3, the binodal and the spinodal curves and the line of accessible superheatings for
liquid hexane are shown corresponding to the steady-state nucleation rate J = 106 s−1cm−3

[1]. Note that in supercooled single-component liquids there is no spinodal curve at all (see
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Section 2.1); however, the nucleation kinetics is described by the same scheme as for the case
of boiling of superheated liquids. The main condition of intensive spontaneous nucleation
consists in a decrease of the nucleation barrier W∗ to sufficiently low values, for example,
when the Gibbs number is of the order

G∗ =
W∗
kBT

≈ 20–50 . (1.20)

Except for the case of very thin layers, the surface tension does not enter the conditions
of phase equilibrium of two phases coexisting at planar interfaces. In the order of magnitude,
the ratio of the interfacial energy of the system and the bulk contributions depends on the
size of the newly evolving phase, l, as 1/l. For small particles (l ≈ r) the surface energy
gives a significant contribution to the conditions of their equilibrium with the environment
(see Eq. (1.14)) and to the work of formation of an unstable equilibrium (critical) nucleus of
the dispersed phase (cf. Eqs. (1.13) and (1.16)) in a sufficiently large volume of the parent
(metastable) phase. If the radius of a new-phase particle, r, is taken as the size parameter,
then one can plot a set of unstable equilibrium curves on a (T, p)-surface corresponding to
different values of the size parameter, r. Each of these curves connects the temperature with
the pressure of the external phase.

Figure 1.4 shows such a plot for gas bubbles in superheated hexane. With a decrease of r,
the lines are shifted to the right along the temperature axis and to lower pressures as compared
with the macroscopic binodal, pLV . The latter curve corresponds to (1/r) → 0. Note that
for the line of accessible superheating of hexane (2), shown in Fig. 1.3, in the range p > 0
the radius of the critical nucleus increases with the increase of pressure (and temperature). By
this reason, the line J(T, p) = constant does not belong to the family of curves r(T, p) =
constant [1].

The phase boundary between the different phases consists, in general, of several molecular
layers, its width, δ, is proportional to the correlation length. The minimal size of a new-phase
particle also equals δ to an order of magnitude. The existence of a critical point in liquid–
vapor equilibrium (or the liquid–liquid equilibrium in a solution) presupposes the growth of
the correlation length and, consequently, also of the value of the parameter δ with the approach
to the critical point. The absence of a critical point for crystal–liquid equilibrium in a single-
component system makes the swelling of the transition layer impossible. Here its width is
always limited in its extent to several intermolecular distances.


