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1
Aspects of Nuclear Physics and Astrophysics

1.1
History

In 1920 Aston discovered that the mass of the helium atom is slightly less than
four times the mass of the hydrogen atom. Immediately afterward, Edding-
ton suggested in his 1920 presidential address to the British Association for
the Advancement of Science that Aston’s discovery would explain the energy
generation of the Sun via the conversion of hydrogen to helium. However, Ed-
dington could not explain the fact that the stellar temperatures inferred from
observation were well below those thought necessary to initiate fusion reac-
tions. In 1928 Gamow, and independently Condon and Gourney, calculated
the quantum mechanical probability for particles to tunnel through potential
barriers and thereby explained the phenomenon of α-particle decay (Gamow
1928, Condon and Gourney 1929). Atkinson and Houtermans used Gamow’s
results to suggest that quantum mechanical tunneling may explain the energy
generation of stars via fusion reactions (Atkinson and Houtermans 1929).

Cockcroft and Walton (1932) initiated the first nuclear reaction using artifi-
cially accelerated particles by bombarding and disintegrating lithium nuclei
with protons accelerated to several hundred keV energy. Incidentally, the dis-
integration of lithium into two α-particles is one of the reactions of what would
later be called the pp chains. Lauritsen and Crane produced in 1934 a 10-min
radioactivity following the bombardment of carbon with protons. It was the
first measurement of one of the reactions of what would later be called the
CNO cycle.

Atkinson (1936) proposed the fusion of two hydrogen nuclei to deuterium
as a source of stellar energy generation. A detailed treatment of this reac-
tion was provided by Bethe and Critchfield who showed that the p + p re-
action gives indeed an energy generation of the correct order of magnitude
for the Sun (Bethe and Critchfield 1938). The energy production in stars via
the CNO cycle was independently discovered by von Weizsäcker (1938) and
Bethe (1939). The latter work, in particular, investigated for the first time the
rate of energy production and the temperature dependence of the CNO cycle.
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In the following years some of the pioneering ideas of nuclear astrophysics
were established. In two papers, Hoyle first presented the theory of nucle-
osynthesis within the framework of stellar evolution by using the nuclear data
available at the time (Hoyle et al. 1946, Hoyle 1954). Nuclear experiments had
firmly established that no stable nucleus of mass number 5 or 8 exists in na-
ture. For this reason, it was a mystery how these mass gaps could be bypassed
in the synthesis of heavier nuclei from lighter species. Salpeter suggested in
1951 that a small equilibrium concentration of unstable 8Be could capture an-
other α-particle to form stable 12C and that this “triple-α reaction” could be the
main energy source in red giant stars (Salpeter 1952). Hoyle pointed out that
the capture probability would be far too small unless an excited state with zero
spin and positive parity existed in 12C at about 7.7 MeV excitation energy. His
remarkable theoretical insight was verified when the level was clearly iden-
tified (Dunbar et al. 1953) and its properties determined (Cook et al. 1957),
thereby establishing the triple-α reaction as the mechanism to overcome the
mass 5 and 8 gaps.

In an influential review, Suess and Urey demonstrated the existence of sev-
eral double peaks in a greatly improved distribution of observed solar-system
abundances (Suess and Urey 1956). It became immediately clear that these
abundance peaks were associated with the neutron shell fillings at the magic
neutron numbers in the nuclear shell model that Jensen and Goeppert Mayer
had developed in 1949. The nucleosynthesis processes for the heavy nuclides
beyond iron via neutron captures became later known as the s- and r-process.

Of great importance was the discovery of spectral lines from the element
technetium in evolved red giant stars (Merrill 1952). All of the technetium
isotopes are unstable and the longest lived isotope has a half-life of ≈ 4.2 ×
106 y. Such half-lives are very short on a cosmological time scale (≈ 1010 y)
and, consequently, the discovery showed beyond doubt that the technetium
must have been produced “recently” within the stars and that the products of
nucleosynthesis could indeed reach the stellar surface with the help of mass
loss and mixing.

The available knowledge at the time regarding the synthesis of elements
was presented in a review article by Burbidge et al. (1957), and independently
by Cameron (1957). These papers laid the ground work for the modern theory
of nuclear astrophysics. The field has developed since into an exciting dis-
cipline with impressive achievements, linking the topics of astronomical ob-
servation, nuclear physics experiment, nuclear theory, stellar evolution, and
hydrodynamics.
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1.2
Nomenclature

Atomic nuclei consist of protons and neutrons. The symbol Z denotes the
number of protons and is called atomic number. The number of neutrons is
denoted by the symbol N. The mass number A is defined by the integer quan-
tity A = Z + N. It is sometimes also referred to as nucleon number. Nuclei
with the same number of protons and number of neutrons have the same nu-
clear properties. They can be represented by the symbol A

Z XN , where X is
the element symbol. Any individual nuclear species is called a nuclide. Nu-
clides with the same number of protons, but different number of neutrons
(and hence a different mass number A) are called isotopes. Nuclides of the
same mass number, but with different numbers of protons and neutrons are
called isobars. Nuclides with the same number of neutrons, but with different
number of protons (and hence a different mass number A) are called isotones.
Isotopes, isobars, and isotones have different numbers of protons or neutrons
and, therefore, their nuclear physics properties are different.

Nuclides can be represented in a two-dimensional diagram, called chart of
the nuclides. It displays the number of neutrons and protons on the horizontal
and vertical axes, respectively. Each square in this diagram represents a dif-
ferent nuclide with unique nuclear physics properties. Figure 1.1 displays a
section of the chart of the nuclides, showing the lightest species with Z ≤ 15
and N ≤ 20. The shaded squares represent stable nuclides, while the open
squares correspond to unstable nuclides with half-lives in excess of 1 ms. It
is obvious that many more unstable than stable nuclides exist in nature. It is
also striking that no stable nuclides exist with a mass number of A = 5 or 8.
This circumstance has a profound influence on the nucleosynthesis in stars, as
will be seen in Chapter 5.

Example 1.1

The nuclide of carbon (Z = 6) with 7 neutrons (N = 7) has a mass number of A
= Z + N = 13 and is represented by the symbol 13

6C7. Since the element symbol
and the number of protons (atomic number) carry the same information, both
Z = 6 and N = A − Z = 7 are frequently suppressed in the notation. The
carbon species with mass number A = 13 is then unambiguously described by
the symbol 13C.

The species 12
6C6, 13

6C7, and 14
6C8 are isotopes of carbon (Z = 6); 20

10Ne10, 20
11Na9,

and 20
12Mg8 are isobars of A = 20; 28

14Si14, 29
15P14, and 30

16S14 are isotones of N = 14.
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Fig. 1.1 Section of the chart of the nuclides, showing the lightest
species with Z ≤ 15 and N ≤ 20. The shaded squares represent sta-
ble nuclides, while the open squares correspond to unstable nuclides
with half-lives in excess of 1 ms. The only exceptions are the nuclides
8Be and 9B which have much shorter half-lives. Note that no stable
nuclides exist with a mass number of A = 5 or 8.

1.3
Solar System Abundances

It is commonly accepted that the solar system formed from the collapse of a
gaseous nebula that had an almost uniform chemical and isotopic abundance
distribution. Abundances in the solar system are also similar to those found
in many stars, in the interstellar medium of the Sun’s neighborhood and in
parts of other galaxies. Therefore, it was hoped for a long time that a care-
ful study of solar system abundances would provide a “cosmic” or “univer-
sal” abundance distribution, that is, an average abundance distribution which
is representative for all luminous matter in the universe. A closer compari-
son of abundances in the solar system and other parts of the universe shows,
however, significant compositional differences. Furthermore, the discovery of
presolar grains in primitive meteorites allowed for the first time a very precise
chemical and isotopic analysis of interstellar matter. Measurements of isotopic
abundances in these presolar grains revealed the existence of very large devi-
ations compared to solar system values. Following common practice in the
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recent literature, we will avoid the term “universal” abundances and use in-
stead the expression solar system abundances when referring to the abundance
distribution in the solar system at the time of its formation. The latter distri-
bution provides an important standard to which reference is frequently made.

There are two major, independent and sometimes complementary, sources
of solar system elemental abundances: (i) observations of the solar photo-
sphere, and (ii) analysis of a specific class of meterorites, called CI carbona-
ceous chondrites. The Sun contains most of the mass in the solar system and
is, therefore, representative for the overall composition. On the other hand,
planets contain much less mass but they underwent extensive chemical frac-
tionation over the past 4.5 Gy since their formation (Cowley 1995). Among
the more than 20,000 recovered meteorites, there are only five known CI car-
bonaceous chondrites. Although they contain a minuscule amount of matter,
they are believed to be among the most primitive objects in the solar system.
They show the least evidence for chemical fractionation and remelting after
condensation and thus they retained most of the elements (except for a few
very volatile species) present in the original matter of the solar nebula. De-
tails on how these abundances are obtained will not be repeated here (see, for
example, Arnett 1996, Grevesse and Sauval 1998, Palme and Jones 2003, Lod-
ders 2003). It is sufficient to remark at this point that the abundances derived
from the solar photosphere and from primitive meteorites are in remarkable
overall agreement (better than ± 10% for most elements). Solar system isotopic
abundances are then derived from the elemental abundances by using mainly
terrestrial isotopic ratios (Rosman and Taylor 1998).

The solar system abundances of the nuclides are shown in Fig. 1.2a versus
mass number A. The abundances are normalized to the number of silicon
atoms. In cases where two or more stable isobars exist for a specific mass
number A, the sum of the individual abundances is shown in the figure. Part
b displays the abundances separately for even-A and odd-A nuclides. Almost
all the mass is contained in 1H (71.1%) and 4He (27.4%). There is an abundance
minimum in the A = 5–11 region, corresponding to the elements Li, Be, and
B. More than half of the remaining mass (1.5%) is in the form of 12C and 16O.
The abundances drop slowly with increasing mass number. Another mini-
mum occurs in the A = 41–49 region, around the element Sc. The abundance
curve exhibits a maximum in the A = 50–65 region, near the element Fe. The
nuclides in this region are referred to as the iron peak. Beyond the iron peak,
the abundances in general decrease with increasing mass number, although
pronounced maxima are clearly visible in the A = 110–150 and A = 180–210
regions. Closer inspection of Fig. 1.2b also reveals that even-A nuclides are
generally more abundant than odd-A nuclides. Furthermore, the abundance
curve for odd-A nuclides is considerably smoother than the one for even-A
nuclides.
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The outstanding gross features in Fig. 1.2 are the abundance maxima and
minima. Specifically, the abundances do not scatter randomly, but instead ex-
hibit a certain regularity and systematics. It is reasonable to assume that the
abundances within any group or subgroup of nuclides can be attributed pri-
marily to a specific mechanism of nucleosynthesis. Starting with the work of
Suess and Urey (1956), such tables of solar system abundances had an enor-
mous influence on investigations of the origin of the elements and the devel-
opment of nuclear astrophysics. Not only did it become possible to identify
and study various processes of nucleosynthesis that left their distinctive sig-
natures in the abundance distribution, but a connection could also be made to
the environments in which these sources of nucleosynthesis operated. All nu-
clides, with few exceptions, are synthesized in stars. Therefore, the observed
solar system abundances offer powerful clues to stellar history and evolution,
and by extension, to the chemical evolution of the Galaxy as a whole.

It is fascinating that the structures seen in Fig. 1.2 reflect the nuclear physics
properties of various processes occurring in nature. A few very general com-
ments follow below. All of the hydrogen (1H and 2H) and most of the helium
(3He and 4He) nuclei originated in the Big Bang (Rich 2001). The most abun-
dant of these, 1H and 4He, are the basic building blocks for the synthesis of
heavier and more complex nuclei. A deep abundance minimum occurs in the
Li–Be–B region. These nuclides are easily destroyed in fusion reactions with
protons (that is, their cross sections are very large). Therefore, their observed
solar system abundances must be explained by processes that occur in sites
other than stellar interiors. They are thought to be produced via spallation re-
actions induced by Galactic cosmic rays (Vangioni-Flam, Cassé and Audouze
2000). However, the Big Bang and certain stars did most likely contribute to
the production of 7Li. All of the heavier nuclides with A ≥ 12 are produced
in stars. The nuclides in the region between 12C and 40Ca are synthesized via
charged-particle nuclear reactions in various stellar burning processes. Reac-
tions between charged particles are subject to the Coulomb repulsion. The
larger the charge of the reacting nuclei, the smaller the nuclear reaction prob-
ability will become. This circumstance is reflected in the overall decline of
the abundance curve from 12C to 40Ca. The abundance maximum of the iron
peak is explained by the fact that these nuclides represent energetically the
most stable species (Section 1.5.1). Because of the large Coulomb repulsion,
the synthesis of nuclides beyond the iron peak via charged-particle reactions
becomes very unlikely. These nuclei are instead produced by the capture of
neutrons. The abundances of nuclides in the A > 80 region are on average a
factor of 1010 smaller compared to the hydrogen abundance, as can be seen
from Fig. 1.2. The observed narrow and broad peaks in this mass region pro-
vide unambiguous evidence for the existence of two distinctive neutron cap-
ture processes. All of the above comments are very general and do not explain
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Fig. 1.2 Abundances of the nuclides in
the solar system at its birth. Number abun-
dances are normalized to the number of
silicon atoms (Si = 106). Data from Lodders
(2003). (a) Sum of all nuclidic abundances
at a given value of A versus mass number.

The maximum in the A = 50–65 region is
referred to as the iron peak. (b) Separate
abundance contributions from nuclides with
an even or an odd value of A versus mass
number. Even-A nuclides are in general
more abundant than odd-A nuclides.
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any details of the solar system abundance curve. An extensive discussion of
the various nucleosynthetic processes will be given in Chapter 5. Information
regarding the origin of the solar system nuclides is provided at the end of this
book (Section 5.7).

1.4
Astrophysical Aspects

1.4.1
General Considerations

The study of stars is central to astronomy and astrophysics since stars are
long-lived objects that are responsible for most of the visible light we observe
from normal galaxies. The fusion of light nuclides into heavier species liber-
ates kinetic energy at the expense of mass and serves as the interior source
of the energy radiated from the surface. These very same reactions alter the
composition of the stellar matter. As already pointed out, all nuclides with
masses of A ≥ 12 are produced in stars. When a star ejects part of its mass
into space during certain evolutionary stages, the chemical composition of the
interstellar medium will be altered by the thermonuclear debris. The interstel-
lar medium, in turn, plays a key role in providing material out of which new
generations of stars form. This cycling of matter between stars and the inter-
stellar medium involves countless stars. By comparing the age of the Galaxy
(≈ 14 Gy) with the age of the Sun (≈ 4.5 Gy) we can conclude that the cycling
process that gave rise to the solar system abundance distribution operated for
almost 10 billion years.

There is unambiguous direct evidence for the nucleosynthesis in stars. First,
we already mentioned in Section 1.1 the observation of radioactive technetium
in stellar spectra (Merrill 1952). Second, γ-rays from radioactive 26Al were dis-
covered in the interstellar medium by spectrometers onboard satellites (Ma-
honey et al. 1982, Diehl et al. 1993). The half-life of this nuclide (≈ 7.17× 105 y)
is even shorter than that for radioactive technetium, thus demonstrating again
that nucleosynthesis is currently active in the Galaxy. Third, neutrinos are pre-
dicted to be the byproducts of nuclear processes in stars (Chapter 5). Since
they interact very weakly with matter, they escape essentially unimpeded
from stellar interiors. Neutrinos from the Sun (Bahcall 1989, Hirata et al. 1990)
and from the type II supernova 1987A (Hirata et al. 1987, Bionta et al. 1987)
were detected on the Earth, providing another direct test of stellar nucleosyn-
thesis. Fourth, models of supernovae predict the ejection of radioactive 56Ni
(half-life of 6 days), which then decays to the radioactive daughter nucleus
56Co (half-life of 77 days). The subsequent decay of this nuclide (to stable
56Fe) is predicted to determine the decline of the light emission from these
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stellar explosions. The predictions agree well with the observed light curves
of supernovae. Furthermore, photons from the radioactive decay of 56Co have
been detected directly from supernova 1987A (Matz et al. 1988, Tueller et al.
1990).

The discovery of the existence of two distinct stellar populations by as-
tronomers was also of paramount importance in this respect. The populations
are referred to as population I and population II stars. They differ in their age
and their content of metals, by which astronomers mean any element other
than hydrogen and helium. Population I stars include the Sun and are metal
rich. They are young stars, having formed within the past few billion years,
and can be found in the disk of the Galaxy. Extreme population I stars rep-
resent the youngest, most metal-rich stars and are found in the spiral arms
of the Galaxy. Population II stars, on the other hand, are metal poor. They
are relatively old and are found in the halo and the bulge of the Galaxy. Ex-
treme population II stars represent the oldest, most metal poor stars and are
found in the halo and in globular clusters. Their metal abundance, relative to
hydrogen, is smaller by a factor of 100 or more compared to population I stars.

If one assumes that the initial composition of the Galaxy was uniform and
if there exists no mechanism capable of concentrating the metals in the disk of
the Galaxy, then the Galaxy must have synthesized an overwhelming fraction
of its own metals. This argument provides strong support for the theory that
nucleosynthesis is a natural process to occur during the evolution of stars. It is
then obvious that the metal content of the Galaxy increases with time since the
matter out of which stars form is being cycled through an increasing number
of stellar generations. Therefore, the differences in metallicity between the
two stellar populations suggest that population I stars formed later during
the history of the Galaxy when the interstellar medium became much more
metal rich.

Nuclear reactions not only explain the bulk solar-system abundance distri-
bution, but are also indispensable for explaining the observed chemical com-
position of individual stars. Such observations, even for trace elements, are
crucial for constraining theoretical models of stars and for better understand-
ing the complicated interplay of stellar hydrodynamics, convection, mixing,
mass loss, and rotation. Stellar nucleosynthesis also plays a decisive role for
explaining the chemical composition of the interstellar medium and is thus
interwined with γ-ray astronomy, the study of primitive meteorites, and the
nature of cosmic rays.
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1.4.2
Hertzsprung–Russell Diagram

The total amount of radiation emitted per unit time, or the luminosity, varies
strongly from star to star. The same holds for the effective stellar surface tem-
perature. However, if we plot these two quantities for many individual stars
in a diagram, then the result is not a random scatter of points, but most stars
fall into several distinct groups. This correlation of stellar luminosity and ef-
fective surface temperature represents the single most important relationship
of stellar properties. It is referred to as Hertzsprung–Russell diagram or color-
magnitude diagram. The latter name results from the fact that surface tem-
perature can be expressed in terms of the color of the star, while luminosity is
related to the absolute magnitude. An explanation of these relationships can
be found in any introductory astronomy textbook. The Hertzsprung–Russell
diagram has a profound influence on the theory of stellar evolution and, by
extension, on the history of the Galaxy as a whole.

Consider first Fig. 1.3a, showing a Hertzsprung–Russell diagram for a sam-
ple of ≈ 5000 stars in the solar neighborhood. Each dot corresponds to a single
star. The surface temperature increases from right to left in the figure. The vast
majority of stars occupy the main sequence (MS), stretching diagonally from the
upper left (hot and bright stars) to the lower right (cool and faint stars). The
Sun, for example, belongs to the main sequence. In the low and right part
(cool and faint stars) of the main sequence one finds the red dwarfs (RD). The
subgiant branch (SGB) joins the main sequence and extends in a direction to
cooler and brighter stars, where the populated region turns first into the red
clump (RC), and then into the red giant branch (RGB). In a region corresponding
to smaller luminosity and higher temperature (lower left), one finds a group
of faint and hot stars known as white dwarfs (WD). A well-known example
is Sirius B, the companion of Sirius. Some stars are located below the main
sequence, but are much brighter than white dwarfs. These are known as sub-
dwarfs (SD). A number of star categories do not appear in the figure. Super-
giants (SG) are the brightest stars in the Galaxy and would occupy the upper
end of the Hertzsprung–Russell diagram, but are very rare in the solar neigh-
borhood. The cool and faint brown dwarfs would appear off scale way down
in the lower-right part of the figure, but are too faint to appear in the figure.

A Hertzsprung–Russell diagram for the globular cluster M 3 is shown in
Fig. 1.3b. There are about 200 globular clusters in the Galaxy. They are lo-
cated in a spherical space surrounding the Galactic center, called the halo of
the Galaxy. Each cluster consists of 104–106 graviationally bound stars, which
are highly concentrated toward the cluster center. An image of the globular
cluster M 10 is shown in color Fig. 1 on page 631. Spectroscopic observations
revealed that globular clusters are metal poor compared to the Sun, implying
that they are rather old and that they formed during the early stages of Galac-
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tic evolution. It is commonly accepted that all stars in a typical globular cluster
formed around the same time from material of very similar composition. The
observation that the stars of a globular cluster occupy distinct regions in the
Hertzsprung–Russell diagram must then be explained by differences in the
only other major stellar property, that is, their initial mass. As will be shown
below, the stellar mass is the most important property influencing the evolu-
tion of stars. In fact, the higher the mass, the faster a star will evolve.

Figure 1.3b shows some of the same stellar categories already mentioned in
connection with part (a). The densest region is occupied by main-sequence
stars. The distinctive kink extending from the main sequence toward cooler
and brighter stars is called the turn-off point (TO). The subgiant branch stars
(SGB) are located on a horizontal part stretching toward the right, which
turns upward into the red giant branch (RGB). Three more groups of stars
can be clearly distinguished on the left-hand side of the RGB: the asymptotic
giant branch (AGB), the red horizontal branch (RHB), and the blue horizon-
tal branch (BHB). As will be seen below, the different groups of stars seen in
parts (a) and (b) correspond to different stages of stellar evolution. Globular
clusters in particular play an outstanding role in astrophysics since the distinct
features in their Hertzsprung–Russell diagrams represent strong constraints
for stellar models.

1.4.3
Stellar Evolution of Single Stars

One of the most important goals of the theory of stellar structure and evolu-
tion is to understand why certain stars appear only in specific regions of the
Hertzsprung–Russell diagram and how they evolve from one region to an-
other. Our aim in this section is to summarize without detailed justification
the most important issues related to the nuclear physics of stars. An introduc-
tion to stellar evolution can be found in Binney and Merrifield (1998) or Iben
(1985). A more comprehensive account is given, for example, in Kippenhahn
and Weigert (1990). We will use in this section expressions such as hydrogen
burning, helium burning, pp chain, CNO cycle, and so on, to obtain a general
idea regarding nuclear processes in stars. These will be explained in depth in
Chapter 5.

Theoretical models of stars in hydrostatic equilibrium are constructed in the
simplest case by solving a set of four partial differential equations (for radius,
luminosity, pressure, and temperature) that describe the structure of a star as
a function of the distance from the center and as a function of time. A time se-
quence of such solutions, or stellar models, represents an evolutionary track in
the Hertzsprung–Russell diagram. Stellar structure and evolution calculations
rely heavily on large scale numerical computer codes. The time changes in the
stellar properties are closely related to the energy budget. Energy is generated
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Fig. 1.3 Observational Hertzsprung–
Russell diagrams, showing visual mag-
nitude versus color index B–V. Each dot
corresponds to a star. See the text for an
explanation of the labels. (a) Sample of ≈
5000 stars in the solar neighborhood with
precisely known distances. The data were
acquired by the Hipparcos astrometry satel-
lite. The vast majority of stars occupy the
main sequence, stretching diagonally from
the hot (blue) and luminous upper left to the
cool (red) and faint lower right. The cross
hair indicates the position of the Sun. Cer-

tain categories of stars do not appear in the
figure, for example, supergiants (SG), which
are rare in the solar neighborhood, and
brown dwarfs, which are too faint for detec-
tion by Hipparcos. (b) Data for the globular
cluster M 3. Apparent rather than absolute
magnitude is displayed on the vertical axis
since the stars have the same distance from
the Earth. The RR Lyrae variable stars,
located between the red (RHB) and blue
(BHB) horizontal branches, are omitted.
From Corwin and Carney (2001).
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by the star via nuclear reactions and gravitational contraction, while energy is
continuously lost from the stellar surface via emission of photons and neutri-
nos. As will become clear in the following discussion, a star spends most of its
nuclear burning time fusing hydrogen to helium on the main sequence. Care-
ful observations showed that there is a direct correlation between the mass
and the luminosity of a main-sequence star. The greater the total mass of the
star, the greater the temperature and pressure in the core, the faster nuclear
energy is generated, and the greater the energy output or the luminosity of
the star. For example, a 10 M� main-sequence star has ≈ 3000 times the lumi-
nosity of the Sun. Furthermore, the main-sequence lifetime will also depend
strongly on the stellar mass because a star burns the nuclear fuel at a rate
that is determined by its luminosity. For example, solar-metallicity stars with
masses of 1 M�, 5 M�, and 15 M� spend about 10 Gy, 100 My, and 12 My,
respectively, on the main sequence. Once a star leaves the main sequence, the
evolution speeds up significantly, as will be seen below.

Modern theories have been enormously successful in describing the prop-
erties of stars. Nevertheless, many open questions remain unsolved. Stellar
evolution is an active research field and it is worthwhile to keep in mind the
uncertainties in the model calculations. These reflect our incomplete knowl-
edge of certain processes in stars, including the treatments of energy transport
via convection, mass loss, atomic diffusion, turbulent mixing, rotation, and
magnetic fields. For binary stars (Section 1.4.4), a host of additional problems
is encountered because, first, the model assumption of spherical symmetry
must be relaxed and, second, the interaction between the two stars becomes
important. We will not discuss these effects in any detail other than to mention
that most of them become increasingly important with ongoing stellar evolu-
tion. The effects of nuclear physics are deeply interwined with these issues.
When we discuss in later chapters the impact of nuclear physics uncertainties
on the nuclear energy generation and the nucleosynthesis, it is very important
to keep in mind that we are referring only to one piece in a complex puzzle.
One of the main goals in nuclear astrophysics is to better understand the in-
ner workings of stars. To this end, a reliable knowledge of nuclear physics is
indispensable.

A chart showing the main evolutionary phases for single stars of various ini-
tial masses is shown in Fig. 1.4 and will be helpful for the subsequent discus-
sions. The stellar masses are shown on the left-hand side and time increases
from left to right.

Premain-sequence stars

When an interstellar gas cloud consisting mainly of hydrogen and helium con-
tracts, gravitational potential energy is transformed into thermal energy and
into radiation. The gas is initially in gravitational free fall and most of the lib-
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Fig. 1.4 Major evolutionary stages for single
stars in different mass ranges. The initial
stellar mass is given on the left-hand side.
Time increases from left to right. The nu-
clear fuel in each burning phase is shown
in bold. For example, “H-C” refers to hy-
drogen burning in the core, “He-S” denotes
helium burning in a shell, and so on. For
lower-mass stars, the meaning of the la-
bels in square brackets is described in the
text (see also caption of Fig. 1.5); “DU” de-

notes the different dredge-up events. For
massive stars, the three dots indicate that
there are additional overlying burning shells
(Fig. 1.6); the labels are: “CC” for core col-
lapse, “SN” for supernova, “NS” for neutron
star, and “BH” for black hole. Note that the
mass ranges are approximate estimates
only and depend on the stellar metallicity.
For the evolution of stars in the mass range
of M ≥ 100 M�, see Woosley, Heger and
Weaver (2002), and references therein.

erated energy is not retained but radiated away because the gas is relatively
transparent. With increasing density, the opacity increases as well and some
of the emitted radiation is retained in the cloud. As a result, the temperature
and the pressure begin to rise and the contraction of the central, denser part
of the cloud slows down. The increasing temperature causes first a dissoci-
ation of hydrogen molecules into atoms, and then an ionization of hydrogen
and helium atoms. When a temperature of about 105 K is reached, the gas
is essentially ionized. The electrons trap radiation efficiently and, as a result,
the pressure and temperature increase and the collapse of the central part of
the cloud halts. The premain-sequence star eventually reaches a state of hy-
drostatic equilibrium, while still accreting matter from the outer parts of the
cloud.

The source of energy is gravitational contraction, but the first nuclear reac-
tions start to occur when the central temperature reaches a few million kelvin.
Primordial deuterium fuses with hydrogen, a process that is called deuterium



1.4 Astrophysical Aspects 15

burning (Section 5.1.1), and primordial lithium may be destroyed via interac-
tions with protons (7Li + p → α + α; the notation will be explained in Sec-
tion 1.5.2). At this stage, energy is transported via convection and most of the
star’s matter, including surface material, is expected to be processed through
the center. Although the nuclear energy release is very small, the reactions
change the light element abundances and thus provide valuable information
on the central temperatures.

When the temperature reaches several million kelvin, the fusion of hydro-
gen to helium starts to occur and contributes an increasing fraction to the total
energy output. Ultimately, a point will be reached where hydrogen fusion in
the core becomes the only source of energy. The star is now in hydrostatic and
thermal equilibrium and has reached a location in the Hertzsprung–Russell
diagram that is referred to as the zero age main sequence (ZAMS). Stars with
different initial masses reach the main sequence at different times. For ex-
ample, the premain-sequence evolution of a 1 M� star lasts about 75 million
years. Different stellar masses populate different locations on the zero age
main sequence, which thus represents a line in the Hertzsprung–Russell dia-
gram. Massive stars have higher temperatures, initiate nuclear reactions ear-
lier, and are therefore located on the hotter and brighter part (upper left), while
less massive stars will be found on the cooler and fainter part (lower right).

Newly born stars are difficult to observe because they are usually sur-
rounded by a rotating disk of gas and dust. The solar system, for example,
presumably formed from such a disk. An example for premain-sequence ob-
jects is the T Tauri stars. Their lithium abundance is relatively high, indicating
that the central temperature has not yet reached large enough values to de-
stroy lithium via nuclear reactions involving protons.

The subsequent fate of stars depends strongly on their initial mass. We will
consider the different mass ranges in turn. These main divisions are not sharp
but depend somewhat on the chemical composition.

Initial mass of 0.013 M�� M � 0.08 M�
Theory predicts that objects in this mass range never reach the central temper-
atures required to sustain hydrogen fusion in their cores and are thus unable
to generate sufficient nuclear energy to provide pressure support. The search
for these very faint and cool stars provides important constraints for stellar
evolution theory. Such objects have only been discovered in the mid-1990s
and are referred to as brown dwarfs. They are predicted to be very abundant in
the Galaxy and are, therefore, candidates for the elusive (baryonic) dark mat-
ter. Brown dwarfs are fully convective and their energy source in the early
stages is provided by gravitational contraction.

Although brown dwarfs are not true stars, they do have enough mass to
undergo deuterium burning, a fact that sets them apart from massive planets
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like Jupiter. This provides an additional, low-level, source of energy. They also
have a relatively high lithium abundance since temperatures remain too low
to destroy this element. The outer layers of a brown dwarf can be described
by the ideal gas law. The core, however, becomes eventually electron degen-
erate. As a result, the contraction halts and the brown dwarf slowly cools, at
approximately constant radius, by radiating its thermal energy into space. In
the Hertzsprung–Russell diagram, a brown dwarf evolves almost vertically
downward and straight past the main sequence (Fig. 1.3).

A detailed description of the properties of degenerate matter is given in
many modern physics textbooks and is not repeated here. We will summa-
rize a few properties, however, that are also important for our discussion of
other stars. Matter becomes degenerate at relatively high densities as a result
of the Pauli exclusion principle which states that no more than two spin-1/2
particles (such as electrons) can occupy a given quantum state simultaneously.
A degenerate gas strongly resists further compression because electrons can-
not move into lower energy levels that are already occupied. Unlike an ideal
classical gas, whose pressure is proportional to its temperature, the pressure
exerted by a completely degenerate gas does not depend on temperature. Or,
in other words, increasing the temperature of a partially degenerate gas has
only a small effect on the total pressure. It will be seen later that, when the tem-
perature reaches a sufficiently high value, the degeneracy is lifted, by which
we mean that the properties of such a gas revert to those of an ideal classical
gas. Furthermore, there exists an upper limit to the pressure provided by a
degenerate gas. If gravity exceeds this pressure, the star will collapse despite
the presence of the degenerate particles. The maximum value for the mass
of a star that can maintain an equilibrium between degeneracy pressure and
gravity is called the Chandrasekhar limit. Its precise value depends on the com-
position. For an electron degenerate gas and matter characterized by two nu-
cleons per electron (for example, 4He, 12C, or 16O), the limiting value amounts
to ≈ 1.44 M�. Stars that enter a state of electron degeneracy toward the end
of their evolution are called white dwarfs. Indeed, white dwarfs with masses in
excess of the Chandrasekhar limit are not observed in nature.

Initial mass of 0.08 M�� M � 0.4 M�
Stars in this mass range are sometimes referred to as red dwarfs (or M dwarfs).
They are the most common type of star in the neighborhood of the Sun. For
example, the nearest star to the Sun, Proxima Centauri, is a red dwarf. These
stars have sufficient mass to fuse hydrogen to helium (hydrogen burning) in
their cores via the pp chain. Starting from the zero age main sequence, the
red dwarf evolves toward higher luminosity and increasing surface temper-
ature (up and left). All stars that sustain hydrostatic equilibrium by burning
hydrogen in their cores are called main-sequence stars. Theoretical models indi-
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cate that, for example, a 0.1 M� star of solar metallicity remains on the main
sequence for about 6000 Gy. During this time the red dwarf is fully convec-
tive, which implies that its entire hydrogen content is available as nuclear fuel.
Since the age of the Universe is about 14 Gy, all red dwarfs that we observe
must be main-sequence stars. Eventually, they will run out of nuclear fuel,
that is, all their hydrogen will be converted to helium. Red dwarfs do not have
enough mass to produce the higher temperatures required to fuse helium nu-
clei. Thus they contract until electron degeneracy sets in. Their volume is
constant from then on since the degeneracy pressure resists further compres-
sion. They become helium white dwarfs that cool slowly by radiating away
their thermal energy.

Initial mass of 0.4 M� � M � 2 M�
The evolution of stars in this mass range is considerably more complicated
compared to the previous cases. The life of the star starts on the zero age
main sequence when hydrogen begins to fuse to helium in the core. In stars
with masses below M ≈ 1.5 M�, hydrogen fusion proceeds via the pp chains,
while more massive stars burn hydrogen via the CNO cycles. It will be seen
later that these different processes affect the stellar structure since they pos-
sess very different temperature dependences (Section 5.1). In stars with M �
1.5 M�, the strong temperature dependence of the CNO cycles concentrates
the energy production in the center and, as a result, the core transports energy
via convection. In stars with M � 1.5 M�, the energy generated in the core by
the pp chains is transported via radiation.

As an example, we will discuss in the following the evolution of a special
star, the Sun (see color Fig. 2 on page 632). The evolutionary track is shown
schematically in Fig. 1.5a. The arguments given below follow the numeri-
cal results obtained by Sackmann, Boothroyd and Kraemer (1993). The Sun
started central hydrogen burning via the pp chains on the zero age main se-
quence about 4.5 Gy ago. At present the central temperature and density
amount to T ≈ 15 MK and ρ ≈ 150 g/cm3, respectively, and about one half
of the original hydrogen in the core has been consumed so far. The Sun has a
very small convective region at the surface, comprising only ≈ 2% of its entire
mass. About 4.8 Gy from now, the hydrogen in the core will be exhausted.
The Sun will then be located at the bluest and hottest point on the main se-
quence, called the turn-off point. Note that in Fig. 1.5a the track describing
nuclear burning on the main sequence follows an arc. This is one of the rea-
sons for the fact that the main sequence in observational Hertzsprung–Russell
diagrams represents a band rather than a narrow line.

Hydrogen fusion continues in a thick shell near the core where there is still
hydrogen left. The Sun slowly leaves the main sequence at this point. The
Sun’s center begins to contract in order to generate energy that is no longer
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provided by nuclear processes and the contraction causes further heating. As
a result, the temperature in the hydrogen burning shell, and the associated
nuclear energy generation rate, also increase. Initially, the Sun has not yet
developed a fully convective envelope and it is called a subgiant branch star
(SGB). Eventually, the envelope becomes fully convective. The extra energy
output from the hydrogen burning shell results in a dramatic surface expan-
sion and engulfs the planet Mercury. The Sun becomes a red giant star. While
the Sun ascends the red giant branch (RGB), the luminosity increases contin-
uously. Maximum luminosity is achieved on the tip of the red giant branch
after about 0.6 Gy from the time when the Sun left the main sequence. Dur-
ing the red giant phase the Sun starts to experience significant mass loss. The
contraction of the core during the red giant phase increases the central tem-
perature and density by factors of 10 and 104, respectively, compared to the
values at hydrogen ignition. In fact, the core achieves such high densities that
the matter becomes electron degenerate. During the RGB phase, the convec-
tive envelope deepens significantly until it comprises about 75% of the Sun’s
mass. This deep convective envelope dredges up the products of hydrogen
burning from the outer core. The process is referred to as the “first dredge-
up.”

When the temperature reaches about T ≈ 0.1 GK, the helium in the core
starts to fuse to carbon and oxygen (helium burning). In a normal gas, the extra
energy release would cause an expansion. As a result, the temperature would
fall and the nuclear energy generation rate would decrease as well. This is
the usual manner by which stars adjust to an energy increase in their interior,
allowing them to stabilize. However, in a degenerate gas the temperature
increase does not affect the pressure. No expansion occurs and, as a result,
the temperature increases causing an even higher energy generation rate. As
will be seen in Section 5.3, helium burning is highly temperature sensitive.
The sequence of events repeats itself, giving rise to a thermonuclear runaway.
It only terminates after so much energy has been released that the electron
degeneracy is lifted. Thus, the ignition of helium in the core results in a violent
core helium flash (HeF).

It is important to point out that the helium flash does not represent a stel-
lar explosion. The energy during the thermonuclear runaway goes into lifting
the electron degeneracy and into the subsequent expansion of the core. The
surface luminosity of the star does not increase. In fact, the opposite happens.
The surface luminosity declines by two orders of magnitude because the ex-
pansion of the core causes the surrounding hydrogen burning shell, which has
been supplying all the surface luminosity, to cool and to generate less energy.
Eventually, the Sun becomes a horizontal branch star, quietly burning helium in
the core. The temperatures in the hydrogen shell just above the core are high
enough for hydrogen to continue to burn via the CNO cycles. The nuclear
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energy release in helium fusion is considerably less compared to hydrogen fu-
sion. Therefore, the duration of the core helium burning stage is much shorter
than that of the core hydrogen burning stage. The Sun remains on the hori-
zontal branch for about 0.1 Gy, which is typical for all stars in this mass range.

When the helium in the core is exhausted, the core contracts again, heats
up, and ignites the helium in a surrounding shell. The Sun now burns nuclear
fuel in two shells, helium in a shell surrounding the carbon–oxygen core, and
hydrogen in a shell surrounding the helium burning region. The two shells
are separated by an intershell region consisting mainly of helium. This stage
is referred to as the early asymptotic giant branch phase (E-AGB), because the
second ascent of the giant branch merges almost asymptotically with the first
giant branch (at least for some stellar masses). While the Sun ascends the as-
ymptotic giant branch, the helium burning shell becomes thermally unstable
(Schwarzschild and Härm 1965; see also Section 5.6.1). Energy is not gener-
ated at a steady rate, but the hydrogen and helium burning shell alternate as
the major contributor to the overall luminosity. For about 90% of the time, the
hydrogen burning shell provides the Sun’s nuclear energy, while the helium
shell is only marginally active. Hydrogen burning adds continuously to the
mass of the helium zone, however, so that the temperature and density near
this zone rise until energy is generated by helium burning at a rate that is
larger than the rate at which it can be carried outward by radiative diffusion.
As a result, a thermonuclear runaway occurs. The sudden release of energy
pushes out and cools the hydrogen burning shell until it ceases to burn. The
helium burning shell is now the only source of nuclear energy. Eventually,
the expansion quenches the helium shell flash (or thermal pulse) and the Sun
contracts again. The hydrogen burning shell reignites and ultimately takes
over as the dominant nuclear energy source, until the next thermal pulse oc-
curs about 105 y later. The cycle may repeat many times. This evolutionary
stage is called the thermally pulsing asymptotic giant branch (TP-AGB). The
total amount of time the Sun spends on the AGB amounts only to about 20 My
and is thus very short compared to the main-sequence lifetime. The thermal
pulses cause the Sun’s radius to vary periodically by a factor of 4, with the
peak radius reaching close to the Earth.

The Sun suffers an episode of significant mass loss on the asymptotic gi-
ant branch via a strong stellar wind. Thermal pulses are ceasing at this point
as the Sun becomes a postasymptotic giant branch star (P-AGB), with only
a fraction of its initial mass left and the other part returned to the interstel-
lar medium. As more hydrogen of the envelope is ejected into space, hotter
layers are uncovered and the Sun begins to move in the Hertzsprung–Russell
diagram toward higher surface temperatures (horizontally to the left). When
the surface of the Sun becomes hot enough, the intense ultraviolet radiation
ionizes the expanding ejecta, which begin to fluoresce brightly as a planetary
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nebula (PN). Two examples for planetary nebulae, the Dumbbell Nebula and
the Cat’s Eye Nebula, are shown in color Figs. 3 and 4 on page 633 and 634,
respectively. The residual core is called a planetary nebula nucleus (PNN). Even-
tually, there is no hydrogen envelope left and the hydrogen burning shell ex-
tinguishes. The luminosity decreases rapidly causing the evolutionary track
to turn downward and slightly to the right. The Sun will then end its existence
as a white dwarf with a mass of ≈ 0.5 M�, consisting mainly of carbon and
oxygen. It is supported by electron degeneracy pressure and cools slowly by
radiating away its thermal energy.

It must be stressed again that in the above discussion the evolution beyond
the red giant branch is rather uncertain because of our incomplete knowledge
on how to predict convection and mass loss. That these effects will indeed oc-
cur has been demonstrated by stellar observations, but a deeper understand-
ing is lacking at present. It is generally accepted that each thermal pulse dur-
ing the TP-AGB phase provides favorable conditions for another dredge-up
episode after the end of flash-burning in the helium shell. The convective en-
velope reaches deep into the star below the bottom of the hydrogen burning
shell and carries the products from hydrogen and helium shell burning, in
particular helium and carbon, to the stellar surface. This process is referred
to as the “third dredge-up” and increases the carbon abundance in the en-
velope relative to other elements, for example, oxygen. Stars for which the
number ratio of carbon to oxygen exceeds unity are called carbon stars. Many
of these have been observed and most are believed to correspond to stars in
their TP-AGB phase. As will be seen later, AGB stars are also the source of
many heavy nuclides with mass numbers beyond A = 60. Stellar models pre-
dict that these (s-process) nuclei are also dredged up to the surface where they
can be observed in stellar atmospheres. In fact, the first direct evidence that
nucleosynthesis takes place in stars and that the products could be mixed to
the surface was the observation of radioactive technetium in certain (S-type)
carbon stars (Section 1.1). For more information on AGB stars, see Habing and
Olofsson (2004).

We are now in a position to understand some other details in the observa-
tional Hertzsprung–Russell diagrams shown in Fig. 1.3. The precise location
in luminosity and surface temperature of a star on the horizontal branch de-
pends on the chemical composition of the envelope, the size of the helium
core at the time of the helium flash, and the mass of the envelope which is
influenced by the mass loss during the preceding RGB phase. In a globular
cluster, all the stars start out with the same, low-metallicity, composition and
their location on the horizontal branch is mainly influenced by mass loss. The
more the mass lost from the hydrogen envelope, the hotter the layers in the
star are uncovered. Stars with the smallest amount of mass in the hydrogen
envelope populate the blue part (BHB), while stars with more hydrogen left
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in the envelope can be found on the red part (RHB). The horizontal branch
intersects the so-called instability strip (which is not related to nuclear burn-
ing). Stars located in this narrow and almost vertical band, indicated by the
two vertical dashed lines in Fig. 1.5a, are unstable to radial pulsation and are
called RR Lyrae variables. Their luminosity correlates with both their period
(several hours to ≈ 1 day) and their metallicity. Therefore, they are impor-
tant for determining the distances to globular clusters and for establishing a
cosmic distance scale (Binney and Merrifield 1998). Increasing the metallicity
has the overall effect of making a star fainter and cooler. Therefore, stars in
metal-rich clusters or in the solar neighborhood (Fig. 1.3) accumulate at the
red end (right) of the horizontal branch, fairly independent of their envelope
mass. This region is called the red clump (RC).

The metallicity argument also applies to the subdwarfs (SD). These are in
fact main-sequence stars of very low metallicity. They are hotter than solar-
metallicity stars at a comparable evolutionary stage and are thus located to
the left of the main sequence that is occupied by metal-rich stars.

It should also be clear now why the upper part of the main sequence in
Fig. 1.3b is missing. Globular clusters are metal-poor and old, and do not form
new stars. The high-mass stars that were originally located on the upper part
of the main sequence evolved a long time ago into red giants. Only the slowly
evolving low-mass stars are left today on the main sequence. Clearly, with
increasing time lower mass stars will eventually become red giants and the
main sequence will become shorter. It is interesting that the age of the cluster
can be determined from the location of the turn-off point, which is located
at the top of the surviving portion of the main sequence. If the distance to
the cluster is known by independent means, the luminosity of the stars at
the turn-off point can be related to their mass. Stellar evolution models can
predict the main-sequence lifetime of stars with a given mass, which must
then be nearly equal to the age of the cluster. Such investigations yield ages
for the most metal-poor (and presumably oldest) globular clusters of about
12–13 Gy, indicating that these objects formed very early in the history of the
Galaxy. This estimate also represents an important lower limit on the age of
the Universe (Krauss and Chaboyer 2003).

Initial mass of 2 M�� M � 11 M�
We can divide this mass range into several subranges. Stars with initial
masses of 2 M� � M � 4 M� evolve obviously faster than less massive
stars and their tracks will look quantitatively different from the results shown
in Fig. 1.5a. But otherwise they evolve through the same stages as a solar-
like star. A major difference, however, arises from the fact that for stars with
M � 2 M� the helium core during the RGB phase does not become elec-
tron degenerate. Therefore, a helium flash does not occur but instead helium



22 1 Aspects of Nuclear Physics and Astrophysics

Fig. 1.5 Schematic evolutionary tracks of
(a) the Sun, and (b) massive stars of ini-
tial solar composition, in the Hertzsprung–
Russell diagram; the luminosity on the verti-
cal axis is given in units of the present solar
luminosity. The heavy portions define the
locations where major core nuclear burn-
ing phases occur. Details of tracks during
transitions between major nuclear burning
phases are omitted. The meaning of the
labels are: main sequence (MS); zero age
main sequence (ZAMS); subgiant branch
(SGB); red giant branch (RGB); core he-
lium flash (HeF); horizontal branch (HB);
early asymptotic giant branch (E-AGB);
thermally pulsing asymptotic giant branch

(TP-AGB); post asymptotic giant branch (P-
AGB); planetary nebula nucleus (PNN);
carbon–oxygen white dwarf (CO-WD).
Metal-poor stars in the initial mass range
of 0.4 M� � M � 2 M� appear during
core helium burning in a region marked by
the horizontal dashed line in part (a), de-
pending on the mass loss during the RGB
phase. The two dashed diagonal lines indi-
cate the instability strip. In part (b) the core
burning phases are labeled by the nuclear
fuel: hydrogen (H), helium (He), carbon (C),
and so on. The onset of carbon burning is
marked by the full circle. Note the vastly dif-
ferent luminosity scale in parts (a) and (b).
See the text.
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ignites quiescently in the center. Subsequently, these stars make excursions
to the left (toward higher temperatures) in the Hertzsprung–Russell diagram
and some of them are liable to pass into the instability strip. The observational
counterparts of these variable stars are called classical Cepheids. They are im-
portant for establishing a cosmic distance scale since their observed pulsation
period is correlated with their luminosity.

Stars with initial masses of M � 4 M� experience an additional episode
of mixing. Following core helium exhaustion in the core, the structural read-
justment to helium shell burning results in a strong expansion, such that the
hydrogen burning shell is extinguished as the star begins to ascend the early
asymptotic giant branch (E-AGB). At this time the inner edge of the convective
envelope penetrates the dormant hydrogen shell, and the products of hydro-
gen burning are mixed to the surface. This process is referred to as the “second
dredge-up.” Afterward, the hydrogen shell reignites and the star continues to
evolve up the asymptotic giant branch (AGB).

The evolution of stars in the initial mass range of 9 M� � M � 11 M� is
more complicated and less established at present. Models predict a number
of important differences compared to the evolution of lower mass stars. We
will discuss the evolution of a 10 M� star with initial solar composition as an
example (Ritossa, García-Berro and Iben 1996). The star starts out by burning
hydrogen in the core via the CNO cycles for about 10 million years. Following
the exhaustion of hydrogen in its center, the star evolves toward the red giant
branch where eventually the first dredge-up event occurs. Helium burning
starts in the core under nondegenerate conditions and lasts for about 270,000
years. After helium exhaustion, the core contracts and heats up, and the outer
layers of the star expand. Thereafter, the hydrogen burning shell extinguishes,
while helium continues to burn in a shell surrounding a partially electron de-
generate carbon–oxygen core. Eventually, the core becomes sufficiently hot
for the fusion of carbon nuclei (carbon burning). When carbon ignites, the star
enters the super asymptotic giant branch (SAGB). Carbon burning starts with
a thermonuclear runaway (carbon flash) and the energy generation rate from
carbon fusion increases greatly. The energy release causes the overlying lay-
ers to expand, giving rise to a reduction in the helium shell burning energy
generation rate. After a relaxation period, the helium burning shell returns to
its prior energy output. Several of these flashes occur over the carbon burn-
ing lifetime, which lasts for about 20,000 years. When carbon is exhausted in
the center, the electron degenerate core consists mainly of oxygen and neon.
After carbon burning extinguishes, the second dredge-up event occurs. Sub-
sequently, the dormant hydrogen shell on top of the helium burning shell is re-
activated and a complicated interplay between these two burning shells gives
rise to thermal pulses which are driven by helium shell flashes. During this
time, the third dredge-up event occurs. Eventually, the hydrogen-rich surface
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is removed by a strong stellar wind and the star becomes the central object of
a planetary nebula. It ends its existence as a oxygen–neon white dwarf with a
mass of ≈ 1.2 M�.

Initial mass of M � 11 M�
The evolution of stars in this mass range is in many ways fundamentally dif-
ferent compared to our earlier discussion. Schematic evolutionary tracks for
13 M�, 15 M�, 20 M�, and 25 M� stars are shown in Fig. 1.5b. The case of
a 25 M� star with initial solar composition will be discussed in the following
as an example (Chieffi, Limongi and Straniero 1998; Limongi, Straniero and
Chieffi 2000; Woosley, Heger and Weaver 2002). The total life of such a mas-
sive stars is relatively short and amounts only to ≈ 7 My. The star spends 90%
of this time on the main-sequence burning hydrogen to helium via the CNO
cycles in the core. When the hydrogen in the center is exhausted, hydrogen
burning continues in a shell. The core contracts and heats up until helium is
ignited. This new source of nuclear energy heats the overlying hydrogen shell
and the outer layers of the star expand greatly. The star becomes a super-
giant. These stars show up in the Hertzsprung–Russell diagram at the highest
observed luminosities. Examples are Rigel (blue supergiant) and Betelgeuse
(red supergiant) in the constellation Orion.

Core helium burning lasts for about 800,000 years and some of the heavy
nuclides with masses of A > 60 are synthesized during this stage via neutron
captures (s-process; Section 5.6.1). When helium is exhausted in the center,
helium burning continues in a shell located beneath the hydrogen burning
shell. Eventually, carbon burning starts in the core. These burning stages
have already been discussed above.

Stars with initial masses exceeding ≈ 11 M� are capable of igniting succes-
sive burning stages in their cores using the ashes of the previous core burning
stage as fuel. Three distinct burning stages follow carbon burning. They are
referred to as neon burning, oxygen burning, and silicon burning, and will be
discussed in detail in Section 5.5. There is a fundamental difference between
the initial and the advanced burning stages in the manner by which the nu-
clear energy generated in the stellar interior is transformed and radiated from
the surface. For hydrogen and helium burning, nuclear energy is almost ex-
clusively converted to light. During the advanced burning stages energy is
almost entirely radiated as neutrino–antineutrino pairs and the light radiated
from the star’s surface represents only a very small fraction of the total energy
release. Since the neutrino losses increase dramatically during the advanced
burning stages and because the nuclear burning lifetime scales inversely with
the total luminosity, the evolution of the star rapidly accelerates. For example,
silicon burning will last for only about 1 day (Chapter 5). Since the advanced
burning stages transpire very quickly, the envelope has insufficient time to re-
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Fig. 1.6 Schematic structure of a presu-
pernova star (not to scale). The upper-left
side shows the one or two most abundant
nuclear species in each region (according
to Limongi, Straniero and Chieffi 2000).
Nuclear reactions are very temperature de-
pendent. Thus the nuclear burning takes

place in relatively thin shells at the interface
between layers of different composition. The
nuclear burning shells are labeled on the
lower-left side; for example, “H-B” stands for
hydrogen burning. This model is sometimes
referred to as the “onion shell structure” of a
massive star.

act to the structural changes in the stellar interior. Thus, from carbon burning
onward, the star will no longer move in the Hertzsprung–Russell diagram,
but remains at the position indicated by the solid circle in Fig. 1.5b. Further-
more, since the star spends most of its life burning either hydrogen or helium
in the core, these are typically the only phases that we can observe.

The approximate structure of the massive star after the silicon has been ex-
hausted in the core is shown in Fig. 1.6. The star consists now of several lay-
ers of different composition that are separated by thin nuclear burning shells.
The details of the nucleosynthesis are complicated and will be discussed in
Chapter 5. It is sufficient to mention at this point that the heaviest and most
stable nuclei (that is, the iron peak nuclei; Section 1.3) are found in the core.
In fact, the most abundant nuclide in the core is 56Fe. It should also be noted
that the luminosity during the red giant phase is so large that the star un-
dergoes a significant mass loss. The effect is more pronounced for stars with
M � 30–35 M� that lose eventually most of their hydrogen envelope. The ob-
servational counterparts of such stars are the hot and massive Wolf–Rayet stars,
which have been observed to lose mass at a rate of ≈ 10−5 M� per year at stel-
lar wind speeds of ≈ 2000 km/s. An image of a Wolf–Rayet star is shown in
color Fig. 5 on page 635.
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The electron degenerate stellar core has at this point no other sources of
nuclear energy to its disposal and grows in mass as the overlying burning
shells contribute nuclear ashes. When the mass of the core exceeds the Chan-
drasekhar limit (≈ 1.4 M�), the electron degeneracy pressure is unable to
counteract gravity, and the core collapses. The core collapse is accelerated by
two important effects. First, as the electron density increases, electrons cap-
ture onto iron peak nuclei (Section 1.8.4). This removes electrons that were
contributing to the pressure. Second, at temperatures of ≈ 5 GK, the ther-
mal radiation becomes sufficiently energetic and intense that the iron peak
nuclei are photodisintegrated into lighter and less stable nuclei. This process
removes energy that could have provided pressure. At this stage the core of
the star is essentially collapsing in free fall. When the density reaches values
on the order of the nuclear density (≈ 1014 g/cm3), the nuclei and free nu-
cleons begin to feel the short-range nuclear force, which is repulsive at very
short distances. The inner collapsing core reaches high inward velocities and
overshoots the nuclear density. The nuclear potential acts as a stiff spring that
stores energy in the compressive phase until it rebounds. The rebounding
part of the core encounters infalling matter and thus gives rise to an outward
moving shock wave. The very hot and dense inner core has become a proto-
neutron star with a mass of ≈ 1.5 M�.

While the shock wave moves outward through the outer core region, it loses
energy by photodisintegrating the iron peak nuclei. Furthermore, energy is
removed from the shock wave by the emission of neutrinos. It takes about 1 s
after core collapse, and about 10 ms after the core has bounced, for the shock
wave to reach the outer edge of the core. At this time the shock wave has lost
all of its kinetic energy and it stalls. How exactly the shock is revived and how
it will ultimately propagate through the stellar layers beyond the iron core and
disrupt the star in a core collapse supernova explosion is still unknown. The
stalled shock wave is thought to be revived by the neutrinos and antineutrinos
that emerge from the hot and dense proto-neutron star, a fraction of which is
absorbed by protons and neutrons behind the shock (Bethe and Wilson 1985).

Once the shock wave is revived by the neutrino energy deposition, it prop-
agates outward beyond the iron core and compresses and heats each of the
overlying shells of the star. Some of the shells experience, after hydrostatic
burning prior to core collapse, another episode of nucleosynthesis which pro-
ceeds on timescales of a few seconds and is called explosive nuclear burning.
The silicon (28Si) and oxygen (16O) in the first layers that the shock wave en-
counters (Fig. 1.6) are quickly converted to iron peak nuclei at high temper-
atures (≈ 5 GK). It will be shown in Section 5.5.5 that under such conditions
the most abundant product nuclide originating from these layers is 56

28Ni28. By
the time the shock wave reaches the other layers of the star, the temperatures
achieved are much smaller and hence these are ejected into space with less
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nuclear processing. Nevertheless, some species are predominantly made in
these layers, among them the 26Al observed in the interstellar medium (Sec-
tion 1.7.5). The deepest regions that are ejected are characterized by a large
abundance of free neutrons. These possibly give rise to the nucleosynthesis of
many heavy nuclei in the A > 60 mass range via neutron capture (r-process;
Section 5.6.2).

The above scenario for the core collapse of a massive star is responsible for
supernovae of types II and Ib/Ic. It must be stressed that the explosion mech-
anism is far from understood at present. It is also not clear if a neutron star or,
after fallback of material onto the core, a black hole is left behind as the cen-
tral remnant. These issues are the subject of active current research. In many
respects, however, current models of core collapse supernovae agree with ob-
servation. In particular, observations of supernova 1987A, which exploded
in the Large Magellanic Cloud in 1987, were of outstanding importance in
this respect (see color Fig. 6 on page 636). Since it was located so close to us,
the event could be studied in much greater detail than any other supernova.
For example, a burst of neutrinos had long been predicted by theory and was
indeed detected in this event (Section 1.4.1). Furthermore, current models cor-
rectly predict the amount of the ejected radioactive 56Ni which, after decay
first to 56Co and then to stable 56Fe, gives rise to the tail in the light curves
of core collapse supernovae. A famous type II supernova remnant, the Crab
Nebula, is shown in color Fig. 7 on page 637.

The association of massive stars with supernovae of type II and type Ib/Ic
was made some time ago. The different supernova types are classified obser-
vationally according to their spectra. Spectra of type II supernovae contain
hydrogen lines, while those of type I supernovae do not. Type I supernovae
whose spectra show absorption caused by the presence of silicon are referred
to as type Ia supernovae; otherwise they are classified as type Ib or Ic super-
novae (the latter distinction is based on a helium line feature in the spectrum).
Type II supernovae tend to occur in the arms of spiral galaxies, but not in
early-type galaxies. Type Ib or Ic supernovae also seem to occur in spiral arms.
On the other hand, type Ia supernovae show no such preference. Since the spi-
ral arms contain many massive (and thus young) stars and early-type galaxies
do not contain such objects, the observations suggest that massive stars are
the progenitors of type II and type Ib/Ic supernovae, but not of type Ia super-
novae. Type Ib/Ic supernovae are thought to result from the core collapse of
Wolf–Rayet stars that lost their hydrogen envelope to a strong stellar wind or
to a companion star before the explosion. The supernova rate in our Galaxy
amounts to about two events per century. Most of them are predicted to be
type II and type Ib/Ic supernovae, while the contribution from type Ia su-
pernovae amounts only to ≈ 15%. The latter objects will be discussed below.
For more information on these issues, and the related topic of the evolution of
stars with M � 100 M�, see Woosley, Heger and Weaver (2002).
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1.4.4
Binary Stars

Perhaps as many as one half of all stars are members of binary star systems
according to recent statistics. If the stars are members of a close binary system,
then they will significantly influence each other’s evolution. In a close binary
system, the separation may range from a few times the radii of the stars to a
situation where both stars share a common envelope (contact binaries). Con-
sider the binary star system shown in Fig. 1.7. Each star is surrounded by a
hypothetical surface marking its gravitational domain. This surface is referred
to as the Roche lobe and its intersection with the equatorial plane is shown as
a dashed figure-eight curve. The location where the two Roche lobes touch
(that is, where the effects of gravity and rotation cancel each other) is called
the inner Lagrangian point. When one of the stars evolves off the main sequence
and becomes a red giant, it may fill its Roche lobe. Material is then free to flow
from that star through the inner Lagrangian point onto its companion. Many
different kind of stars may be members of close binary systems and the trans-
fer of mass from one star to another gives rise to very interesting phenomena
(Iben 1991). In the following we will focus on binary systems that contain a
compact object, either a white dwarf or a neutron star.

Type Ia supernovae

Type Ia supernovae are among the most energetic stellar explosions in the
Universe. They sometimes even outshine their host galaxies. An image of
the type Ia supernova 1994D is shown in color Fig. 8 on page 638. Their light
curves—which are powered by the decay of radioactive 56Ni—and spectra
are in general homogeneous. However, there are important differences. For
example, the spread in peak luminosity among type Ia supernovae amounts
to a factor of ≈ 15. It turns out that the peak luminosity is correlated with the
rate of brightness decline (Phillips 1993). Since this correlation can be used to
compensate for the peak luminosity spread, type Ia supernovae are important
candidates for establishing a cosmological distance scale (see below). There
are other important differences, such as a spread in the expansion velocity at
the photospheres even for similarly bright events, that support the conclusion
that type Ia supernovae represent a class of a certain diversity (Leibundgut
2000).

A detailed understanding of type Ia supernovae is still lacking. Many dif-
ferent models have been proposed to explain these events. It is also not clear
if a single model can account for all observations. We will focus here on one
of the most popular models that may describe at least the majority of type Ia
supernovae.

The favored scenario involves a carbon–oxygen white dwarf in a close bi-
nary star system that accretes matter via Roche lobe overflow from a com-
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panion main-sequence or red giant star. The rate of mass accretion must be
relatively large (≈ 10−7 M� per year) in order to avoid mass loss through a
nova-like event (see below). When the white dwarf grows to a critical mass
near the Chandrasekhar limit, carbon ignites under degenerate conditions and
a thermonuclear runaway occurs (Section 1.4.3). The energy release from the
nuclear burning (≈ 1044 J) is so large that it disrupts the white dwarf at high
velocity within a time scale of seconds. A significant fraction of the initial
carbon and oxygen is consumed and, in general, neither a neutron star nor a
black hole is left behind in the explosion. For SN 1572 (Tycho’s supernova;
see color Fig. 9 on page 639) the likely companion has been identified as a
solar-like star, supporting the above scenario (Ruiz-Lapuente et al. 2004).

The nucleosynthesis depends on the temperatures and densities achieved
in different layers of matter. In the hottest and densest regions, the explosion
converts most of the matter to radioactive 56Ni (via nuclear statistical equi-
librium at low neutron excess; see Section 5.5.5). The decay of this nuclide,
and the subsequent decay of the daughter nucleus 56Co, then gives rise to the
observable emission of type Ia supernovae. In other words, the amount of
56Ni synthesized determines the absolute brightness of the event. The outer
regions that attain smaller temperatures and densities may undergo explosive
silicon or oxygen burning and give rise to the production of intermediate-mass
nuclei. Elements from oxygen to calcium are indeed observed in the spectral
evolution during the peak phase of type Ia supernovae.

An important unresolved issue is related to the propagation of the ther-
monuclear burning front. Two burning modes can be distinguished. One pos-
sibility is a detonation in which the nuclear flame propagates as a supersonic
front. In this case, the flame compresses the material and increases the tem-
perature to the point of ignition. The energy release from the ignited material
behind the flame supports its propagation. Another possibility is a deflagra-
tion in which the nuclear burning proceeds subsonically. Here, the energy re-
lease from the burning material heats the next layer and ignites it. These two
modes are not exclusive and a transition from one mode to another may occur
during the explosion. Related to this issue is the question of where precisely
(near or off center) and at how many locations the ignition occurs.

Type Ia supernovae are fascinating objects in their own right, but a deeper
understanding of the explosion is also important for cosmology. Their light
curves are relatively homogeneous, that is, their intrinsic brightness is known
to within some range. By measuring their apparent luminosity it becomes
hence possible to estimate their distance. Furthermore, since type Ia super-
novae are so bright they can be observed across billions of light years. For
these reasons, type Ia supernovae are used as ”standard candles” for estab-
lishing cosmological distances. By recording both their apparent luminosity
and their redshifts, observations of very distant type Ia supernovae provide a



30 1 Aspects of Nuclear Physics and Astrophysics

measure for the expansion history of the Universe. It is found that the expan-
sion is accelerating, driven by the elusive dark energy (Riess et al. 1998, Perl-
mutter et al. 1999). The profound cosmological implications provide strong
motivation for improving models of type Ia supernovae. For more informa-
tion on the stellar models, see Höflich (2006), and references therein.

Classical novae

Classical novae are stellar explosions that occur in close binary systems. In
this case, hydrogen-rich matter is transferred via Roche lobe overflow from a
low-mass main-sequence star to the surface of a compact white dwarf. The
transferred matter does not fall directly onto the surface but is accumulated in
an accretion disk surrounding the white dwarf. Typical accretion rates amount
to ≈ 10−10–10−9 M� per year. A fraction of this matter spirals inward and ac-
cumulates on the white dwarf surface, where it is heated and compressed by
the strong surface gravity. At some point, the bottom layer becomes electron
degenerate. Hydrogen starts to fuse to helium (via the pp chains) during the
accretion phase and the temperature increases gradually. The electron degen-
eracy prevents an expansion of the envelope and eventually a thermonuclear
runaway occurs near the base of the accreted layers. At this stage the nuclear
burning is dominated by explosive hydrogen burning via the (hot) CNO cy-
cles. Both the compressional heating and the energy release from the nuclear
burning heat the accreted material until an explosion occurs.

The classical nova rate in the Galaxy is about ≈ 35 per year and thus they
occur much more frequently than supernovae (Section 1.4.3). Contrary to type
Ia supernovae, which disrupt the white dwarf, all classical novae are expected
to recur with periods of ≈ 104–105 years. The luminosity increase during
the outburst amounts to a factor of ≈ 104. A classical nova typically ejects
≈ 10−5–10−4 M� of material, with mean ejection velocities of ≈ 103 km/s.
Note that there are other types of novae, such as dwarf novae or nova-like
variables. However, these are not related to thermonuclear burning.

Optical, infrared, and ultraviolet spectra of classical novae reveal the pres-
ence of many elements in the expanding nova shells that are strongly over-
abundant compared to solar system values. For example, the observed over-
abundances of carbon and oxygen in all classical novae demonstrate that at
some time during the evolution of the outburst the accreted material must
have been mixed to a certain degree with matter from the white dwarf. This
dredge-up of material, in fact, gives rise to a more energetic explosion (by
increasing the number of CNO catalyst nuclei; Section 5.2). The observation
of an overabundance of neon in some classical novae showed that these out-
bursts do not involve a carbon–oxygen white dwarf, but a more massive white
dwarf of oxygen–neon composition. The latter objects result from the evolu-
tion of intermediate mass stars with initial masses of 9 M� � M � 11 M�
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(Fig. 1.4). The presence of large amounts of matter from the white dwarf core
in the ejecta may imply that the white dwarf in a classical nova system is los-
ing mass as a result of subsequent outbursts. Thus these objects are unlikely to
become progenitors of type Ia supernovae. Other observed overabundances,
for example, of nitrogen, silicon, or sulfur, are the result of nuclear processing
during the explosive burning of hydrogen. An image of Nova Cygni 1992 is
shown in color Fig. 10 on page 640.

Stellar model calculations indicate that the peak phase of explosive nuclear
burning in classical novae lasts typically for several hundred seconds. The
characteristics of the outburst depend on the white dwarf mass and luminos-
ity, the mass accretion rate, and the chemical composition for both the accreted
and the white dwarf material. For example, it has been demonstrated that the
lower the mass accretion rate, the larger the amount of accreted mass before
the thermonuclear runaway is initiated. A more massive accreted layer, in
turn, gives rise to a higher pressure in the bottom layers and hence a more
violent explosion. On the other hand, if a too large accretion rate is assumed,
no thermonuclear runaway is initiated. Simulations also indicate that classi-
cal nova outbursts on the surface of the heavier oxygen–neon white dwarfs
achieve higher peak temperatures than those exploding on carbon–oxygen
cores. For more information on classical novae, see José, Hernanz and Iliadis
(2006) and Starrfield, Hix and Iliadis (2006).

Type I X-ray bursts

A number of close binary star systems involve a neutron star as a compact
object. A neutron star has a mass of ≈ 1.4 M�, a radius of about 10–15 km,
and a density on the order of 1014 g/cm3. These binary star systems belong to
a class of objects that are called X-ray binaries. The accretion of matter from the
companion on the surface of the neutron star gives rise to a large gravitational
energy release. As a result, the temperatures near the neutron star surface are
high (≈ 107 K) and the persistent thermal emission occurs at X-ray energies.

In high-mass X-ray binaries, the companion is a massive (� 5 M�) popu-
lation I star, while the neutron star has a strong magnetic field. The matter is
accreted at relatively high rates and is funneled along the magnetic field lines
onto the magnetic poles. This creates a hot spot of X-ray emission and, if the
rotational axis of the neutron star is inclined with respect to the magnetic axis,
this gives rise to an X-ray pulsar. Typical rotation periods range from 0.1 s to
a fraction of an hour. The rotational periods for some X-ray pulsars have been
observed to decrease, indicating that the neutron stars spin up as a result of
accretion of matter.

In low-mass X-ray binaries, the companion is a low mass (� 1.5 M�) pop-
ulation II star and matter is transferred to a weakly magnetized neutron star
via Roche lobe overflow. Many of these systems produce, apart from the per-
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sistent X-ray emission, bursts in the X-ray intensity (Lewin, van Paradijs and
Taam 1993). In a rare variety, called type II X-ray bursts, the bursts occur in
rapid succession and are separated by a few minutes. The profile of each burst
rises and falls abruptly. They are most likely associated with a sudden increase
in the mass transfer rate caused by instabilities in the accretion disk.

The large majority of bursts belong to the class of type I X-ray bursts. In this
case, the X-ray luminosity typically increases by an order of magnitude. They
are believed to be of thermonuclear origin, unlike the X-ray binary varieties
discussed above. When hydrogen- and helium-rich matter from the low-mass
companion is first accreted in a disk and then falls onto the surface of the neu-
tron star, the temperatures and densities are high enough to fuse hydrogen
continuously to helium via the (hot) CNO cycles. The accreted or synthesized
helium, however, is not fusing yet but sinks deeper into the neutron star atmo-
sphere. Eventually the helium is ignited via the triple-α reaction under elec-
tron degenerate conditions and a thermonuclear runaway occurs. The helium
flash triggers the explosive burning of the outer region consisting of a mixture
of hydrogen and helium. This is just one possible scenario. In other mod-
els the ignition occurs in pure helium or in mixed hydrogen–helium accreted
material. The details of the nucleosynthesis depend on the temperatures and
densities achieved in the various burning layers. Calculations show that in the
innermost and hottest layers elements up to—and perhaps beyond—the iron
peak are synthesized. After the termination of a burst, a new shell of matter is
accreted and the cycle repeats.

The above model explains the basic features of type I X-ray bursts. A burst
lasts typically for less than 1 min and repeats after several hours to days. The
luminosity profile shows a rapid rise within ≈1–10 s, caused by the sudden
nuclear energy release, and a slower decline on the order of ≈5–100 s, reflect-
ing the cooling of the neutron star surface. Some bursts show millisecond os-
cillations of the X-ray flux. These have been suggested to arise from a surface
wave in the nuclear burning layer or perhaps from anisotropies in the nuclear
burning caused by a spreading hot spot on the surface of a rapidly spinning
neutron star.

Stellar models of type I X-ray bursts are sensitive to a number of parame-
ters and assumptions, such as the mass accretion rate, rotation, the number of
ignition points, the propagation of the burning front across the neutron star
surface, and the composition of the accreted matter.

It is unlikely for any significant amount of accreted and processed matter
to escape the large gravitational potential of the neutron star. Therefore, type
I X-ray bursts are probably not important contributors to the chemical evolu-
tion of the Galaxy. They are important, however, for probing the properties
of neutron stars, such as the mass, radius, and the composition. For more
information, see Schatz and Rehm (2006) and references therein.
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Fig. 1.7 Binary star system. Each star is surrounded by a hypothetical
surface, called the Roche lobe, that marks its gravitational domain.
The intersection of the equatorial plane with the Roche lobes is shown
as a dashed curve. The location where the two Roche lobes touch is
called the inner Lagrangian point. See the text.

1.5
Masses, Binding Energies, Nuclear Reactions, and Related Topics

1.5.1
Nuclear Mass and Binding Energy

The most fundamental property of the atomic nucleus is its mass. Early mass
measurements showed that the total nuclear mass, mnuc, is less than the sum
of masses of the constituent nucleons. We may write

mnuc = Zmp + Nmn − ∆m (1.1)

According to the Einstein relationship between mass and energy, the mass de-
fect ∆m is equivalent to an energy of ∆E = ∆m · c2. The quantity ∆E is referred
to as nuclear binding energy. It is defined as the energy released in assembling
a given nucleus from its constituent nucleons, or equivalently, the energy re-
quired to separate a given nucleus into its constituent nucleons. We may ex-
press the binding energy as

B(Z, N) =
(
Zmp + Nmn − mnuc

)
c2 (1.2)

A plot of measured binding energies per nucleon, B(Z, N)/A, of the most
stable isotope for each mass number A is shown in Fig. 1.8. Most of these
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nuclides (which are stable in the laboratory) have binding energies between
7 and 9 MeV per nucleon. Nuclides with mass numbers in the range of A =
50–65 have the largest binding energies per nucleon. They are the iron peak
species which we already encountered in Section 1.3. It appears that nature
favors the abundances of the most tightly bound and most stable nuclides, as
will be explained in detail in later chapters. The most tightly bound nuclides
of all are 62Ni, 58Fe, and 56Fe with binding energies per nucleon of B(Z, N)/A
= 8794.549 ± 0.010 keV, 8792.221 ± 0.012 keV, and 8790.323 ± 0.012 keV, re-
spectively (Audi, Wapstra and Thibault 2003). Lighter or heavier nuclei are
less tightly bound. It follows that nuclear processes liberate energy as long
as the binding energy per nucleon of the final product(s) exceeds the binding
energy per nucleon of the initial constituents. Consequently, nuclear energy
can be liberated by the fusion of nuclei lighter than iron, or by the fission of
nuclei heavier than iron. For example, if a star consists initially of pure hy-
drogen (1H), an energy of ≈ 7 MeV per nucleon can be liberated by fusing
hydrogen to helium (4He), or more than 8 MeV per nucleon is liberated by
fusing hydrogen to 56Fe.

Example 1.2

The binding energies per nucleon of deuterium (2H or d) and helium (4He or
α) are given by B(d)/A = 1.112 MeV and B(α)/A = 7.074 MeV. Calculate the
energy released when two deuterium nuclei are combined to form one 4He
nucleus.

First, we calculate the binding energies of deuterium and 4He:

B(d) =
B(d)

A
A = (1.112 MeV) · 2 = 2.224 MeV

B(α) =
B(α)

A
A = (7.074 MeV) · 4 = 28.296 MeV

By combining two deuterium nuclei to one 4He nucleus, the total energy re-
lease amounts to

(28.296 MeV) − (2.224 MeV)− (2.224 MeV) = 23.85 MeV

corresponding to a value of 5.96 MeV per nucleon.

1.5.2
Energetics of Nuclear Reactions

A nuclear interaction may be written symbolically as

0 + 1 → 2 + 3 or 0(1, 2)3 (1.3)



1.5 Masses, Binding Energies, Nuclear Reactions, and Related Topics 35

Fig. 1.8 (a) Experimental binding energies per nucleon, B(Z, N)/A,
of the most stable nuclide for each mass number A. (b) Expanded
section showing the region of the iron peak. The nuclides with the
largest binding energies per nucleon are 62Ni, 58Fe, and 56Fe. Data
from Audi, Wapstra and Thibault (2003).

where 0 and 1 denote two colliding nuclei before the interaction, while 2 and
3 denote the interaction products. Most nuclear interactions of astrophysical
interest involve just two species before and after the interaction. If species 0
and 1 are identical to species 2 and 3, then the interaction is called elastic or
inelastic scattering. Otherwise, the above notation refers to a nuclear reaction.
Photons may also be involved in the interaction. If species 2 is a photon, then
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the interaction is called radiative capture reaction. If species 1 is a photon, then
we are considering a photodisintegration reaction. All of these interactions will
be discussed in later chapters.

Figure 1.9 shows schematically the energetics of nuclear reactions and can
be used to illustrate a number of relationships that will be employed fre-
quently in the following chapters. The vertical direction represents energy.
Consider first part (a), showing a reaction 0 + 1 → 2 + 3, where all species
involved in the interaction are particles with rest mass. The rest masses of 0
and 1 (before the reaction) and of 2 and 3 (after the reaction) are indicated by
horizontal solid lines. The total relativistic energy in a nuclear reaction must
be conserved. Thus, one may write

m0c2 + m1c2 + E0 + E1 = m2c2 + m3c2 + E2 + E3 or

Q01→23 ≡ m0c2 + m1c2 − m2c2 − m3c2 = E2 + E3 − E0 − E1 (1.4)

where Ei are kinetic energies and mi are rest masses. The difference in masses
before and after the reaction, or the difference in kinetic energies after and be-
fore the reaction, is equal to the energy release and is referred to as the reaction
Q-value. If Q is positive, the reaction releases energy and is called exothermic.
Otherwise the reaction consumes energy and is called endothermic. Apart from
a few exceptions, the most important nuclear reactions in stars are exothermic
(Q > 0). Note that Eq. (1.4) is applicable in any reference frame. The differ-
ence between center-of-mass and laboratory reference frame is discussed in
Appendix C. The quantities E01 and E23 in Fig. 1.9a represent the total kinetic
energies in the center-of-mass system before and after the reaction, respec-
tively. It is apparent that the center-of-mass kinetic energies and the Q-value
are related by

E23 = E01 + Q01→23 (1.5)

Part (b) shows a radiative capture reaction 0 + 1 → γ + 3. In this case we find
accordingly

m0c2 + m1c2 + E0 + E1 = m3c2 + E3 + Eγ or

Q01→γ3 ≡ m0c2 + m1c2 − m3c2 = E3 + Eγ − E0 − E1 (1.6)

Center-of-mass kinetic energies and the Q-value are now related by

Eγ3 = E01 + Q01→γ3 (1.7)

where Eγ3 denotes the sum of the energy of the emitted photon (Eγ) and the
center-of-mass kinetic energy of the recoil nucleus 3. The latter contribution is
usually very small so that one can frequently set Eγ3 ≈ Eγ (see Appendix C).

The reaction Q-value for a radiative capture reaction is equal to the energy
released when nuclei 0 and 1 combine to form a composite nucleus 3. If one
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would add this very same amount of energy to nucleus 3, then it becomes
energetically possible for nucleus 3 to separate into the fragments 0 and 1.
Thus, the particle separation energy of nucleus 3 is equal to the Q-value of the
reaction 0 + 1 → γ + 3, that is, S3→01 = Q01→γ3. Separation energies will be
used frequently in the following chapters. Their values depend on the nuclear
properties of species 0, 1, and 3. For example, suppose we start out with a
stable nucleus in Fig. 1.1 and remove one neutron at a time. As a result, we
move in the chart of the nuclides to the left toward increasingly proton-rich
nuclei. The farther we move away from the group of stable nuclei, the larger
the proton–neutron imbalance becomes, and the less energy is required to re-
move a proton from a given nucleus. In other words, the proton separation
energy Sp decreases. After a certain number of neutrons have been removed,
a nuclide is eventually reached for which Sp becomes negative. Such nuclides
are called proton unstable since they decay via the emission of a proton. The
line in the chart of the nuclides with Sp = 0 (on the proton-rich side) is re-
ferred to as proton dripline. Similarly, if we remove from a given stable nucleus
protons instead of neutrons, then we would move in the chart of the nuclides
downward. The neutron–proton imbalance increases while the neutron sepa-
ration energy Sn decreases with each removal of a proton. The line with Sn = 0
(on the neutron-rich side) defines now the neutron dripline. Particle driplines
play an important role in certain stellar explosions (Chapter 5).

1.5.3
Atomic Mass and Mass Excess

Direct measurements of nuclear masses are complicated by the presence of the
atomic electrons. Atomic masses, on the other hand, can be measured with
very high precision. For this reason, experimental mass evaluations tabulate
atomic rather than nuclear masses. These quantities are related by

matom(A, Z) = mnuc(A, Z) + Zme − Be(Z) (1.8)

where me and Be denote the electron mass and the electron binding energy in
the atom, respectively. Nuclear reactions conserve the total charge. Therefore,
one may replace nuclear by atomic masses since the same number of electron
rest masses is added on both sides of a reaction equation. An error is intro-
duced by this approximation because of the difference in the electron binding
energies in the atom. However, this contribution is very small compared to
the nuclear mass differences and can usually be neglected. In the following
we will be using atomic rather than nuclear masses, unless noted otherwise.

Frequently, a quantity called atomic mass excess (in units of energy) is intro-
duced, which is defined by

M.E. ≡ (matom − Amu)c2 (1.9)
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Fig. 1.9 Energy level diagrams to illustrate the energetics of nuclear
reactions. The vertical direction represents an energy scale. Part (a)
corresponds to a situation where all species participating in the re-
action are particles with rest mass. In part (b) one of the species is a
photon. See the text.

where the integer A is the mass number. The quantity mu denotes the (uni-
fied) atomic mass unit, u, which is defined as one-twelfth of the mass of the
neutral 12C atom. Numerically, one finds muc2 = 931.494 MeV. The Q-value
for a reaction 0 + 1 → 2 + 3 can be expressed in terms of the mass excess as

Q = m0c2 + m1c2 − m2c2 − m3c2

= (m0c2 + m1c2 − m2c2 − m3c2) + (A2muc2 + A3muc2 − A0muc2 − A1muc2)

= (M.E.)0 + (M.E.)1 − (M.E.)2 − (M.E.)3 (1.10)

Clearly, using atomic masses or atomic mass excesses gives precisely the same
result when calculating reaction Q-values. If positrons are involved in a reac-
tion, then the Q-value obtained by using atomic masses (or atomic mass ex-
cesses) includes the annihilation energy 2mec2 = 1022 keV of the positron with
another electron from the environment, as will be shown below. In numerical
expressions, we will frequently be using the quantity

Mi =
mi

mu
(1.11)
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which is called relative atomic mass of species i and is given in atomic mass
units, u. The relative atomic mass for a given species is numerically close to
its (integer) mass number, but for accurate work the former quantity should
be used. An evaluation of atomic masses is presented in Audi, Wapstra and
Thibault (2003). Mass measurement techniques and various theoretical mass
models are reviewed in Lunney, Pearson and Thibault (2003).

Experimental values for atomic mass excesses, binding energies, and rel-
ative atomic masses for the light nuclides are listed in Table 1.1. Note that
(M.E.)12C ≡ 0 by definition. The following example illustrates their use for
calculating Q-values.

Example 1.3

Calculate the Q-values for the reactions (i) 17O + p → α + 14N and (ii) p + p
→ e+ + ν + d by using the information listed in Table 1.1. (The symbols e+

and ν denote a positron and a neutrino, respectively).

(i) For the 17O(p,α)14N reaction we find from Eq. (1.10)

Q = (M.E.)17O + (M.E.)1H − (M.E.)14N − (M.E.)4He

= [(−808.81) + (7288.97) − (2863.42) − (2424.92)] keV = 1191.83 keV

Exactly the same result is obtained if atomic masses are used. (ii) For the
p(p,e+ν)d reaction one obtains

Q = (m1H + m1H − m2H)c2 = (M.E.)1H + (M.E.)1H − (M.E.)2H

= 2 × (7288.97 keV)− (13135.72 keV) = 1442.22 keV

This value includes the annihilation energy 2mec2 = 1022 keV of the positron
with another electron from the environment, as can be seen from

Q = [m1H + m1H − m2H]c2 = [(mp + me) + (mp + me)− (md + me)]c2

= [mp + mp − md + me]c2 = [(mp + mp − md − me) + 2me]c2

The symbols 1H, 2H and p, d in the above expression denote atomic and nu-
clear masses, respectively.

1.5.4
Number Abundance, Mass Fraction, and Mole Fraction

The number density of nuclei i in a stellar plasma, Ni, is equal to the total
number of species i per unit volume. Avogadro’s number NA is defined as the
number of atoms of species i which makes Mi grams, that is, NA = Mi/mi =
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Tab. 1.1 Experimental values of the atomic mass excess (M.E.), binding energy per nucleon
(B/A), and relative atomic mass (M) for some light nuclides in the A ≤ 20 mass region. Er-
rors are not listed. From Audi, Wapstra and Thibault (2003).

A Elt. M.E. (keV) B/A (keV) M (u)
1 n 8071.3171 0.0 1.0086649157

H 7288.97050 0.0 1.00782503207
2 H 13135.7216 1112.283 2.0141017778
3 H 14949.8060 2827.266 3.0160492777

He 14931.2148 2572.681 3.0160293191
4 He 2424.91565 7073.915 4.00260325415
6 Li 14086.793 5332.345 6.015122795
7 Li 14908.14 5606.291 7.01600455

Be 15770.03 5371.400 7.01692983
8 Li 20946.84 5159.582 8.02248736

Be 4941.67 7062.435 8.00530510
B 22921.5 4717.16 8.0246072

9 Li 24954.3 5037.84 9.0267895
Be 11347.6 6462.76 9.0121822

10 Be 12606.7 6497.71 10.0135338
B 12050.7 6475.07 10.0129370

11 Be 20174. 5952.8 11.021658
B 8667.9 6927.71 11.0093054
C 10650.3 6676.37 11.0114336

12 B 13368.9 6631.26 12.0143521
C 0.0 7680.144 12.0000000

13 B 16562.2 6496.40 13.0177802
C 3125.0113 7469.849 13.0033548378
N 5345.48 7238.863 13.00573861

14 C 3019.893 7520.319 14.003241989
N 2863.4170 7475.614 14.0030740048
O 8007.36 7052.308 14.00859625

15 C 9873.1 7100.17 15.0105993
N 101.4380 7699.459 15.0001088982
O 2855.6 7463.69 15.0030656

16 N 5683.7 7373.81 16.0061017
O −4737.00141 7976.206 15.99491461956

17 N 7871. 7286.2 17.008450
O −808.81 7750.731 16.99913170
F 1951.70 7542.328 17.00209524

18 N 13114. 7038.5 18.014079
O −781.5 7767.03 17.9991610
F 873.7 7631.605 18.0009380

19 O 3334.9 7566.39 19.003580
F −1487.39 7779.015 18.99840322
Ne 1751.44 7567.375 19.0018802

20 F −17.40 7720.131 19.99998132
Ne −7041.9313 8032.240 19.9924401754
Na 6848. 7298.6 20.007351
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6.022 × 1023 mol−1. The mass density is then given by ρ = Nimi = Ni Mi/NA
if only species i is present, or by ρ = (1/NA) ∑i Ni Mi for a mixture of species.
We write

∑
i

Ni Mi

ρNA
=

N1M1

ρNA
+

N2M2

ρNA
+

N3M3

ρNA
+ · · ·

= X1 + X2 + X3 + · · · = ∑
i

Xi = 1
(1.12)

where the quantity

Xi ≡ Ni Mi

ρNA
(1.13)

represents the fraction of the mass that is bound in species i and, therefore, is
called the mass fraction. A related quantity is the mole fraction, defined by

Yi ≡ Xi

Mi
=

Ni

ρNA
(1.14)

In a stellar plasma, the number density Ni will change if nuclear transmuta-
tions take place. But it will also change as a result of variations in the mass
density caused by compression or expansion of the stellar gas. In situations
where the mass density of the stellar plasma varies, it is of advantage to ex-
press abundances in terms of the quantity Yi instead of Ni. In a simple ex-
pansion of matter without nuclear reactions or mixing, the former quantity
remains constant, whereas the latter quantity is proportional to the mass den-
sity ρ.

Strictly speaking, the mass density ρ is not a conserved quantity even if
no compression or expansion of the stellar gas occurs. The reason is that nu-
clear transmutations transform a fraction of the nuclear mass into energy or
leptons (for example, electrons or positrons) and vice versa. To avoid this dif-
ficulty, the density is sometimes defined as ρA = (1/NA) ∑i Ni Ai in terms
of the number of nucleons (that is, the mass number Ai) instead of the rel-
ative atomic mass Mi, since the number of nucleons is always conserved in
a nuclear transmutation. The mass fraction of Eq. (1.13) should in principle
be replaced by the nucleon fraction Xi = Ni Ai/(ρANA). However, the dif-
ference between mass density and nucleon density, or between mass fraction
and nucleon fraction, is very small and the distinction is usually not impor-
tant numerically. In order to avoid confusion, we will be using in this book
mass densities and mass fractions. For more information on abundances see,
for example, Arnett (1996).
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Example 1.4

The mass fractions of 1H and 4He at the time of the Sun’s birth are equal to
0.71 and 0.27, respectively. Calculate the ratio of the corresponding number
densities.

From Eq. (1.13) and Table 1.1 we find

N(1H)
N(4He)

=
ρNAX(1H)

M(1H)
ρNAX(4He)

M(4He)

=
M(4He)
M(1H)

X(1H)
X(4He)

=
(4.0026 u)
(1.0078 u)

0.71
0.27

= 10.4

1.5.5
Decay Constant, Mean Lifetime, and Half-Life

The time evolution of the number density N (or of the absolute number of
nuclei N ) of an unstable nuclide is given by the differential equation
(

dN
dt

)
= −λN (1.15)

The quantity λ represents the probability of decay per nucleus per time. Since
it is constant for a given nuclide under specific conditions (constant temper-
ature and density), it is referred to as decay constant. Integration of the above
expression immediately yields the radioactive decay law for the number den-
sity of undecayed nuclei remaining after a time t,

N = N0e−λt (1.16)

where N0 is the initial number density at t = 0. The time it takes for the num-
ber density N to fall to one-half of the initial abundance, N0/2 = N0e−λT1/2 , is
called the half-life T1/2, with

T1/2 =
ln 2
λ

=
0.69315

λ
(1.17)

The time it takes for N to fall to 1/e = 0.36788 of the initial abundance, N0/e =
N0e−λτ, is called the mean lifetime τ, with

τ =
1
λ

= 1.4427 T1/2 (1.18)

If a given nuclide can undergo different competing decays (for example, γ-
and β-decay, or different γ-ray transitions), then the total decay probability in
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Eqs. (1.15)–(1.18) is given by the sum of the decay probabilities for the indi-
vidual processes. Hence

λ = ∑
i

λi or
1
τ

= ∑
i

1
τi

(1.19)

where the quantities λi and τi are called partial decay constant and partial half-
life, respectively. The product of the absolute number of nuclei, N , and the
decay constant determines the number of decays per unit time and is referred
to as the activity, A ≡ λN = −dN/dt. Common units of the activity are
the curie (1 Ci = 3.7 × 1010 decays per second) and the becquerel (1 Bq = 1
decay per second). It must be emphasized that Eqs. (1.15)–(1.19) apply to any
nuclear decay, such as β-decay, α-particle decay, γ-ray decay of excited levels,
and the destruction of nuclei via nuclear reactions in a stellar plasma, as will
be shown later.

1.6
Nuclear Shell Model

A detailed treatment of the nuclear shell model is beyond the scope of this
book. Basic discussions are presented in many introductory nuclear physics
texts (for example, Krane 1988). For a more detailed account, the reader is
referred to DeShalit and Talmi (1963) or Brussaard and Glaudemans (1977).
In the following we will summarize some of the important assumptions and
predictions of the model. Our aim is to better understand how nuclear prop-
erties, such as binding energies, spins, and parities, can be explained from the
underlying configurations of the nucleons. These considerations are also im-
portant because a number of nuclear structure properties that are mentioned
in this text, for example, reduced γ-ray transition strengths, weak interaction
matrix elements, and spectroscopic factors, are frequently computed by using
the shell model.

The atomic shell model has been enormously successful in describing the
properties of atoms. In the case of an atom, the heavy nucleus represents a
center for the Coulomb field in which the light electrons move independently
in first-order approximation. The spherical Coulomb potential is given by
VC = Ze2/r, with Z the atomic number, e the electron charge, and r the dis-
tance between nucleus and electron. Solving the Schrödinger equation for this
system yields the electron orbits, or shells, that are characterized by various
quantum numbers. In general, several of these (sub-)shells are almost degen-
erate in energy and together they form major shells. The rules for building
up the atomic electron configuration follow immediately from the Pauli ex-
clusion principle, stating that no more than two spin-1/2 particles can occupy
a given quantum state simultaneously. The shells are then filled up with elec-
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trons in order of increasing energy. We thus obtain an inert core of filled shells
and some number of valence electrons that primarily determine the atomic
properties. Atoms with all states of the major shells occupied exhibit a high
stability against removal or addition of an electron. These are the inert gases.

The application of a similar model to the atomic nucleus encounters a num-
ber of obvious complications. First, the nuclear interaction is very differ-
ent from the Coulomb interaction and, moreover, the nature of the nucleon-
nucleon interaction is not precisely known. Second, there are two kinds of ele-
mentary particles present in the nucleus (protons and neutrons) as opposed to
the atomic case (electrons). Third, there is no heavy center of force for the nu-
cleons. Despite these complications, the nuclear shell model has been highly
successful in describing many properties of nuclei. Its basic assumption is
that the interaction of each nucleon with all the other protons and neutrons
in the nucleus is well approximated by some average potential V(r). A sin-
gle nucleon moves independently in this potential and can be described by a
single-particle state of discrete energy and constant angular momentum.

The independent motion of the nucleons can be understood qualitatively
in the following manner. According to the Pauli exclusion principle, no more
than two protons or neutrons can exist in a given quantum state. The single-
particle levels are filled with nucleons up to some level, depending on how
many nucleons are present. Consider now a single nucleon, occupying some
intermediate single-particle level, moving through the nucleus. It is well
known that the nuclear force has a short range and, therefore, we expect that
the actual nuclear potential will strongly fluctuate. The nucleon may collide
with other protons or neutrons, but it cannot gain or lose energy easily since
the neighboring levels are already occupied and thus cannot accept an addi-
tional nucleon. Of course, it may gain a large amount of energy and hence
move to a higher lying, unoccupied single-particle level. But such collisions
with a significant energy transfer are less likely to occur. Consequently, the
motion of the nucleon will often be fairly smooth.

1.6.1
Closed Shells and Magic Numbers

We will start from the assumption that the interaction between one nucleon
and all the other nucleons in the nucleus can be approximated by a suitable
single-particle potential. In the simplest case, it consists of a central poten-
tial (for example, a harmonic oscillator potential or a Woods–Saxon potential)
and a strong spin–orbit coupling term. The solutions of the Schrödinger equa-
tion for such a potential are bound single-particle states that are characterized
by the values of the radial quantum number n, orbital angular momentum
quantum number �, and total angular momentum quantum number j (the
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latter is obtained from the coupling �j = �� +�s where s denotes the intrin-
sic spin equal to 1/2 for protons or neutrons). In particular, the energies of
the single-particle states depend explicitly on the values of n, �, and j. The
single-particle states are energetically clustered in groups and thus reveal a
shell structure. Each state of given j can be occupied by a maximum num-
ber of (2j + 1) identical nucleons, corresponding to the number of magnetic
substates (mj = −j,−j + 1, . . . , j − 1, j), and thus represents a subshell. Several
different subshells lying close in energy can be grouped together and form a
major shell. Furthermore, each single-particle state possesses a definite parity
(Appendix A), given by π = (−1)�. The shells are filled up according to the
Pauli exclusion principle.

The single-particle levels for either protons or neutrons are shown in
Fig. 1.10 where the horizontal direction represents an energy scale. The left-
hand side (a) displays the single-particle energies of a harmonic oscillator
potential as a function of the oscillator quantum number N = 2(n − 1) + �,
corresponding to the total number of oscillator quanta excited. Part (b)
shows the single-particle energies of a Woods–Saxon potential. This po-
tential is more realistic but mathematically less tractable. It is defined by
V(r) = V0[1 + e(r−R0)/a]−1, where V0, R0, and a denote the potential depth,
the potential radius, and the diffuseness, respectively. Note that in part (a)
each single-particle state of given N consists in general of states with different
values of �. These have the same energies and are thus called degenerate. The
degeneracy does not occur for the more realistic Woods–Saxon potential, that
is, states with different values of � possess different energies. It is customary
to use the spectroscopic notation s, p, d, f, g, . . . for states with orbital angular
momenta of � = 0, 1, 2, 3, 4, . . ., respectively. If an additional spin–orbit term is
added to the potential, then each state of given � value (except � = 0) can have
a total angular momentum of either j = � + 1/2 or j = � − 1/2 (Appendix B).
Since � is an integer, j must be of odd half-integer value. Part (c) shows how
the spin–orbit term splits each state with � > 0 into two levels. The number
of identical particles (protons or neutrons) that can occupy a state of given j
amounts to (2j + 1) and is presented in part (d). Part (e) displays the single-
particle states in spectroscopic notation as n�j. Note that the quantum number
n corresponds to the order in which the various states of given � and j appear
in energy. Thus, 1s1/2 is the first � = 0, j = 1/2 state, 2s1/2 is the second, and
so on. The parities of the single-particle levels are shown in part (f), and part
(g) indicates the subtotal of the number of identical nucleons that can fill all
the states up to a given level.

It is important to point out that the spin–orbit coupling term is so strong that
it changes the energies of the single-particle states significantly. For example,
consider the N = 3 and 4 oscillator shells. The g-state (� = 4) in part (b) splits
into two levels, 1g7/2 and 1g9/2. Since the spin–orbit coupling is strong the
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1g9/2 state is depressed and appears to be close in energy to the 2p1/2, 1f5/2,
and 2p3/2 states that originate from the N = 3 oscillator shell. There is now
an energy gap at a subtotal nucleon (or occupation) number of 50 and, conse-
quently, this group of states forms a major shell. Similar arguments apply to
other groups of levels. It can be seen from Fig. 1.10 that gaps (or major shell
closures) in the single-particle energy spectrum appear at occupation numbers
of 2, 8, 20, 28, 50, 82, and 126. These are referred to as magic numbers.

It should be obvious that nuclei with filled major shells of protons or neu-
trons exhibit an energetically favorable configuration, resulting in an extra sta-
bility compared to neighboring nuclei with only partly filled shells. The magic
numbers manifest themselves in many observed nuclear properties, such as
masses, particle separation energies, nuclear charge radii, electric quadrupole
moments, and so on. As an example, Fig. 1.11 shows the difference of the mea-
sured ground-state atomic mass excess from its mean value that is calculated
by using a smooth semiempirical mass formula. At the locations of magic neu-
tron numbers, the atomic mass excess is smaller, resulting in a smaller atomic
mass and a larger binding energy according to Eqs. (1.2) and (1.9). Another
example will be given later in connection with neutron capture cross sections
(Fig. 5.61). Such observations provide unambiguous evidence for the shell
structure of nuclei. As will become apparent in Section 5.6, the synthesis of
the heavy elements is strongly influenced by the magic neutron numbers of
N = 50, 82, and 126. It has to be emphasized again that the magic numbers
as they are observed in nature can only be reproduced if a strong spin–orbit
coupling term is introduced into the independent-particle potential.

1.6.2
Nuclear Structure and Nucleon Configuration

The shell model not only predicts the properties of closed shell nuclei, but
also the properties of nuclei with partly filled shells. The nuclear properties
follow directly from the configuration of the nucleons: (i) the binding energy
or mass of the nucleus is determined by the single-particle energies (due to
the independent motion of the nucleons in an average potential) and by the
mutual interaction of the valence nucleons (that is, those located outside a
closed major shell); (ii) the total angular momentum of the nucleus (or the
nuclear spin) is obtained by coupling the angular momenta of the independent
single-particle states according to the quantum mechanical rules for vector
addition (Appendix B); and (iii) the total parity of the nucleus is determined
by the product of the parities for all nucleons.

Consider first a nucleus with completely filled subshells. In each subshell j
all magnetic substates mj are occupied and thus the sum of jz over all nucle-
ons in the subshell must be zero. In other words, the nucleons in a completely
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Fig. 1.10 Approximate sequence of single-
particle states for identical nucleons (pro-
tons or neutrons). See the text. The magic
numbers (given in boxes on the right-hand
side) appear at the energy gaps and corre-
spond to the cumulative number of nucleons
up to that state. The level pattern repre-
sents qualitative features only. This holds

specifically for states with N ≥ 4 where the
level order differs for protons (which are
subject to the Coulomb interaction) and
neutrons. Reprinted with permission from
P. J. Brussaard and P. W. M. Glaudemans,
Shell-Model Applications in Nuclear Spec-
troscopy (Amsterdam: North-Holland, 1977).
Copyright by P. J. Brussaard.

filled subshell must couple to an angular momentum of zero. Furthermore,
since (2j + 1) is an even number, the total parity of the nucleons amounts to
π = +1. Indeed, the observed spin and parity of nuclei with closed subshells
(or closed major shells) amount to Jπ = 0+ (for example, 4

2He2, 12
6C6, 14

6C8,
14
8O6, 16

8O8, 28
14Si14, 32

16S16, or 40
20Ca20). A closed-shell nucleus can only be excited

by promoting at least one nucleon to a higher lying, unoccupied, subshell.
This is consistent with the observation that the first excited states of such nu-
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Fig. 1.11 Difference between experimental ground-state atomic mass
excess (Audi et al. 2003) and the mass excess predicted by the spher-
ical macroscopic part of the finite-range droplet (FRDM) mass formula
(Möller et al. 1995) versus neutron number.

clei are usually found at relatively high excitation energies. Nuclei with partly
filled shells may have excited states that result from a recoupling of the angu-
lar momenta only. This explains why in such cases the observed excitation
energies are significantly smaller.

By considering Fig. 1.10 we can easily explain the quantum numbers for
the ground states of nuclei when a single nucleon is located outside a closed
subshell. In this case, the ground-state spin and parity is given by the lowest
single-particle state available to the valence nucleon. For example, we find
Jπ = 1/2− for 13

6C7, Jπ = 5/2+ for 17
8O9, Jπ = 1/2+ for 29

14Si15, or Jπ = 3/2+

for 33
16S17. A single valence nucleon outside a closed subshell behaves in this

respect the same as a single “hole” in an otherwise filled subshell. The ground-
state spin and parity, for example, of 27

14Si13 amounts to Jπ = 5/2+ because it
has a single neutron hole in the 1d5/2 shell.

The situation is not as obvious when the subshells are only partly filled.
We observe experimentally that the ground states of all doubly even nuclei
possess a spin and parity of Jπ = 0+. For example, this applies to 26

12Mg14 al-
though neither the protons nor the neutrons completely fill the subshells. We
can explain this observation by assuming that it is energetically favorable for
pairs of protons or neutrons to couple to a total spin and parity of Jπ

pair = 0+.
This pairing effect also influences the proton and neutron separation energies of
neighboring nuclei, as will be seen in Section 5.6. The shell model can then be
used to predict the ground-state spins and parities for odd-A nuclei. For ex-
ample, consider 23

10Ne13. All the protons couple pairwise to quantum numbers
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of 0+, as do 12 of the neutrons. The lowest available level for the odd neutron
is the 1d5/2 state (Fig. 1.10) and thus the ground-state spin of 23Ne amounts to
Jπ = 5/2+. These simplistic considerations reproduce many of the observed
ground-state spins, but fail in some cases. According to the above arguments
one would expect a ground-state spin and parity of Jπ = 5/2+ for 23

11Na12, but
instead we observe Jπ = 3/2+. The discrepancy is explained by the fact that
the interplay of many nucleons in an unfilled shell is rather complicated so
that an even number of protons or neutrons does not always couple to a total
angular momentum of J = 0 for the ground state. This is especially true for
excited nuclear levels.

In all but the simplest situations, the nucleon configuration must be taken
into account explicitly. Further complications arise since a given nuclear level
may be described by a mixed configuration, that is, by different nucleon con-
figurations that couple to the same value of Jπ . In such cases, large-scale
shell model calculations must be performed with numerical computer codes.
The shell model has been enormously successful in explaining the structure
of nuclei. It is frequently used in nuclear astrophysics in order to calculate
nuclear quantities that have not yet been measured in the laboratory. Re-
duced γ-ray transition strengths (Section 1.7.2) or weak interaction transition
strengths (Section 1.8.3), for instance, depend on nuclear matrix elements that
connect an initial (decaying) state with a final state. The matrix elements can
be calculated numerically with the shell model in a straightforward manner
once an appropriate form for the transition operator (for the electromagnetic
or weak interaction) is assumed. Another important quantity in nuclear as-
trophysics is the spectroscopic factor. It will be explained in Section 2.5.7 how
this property can be used for estimating an unknown cross section of a nuclear
reaction A + a → B. The spectroscopic factor is defined in terms of the overlap
integral between the final state wave function of B and the initial state wave
function of A + a. It does not depend on a transition operator, but only on
a wave function overlap, and thus can be calculated rather reliably for many
nuclei.

1.7
Nuclear Excited States and Electromagnetic Transitions

1.7.1
Energy, Angular Momentum, and Parity

Every nucleus exhibits excited states. They can be populated by many dif-
ferent means, for example, nuclear reactions, β-decays, thermal excitations
(see below), inelastic electron or particle scattering, and Coulomb excitation.
Each nuclear level is characterized by its excitation energy Ex, which is de-
fined as the binding energy difference between the level in question and the
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ground state of the nucleus. For the ground state we have, as per definition,
Ex = 0. In the laboratory, each excited level of energy Ei can make a transi-
tion to a lower lying state of energy Ef via three different processes that are
all induced by the electromagnetic interaction: (i) γ-ray emission, (ii) internal
conversion, and (iii) internal pair formation. Internal conversion refers to a pro-
cess where an excited nucleus de-excites by transferring its energy directly,
that is, in a single step, to an orbital electron. Internal pair formation denotes
the de-excitation of a nucleus by creating an electron-positron pair, in which
case the de-excitation energy must exceed twice the value of the electron rest
energy (2mec2). Although the three processes can in principle compete with
each other, the emission of a γ-ray is by far the most important one for nuclear
astrophysics and will be discussed in the following.

In a γ-ray transition between two nuclear levels, the energy of the emitted
photon is given by

Eγ = Ei − Ef − ∆Erec (1.20)

where the origin of the recoil shift ∆Erec is described in Appendix C.1. We are
mainly concerned here with γ-ray energies in the range of 100 keV to 15 MeV.
For such energies the recoil shift is very small and can usually be neglected.
Hence we may use in most cases Eγ ≈ Ei − Ef . This assumes that the excited
nucleus decays from rest. If the decaying level is populated via a nuclear
reaction, then another correction (the Doppler shift) must also be taken into
account (Appendix C.1). In any case, the emitted γ-rays will exhibit discrete
energies. If Ef corresponds to the ground state, then no further emission of
γ-rays is possible. Otherwise, de-excitation of the nucleus by emission of one
or more photons before reaching the ground state is likely to occur.

The emitted (or absorbed) electromagnetic radiation can be classified ac-
cording to the angular momentum L� which is carried by each photon, and
according to its parity (Appendix B). The angular momentum carried away
by the photon determines the multipolarity of the radiation. A value of L for
the angular momentum corresponds to 2L-pole radiation with its character-
istic angular distribution for the emitted intensity. For example, L = 1 and
L = 2 correspond to dipole (21) and quadrupole (22) radiation, respectively.
Two identical radiation patterns for a given value of L may correspond to dif-
ferent waves, “electric” 2L-pole radiation and “magnetic” 2L-pole radiation,
which differ through their parity. For example, E2 and M1 correspond to elec-
tric quadrupole radiation and magnetic dipole radiation, respectively. In a
γ-ray transition between two nuclear levels the total angular momentum and
parity of the system (nucleus plus electromagnetic field) are conserved. The
conservation laws give rise to certain selection rules that must be fulfilled for
an emission (or absorption) of radiation of given character to occur. The quan-
tum mechanical rules are explained in Appendix B.
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1.7.2
Transition Probabilities

A detailed discussion of the quantum theory for the interaction of nuclei with
electromagnetic radiation is beyond the scope of this book. We will instead
summarize the most important steps in the derivation of the transition proba-
bility. For more information, see Blatt and Weisskopf (1952).

The decay constant (that is, the probability per unit time) for the emission
of electromagnetic radiation of a given character (for example, E1 or M2) in a
transition connecting two given nuclear levels can be calculated using pertur-
bation theory. The result is (Blatt and Weisskopf 1952)

λ(ωL) =
8π

L[(2L + 1)!!]2
1
�

(
Eγ

�c

)2L+1

B(ωL) (1.21)

with Eγ and L the energy and multipolarity of the radiation, respectively; ω

denotes either electric (E) or magnetic (M) radiation and the double factorial is
defined as (2L + 1)!! ≡ 1 · 3 · 5 · . . . · (2L + 1). The quantity B(ωL) is called the
reduced transition probability. It contains the wave functions of the initial and
final nuclear states, and the multipole operator, that is, the operator respon-
sible for changing the initial to the final state while simultaneously creating
a photon of proper energy, multipolarity, and character. Reduced transition
probabilities can be calculated by using nuclear structure models, for exam-
ple, the shell model (Section 1.6). In the simplest case one may assume that
the nucleus consists of an inert core plus a single nucleon, that the γ-ray transi-
tion is caused by this nucleon changing from one shell-model state to another,
and that the radial wave functions of the initial and final states are constant
over the nuclear interior and vanish outside the nucleus. With these assump-
tions one obtains the Weisskopf estimates for the γ-ray transition probabilities,
which are given below for the lowest—and as will be seen, most important—
multipolarities:

λW(E1)� = 6.8 × 10−2A2/3E3
γ, λW(M1)� = 2.1 × 10−2E3

γ (1.22)

λW(E2)� = 4.9 × 10−8A4/3E5
γ, λW(M2)� = 1.5 × 10−8A2/3E5

γ (1.23)

λW(E3)� = 2.3 × 10−14A2E7
γ, λW(M3)� = 6.8 × 10−15A4/3E7

γ (1.24)

In these numerical expressions, A denotes the mass number of the decaying
nucleus, the photon energy Eγ is in units of MeV, and the Weisskopf estimates
are in units of eV. (It will be shown later that the product λ� is equal to a γ-ray
partial width).

The Weisskopf estimates for the γ-ray decay probability are shown in
Fig. 1.12 versus γ-ray energy for emitted radiations of different multipolar-
ity and character. It is apparent that the quantity λW rises strongly with
increasing γ-ray energy. We will be using in later chapters the relation
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Γ = λ� ∼ E2L+1
γ , as predicted by the Weisskopf estimates, when describing

the energy dependence of γ-ray partial widths. Also, the decay probability
depends strongly on the multipolarity L and the character ω of the radia-
tion. Furthermore, according to the selection rules (Appendix B), electric and
magnetic radiations of the same multipolarity cannot be emitted together in a
transition between two given nuclear levels. For a transition connecting two
levels of opposite parities, we find from Fig. 1.12 the inequalities

λW(E1) � λW(M2) � λW(E3) � · · · (1.25)

In this case, the lowest multipole permitted by the selection rules usually dom-
inates. In particular, if E1 radiation is allowed it will dominate the transition
strength in the vast majority of astrophysical applications. For a transition
connecting two levels of the same parity, one obtains

λW(M1) � λW(E2) � λW(M3) � · · · (1.26)

However, experimentally measured γ-ray transition strengths do not support
the conclusion that M1 transitions are always faster than E2 transitions if both
radiations are allowed by the selection rules. In fact, the actual decay strengths
may deviate strongly from the Weisskopf estimates since the latter are ob-
tained by using rather crude assumptions. It turns out that for many transi-
tions the observed decay constants are several orders of magnitude smaller
than the theoretically predicted value of λW , indicating a poor overlap in the
wave functions of the initial and final nuclear levels. On the other hand, for E2
transitions it is found that the observed decay probability frequently exceeds
the Weisskopf estimate by large factors. This indicates that more than one nu-
cleon must be taking part in the transition and that the excitation energy of the
decaying level is stored in the collective in-phase motion of several nucleons.

The Weisskopf estimates are very useful since they provide a standard
against which to compare observed transition strengths. The latter are fre-
quently quoted in Weisskopf units, defined as

M2
W(ωL) ≡ λ(ωL)

λW(ωL)
=

Γ(ωL)
ΓW(ωL)

or λ(ωL) = M2
W(ωL) W.u. (1.27)

This definition removes the strong energy dependence of the decay probabil-
ity. Several thousand observed γ-ray transitions were analyzed in this manner
and their transition strengths in Weisskopf units have been presented sepa-
rately according to the multipolarity and character of the radiation (Endt 1993
and references therein). The resulting distributions of transition strengths ex-
tend from some small value of M2

W(ωL), which is strongly influenced by the
sensitivity of the detection apparatus, to the largest observed transition proba-
bility. The latter value defines for each combination of ωL a recommended upper
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Fig. 1.12 Weisskopf estimate of the γ-ray decay probability for pure
electric (E) and magnetic (M) multipole radiations emitted in transitions
between two nuclear levels of energy difference Eγ. The γ-ray partial
width ΓW is equal to the product λW�. The curves are calculated for
A = 20 and a nuclear radius of R = 1.20A1/3 fm = 3.3 fm.

limit (RUL). For the mass region A = 5–44 the following values have been re-
ported (Endt 1993)

RUL(E1) = 0.5 W.u., RUL(M1) = 10 W.u.

RUL(E2) = 100 W.u., RUL(M2) = 5 W.u.

RUL(E3) = 50 W.u., RUL(M3) = 10 W.u.

These values are important for estimating the maximum expected γ-ray de-
cay probability for an unobserved transition (Problem 1.5). It is tempting to
estimate average decay strengths based on the centroids of the observed tran-
sition strength distributions (see Fig. 2 in Endt 1993). However, one has to be
very careful since the “averages” (as well as the “lower limits”) depend on the
γ-ray detection limit and thus may be expected to decrease with an improve-
ment in the sensitivity of the detection equipment.

1.7.3
Branching Ratio and Mixing Ratio

So far we discussed γ-ray transitions of specific multipolarity L and char-
acter ω. In practice, however, a given initial state may decay to a number
of different final states. Furthermore, each transition connecting two given
states may proceed via a mixture of radiations according to the selection rules.
These complications can be described by introducing two new quantities, the
branching ratio and the mixing ratio. In the following we will express these
quantities in terms of the γ-ray decay probability in units of energy, Γ = λ�,
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which is also referred to as the γ-ray partial width. Consider Fig. 1.13 showing
the γ-ray decay of an initial excited level i. The total γ-ray width of the initial
state can be expressed in terms of partial γ-ray widths that each correspond to
a transition to a specific final state j as

Γtot = ∑
j

Γj (1.28)

Assuming that the initial state decays only by γ-ray emission, the γ-ray branch-
ing ratio is defined by

Bj ≡
Γj

Γtot
× 100% (1.29)

and is usually given in percent. Each γ-ray branch may result from radiations
of different multipolarities L and characters ω. Although the selection rules
may allow for three or more possibilities (for example, a 2+ → 1+ transition
may proceed via M1, E2, or M3 radiations), in most practical cases not more
than the lowest two values of ωL need to be taken into account. If we assume
that only radiations with ω′L and ωL + 1 contribute to the transition (M1 and
E2 in the above example), the partial γ-ray width is given by

Γj(ωL + 1; ω′L) = Γj(ωL + 1) + Γj(ω′L) (1.30)

The γ-ray multipolarity mixing ratio is defined as

δ2
j ≡ Γj(ωL + 1)

Γj(ω′L)
(1.31)

By combining Eqs. (1.28)–(1.31) we may express the individual widths in
terms of the total width as

Γj(ω′L) =
1

1 + δ2
j

Bj

100
Γtot (1.32)

Γj(ωL + 1) =
δ2

j

1 + δ2
j

Bj

100
Γtot (1.33)

A highly excited nuclear state with many different decay probabilities to lower
lying levels will preferably decay via those transitions that correspond to the
largest decay strengths, that is, via emission of radiations with the smallest
multipoles. If a given level is located, say, above at least 20 lower lying states,
then the observed γ-ray decays from this level are in almost all instances either
of dipole (E1 or M1, depending on the parity of the initial and final level) or E2
character. This empirical finding is called the “dipole or E2 rule” (Endt 1990)
and is useful for estimating unknown spin and parities of nuclear levels.
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Fig. 1.13 Energy level diagram showing the γ-ray decay of an initial
state i to the ground state (0) and to two excited states (1, 2). The
branching ratio Bj represents the relative intensity of a particular de-
cay branch as a percentage of the total intensity and δj denotes the
multipolarity mixing ratio.

1.7.4
Gamma-Ray Transitions in a Stellar Plasma

In a hot plasma, excited states in a given nucleus are thermally populated, for
example, through absorption of photons (photoexcitation), Coulomb excita-
tion by surrounding ions, inelastic particle scattering, and other means. The
time scale for excitation and de-excitation (for example, via emission and ab-
sorption of photons) in a hot stellar plasma is usually—with the important
exception of isomeric states (see below)—much shorter than stellar hydrody-
namical time scales, even under explosive conditions (Fowler, Caughlan and
Zimmerman 1975). These excited levels will participate in nuclear reactions
and β-decays, as will be explained later, and thus their population must in
general be taken into account. For a given nuclide in a nondegenerate plasma
at thermodynamic equilibrium, the ratio of the number density of nuclei in
excited state µ, denoted by Nµ, and the total number density of nuclei, N, is
given by a Boltzmann distribution (Ward and Fowler 1980)

Pµ =
Nµ

N
=

gµe−Eµ/kT

∑
µ

gµe−Eµ/kT =
gµe−Eµ/kT

G
(1.34)

with gµ ≡ (2Jµ + 1), Jµ and Eµ the statistical weight, spin and excitation en-
ergy, respectively, of state µ; the quantity k denotes the Boltzmann constant
and T is the plasma temperature. The sum over µ in the denominator in-
cludes the ground state and is referred to as the partition function G. Note that
Eq. (1.34) follows directly from statistical thermodynamics and encompasses
all the different processes for the excitation and de-excitation of levels (that
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is, not only the emission and absorption of photons). Clearly, the thermal
population of excited nuclear levels becomes more important with increasing
temperature and lower excitation energy. These properties of Eq. (1.34) are
explored in Problem 1.6.

1.7.5
Isomeric States and the Case of 26Al

In most cases the nuclear levels decaying by γ-ray emission have very high
transition probabilities, corresponding to half-lives that are generally less than
10−9 s. However, quite a few cases have been observed where the half-lives
are longer by many orders of magnitude, sometimes amounting to seconds,
minutes or even days. Such long-lived excited nuclear levels are referred to as
isomeric states (or isomers, or metastable states) and the corresponding γ-ray
decays are called isomeric transitions. We will denote these levels with the
superscript ”m” (AXm).

The two aspects that are mainly responsible for the long half-lives of iso-
meric states are (i) a large difference for the spins of the isomeric and the final
nuclear level, and (ii) a relatively small energy difference between the two
levels. The first aspect implies a large γ-ray multipolarity (for example, M4 or
E5). The second aspect implies a small γ-ray energy. According to Eq. (1.21),
both of these effects have the tendency to reduce the decay probability sub-
stantially).

We will illustrate some of the complexities that arise from the presence of
an isomer by discussing the important case of 26Al. An energy level diagram
is displayed in Fig. 1.14. Focus first only on the left-hand part, showing the
ground state (Ex = 0, Jπ = 5+) and three excited states (Ex = 228 keV, Jπ = 0+;
Ex = 417 keV, Jπ = 3+; and Ex = 1058 keV, Jπ = 1+) in 26Al. According
to the selection rules, the direct γ-ray de-excitation of the first excited state
at Ex = 228 keV would require the emission of M5 radiation. The γ-ray decay
probability for such a high multipolarity is very small and thus the first excited
state is an isomer (26Alm). It decays via a β-transition (which is much more
likely to occur than the M5 γ-ray transition) to the ground state of 26Mg with
a half-life of T1/2(26 Alm) = 6.34 s. The 26Al ground state is also β-unstable and
decays with a half-life of T1/2(26 Alg) = 7.17 × 105 y mainly to the first excited
state at Ex = 1809 keV in 26Mg. This level, in turn, de-excites quickly via γ-ray
emission of E2 character.

Interestingly, photons with an energy of 1809 keV originating from the inter-
stellar medium have been detected first by the HEAO-3 spacecraft (Mahoney
et al. 1982), and subsequently by other instruments. The Ex = 1809 keV level in
26Mg decays so quickly (within a fraction of a second) that, if it is populated
via nuclear reactions in the interiors of stars, the emitted 1809 keV photons
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would immediately be absorbed by the surrounding matter and would never
be able to escape from the stellar production site. However, suppose instead
that 26Alg is synthesized via nuclear reactions in the stellar interior. The long
half-life of the ground state provides ample opportunity for this species to
be expelled from a star into the interstellar medium, where it then decays so
that the emitted photons can reach the Earth. Note that only the decay of the
ground state, but not the decay of the isomer, in 26Al gives rise to the emission
of 1809 keV γ-rays.

An all-sky map of the 1809 keV γ-ray line, obtained by the COMPTEL tele-
scope aboard the Compton Gamma Ray Observatory (CGRO), is shown in
color Fig. 11 on page 641. The discovery of 26Alg in the interstellar medium
is of paramount importance, as already pointed out (Section 1.4.1). It clearly
demonstrates that nucleosynthesis is currently active since the 26Alg half-life
is short compared to the time scale of Galactic chemical evolution (≈ 1010 y).
From the observed γ-ray intensity it is estimated that the production rate of
26Alg in the Galaxy amounts to ≈ 2M� per 106 y. The origin of the Galactic
26Alg is still controversial at present. However, the observational evidence fa-
vors massive stars as a source. For example, the all-sky map of the 1809 keV
γ-ray line shows that 26Alg is confined along the Galactic disk and that the
measured intensity is quite clumpy and asymmetric. Furthermore, the mea-
surement of the Doppler shift of the 1809 keV line demonstrated clearly that
the 26Alg co-rotates with the Galaxy and hence supports a Galaxy-wide origin
for this species (Diehl et al. 2006). Recent stellar model calculations for mas-
sive stars suggest that 26Alg is mainly produced in type II supernovae during
explosive carbon and neon burning (Section 1.4.3). A smaller fraction is pos-
sibly synthesized in Wolf–Rayet stars during core hydrogen burning and in
the subsequent type Ib/Ic supernova explosion. For more information, see
Limongi and Chieffi (2006).

We noted above that in a hot stellar plasma most nuclear levels quickly
achieve thermal equilibrium since the time scales for excitation and de-
excitation are very short. However, this is not necessarily the case for isomeric
states. For example, the γ-ray transition probabilities for the de-excitation of
the 26Al isomer at Ex = 228 keV and for its population from the ground state
via absorption of radiation depend on the same reduced transition strength.
Since the emission or absorption of M5 radiation is unlikely, the ground and
isomeric states in 26Al cannot achieve thermal equilibrium directly (that is,
Eq. (1.34) is not generally valid in this case). Thermal equilibrium may nev-
ertheless be achieved indirectly via transitions involving higher lying levels
in 26Al.

Consider again Fig. 1.14. In this case, the ground state and the isomer can
communicate via the Ex = 417 keV state (0 ↔ 417 ↔ 228) or via the Ex =
1058 keV state (0 ↔ 417 ↔ 1058 ↔ 228). Higher lying 26Al states also play
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a role as the temperature is increased, but have been omitted in the figure
for clarity. The thermal equilibration of 26Al can be calculated by solving nu-
merically a set of linear differential equations that describe all possible γ-ray
and β-decay transitions. For some of these (indicated by thick arrows) the
experimental transition strengths are known, while for others (thin arrows)
the transition strengths have to be calculated by using the shell model (Sec-
tion 1.6). The procedure is described in detail in Coc, Porquet and Nowacki
(1999) and Runkle, Champagne and Engel (2001) and is not repeated here. The
resulting effective lifetime of 26Al versus temperature is displayed in Fig. 1.15.
The solid line is obtained numerically by taking explicitly the equilibration of
the ground and isomeric states via thermal excitations involving higher lying
levels into account. The dashed curve is calculated analytically by assuming
that the ground and isomeric states are in thermal equilibrium (Example 1.5).
Below T = 0.1 GK, the effective lifetime is given by the laboratory lifetime of
26Alg (τ = 1.4427 T1/2 = 3.3 × 1013 s). Above T = 0.4 GK, the ground and iso-
meric states are in thermal equilibrium. At intermediate temperatures, T =
0.1–0.4 GK, the equilibration of 26Al via higher lying levels results in an effec-
tive lifetime that differs significantly from the thermal equilibrium value.

We focussed here on the case of 26Al. Other important examples of isomers
in nuclear astrophysics are 176Lum (Zhao and Käppeler 1991) and 180Tam (Wis-
shak et al. 2001). For a distinction between the kind of isomer discussed above
(also called spin-isomer) and other types of isomers (shape- and K-isomers), see
Walker and Dracoulis (1999).

1.8
Weak Interaction

The strong nuclear force and the electromagnetic force govern the nuclear re-
actions that are of outstanding importance for the energy generation and the
nucleosynthesis in stars. However, weak interactions also play an important
role in stars for several reasons. First, when a radioactive nuclide is produced
during the nuclear burning, its decay via weak-interaction processes will com-
pete with its destruction via nuclear reactions, as will become apparent in
Chapter 5. Second, weak interactions determine the neutron excess parameter
during the nucleosynthesis, which is defined as

η ≡ ∑
i
(Ni − Zi)Yi = ∑

i

(Ni − Zi)
Mi

Xi with − 1 ≤ η ≤ 1 (1.35)

where Ni, Zi, Mi, Yi, and Xi denote the number of neutrons and protons, the
relative atomic mass (in atomic mass units), the mole fraction, and the mass
fraction, respectively. The sum runs over all nuclides i in the plasma. Note
that η = 0 if only N = Z nuclei (4He, 12C, 16O, and so on) are present. The
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Fig. 1.14 Energy level schemes of 26Al
and 26Mg, showing the lowest lying states
in each nuclide. The vertical arrows rep-
resent γ-ray decays, while the diagonal
arrows indicate β-decay transitions. Only
the transitions indicated by the thick arrows
have been observed experimentally. The
transitions shown as thin arrows play an im-
portant role in the equilibration of the ground
state and the isomer at Ex = 228 keV in 26Al.

Note that the direct γ-ray de-excitation of
the isomer is strongly inhibited by the selec-
tion rules. The presence of 26Alg in the inter-
stellar medium is inferred from the observed
intensity of the 1809 keV γ-ray, originating
from the de-excitation of the first excited
state in 26Mg. A small β-decay branch of
the 26Al ground state to the Ex = 2938 keV
(Jπ = 2+) level in 26Mg is omitted in the
figure for clarity. See the text.

quantity η represents physically the number of excess neutrons per nucleon in
the plasma and can only change as a result of weak interactions. The neutron
excess must be monitored carefully in stellar model computations, since it is
important for the nucleosynthesis during the late burning stages in massive
stars and during explosive burning (Section 5.5). Furthermore, we already
mentioned that electron capture is very important for the dynamic behavior
of the core collapse in massive stars before a type II supernova explosion be-
cause it reduces the number of electrons available for pressure support (Sec-
tion 1.4.3). Third, neutrinos emitted in weak interactions affect the energy
budget of stars and thus influence models of stellar evolution and explosion.

We will focus here on the process of nuclear β-decay, which involves the
proton, neutron, electron, positron, neutrino, and antineutrino, and will sum-
marize some concepts that are important in the present context. For more in-
formation on weak interaction processes in stars see, for example, Langanke
and Martínez-Pinedo (2000).
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Fig. 1.15 Effective lifetime of 26Al as a
function of temperature. The solid line is
adopted from Coc, Porquet and Nowacki
(1999) and Runkle, Champagne and Engel
(2001). It was obtained numerically by tak-
ing explicitly the equilibration of the ground
and isomeric states via thermal excitations
involving higher lying levels into account.
At each temperature, the calculation was

started with a given amount of pure 26Alg.
The value of τeff(26Al) is then defined by
the time necessary for the total (ground plus
isomeric state) 26Al abundance to decline
by 1/e. The dashed curve is calculated an-
alytically by assuming that the ground and
isomeric states are in thermal equilibrium
(Example 1.5).

1.8.1
Weak Interaction Processes

Consider first the free neutron. It decays into a proton under the influence of
the weak interaction via

n → p + e− + ν (1.36)

where e− and ν denote an electron and antineutrino, respectively. The half-
life of the free neutron amounts to T1/2 = 10.2 min. This decay is slower by
many orders of magnitude compared to typical nuclear reaction time scales
or electromagnetic decay probabilities and demonstrates that the interaction
causing β-decay is indeed very weak. The most common weak interaction
processes in nuclear β-decay are listed below:

A
Z XN → A

Z+1X′
N−1 + e− + ν β−-decay (electron emission) (1.37)

A
Z XN → A

Z−1X′
N+1 + e+ + ν β+-decay (positron emission) (1.38)

A
Z XN + e− → A

Z−1X′
N+1 + ν electron capture (1.39)

A
Z XN + ν → A

Z+1X′
N−1 + e− neutrino capture (1.40)

A
Z XN + ν → A

Z−1X′
N+1 + e+ (1.41)
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Here e+, ν, and ν denote a positron, neutrino, and antineutrino, respectively.
In each of these interactions, the decaying nuclide changes its chemical iden-
tity, but the mass number A remains the same. The light particles e−, e+, ν,
and ν are leptons, that is, they do not interact via the strong nuclear force.

The first three decays represent the most common weak interaction pro-
cesses of radioactive nuclei in the laboratory. Consider as an example the β-
decay of 64

29Cu35. It may proceed via 64
29Cu35 → 64

30Zn34 + e− + ν (β−-decay),
64
29Cu35 → 64

28Ni36 + e+ + ν (β+-decay), or 64
29Cu35 + e− → 64

28Ni35 + ν (electron
capture). When the electron is captured from the atomic K-shell, the process
is called K capture. Neutrino capture is observed, for example, in the reac-
tion 37

17Cl20 + ν → 37
18Ar19 + e−, which has been used for the detection of solar

neutrinos (Davis, Harmer and Hoffman 1968). Antineutrinos produced by nu-
clear power plants have been observed via the process p + ν → e+ + n (Reines
and Cowan 1959).

Positron emission and electron capture populate the same daughter nu-
clide. In later chapters, both of these decays will sometimes be considered
together, while at other times it will be important to distinguish between
these processes. We will be using the following abbreviated notation. The β-
decay of 64Cu to 64Ni, irrespective of the specific process, will be denoted by
64Cu(β+ν)64Ni. When we would like to make specific reference to the positron
emission or electron capture, we write 64Cu(e+ν)64Ni or 64Cu(e−,ν)64Ni, re-
spectively. The β−-decay of 64Cu to 64Zn will be denoted by 64Cu(β−ν)64Zn,
irrespective of the fact that an antineutrino rather than a neutrino is emitted
in this decay.

1.8.2
Energetics

The total energy release in nuclear β-decay can be expressed by the difference
of the atomic masses before and after the interaction. We find (Problem 1.7)

Qβ− =
[
m(A

Z XN) − m( A
Z+1X′

N−1)
]

c2 β−-decay (1.42)

Qe+ =
[
m(A

Z XN) − m( A
Z−1X′

N+1)− 2me

]
c2 positron emission (1.43)

QEC =
[
m(A

Z XN) − m( A
Z−1X′

N+1)
]

c2 − Eb electron capture (1.44)

where me and Eb denote the electron mass and the atomic binding energy
of the captured electron, respectively. The released energy is almost en-
tirely transferred to the emitted leptons. For example, in β−-decay we have
Qβ− = Ke + Eν, where Ke and Eν denote the kinetic electron energy and the
total neutrino energy, respectively. Since there are three particles after the in-
teraction, the electron and neutrino energy distributions must be continuous,
ranging from zero to Qβ− for each lepton. In electron capture, only one lepton
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is emitted and thus the neutrino is monoenergetic, with QEC = Eν. Further-
more, this decay mode is accompanied by X-ray emission since the vacancy
in the atomic shell caused by the captured electron is quickly filled by other
atomic electrons. Electron capture competes in general with positron emission
since both decay modes populate the same daughter nucleus. However, if the
difference in atomic masses amounts to [m(A

Z XN)− m( A
Z−1X′

N+1)]c
2 < 2mec2 =

1022 keV, then only electron capture is energetically allowed.
It must be emphasized that for positron emission in a stellar plasma, the

energy release calculated from the mass difference of parent and daughter
nucleus alone, Q′

e+ = [m(A
Z XN) − m( A

Z−1X′
N+1)]c

2, includes the annihilation
energy 2mec2 = 1022 keV of the positron with another electron from the envi-
ronment, as can be seen by comparison with Eq. (1.43). Therefore, the quantity
Q′

e+ rather than Qe+ is of primary interest when calculating the energy release
of positron emission in a stellar plasma. Of course, Q′

e+ must be properly
corrected for neutrino losses (see below).

We considered so far only β-decay transitions involving nuclear ground
states. If a transition proceeds to an excited state in the daughter nucleus,
then we have to replace Qi by Qgs

i − Ex in Eqs. (1.42)–(1.44), where Qgs
i and Ex

denote the ground-state energy release and the excitation energy, respectively.
Sometimes a β-decay populates levels in the daughter nucleus that are un-
stable by emission of light particles (protons, neutrons, or α-particles). These
transitions give rise to β-delayed particle decays. They compete with transitions
to bound states in the daughter nucleus. Therefore, both of these processes
have to be distinguished carefully when modeling the nucleosynthesis in cer-
tain scenarios. For example, consider the β-decay of 29S which proceeds with
about equal probability to bound states in 29P and to excited 29P levels that are
unbound by proton emission. In the first case, 29S decays to the final nucleus
29P via 29S → e+ + ν + 29P, while in the second case 29S decays to the final
nucleus 28Si via 29S → e+ + ν + 29P∗ and 29P∗ → 28Si + p. These processes
can be distinguished by using the notations 29S(e+ν)29P and 29S(e+νp)28Si.

The neutrinos released in nuclear β-decay interact so weakly with mat-
ter that they are lost from the star unless the density is very large (ρ ≥
1011 g/cm3). Consequently, the average neutrino energy must usually be sub-
tracted from the total nuclear energy liberated when considering the energy
budget of a star. An approximate expression for the average neutrino energy
loss in β−-decay or positron emission is given by (Fowler, Caughlan and Zim-
merman 1967)

Eβ
ν ≈ mec2

2
w
(

1 − 1
w2

)(
1 − 1

4w
− 1

9w2

)
(1.45)

where w = (Qβ + mec2)/mec2. The energy release of the β-decay, Qβ, is given
by Eqs. (1.42) and (1.43), and may need to be corrected for the excitation en-
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ergy if the transition proceeds to an excited state in the daughter nucleus. As
already noted above, the neutrinos emitted in electron capture are monoener-
getic.

Neutrino emission is also important for the transport of energy from the
stellar interior to the surface, from which the energy can be radiated. During
the early evolutionary stages of stars, internal energy is mainly transported by
mechanisms such as radiative diffusion or convection. As a result, the rate of
energy outflow is related to the temperature gradient of the star. At high tem-
perature (T > 109 K), however, a relatively large number of photons have ener-
gies in excess of the threshold for pair production, γ → e+ + e− (Section 4.2.2).
The positron and electron, in turn, may either annihilate via e+ + e− → 2γ or
via e+ + e− → ν + ν. These neutrinos emerge directly from their point of ori-
gin and will escape from the star. In fact, during the late evolutionary stages
of massive stars, this (non-nuclear) production of neutrino–antineutrino pairs
represents the dominant energy loss mechanism. The energy outflow is in
this case directly determined by the neutrino production rate. Neutrino en-
ergy losses rise strongly with temperature and have a profound influence on
the stellar evolution of massive stars (Section 1.4.3 and Chapter 5).

1.8.3
Beta-Decay Probabilities

A detailed discussion of the theory of weak interactions in nuclei is beyond the
scope of the present book. A modern account can be found, for example, in
Holstein (1989). Here we will focus on the elementary Fermi theory of β-decay
which explains satisfactorily lifetimes and the shapes of electron (or positron)
energy distributions. Fermi’s theory of β-decay is discussed in most intro-
ductory nuclear physics texts (see, for example, Krane 1988). We will initially
assume that the β-decay occurs under laboratory conditions. Beta-decays in
stellar plasmas will be addressed afterward. The rate of nuclear β-decay can
be calculated from Fermi’s golden rule of time-dependent, first-order pertur-
bation theory (Messiah 1999). In order to illustrate the most important results,
we will first discuss β−-decay, although the derived expressions are equally
valid for positron emission. The case of electron capture is subsequently dis-
cussed.

Electron or positron emission

The probability N(p) dp per unit time that an electron (or positron) with linear
momentum between p and p + dp is emitted can be written as

dλ = N(p) dp =
2π

�

∣
∣∣
∣

∫
Ψ∗

f HΨi dV
∣
∣∣
∣

2 dn
dE0

=
2π

�

∣
∣∣Hf i

∣
∣∣
2 dn

dE0
(1.46)
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where Ψi and Ψ f are the total wave functions before and after the decay, re-
spectively, H is the Hamiltonian associated with the weak interaction, and dV
is a volume element. The factor dn/dE0 denotes the number of final states per
unit energy. A given transition is obviously more likely to proceed if there is a
large number of accessible final states. The experimental evidence shows that
the shapes of many measured electron (or positron) energy distributions are
dominated by the factor dn/dE0. The integral Hf i (or matrix element), which
depends only very weakly on energy, determines the overall magnitude of the
decay probability. It can be expressed in terms of the separate wave functions
of the final nuclear state (ψ f ) and of the leptons (φe, φν) after the decay as

Hf i = g
∫ [

ψ∗
f φ∗

e φ∗
ν

]
ΩΨi dV (1.47)

where the constant g determines the strength of the interaction. For electron
(or positron) decay, the total wave function before the transition is equal to
the wave function of the parent nucleus, Ψi = ψi. The operator Ω describes
the transition from nuclear level ψi to level ψ f . The emitted neutrino (or an-
tineutrino) can be treated as a free particle because it interacts only weakly.
The emitted electron (or positron) can also be treated as a free particle because
it has a relatively high velocity and is little affected by the nuclear Coulomb
field. Thus we may approximate the lepton wave functions by plane waves,
normalized within the nuclear volume V, and expand the exponentials ac-
cording to

φe(�r) =
1√
V

e−i�p·�r/� ≈ 1√
V

(
1 +

i�p ·�r
�

+ · · ·
)

(1.48)

φν(�r) =
1√
V

e−i�q·�r/� ≈ 1√
V

(
1 +

i�q ·�r
�

+ · · ·
)

(1.49)

where �p and �q are the linear momenta of the electron (or positron) and the
neutrino (or antineutrino), respectively. Consider, for example, the emission of
an electron in β−-decay with a typical kinetic energy of 1 MeV. The relativistic
electron momentum amounts in this case to p = 1.4 MeV/c. For a nuclear
radius of r ≈ 5 fm we find then a value of pr/� = 0.035. Hence, the second
term in the expansion of Eq. (1.48) is usually very small and, therefore, the
electron wave function is approximately constant over the nuclear volume.
Similar arguments apply to the neutrino wave function. In the simplest case,
one may then retain just the first, leading, term in Eqs. (1.48) and (1.49). It
follows

|Hf i|2 =
1

V2

∣
∣
∣∣g

∫
ψ∗

f Ωψi dV
∣
∣
∣∣

2

=
1

V2 g2M2 (1.50)

The nuclear matrix element M describes the transition probability between
the initial and final nuclear levels. A proper relativistic treatment of β-decay
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shows that there are in fact two different matrix elements with different
strengths that may contribute to the overall transition probability. Thus, we
have to replace Eq. (1.50) by

|Hf i|2 =
1

V2

(
G2

V M2
F + G2

A M2
GT

)
(1.51)

where GV and GA are the vector and axial-vector coupling constants, and MF
and MGT are referred to as Fermi and Gamow–Teller matrix element, respec-
tively. It can be shown that no interference term between vector and axial-
vector interaction occurs. The two matrix elements depend on the structure
of the initial and final nuclear states and can be calculated by using the shell
model (Section 1.6).

The above nonrelativistic treatment of the nucleons and the assumption of
constant lepton wave functions over the nuclear volume results in nuclear
matrix elements that are independent of the lepton energies and define the
so-called allowed β-decay transitions. In some decays, however, it turns out that
angular momentum and parity selection rules prevent allowed transitions. In
such cases, the next terms in the plane wave approximations of Eqs. (1.48)
and (1.49) have to be taken into account and the nuclear matrix element is
no longer independent of energy. These transitions are termed forbidden since
they are much less likely to occur than allowed decays. The degree by which
a transition is forbidden depends on how many terms in the plane wave ap-
proximation need to be taken into account until a nonvanishing nuclear matrix
element is obtained. The second term gives rise to first-forbidden transitions,
the third to second-forbidden, and so on. We will consider in the following only
allowed β-decay transitions.

The density of final states, dn/dE0, in Eq. (1.46) determines for allowed tran-
sitions the shape of the electron (or positron) energy distribution. It is given
by (Problem 1.10)

dn
dE0

=
dnednν

dE0
=

(4π)2V2

h6 p2 dp q2 dq
1

dE0
(1.52)

The final state (or total decay) energy is E0 = Q = Ke + Eν, where Q is the en-
ergy release for the transition under consideration (see Eqs. (1.42) and (1.43);
if the decay proceeds to an excited state, Q must account for the excitation
energy). Since the neutrino mass is very small, we may use mνc2 ≈ 0, so
that q = Eν/c = (E0 − Ke)/c and dq/dE0 = 1/c. A correction must be ap-
plied to Eq. (1.52) that takes into account the Coulomb interaction between
the daughter nucleus and the emitted electron or positron. The electron in
β−-decay feels an attractive Coulomb force, while the positron in β+-decay
experiences a repulsive force. Hence, the electron or positron plane wave in
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Eq. (1.48) has to be replaced by a distorted wave. The correction factor is re-
ferred to as Fermi function, F(Z′, p), and depends on the electron or positron
momentum and the charge of the daughter nucleus. The function F(Z′, p) can
be calculated numerically and is tabulated in Gove and Martin (1971).

It follows from Eqs. (1.46), (1.51), and (1.52) that

dλ = N(p) dp =
1

2π3�7c3

(
G2

V M2
F + G2

A M2
GT

)
F(Z′, p)p2(E0 −Ke)2 dp (1.53)

This distribution vanishes for p = 0 and at the endpoint where the maxi-
mum electron or positron kinetic energy is equal to the total decay energy,
Kmax

e = E0 = Q. Hence, a measurement of the momentum or energy distri-
bution in a given decay yields a value for the total energy release in β-decay.
Total relativistic energy, kinetic energy, and linear momentum of the electron
or positron are related by

Ee = Ke + mec2 =
√

(mec2)2 + (pc)2 (1.54)

The total decay constant is then given by the integral

λ =
ln 2
T1/2

=
(
G2

V M2
F + G2

A M2
GT

)

2π3�7c3

∫ pmax

0
F(Z′, p)p2(E0 − Ke)2 dp

=
m5

ec4

2π3�7

(
G2

V M2
F + G2

AM2
GT

)
f (Z′, Emax

e ) (1.55)

The dimensionless quantity

f (Z′, Emax
e ) =

1
m5

ec7

∫ pmax

0
F(Z′, p)p2(Emax

e − Ee)2 dp (1.56)

is referred to as the Fermi integral and depends only on the charge Z′ of the
daughter nucleus and on the maximum total energy of the electron, Emax

e .
Numerical values of f (Z′, Emax

e ) have also been tabulated. For the deriva-
tion of Eq. (1.55) we used the relationships pmaxc =

√
(Emax

e )2 − (mec2)2 and
E0 − Ke = Kmax

e − Ke = Emax
e − Ee that are obtained from Eq. (1.54).

We can rewrite Eq. (1.55) as

f (Z′, Emax
e )T1/2 =

2π3�7

m5
ec4

ln 2
(
G2

V M2
F + G2

AM2
GT

) (1.57)

The quantity f (Z′, Emax
e )T1/2 is called the ft-value and is experimentally ob-

tained from measurements of the half-life and the maximum energy of the
emitted electrons or positrons. The ft-value is a standard measure for the
strength of a particular β-decay transition and yields information about the
nuclear matrix elements and the coupling constants.
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Electron capture

The decay constant for allowed electron capture can be obtained in a similar
manner. Recall that in this case the energy spectrum of the emitted neutrino is
not continuous, but monoenergetic with QEC = E0 = Eν. Instead of Eq. (1.46)
we write

λ =
2π

�

∣∣
∣
∣

∫
Ψ∗

f HΨi dV
∣∣
∣
∣

2 dn
dE0

=
2π

�
|Hf i|2 dnν

dE0
(1.58)

The density of final states in this case is given by (Problem 1.10)

dnν

dE0
=

Vq2

2π2�3
dq

dE0
=

VE2
ν

2π2�3c3 (1.59)

where we used Eν = qc. The total wave functions before and after the decay
are now given by Ψi = ψiφe and Ψ f = ψ f φν (the subscripts have the same
meaning as before). Usually an electron from the atomic K shell is captured
because these have the largest probability of being near the nucleus. But the
electron is now in a bound state and cannot be described by a free-particle
plane wave. One can approximate φe by the electron wave function φK of the
K orbit at the location of the nucleus,

φe(�r) = φK(�r) =
1√
π

(
Z
a0

)3/2

e−Zr/a0

≈ φK(0) =
1√
π

(
Z
a0

)3/2

=
1√
π

(
Zmee2

�2

)3/2

(1.60)

with Z the atomic number of the parent nucleus. The constant a0 denotes the
Bohr radius, a0 = �2/(mee2) = 0.0529 nm. For the neutrino wave function φν

we use again only the first (constant) term in the plane wave approximation.
From Eqs. (1.49), (1.58)–(1.60) one finds for the decay constant of allowed

electron capture

λK = 2
Z3m3

ee6

π2�10c3

(
G2

V M2
F + G2

AM2
GT

)
E2

ν (1.61)

where the matrix elements are defined as before in terms of initial and final
state nuclear wave functions. Note that these are identical to the matrix el-
ements that occur in Eq. (1.51) for positron emission since they connect the
very same nuclear states. The additional factor of 2 in Eq. (1.61) arises because
either of the two electrons in the K shell can be captured. The transition prob-
ability for the weaker L-capture can be calculated in a similar manner. It is ob-
vious that the electron capture probability increases strongly with the charge
Z of the parent nucleus. This is the reason for the fact that electron capture is
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greatly favored over positron emission in heavy nuclei. The above expression
must be corrected for relativistic effects and the influence of the shielding of
the nuclear Coulomb field by the outer electrons. Such corrections have been
calculated numerically and are tabulated, for example, in Gove and Martin
(1971).

Fermi and Gamow–Teller transitions

We already commented on the classification of β-decays into allowed and for-
bidden transitions. In the first case, the leptons do not remove any orbital
angular momentum. In the latter case, the radiations are inhibited because
angular momentum conservation requires the leptons to carry off orbital an-
gular momentum or because the parities of the initial and final nuclear states
are mismatched. The allowed radiations are further subdivided into Fermi
transitions and Gamow–Teller transitions. They can only occur (that is, the cor-
responding matrix elements MF or MGT are nonzero only) if certain selection
rules are satisfied for the nuclear spins (Ji, J f ) and parities (πi, π f ) of the initial
and final nuclear states connected by the transition:

∆J ≡ |Ji − J f | = 0, πi = π f for Fermi transitions (1.62)

∆J ≡ |Ji − J f | = 0 or 1, πi = π f for Gamow–Teller transitions

(but not Ji = 0 → J f = 0) (1.63)

It follows that one can study these cases separately since decays with 0 → 0
(∆J = 0) and πi = π f represent pure Fermi transitions (MGT = 0), while
decays with ∆J = 1 and πi = π f are pure Gamow–Teller transitions (MF = 0).
Examples for pure Fermi and Gamow–Teller transitions are 14O → 14N + e+

+ ν (Ji = 0+ → J f = 0+) and 6He → 6Li + e− + ν (Ji = 0+ → J f = 1+). The
decay of the free neutron in Eq. (1.36), on the other hand, represents a mixed
transition. From studies of such decays, the values of the coupling constants
GV and GA can be deduced (see, for example, Wilkinson 1994).

In the laboratory, where the parent nucleus is usually in its ground state, β-
decay transitions proceed to all energetically accessible states in the daughter
nucleus. The total decay constant is given by the sum of transition probabil-
ities for all of these β-decay branches. Such laboratory β-decay constants or
half-lives are independent of temperature and density. Experimental values
of T1/2 are tabulated in Audi et al. (2003) and this reference will be used as a
source of terrestrial half-lives throughout this book, unless mentioned other-
wise.
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1.8.4
Beta-Decays in a Stellar Plasma

Consider now the weak interaction processes that take place when β-decays
occur in a stellar plasma at elevated temperature T and density ρ. In a hot
plasma, excited states in the parent nucleus are thermally populated and these
excited levels may also undergo β-decay transitions to the ground state or
to excited states in the daughter nucleus. The total β-decay rate in a stellar
plasma, λ∗

β, is given by the weighted sum of the individual transition rates,
λij, according to

λ∗
β = ∑

i
Pi ∑

j
λij (1.64)

The sum on i and j is over parent and daughter states, respectively. The pop-
ulation probabilities, Pi, of excited states in a nondegenerate plasma at ther-
modynamic equilibrium are given by Eq. (1.34). Since the quantity Pi is tem-
perature dependent, it follows immediately that λ∗

β will also depend on tem-
perature. In fact, if the decay constants for excited state β-decays are larger
than the one for ground-state β-decay, then the total decay constant λ∗

β may
become strongly temperature dependent. Clearly, even if the ground state of
the parent nucleus is stable in the laboratory, it may nevertheless undergo β-
decay in a hot stellar plasma. Similar considerations apply to the β-decay of
the daughter nucleus. In the laboratory, it cannot decay back to the parent nu-
cleus because the transition is energetically forbidden. In a hot plasma, how-
ever, β-decay transitions may occur from thermally populated excited states in
the daughter nucleus to the ground state or to excited states in the parent nu-
cleus. The situation is schematically shown in Fig. 1.16. In practice, one finds

Fig. 1.16 Beta-decays (a) in the labora-
tory, and (b) in a hot stellar plasma. The
vertical direction corresponds to an energy
scale. For reasons of clarity, only two lev-
els are shown in the parent nucleus X and
the daughter nucleus X′. The ground and
first excited state are labeled by 0 and 1,

respectively. In the laboratory, the β-decay
proceeds from the ground state of nucleus
X to levels in nucleus X′, while far more
β-decay transitions are energetically acces-
sible in a stellar plasma owing to the thermal
excitation of levels (dashed vertical arrows).
See the text.
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that most of the transition probability for β−-decay or positron emission in a
hot stellar plasma arises from the first few levels in a given parent nucleus.
Note that the β−-decay rate becomes also density dependent at sufficiently
large values of ρ when the electron gas is degenerate. In fact, the decay rate
decreases with increasing density since the number of final states available
for the emitted electron to occupy is reduced (Langanke and Martínez-Pinedo
2000).

Example 1.5

In the laboratory, β+-decays of the nuclide 26Al have been observed both from
the ground state (Jπ = 5+) and from the first excited (isomeric) state (Jπ = 0+)
located at an excitation energy of Ex = 228 keV (Fig. 1.14). The ground state
decays via positron emission to excited levels in the daughter nucleus 26Mg
(we will neglect a small electron capture branch) with a half-life of Tgs

1/2 =
7.17 × 105 y, while the first excited state decays to the 26Mg ground state with
a half-life of Tm

1/2 = 6.345 s. Above a temperature of T = 0.4 GK, both of these
26Al levels are in thermal equilibrium (Fig. 1.15). Calculate the stellar half-life
of 26Al when the plasma temperature amounts to T = 2 GK.

According to Eq. (1.64), the decay constant of 26Al in the stellar plasma is given
by

λ∗
β = Pgsλgs + Pmλm = Pgs

ln 2
Tgs

1/2

+ Pm
ln 2
Tm

1/2

where the subscripts ”gs” and ”m” denote the ground state and the first ex-
cited state, respectively. The thermal population probability Pi (that is, the
fraction of 26Al nuclei residing in either the ground or first excited state) can
be calculated from Eq. (1.34) (a numerical expression for the quantity kT is
given in Section 3.1.1). Thus

λ∗
β =

ln 2
ggse−Egs/kT + gme−Em/kT

[
ggse−Egs/kT

Tgs
1/2

+
gme−Em/kT

Tm
1/2

]

=
ln 2

(2 · 5 + 1) + (2 · 0 + 1)e−0.228/kT

[
(2 · 5 + 1)

Tgs
1/2

+
(2 · 0 + 1)e−0.228/kT

Tm
1/2

]

=
ln 2

11 + e−0.228/0.0862 T9

[
11

Tgs
1/2

+
e−0.228/0.0862 T9

Tm
1/2

]

≈ ln 2
11

[
e−0.228/0.0862 T9

6.345 s

]

= 9.93 × 10−3e−2.646/T9 (s−1)

Hence we find at T = 2 GK (T9 = 2)

λ∗
β = 9.93 × 10−3e−2.646/2.0 s−1 = 0.0026 s−1
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and the stellar half-life of 26Al amounts to T∗
1/2 = ln 2/λ∗

β = 270 s. The result

is only valid for densities of ρ ≤ 106 g/cm3, since at higher densities electron
capture needs to be taken into account (see below). The results from the above
method for calculating the stellar half-life of 26Al are shown as the dashed line
in Fig. 1.15. The values are only correct for temperatures in the range of T =
0.4–5 GK. At lower temperatures, the ground and isomeric states are not in
thermal equilibrium (Section 1.7.5), while at higher temperatures the thermal
populations of other excited states in 26Al have to be taken into account.

We will now discuss the interesting case of electron capture. It will be
shown later (Section 3.1.1) that the average thermal energies at the temper-
atures typical for the interior of main-sequence stars and red giants amount
to ≈ 1 keV and a few tens of keV, respectively. For most atoms, however,
the ionization energies are smaller than these values. Therefore, most nuclei
in these environments possess few, if any, bound electrons. The decay con-
stant for bound electron capture, given by Eq. (1.61), may thus be very small
or even zero. In the hot interiors of stars, however, there is an appreciable
density of free electrons. Hence, β-decays can proceed by capture of (free)
electrons from the continuum. The probability of continuum electron capture
is proportional to the free electron density at the location of the nucleus and is
inversely proportional to the average electron velocity which depends on the
plasma temperature. Consequently, the rate of continuum electron capture
depends on the local electron temperature and the density. At lower stellar
temperatures, a given parent nucleus may not be completely ionized. In that
case, both bound and continuum electron capture contribute to the total decay
constant.

At low densities, the kinetic energies of the free electrons are usually small.
At very high densities, however, the (Fermi) energy of the degenerate elec-
trons may become sufficiently large to cause nuclei to undergo continuum
capture of energetic electrons, even if they are stable under laboratory con-
ditions. Of course, electron capture transitions involving thermally excited
nuclear levels must also be taken into account according to Eq. (1.64).

Moreover, at high temperature (T > 1 GK) quite a large number of pho-
tons have energies in excess of the threshold energy for pair production (Sec-
tion 4.2.2). Although a positron annihilates quickly in the stellar plasma with
an electron, the pair production rate becomes eventually so large at high tem-
peratures that the positron density is a significant fraction of the electron den-
sity. Thus, capture of continuum positrons by nuclei must be considered in
addition to continuum electron capture.

The decay constant for continuum electron capture can be obtained easily
for a given nuclide if its laboratory decay constant for bound electron capture
is known. The ratio of stellar to laboratory decay constant is approximately
equal to the ratio of the electron densities at the nucleus for the stellar and lab-
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oratory environments, that is, the ratio of probabilities for finding an electron
at the nucleus where it can be captured. An order of magnitude estimate for
the ratio of electron capture probabilities is given by

λstar

λlab
≈ ne−〈F(Z, p)〉

2NA|φe(0)|2 (1.65)

where ne−/NA = ρ(1 − η)/2 is the electron density (Fowler, Caughlan and
Zimmerman 1967), η is the neutron excess parameter given by Eq. (1.35), and
|φe(0)|2 is given by Eq. (1.60). The Fermi function F(Z, p) accounts for the
fact that the wave function of the captured electron is distorted by the nuclear
Coulomb field. Since the electron velocities in the plasma are given by a dis-
tribution, the Fermi function must be averaged over the electron velocities. It
can be seen from Eq. (1.65) that the ratio λstar/λlab depends on the density
and composition (through ne− ), and on the temperature (through 〈F(Z, p)〉).
Note that the above expression is independent of nuclear matrix elements.
For more information, including a discussion of induced continuum electron
capture (that is, when a nuclide is stable in the laboratory), see Bahcall (1964).

It is obvious from the above considerations that many different transitions
contribute to the stellar decay rate of a given nucleus. In the laboratory, the
decay proceeds from the ground state of parent nucleus X to energetically ac-
cessible states in the daughter nucleus X′. In a stellar plasma, the labels “par-
ent”and “daughter” can alternatively apply to both nuclei. For example, in
the laboratory 56Mn decays to the stable nuclide 56Fe via 56Mn(β−ν)56Fe. At
high temperatures and densities, however, 56Fe decays via continuum elec-
tron capture, 56Fe(e−,ν)56Mn, and via positron emission through thermally
populated 56Fe states, 56Fe(e+ν)56Mn.

The estimation of stellar β-decay rates essentially reduces to the calculation
of (i) nuclear matrix elements by using some model of nuclear structure (for
example, the shell model; Section 1.6), and (ii) the appropriate Fermi functions
and integrals for all energetically accessible transitions from the parent to the
daughter nucleus. The calculations can be constrained and tested by experi-
mental measurements of half-lives and Gamow–Teller strength distributions.
Stellar weak interaction rates and the associated neutrino energy losses for a
range of temperatures and densities are tabulated in Fuller, Fowler and New-
man (1982) (for the proton, neutron, and nuclides with A = 21–60), Oda et
al. (1994) (for A = 17–39), and Langanke and Martínez-Pinedo (2001) (for A =
45–65). Figure 1.17 shows as an example the temperature dependence of the
stellar decay constants for the electron capture (solid line) and positron emis-
sion (dashed line) of 56Co. Note that 56Co decays in the laboratory to 56Fe by
bound state electron capture with a half-life of T1/2 = 77.2 d.

Finally, we will briefly discuss a neutrino energy loss mechanism that be-
comes important at very high temperatures and densities. It is referred to as
the Urca process (Gamow and Schoenberg 1940) and consists of alternate elec-
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Fig. 1.17 Stellar decay constants versus temperature for the elec-
tron capture (solid line) and positron emission (dashed line) of 56Co.
The electron capture decay constant is calculated for the condition
ρ(1 − η)/2 = 107 g/cm3 and increases with rising density. In the lab-
oratory, 56Co decays to 56Fe by bound electron capture with a decay
constant of λlab = 1.0×10−7 s−1 (T1/2 = ln 2/λlab = 77.2 d). Data from
Langanke and Martínez-Pinedo (2000).

tron captures and β−-decays involving the same pair of parent and daughter
nuclei

A
Z XN(e−, ν) A

Z−1X′
N+1(β−ν)A

Z XN . . . (1.66)

The net result of two subsequent decays gives A
Z XN + e− → A

Z XN + e− + ν + ν.
A neutrino–antineutrino pair is produced with no change in the composition,
but energy in the form of neutrinos is lost from the star. It is obvious from en-
ergy arguments that both the electron capture and the β−-decay cannot occur
spontaneously. The first step may be induced by continuum electron capture
of energetic electrons when the density is high, while the second step may pro-
ceed from thermally populated excited states when the temperature is high.
In the end, thermal energy is lost every time a pair of interactions goes to com-
pletion. The mechanism represents an efficient cooling process that will not
only depend on temperature and density, but also on the composition of the
stellar plasma. The Urca process is thought to be vital for understanding the
explosion mechanism in some models of type Ia supernovae (Section 1.4.4).

Problems

1.1 Determine the number of protons, Z, and the number of neutrons, N, for
the nuclides 18F, 56Ni, 82Rb, 120In, 150Gd, and 235U.
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1.2 How much energy is released in the following reactions: (i) 3He(d,p)4He;
(ii) 17O(p,γ)18F; (iii) 12C(α,γ)16O; and (iv) 13C(α,n)16O? Assume that the reac-
tions involve nuclei in their ground states only. Use the results presented in
Table 1.1.

1.3 Consider the chain of radioactive decays, 1 → 2 → 3, where 1, 2, and 3 de-
note a parent, daughter, and final nuclide respectively. Assume that initially
only the parent nuclei are present, that is, N1(t = 0) = N0, N2(t = 0) = 0,
N3(t = 0) = 0, and that species 3 is stable. (i) Set up the differential equation
describing the abundance change of species 2 and find the time evolution of
the daughter abundance, N2(t). (ii) Find the time evolution of the final nuclide
abundance, N3(t). (iii) Examine the abundances N1, N2, and N3 at small val-
ues of t. Keep only linear terms in the expansion of the exponential function
and interpret the results.

1.4 With the aid of Fig. 1.10, predict the spins and parities of 19O, 31P, and 37Cl
for both the ground state and the first excited state. Compare your answer
with the observed values. These can be found in Endt (1990) and Tilley et al.
(1995).

1.5 Suppose that an excited state with spin and parity of 2+ in a nucleus of
mass A = 20 decays via emission of a γ-ray with a branching ratio of 100% to
a lower lying level with spin and parity of 0+. Assume that the γ-ray energy
amounts to Eγ = Ei − Ef = 6 MeV. Estimate the maximum expected γ-ray
transition probability Γ = λ�.

1.6 Consider a nucleus in a plasma at thermal equilibrium. Calculate the pop-
ulation probabilities of the ground state (E0 = 0) and of the first three excited
states (E1 = 0.1 MeV, E2 = 0.5 MeV, E3 = 1.0 MeV). Perform the computations
for two temperatures, T = 1.0 × 109 K and 3.0 × 109 K, and assume for sim-
plicity that all states have the same spin value.

1.7 Derive the relationships of Eqs. (1.42)–(1.44) from the differences in nuclear
masses before and after the decay.

1.8 How much energy is released in the following β-decays: (i) 7Be(e−,ν)7Li;
(ii) 14C(β−ν)14N; and (iii) 18F(e+ν)18O? Assume that the decays involve nuclei
in their ground states only. Use the results presented in Table 1.1.

1.9 Calculate the average neutrino losses in the decays 13N(e+ν)13C and
15O(e+ν)15N. Assume that the positron emissions involve the ground states
of the parent and daughter nuclei only. Use the results presented in Table 1.1.

1.10 Derive Eq. (1.52) for the density of final states. Recall that the final state
contains both an electron and a neutrino. You have to count the states in the
six-dimensional phase space that is defined by three space and three linear mo-
mentum coordinates. The unit volume in phase space is h3.




