
Handbook of Chaos Control, 2nd Ed. Edited by E. Schöll and H.G. Schuster
Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40605-0

Part I
Basic Aspects and Extension of Methods





Elbert E.N. Macau and Celso Grebogi

1.1
Introduction

The concept of “control” is associated with the idea of implementing actions to
guarantee that a system behaves as desired. Nature is prodigal in presenting so-
phisticated control strategies that regulated phenomena that take place in all
scales of time and space [13, 18, 35, 49]. These mechanisms reach the ultimate
level of efficacy and refinement on biological systems in which they are respon-
sible for the emergence of the sustainable phenomenon of life. A careful and
systematic investigation performed on mechanisms Nature uses for system con-
trol uncover that they are based on the following concepts: stability, feedback,
and flexibility.

Stability can be defined as the system’s ability for keeping itself working prop-
erly even when perturbations act on it. This is the main goal to be achieved by
the control strategy that is embedded in the system. Every system is supposed
to operate properly inside well-defined regions. During its lifetime operation, a
system suffers all kinds of internal and external perturbations. In order to con-
tinue its appropriate operation, a system must be stable enough to those pertur-
bations. This ability can be seen around us in natural processes and is closely
related to the concept of feedback [18, 49], which can be defined as the mecha-
nism whereby part of the system output is returned (back) to be used as input
of the control strategy, providing self-regulation. Through this mechanism, a
system regulates itself by monitoring its own output to keep it stable and oper-
ating properly. To accomplish that, control strategies presented in Nature exploit
another key property of the Nature: flexibility. The idea behind this concept is
that it is not necessary to stress the system and drive it brutally to the desired
operation point immediately or directly. In contrast, it is more efficient, reliable,
and realizable to control the system by letting it to fluctuate and eventually
change its dynamics as little as possible to drive it to the desired state without
applying intense forces. An excess of control may result in energy waste and
eventually could imply in system damage. Thus, the concepts of stability, feed-
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back and flexibility are wisely combined and exploited by Nature through con-
trol strategies that allow it to opportunistically accomplish its process with re-
markable efficiency.

Let us now explore how this scenario, inspired from Nature, fits on the con-
cept of chaos control [21, 22, 33, 39]. At first, it is necessary to properly under-
stand the meaning of chaotic dynamics [2, 14]. The sensitive dependence on ini-
tial condition is the main characteristic of chaotic behavior. It means that two
trajectories that are initialized very close to each other separate exponentially in
time. Because of this typical behavior, which is known as the “butterfly effect,”
long time prediction of a chaotic trajectory based on finite precision measure-
ments is impossible. However, this characteristic also implies that a chaotic tra-
jectory is extremely sensitive to the effect of perturbations. As so, just a small
perturbation applied at a given time is enough to change the trajectory’s future
evolution, directing its way to other regions of the chaotic invariant set [25]. An-
other key characteristic of the chaotic system is that there are an infinite variety
of behaviors embedded on it. A chaotic system contains a dense orbit on the in-
variant set, which is a chaotic trajectory that recurrently passes infinitely close
to any point of that set. A third characteristic is that the chaotic invariant set
contains an infinite number of unstable periodic orbits of all periods, which co-
exist with the chaotic motion. These orbits are unstable in the sense that small
deviation from the periodic orbit grows exponentially rapidly in time, and the
system quickly moves away from the periodic orbit in a chaotic trajectory. The
combination of these three characteristics makes chaotic systems as one of the
most flexible systems that can be found in Nature. It is exactly these characteris-
tics that are explored in the scenario of chaos control.

Chaos control is based on the idea of exploiting the key dynamical character-
istics just presented to control the system as desired [21, 22, 33, 39]. As so, the
sensitive dependence on the initial condition is used both to stabilize chaotic be-
havior in periodic orbits [21, 22, 33, 39] and to direct trajectories to a desired
state [30, 34, 44–46]. Small perturbations applied to control parameters can be
used to stabilize chaos, keeping the parameters in the neighborhood of their
nominal values. This idea that came about in the context of the OGY method of
control of chaos [39] and its feasibility has been experimentally demonstrated in
several experiments [1, 4, 5, 8, 15, 17, 26, 37, 41]. Besides, a carefully chosen se-
quence of small perturbations applied to some control parameter can also be
used to rapidly direct trajectories to some desired final state [44–46]. This strat-
egy of guiding trajectories in chaotic systems, called targeting, also had its feasi-
bility experimentally demonstrated [7]. On both these approaches we can verify
how the fundamental idea of the chaos control is applicable: the system flexibil-
ity is paramount and opportunistically exploited so that the perturbations do not
significantly change the system dynamics, but just enable the intrinsic system
dynamics to accomplish the desired control task. In some sense, the control of
chaos mimics the way that Nature implements its control strategy to opportu-
nistically accomplish its goals. Furthermore, to extremely exploit the flexibility
presented on chaotic systems, the controller that implements the chaos control
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strategy must preserve the chaotic dynamics at all time. As so, the feedback
concept, when used, is applied just locally, in the neighborhood of a specific
chaotic trajectory, and implemented so that just small perturbations are applied
on the chaotic trajectory with the goal of keeping the whole system stable and
operating properly.

Over the years, the concept of control of chaos has been successfully applied
on a variety of systems and on a multitude of circumstances. However, the hori-
zon of applicability is still wider. In a typical application, we see a control of
chaos strategy applied in a situation in which the chaotic dynamics develops on
a chaotic attractor. However, chaotic dynamics are present not only on chaotic
attractors [25, 48], but also on nonattracting chaotic sets, giving rise to impor-
tant phenomena with remarkable physical consequences for the dynamical sys-
tem in which they are present. These are the cases of chaotic transients [24, 28],
chaotic scattering [9, 27], and fractal basing boundaries [20, 23]. In these phe-
nomena, a typical trajectory presents over time different behaviors in which a
chaotic behavior is followed by a nonchaotic one. The dynamics is understood
by the presence of chaotic saddles. A chaotic saddle is an invariant chaotic set
that can be envisioned as the intersection of its stable and unstable manifolds,
where the stable and unstable manifolds each consist of a Cantor set of sur-
faces. As so, it is a fractal object and it has chaotic trajectories that never leave
the set. It can be understood by the horseshoe model, introduced by Smale [48],
who, by using symbolic dynamics, showed that this invariant set has a dense or-
bit, exhibits the sensitivity to initial condition property, and embedded in it
there is a countable infinity set of unstable periodic orbits of arbitrary high peri-
ods. Let us consider a system in which a nonattracting chaotic saddle � coexists
in the phase space with others nonchaotic attractors. As there are other attrac-
tors in the phase space, all initial conditions, except for a set of measure zero
made up of the chaotic saddle � and its stable manifold, generate trajectories
that asymptote to one of the attractors. Trajectories starting from random initial
conditions may wander near the chaotic saddle � for a finite time before set-
tling down into one of the attractors. During the time interval in which a trajec-
tory suffers the influence of the chaotic saddle, it behaves as a chaotic trajectory.
Furthermore, the closer the initial condition of a trajectory to the stable mani-
fold of �, longer the trajectory stays near the chaotic saddle, exhibiting a chaot-
ic-like behavior.

If we have a chaotic system whose dynamics is governed by a chaotic saddle,
control of chaos strategy can be combined with classic control methods to give
rise to a powerful control approach that exploits the flexibility that the combined
methods can offer. It can be accomplished as follows: for an ordinary trajectory,
whenever it behaves as a chaotic one, a control of chaos strategy is applied. As
soon as the trajectory leaves the region of the phase space in which it behaves
as a chaotic one, control of chaos is switched off and a classic control mecha-
nism starts to be in effect. With this approach that we could call as opportunistic
chaos control, we have the most effective control approach in action for each of
the conceivable dynamical behaviors that a system may present. In fact, this hy-
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pothetical situation is very common in Nature and in technological systems. In
this chapter, we present some key examples that show the efficiency of this
approach. Therefore, we proceed as follows. In the next two sections, we review
the OGY method of chaos control as it was originally proposed and our target-
ing strategy that can be applied even to higher dimensional systems. After that,
we show an application example where a classic control method is used in asso-
ciation with the OGY to properly control an electronic system. In the subse-
quent section, our targeting method is associated with the classic control meth-
od to efficiently control a system with a very elaborated dynamics. Finally, we
end this chapter with remarks about the concept of control of chaos.

1.2
The OGY Chaos Control

The key ingredient for the control of chaos [38, 39] is the observation that a
chaotic invariant set has embedded on it an infinite and enumerable set of un-
stable periodic orbits of all periods. Counting on ergodicity [25], another intrin-
sic property of the chaotic behavior, we wait for a natural passage of the chaotic
trajectory close to the desired periodic behavior and then a small judiciously
chosen controlling perturbation is applied. This small perturbation is enough to
stabilize the system in the desired periodic behavior. Through this mechanism,
the system can operate on a large number of different set points (theoretically,
an infinite number of them), with a great flexibility in switching among them.

In this section, we review the main points related to the originally proposed
algorithm. As so, our scenario is a chaotic dynamical system whose attractor is
a three-dimensional state space. A Poincaré section [2] can be introduced trans-
versal to the chaotic flow so that the system dynamics on this Poincaré section
can be described by a two-dimensional invertible map as

xn�1 � F�xn� p�� �1�1�

where xn � R2, F is a smooth function of its variables, and p � R is an exter-
nally accessible control parameter. Following the idea of using small perturba-
tions to control the system, parameter allowed variations must be small,

�p � �p� � �� �1�2�

where �p is the nominal parameter value, and � 	 1 defines the allowable range
of parameter variation. We wish to program the parameter p so that a chaotic
trajectory is stabilized when it enters in a neighborhood of the target periodic
orbit.

Let xF��p� be one of the fixed points of the map (1.1) at the nominal parameter
value �p that we wish to stabilize. (The extension of the method for unstable per-
iodic points of period larger than 1 is straightforward.) The location of the fixed
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point in the phase space depends on the control parameter p. Upon application
of small perturbation �p, we have p � �p � �p. Since �p is small, we expect
xF�p� to be close to xF��p�. We write

xF�p� 
 xF��p� � g�p� �1�3�

where the vector g is given by

g � �xF

�p
�p��p 


xF�p� � xF��p�
�p

� �1�4�

The system dynamics of any smooth nonlinear system is approximately linear
in a small �-neighborhood of a fixed point. Thus, near xF��p�, we can use the lin-
ear approximation for the map:

�xn�1 � xF�p� 
 M�xF�p� � �xn � xF�p�� �1�5�

where M�xF�p� is the 2 � 2 Jacobian matrix of the map F�x� p� evaluated at the
fixed point xF�p�, which is defined as follows:

M�xF�p� � �F
�x

�xF�p� 
 M�xF��p� � �M
�p

�p��p�p� �1�6�

Note that �p � � and ��xn � xF�p�� � �, where � is the size of the small neigh-
borhood in which the linear approximation (1.5) is valid. Writing
xF�p� 
 xF��p� � g�p (from Eq. (1.4)), substituting this relation and Eq. (1.6) into
Eq. (1.5), and keeping only terms which are first order in �, we obtain

xn�1 � xF��p� 
 g�p � M�xF��p� � �xn � xF��p� � g�p� �1�7�

In Eq. (1.7), the Jacobian matrix M is evaluated at the fixed point xF��p� of the
unperturbed system, which is the one to be stabilized. Since xF��p� is embedded
in the chaotic attractor, it is unstable and it has one stable and one unstable di-
rection [4]. Let es and eu be the stable and unstable unit eigenvectors at xF��p�,
respectively, and let fs and fu be two unit vectors that satisfy fs � es � fu � eu � 1
and fs � eu � fu � es � 0, which are the relations by which the vectors fs and fu
can be determined from the eigenvectors es and eu. The vectors fs and fu are
contravariant basis vectors associated with the eigenspace es and eu. The Jaco-
bian matrix M�xF��p� can then be written as:

M�xF��p� � �ueufu � �sesfs� �1�8�

where �s and �u are the stable and unstable eigenvalues in the eigendirections
es and eu, respectively.

When the trajectory point xn falls into small �-neighborhood of the desired
fixed point xF��p� so that Eq. (1.5) applies, a small parameter perturbation �pn is
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applied at time n to make the fixed point shift slightly so that at the next itera-
tion �n � 1�, xn�1 falls on the stable direction of xF��p�. Thus, we choose the
parameter control �pn such that

fu � �xn�1 � xF��p� � 0� �1�9�

If xn�1 falls on the stable direction of xF��p), we can then set the control pertur-
bation to zero, and the trajectory for subsequent time will approach the fixed
point at the geometrical rate �s. Thus for sufficiently small �xn � xF��p�, we can
substitute Eq. (1.7) into Eq. (1.9) to obtain �pn � cn:

cn � �ufu � �xn � xF��p�
��u � 1�fug

� C�xn � xF��p�� �1�10�

We assume in the above that the generic condition g � fu �� 0 is satisfied so that
cn � �xn � xF��p��, which is small. The considerations above apply only to a local
small neighborhood of xF��p�. Globally, we can specify the parameter perturba-
tion �pn by setting �pn � 0 if �cn� is too large, since the range of the parameter
perturbation is limited by Eq. (1.2). Thus, practically, we can take �pn to be
given by

�pn � cn if �cn� � �
0 if �cn� � ��

�
�1�11�

where in the definition of cn in Eq. (1.10), it is not necessary to restrict the
quantity �xn � xF��p�� to be small.

This method can be extended to higher dimensional systems.

1.3
Targeting–Steering Chaotic Trajectories

The inherent exponential sensitivity of chaotic time evolution to perturbations
can be intelligently exploited to direct the dynamics of the system to some de-
sired state using a carefully chosen sequence of small perturbations to some
system parameter. This approach, which is of fundamental interest for the con-
trol system, is called targeting [45].

The targeting idea came about as a way to get around an excessive transient
time associated with the use of the OGY method of chaos control to higher di-
mensional systems. As we saw in the previous section, this method relies on
the topological transitivity of the system on the invariant set � to bring a chaot-
ic orbit close enough to a neighborhood of the periodic orbit on which we want
to stabilize the system. This procedure works. Nevertheless, it presents a signifi-
cant problem: the transport time can be excessively long. Besides, this time de-
pends sensitively on the initial conditions and on the system’s dimension. In

1 Controlling Chaos8



dissipative chaotic systems, for randomly chosen initial conditions, the average
transport time is typically ��D, where � is the linear dimension of the neighbor-
hood about the periodic orbit, and D is the pointwise dimension at the periodic
point [29]. For low values of D, this time can be acceptably small. However, for
systems of higher dimension, it may have a prohibitively large value.

Let us consider a discrete time dynamical system,

Xi�1 � F�Xi� p�� �1�12�

where Xi � �n, p � � is an externally controllable parameter that can be exter-
nally modified, and F is a smooth function in both variables. The nominal value
of the parameter is p � �p, for which F is chaotic on a compact, invariant set
� � �n. Suppose we have two points Xs and Xt in �. Consider B��Xs� a ball of
radius � around Xs, and another ball B��Xt� of radius � about Xt. The targeting
goal is to find a constructive orbit that goes from a point pXs

� B��Xs� to a point
pXt

� B��Xt�. Through that constructive orbit, the inherent exponential sensitiv-
ity of a chaotic time evolution to perturbations is intelligently exploited to direct
trajectories to a desired state in the shortest possible time, by the use of a care-
fully chosen sequence of small perturbation to some control parameter. Further-
more, since these perturbations are sufficiently small, they do not significantly
change the system’s dynamics, but enable the intrinsic system dynamics to drive
the trajectory to the desired state.

Our technique is subdivided into two sequential parts [34]. In the first one,
we find the previously described points pXs

and pXt
so that there is an orbit

(real) that goes from pXs
to pXt

.
In the second part, this orbit is used to build a constructive orbit (virtual) that

allows the transport from pXs
to pXt

using smaller number of elements, i.e., of
real orbits. In this process, small perturbations to the control parameter are
used to move among the real orbits. The effect of these perturbations is to
change the system’s evolution from one real orbit to another, resulting in a con-
structive orbit that allows the transfer from pXs

to pXt
in a faster time. Thus, the

overall effect of this procedure is to produce a suboptimal solution that is gotten
by the elimination of parts of the orbit where recurrences occur with the use of
small perturbations.

1.3.1
Part I: Finding a Proper Trajectory

The main idea of the first part of our technique is as follows [45, 46]: consider a
line segment a1b1 � B��Xs�, so that Xs is its middle point. To find pXs

, a1b1 is
iterated in the forward direction, while the region B��xt� is iterated in the back-
ward direction, until the forward iterated segment intersect the backward iter-
ated region at the point pI. It is important to say that it is again the transitivity
of a chaotic system that assures that pI will be found. When the intersection is
found, there is a trajectory that goes from pXs

� a1b1 to B��Xt� through the in-
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tersection pI. Note that pXs
can be found by iterating F in the backward direc-

tion from pI. The point pXs
is then used to determine the value �p of the param-

eter that must be applied to the system to bring it from Xs to pXs
. The following

algorithm describes how that technique can be implemented:
Step 1: Define a direction � in space and using this direction construct a

line segment a1b1 � B��Xs�, so that Xs is its middle point. Call a1 as
c0, and b1 as cnp .

Step 2: Generate N random points �dj�N
j�1 inside B��Xt�.

Step 3: Create a partition of np subsets in c0cnp using a sequence of np � 1
interior points �cj�np�1

j�1 .
Step 4: Using �dj�N

j�1, construct a Delaunay triangulation (Watson 1981;
Varosi et al. 1987) T , which has the sequence of cells �Fj�M

j�1.
Step 5: Iterate in the forward direction �cj�np�1

j�1 and use linear interpolation
to approximate the resultant curve delimited by each pair of iterated
points.

Step 6: Iterate in the backward direction �dj�N
j�1 and use linear interpolation

to approximate the iterated cells of the Delaunay triangulation T .
Step 7: Continue the iteration described in steps 5 and 6 until finding the in-

tersection pI between Fl�ck�Fl�ck�1� and F�l�Fh�, where this one is
the backward iterated cell found by linear interpolation of the back-
ward iteration of the points that delineate the cell Fh.

Step 8: Consider the middle point cmd of the segment ckck�1. Identify if the
intersecting segment is ckcmd or cmdck�1. In the first case, assign the
value of cmd to ck�1; otherwise, assign the value of cmd to ck. Applying
a similar procedure, find a new cell Fh which is smaller than the pre-
vious one, but still contains in its face pxt .

Step 9: If d�ck� ck�1 � �l, where �l is a specified limit on the precision, then
repeat step 8. Otherwise, pXs

is equal to ck.
Step 10: Using pXs

, determine the value of �p that drives the system from Xs to
pXs

. When the system gets pXs
, return the parameter to its nominal

value, i.e., p. From there, the system dynamics will conduct the sys-
tem evolution to a point pXt

� B��xt� in 2 � l iterates.

With the use of this procedure, the average transport time to go from the
source point to the target point typically scales logarithmically with the inverse
of the size of the target region [45], which contrasts with the exponential in-
creasing that takes place if this algorithm is not used.

1.3.2
Part II: Finding a Pseudo-Orbit Trajectory

Part I of our method produces an orbit that goes from pXs
to pXt

. Let us repre-
sent that orbit by the following sequence of points �Xi�N

i�0 in �n, where
X0 � pxs

, and XN � pXt
. As that orbit belongs to a chaotic trajectory in a com-

pact invariant set �, it might have recurrent points [10, 11, 32, 34]. In Part II,
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we look for those recurrent points by using a sequential search [31]. If Xr is a
recurrent point, it means that it belongs to a sequence of points
�� � � �Xr �Xr�1� � � � �Xr�n� � � �� such that d�Xr �Xr�n � �, making up a kind of loop.
If none of the points inside the loop is located in B��Xt�, that loop does not ef-
fectively conduct the trajectory to the targeting point. Thus, after being identi-
fied, our method replaces that loop by a smaller orbit that is backward asympto-
tic to Xr and forward asymptotic to Xr�n [6, 29]. By creating patches like that to
the recurrent points of the original orbit, we build a constructive orbit or a pseu-
do-orbit that allows the transportation from pXs

to pXt
with considerably less

iterations than the original orbit. However, to accomplish that, perturbations
must be introduced in order to switch the trajectory along the pseudo-orbits, as
described next [10, 11, 32, 34].

In a hyperbolic situation, it is known that if the distance between Xr and
Xr�n is sufficiently small, say less than �lim, then the unstable manifold of Xr ,
Wu

� �Xr� and the stable manifold or Xr�n, Ws
��Xr�n� intersect each other in a

point q. This fact can be exploited to accomplish our goal if a proper perturba-
tion is applied to the sequence of points of the original orbit that passes
through Xr . In fact, according to the theorem of Hirsh and Pugh (Arrowsmith
1994), q � Wu

� �Xr� � Ws
��Xr�n� implies that forward iterations of q converge

to forward iterations of Xr�n, i.e., limk�� d�Fk�q��Fk�Xr�n� � 0, and
backward iterations of q converges to backward iterations of Xr , i.e.,
limk�� d�F�k�q��F�k�Xr� � 0. Thus, if we consider a point Xr�m that precedes
Xr in the original trajectory, and a point Xr�n�t that succeeds Xr�n

in the original trajectory, we have d�Ft�q�� Ft�Xr�n� � �r�n�t, and
d�F�m�q��F�m�Xr� � �r�m. Furthermore, as Wu

� �Xr� can be locally approximated
by Eu

Xr
, which is the unstable subspace of the tangent space at Xr , while

Ws
��Xr�n� can be locally approximated by Es

xr�n
, which is the stable subspace of

the tangent space at Xr�n, and that approximation is continuously preserved
over the iterations by the Jacobian of F, i.e., DF��� calculated at the iteration
point [25]. It follows that �r�m is located in the direction of Eu

Xr�m
, and �r�n�t is

located in the direction of Es
Xr�n�t

. Thus, if the proper perturbation �r�m is ap-
plied in the direction of Eu

Xr�m
, it produces a perturbed orbit that passes through

q, and converges to the original trajectory after Xr�n. Consequently, that proce-
dure generates the desired patch that avoids the recurrent loop of the original
trajectory. In addition, that argument indicates that the perturbation �r�m can be
calculated by solving the following equation:

Fm�t�Xr�m � �r�mEu
Xr�m

� p� � Xr�n�t � �r�n�tE
s
Xr�n�t

� �1�13�

This equation can be solved by using the Newton-secant method.
We should emphasize that the values of m and t in Eq. (1.13) can be ade-

quately adjusted for each system by an empirical procedure. Also, Hirsh and
Pugh’s theorem provides us with a proper way to use the approximation of the
tangent subspace Es

Xi
and Eu

Xi
at a point. According to that theorem, if we con-

sider an orbit �Xk�n
k�1 which contains Xi, any variation near Xi�m will expand
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along the unstable manifold of Xi if m is chosen large enough. A similar state-
ment can be made regarding the stable manifold of Xi for variations near Xi�m

iterated in the backward direction.
That procedure can be used in the attempt to eliminate the recurrence in the

original path from pXs
to pXt

that are less than �lim. Higher priority in the elimi-
nation should be assigned to the longest loops. A patch is accepted as usable if
the perturbation �r�m to be applied, in order to implement it, is less than a pre-
assigned limit value �lim. Our method spawns a sequence of perturbations
��i�K

i�1 and directions �Ei�K
i�1 to be respectively applied to a sequence of points

�Xni�K
i�1 of the original trajectory. To apply each perturbation, it is necessary to

calculate the value �pXni
of the parameter to be used in Xni to change the system

state from Xni to X�
ni
� Xni � �iExi . The overall result of our method is a subopti-

mal constructive trajectory or a suboptimal pseudo-orbit that allows the transfer
from pXs

to pXt
.

The previous arguments can be consolidated in the following algorithm:
Step 1: Starting from the original transfer trajectory from pXs

to pXt
, find all

the recurrent points whose distance from it to its recurrent point is less
than �lim. Sort them out by the size of the loop in decreasing order.

Step 2: Take from the list its first point and find a patch for the loop using Eq.
(1.13). If the resulting perturbation is less than �lim, accept the patch.
Put in the solution list the points in which the perturbation should be
applied, together with the perturbations and the direction values.

Step 3: Take the next point in the list that is located after the previous found
patch.

Step 4: Find a patch for the loop using Eq. (1.13). If the resulting perturbation
is less than �lim, accept the patch. Put in the solution list the points in
which the perturbation should be applied, together with the perturba-
tions and the direction values.

Step 5: Go back to step 3 until all the points of the list have been considered.
Step 6: Use the solution list and the original trajectory to compute the pseudo-

orbit that allows the suboptimal transfer from pXs
to pXt

.

1.3.3
The Targeting Algorithm

The algorithm that results from the combination of parts I and II can be ap-
plied to general situations [31]. In fact, individually, each part has been success-
fully applied to numerical and laboratory experiments in mechanics [29, 46] and
in situations involving spacecraft guidance [11]. Furthermore, with delay coordi-
nate embedding, the algorithm is applicable to experimental situations in which
no a priori analytical knowledge of the system dynamics is available [46].

The power of our method is due to the sequential combination of both parts.
However, we must stress the fact that the second part has the objective of reduc-
ing the length of long trajectories that present recurrence to get a smaller trajec-
tory. We can have situations where that algorithm does not succeed because
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there is no recurrence in the trajectory for the specified limit values for the per-
turbation and the proximity between the recurrent points. In other situations,
the trajectory found by the first part of the algorithm is short enough and al-
ready satisfies our goals.

1.4
Applying Control of Chaos and Targeting Ideas

In this section we apply the control of chaos concept in association with classi-
cal control methods. The proper combination of these two approaches gives rise
to what we call the opportunistic chaos control strategy. We demonstrate this
strategy by analyzing three very significative examples. In these examples, the
chaotic invariant sets are nonattractive. In the first case, we consider a simple
electronic circuit operating in a regime in which an attracting periodic orbit co-
exists with a chaotic saddle. As so, initial conditions not located on the periodic
orbit generate trajectories that undergo a chaotic transient behavior until they
eventually settle to the periodic orbit. In this system, a classic control steering
method is used in association with the OGY to make the system behave periodi-
cally, and with a period that is different of the originally presented by the sys-
tem after its transient interval.

In the second example, we analyze a very involved scenario with the presence of
chaotic and no-chaotic behaviors that are entwined in state space in a very compli-
cated way. Here our opportunistic chaos strategy combines the chaotic targeting
approach and classic control methods to steer trajectories through the phase space
and also to stabilize the system on periodic behaviors from time to time.

1.4.1
Controlling an Electronic Circuit

Let us consider an electronic circuit composed of an AC voltage source, a resis-
tor, an inductor, and a diode as the nonlinear element, as shown in Fig. 1.1.

Applying the Kirchhoff voltage law, the voltage across the diode is related to
the input voltage generator (Vin) and the circuit current by

L
dI
dt

� V0 sin�2�ft� � RI � Vd� �1�14�
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Fig. 1.1 Diode circuit: the diode circuit is composed of an AC
voltage source Vin, a resistor R, an inductor L, and a diode; Vd

is the voltage across the diode.



where V0 is the voltage amplitude and f is the frequency.
For the diode, we consider its high-frequency model for the voltage across it,

which is given by [19, 40]

Vd � �q��Cj � Cd�
2CjCd

� q�Cj � Cd�
2CjCd

� E0� �1�15�

where q is the diode accumulated charge, Cj is the junction capacitance, and Cd

is the diffusion capacitance.
Our system model equation can be converted to the following system of first-

order autonomous differential equations:

dq
dt

� I

L
dI
dt

� V0 sin��� � RI �
�
�q��Cj � Cd�

2CjCd
� q�Cj � Cd�

2CjCd
� E0

�

d�
dt

� 2�f

����������	
���������


�1�16�

For this work, we use the diode DIN1206C, which, according to the specifications,
has for the parameters of its high-frequency model the values 453pF for the diffu-
sion capacitance (Cd), 30 nF for the junction capacitance (Cj), and 0.52 V as the junc-
tion voltage (Vj). The circuit parameter values are L � 0�18 mH, and R � 4�5�. For
the input voltage generator, i.e., Vin � Vo sin 2�ft� �, we set f � 333 kHz, and V0, the
input voltage amplitude, is used as the variable parameter.

In Fig. 1.2, we show the system bifurcation diagram obtained by using a
time-2�f stroboscopic map.

Let us now look at the system dynamics inside the period-3 window. For this
purpose and for V0 � 2�3 V, we take a random initial condition located outside
the period-3 window attractor and we obtain its trajectory. This trajectory, as it
is observed in the previously defined time-2�f stroboscopic map, appears in
Fig. 1.3, while Fig. 1.4 shows the associated time series plot for the circuit cur-
rent I. We can see that the system initially has a chaotic-like behavior. After this
transient time, the trajectory finally settles on a period-3 periodic behavior.
Further analysis indicated that this is a chaotic transient, which happens for this
value of V0 due to the presence of a nonattracting chaotic saddle that coexists
with the period-3 attractor. Thus, trajectories starting from random initial condi-
tions typically wander chaotically near this chaotic saddle for a finite time before
settling down into the period-3 attractor. During the time interval in which the
trajectory wanders chaotically, this trajectory presents in essence all the charac-
teristics that are typical of a real chaotic trajectory. As so, during this time inter-
val, it shows a sensitive dependence to changes in initial condition, as one of its
finite-time Lyapunov exponents is greater than zero. Furthermore, embedded in
the chaotic saddle, there are an infinite but numerable sets of unstable periodic
orbits (UPO) of all periods.

1 Controlling Chaos14
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Fig. 1.2 Bifurcation diagram: diode circuit bifurcation diagram
defined by a time-2�f stroboscopic map; the time-2�f mapped
charge q against the control parameter V0 varying from 0 to 5.8 V.

Fig. 1.3 Chaotic transient: chaotic transient before conver-
gence to the period-3 orbit at V0 � 3�8 V and f � 333 kHz.

Period-3 Orbit Chaotic Transient



Let us now assume that we want to stabilize the system in one of these UPO.
The original OGY method depends on ergodicity to bring a chaotic trajectory
sufficiently close to the desired UPO so to stabilize the system. However, we are
now dealing with a system in which the behavior is not chaotic, but it is a
chaotic transient. As so, a typical trajectory might not pass close to the desired
unstable periodic orbit embedded in the chaotic saddle. To overcome this diffi-
culty related to accessibility of the unstable periodic orbits by a chaotic transient
trajectory, we use our opportunistic chaos control strategy: a classical nonlinear
control method is strategically associated with the OGY chaos control strategy.
The classical method is used first, just to drive the trajectory to the neighbor-
hood of the UPO. From these point on, the OGY strategy is then applied so that
the system is kept stabilized by using small perturbations.

This classical nonlinear control method, called input–output linearization [47],
works as follows: consider a guiding control problem and a nonlinear system,

�x � f �x� u� �1�17�
� y � h�x��

where u is the control parameter.
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Fig. 1.4 Chaotic transient time series: Current I (mA) versus
time transient before convergence to the period-3 orbit at
V0 � 3�8 V and f � 333 kHz.



Assume that our goal is to make the output y�t� follows the desired output
yd�t�, where yd�t� is well known and limited (not diverging). Note that the
output y�t� is not directly related to the control parameter u. Consequently, in
general, it is not easy to find out how the input u should be designed to control
and guide the output y�t�. However, in many situations it is possible to find out
a simple and direct functional relationship between the output y�t� and the con-
trol parameter u.

In our system model, represented by Eq. (1.16), let us redefine its variable as
follows: q � x1, I � x2, y � x1, � � x3, and V0 � u, so that the system is now
described by the following equations:

dx1

dt
� x2

L
dx2

dt
� u sin�x3� � Rx2 �

�
�x1��C2 � C1�

2C2C1
� x1�C2 � C1�

2C2C1
� E0

�

dx3

dt
� 2�f

y � x1

������������	
�����������


�1�18�

To find a functional relation between the output y and the input u, we differen-
tiate the output y twice

�y � ��1�L� sin�x3��u � f1�x�� �1�19�

where f1�x� is a state function defined by

f1�x� � �1�L�
�

� Rx2 �
�
�x1��C2 � C1�

2C2C1
� x1�C2 � C1�

2C2C1
� E0

��
� �1�20�

Equation (1.19) is a direct relation between the output y and the input u. Now,
if we choose the input control as follows

u � L
sin�x3� ��� f1�� �1�21�

where � is the new input to be determined, the nonlinearity presented in Eq.
(1.19) is canceled and we get a linear relationship between the output and the
new input �:

�y � �� �1�22�

Let us make e � y�t� � yd�t� the guiding error. We choose the new input control
as follows:
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� � �yd � k1e � k2 �e� �1�23�

where k1 and k2 are positive constants.
From Eqs. (1.22) and (1.23), we get the closed loop guiding error differential

equation

�e � k1e � k2 �e � 0� �1�24�

This equation can be transformed to its characteristic form

�2 � k1�� k2 � 0 � ��� p1���� p2�� �1�25�

As so, it is possible to choose the appropriates constants k1 and k2 to properly
allocate the poles of the linearized system. Thus, at each iteration the constants
k1 and k2 are properly chosen and the new input value is estimated in accor-
dance with the desired output yd�t� and the current error e�t�.

In Fig. 1.5, we show the results of applying our opportunistic chaos control
method for this system in an extreme situation. The system is initially on the
period-3 periodic orbit. Our method is successively used to stabilize the system
on unstable periodic orbits of periods 1, 2, 4, and 8.
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Fig. 1.5 Control in chaotic saddles: the figure shows the
system period-3 regime followed by a transient classic control
that conducts the orbit to an �-neighborhood of the desired
fixed point (periodic point) when the OGY control is applied.
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1.4.2
Controlling a Complex System

To construct a complex dynamical system, let us consider the kicked single ro-
tor, which describes the time evolution of a mechanical pendulum that is being
kicked at times nT � n � 1� 2� � � �, with a constant force f0. From the differential
equation for this mechanical system one can derive a Poincaré map which is re-
lated to the state of the system just after each successive kick [43]:

xk�1 � xk � yk�mod2�� �1�26�
yk�1 � �1 � �� � yk � f0 sin�xk � yk��

where x corresponds to the phase and y to the angular velocity. f0 is the force
parameter, and � is the damping parameter, measuring the energy dissipation
of the system. The parameter � varies between 0, for a Hamiltonian situation,
with no damping, and 1, in the case of a very strong damping. The dynamics
lies on the cylinder �0� 2�� � �.
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Fig. 1.6 Typical trajectory of the kicked single rotor with the
parameters f0 � 4�0 and � � 0�02. The y variable represents
the angular velocity, x represents the phase, and k represents
the iteration number. In both graphs, all plotted quantities are
dimensionless.



In the Hamiltonian case (no damping, � � 0), we have the area-preserving
standard map, which was studied by Chirikov [12] and by many other authors
[36, 42]. It has stable and unstable periodic orbits, Kolmogorov-Arnol’d-Moser
(KAM) surfaces, and chaotic regions. Depending on the nonlinear parameter f0,
the regions of regular motion and the regions of chaotic motion are complexly
interwoven. As the second equation of the map is also taken to be modulo 2�,
the map of the cylinder reduces now to the map of the torus �0� 2�� � �0� 2�� to
itself. As a consequence, each of the periodic orbits represents, in fact, a family
of overlapping periodic orbits in which the velocity y differs by integer multiples
of 2�. Because of the modulo 2�, all periodic orbits of the same family are lo-
cated at the same location on the torus.

If we now consider the Hamiltonian case but introduce a very small amount
of dissipation (� value close to zero), the motion again takes place on the cylin-
der �0� 2�� � � in order to preserve the invariant structure. The periodic orbits
become sinks and the chaotic Hamiltonian sets become saddle chaotic invariant
sets embedded in the basin boundaries separating the various sinks. The chaot-
ic motion is hence replaced by long chaotic transients that occur before the tra-
jectory is eventually asymptotic to one of the sinks [16], as can be seen in a typi-
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Fig. 1.7 Basin of attraction for the kicked
single rotor. The colors identify the periodic-
ity of the orbits, while the characters identify
the location of the attracting periodic orbits.
In the figure, “*” indicates the position of
attracting period one points, “x” the posi-

tion of attracting period two orbits, and “o”
the position of attracting period three orbits.
This picture is for the following parameters:
f0 � 4�0 and � � 0�02. All quantities plotted
are dimensionless.



cal trajectory that appears in Fig. 1.6. Furthermore, the dissipation leads to a
separation of the overlapping periodic orbits, which belong to a given family,
with increasing modulo of the velocities on the cylinder. However, there is a
bounded cylinder which contains all of the attractors [16]. This cylinder is given
as �0� 2�� � ��ymax� ymax, where ymax � f0��, and all trajectories are eventually
trapped inside this region [16]. Consequently, for values of � close to zero, there
is a large, but finite, number of coexisting periodic orbits of increasing period.
Figure 1.7 is a picture in the space of initial conditions showing the basins of
attraction for all attractors of periods 1 to 3. The periodicity of the attractors in
the picture is distinguished by gray scales, while the locations of the attracting
periodic orbits are identified by special characters that are mentioned in the fig-
ure caption.

Figure 1.8 shows a typical basin of attraction for the period-1 attracting orbit
at y � 6�. The black points are attracted to this attractor. The basins of attrac-
tion have fractal boundaries, with the box counting dimension d of the basin
boundary equal to d � 1�999. This means that the dimensions of the basin
boundaries is nearly the dimensions of the state space, and they are organized
in a complexly interwoven structure, with chaotic saddles embedded in these ba-
sin boundaries [23]. Furthermore, extremely small changes in the initial condi-
tions may shift a trajectory from one basin to another, which means that the
system has high sensitivity to the final state. Thus, which attractor is eventually
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Fig. 1.8 Enlargement of the basin of attraction for a period-1
attracting orbit. Points located inside the region
1�0� 5�0�  � 34�0� 44�0�  that go to this period-1 attracting orbit

are plotted. All quantities plotted are dimensionless.



reached by a trajectory of the system depends strongly on the initial conditions.
In this scenario, typical trajectories, starting with arbitrary initial conditions, ex-
perience periods of long chaotic transients due to the saddle chaotic invariant
sets, before approaching one of the periodic attractors.

Let us consider two points xs and xt, both of which located in the neighbor-
hood of the fractal basin boundary. Our objective is to apply our targeting proce-
dure to find a pseudo-orbit that goes from a point pxs � B��xs� to a point
pxt � B��xt�, where � is a specified small value. The scenario involving the use
of part I, as described in Section 1.3, of the targeting algorithm is depicted in
Fig. 1.9. In this case, the dimension of the space is 2. To apply part I of the tar-
geting algorithm, we uniformly distribute random points in the interior of the
circle B��xs�. In this case, the result of a Delaunay triangulation is a polygon,
which is iterated backward, while the “control segment” is iterated forward. The
result of this procedure can be seen in Fig. 1.10. For this particular situation,
part I of the algorithm is able to find a trajectory that takes just 30 iterations to
reach pxt � B��xt�. We consider this result good enough and decide that it is not
necessary to apply part II of the algorithm. It is important to reaffirm that for
low dimension systems, in general, just part I produces a good result.

The procedure just described works for points located in the neighborhood of
the fractal basin boundaries. It works because of the inherent exponential sensi-
tivity of the chaotic time evolution to perturbations. Therefore, the source point
xs and the targeting point xt must both be in the same neighborhood of the
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Fig. 1.9 Schematic representation of the scenario involving
the use of part I of our targeting procedure for a two-dimen-
sional system.

Perturbatio



chaotic invariant set. This is the case for the points xs and xt of the previous ex-
ample. However, if the system is evolving in a regular regime (not chaotic), the
condition of being located in the same chaotic invariant set is not satisfied.
Furthermore, the time evolution is “ordered,” and the inherent exponential sen-
sitivity to perturbations does not apply. However, we show next that if the objec-
tive is to bring the trajectory from one stable state to another stable state, we
can first guide the trajectory to the basin boundary structure, where the chaotic
saddles are located, and there apply our targeting method. Thus, the idea, which
is illustrated in Fig. 1.11, is as follows: (i) remove the trajectory from the basin
of attraction of the initial stable periodic orbit, (ii) apply the targeting procedure
in the basin boundary to bring the trajectory to the neighborhood of the basin
of attraction of the desired stable periodic orbit and finally (iii) bring the trajec-
tory to the desired stable periodic orbit. We can accomplish this guidance task
inside the basin of attraction of the stable periodic orbits (i) and (iii) by using a
classical technique from the system control theory and outside the basins of at-
traction (in the chaotic invariant region) (ii) using the targeting procedure just
described. This approach stresses the powerful tool that we developed by com-
bining classical control techniques with chaos control methods.
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Fig. 1.10 By exploring the chaotic behavior
of the system, our targeting procedure rapid-
ly steers the trajectory from S to T. The as-
terisks represent the trajectory obtained by
applying our targeting procedure to drive the

system from the point S to the point T. The
y variable represents the angular velocity, x
represents the phase, and k represents the
iteration number. In both graphs, all quanti-
ties plotted are dimensionless.



To accomplish (i), we can use, for example, a classical optimal control meth-
od, such as the LQ controller [3]. As the basin of attraction of the stable periodic
orbits is small open regions around the periodic orbits, it is possible to linearize
the system about the points �xi�np

i�1 of the orbit, which gives

zk�1 � A�xi�zk� �1�27�

where A�xi� is Df �xi�. To change the state of the system, it is necessary to intro-
duce an input term to Eq. (1.27) as

zk�1 � Azk � Buk� �1�28�

where uk is the vector of inputs and B is a constant matrix that states how the
inputs influence the state of the system. The objective is to pick uk so that the
“cost function”
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Fig. 1.11 Schematic representation of our
complete targeting procedure. The system
was evolving in a periodic orbit Xa. Our goal
is to steer it to another periodic orbit Xb.
The LQ controller drives the trajectory from
Xa to a point Xnfa near Xfa. In Xnfa a small
perturbation is applied, and the system
moves to the state Xfa. Another perturbation

is applied, and the system moves to the
state Xfa. Our chaotic targeting procedure is
then used to stir the system to Xtb. Another
small perturbation drives the system to the
point Xob, that belongs to the basin of attrac-
tion of Xb. From this point, the system’s nat-
ural dynamics drives the trajectory to the de-
sired stable periodic orbit Xb.

Basin of attraction

Basin of attraction



J � 1�2
�

k�0�N

�zt
kQ1zk � ut

kQ2uk� �1�29�

is minimized. Q1 and Q2 are symmetric and positive definite weighting ma-
trices to be selected based on the relative importance of the various states and
controls. The well-known solution technique can now be applied (see [3]).

As our targeting procedure, applied in (ii), is able to drive the trajectory to the
neighborhood of the basin of attraction of the desired stable periodic orbit, just
a small perturbation can be used to send the orbit from that point to the
interior of the basin of attraction. Once there, the system dynamics is enough
to drive the trajectory to the desired stable periodic orbit. Thus, (iii) can be easi-
ly accomplished. However, another control system technique could be applied,
if desired.

In Fig. 1.12 we show the results of applying that combined method to change
the system evolution among the desired stable periodic orbits. When our target-
ing method is applied, the perturbations that are necessary to create the pseu-
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Fig. 1.12 Results of applying our combined method of control
to change the system evolution among stable periodic orbits.
The y variable represents the angular velocity, x represents the
phase, and k represents the iteration number. In both graphs,
all quantities plotted are dimensionless.



do-orbit and send the orbits to the interior of the basin of attraction of the
stable periodic orbits are less than 0.1.

1.5
Conclusion

In 1990, the concept of controlling chaos came about showing that not only the
chaotic evolution could be controlled, but also the complexity inherent on the
chaotic dynamics could be exploited to provide a unique level of flexibility and
efficiency in technological uses of chaotic systems. Over the years, we have wit-
nessed a variety of applications for this concept in almost all areas of knowl-
edge. In parallel, new methods appear, each one tailored to specific situations
or trying to improve previously released control of chaos methods. Despite this
tremendous development and research, the fundamental ideas embedded in
this concept must be kept in focus. With this chapter, we envisage not only the
assessment of those fundamental ideas but also to point out paths to be fol-
lowed in future development. As so, we summarize it with the following:
� Controlling of chaos is based on small perturbations applied to sensitive sys-

tems in order to opportunistically exploit its dynamics. It is based on the flex-
ibility that such a system can provide. Feedback strategies may be used, but
just locally to a particular trajectory.

� Controlling of chaos can be applied wherever chaos is present. This means
that its application is not only restricted to attracting sets, but can also be
used in nonattracting ones, situations in which we can produce interesting re-
sults.

� Control of chaos strategies can be combined with classic control strategies to
convey powerful, opportunistic, and efficient control mechanisms that exploit
the limits of flexibility that the system can provide.
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