
1 The quest for fusion power

This chapter introduces the basic physics and associated variables. Except for those variables
cited at the foot of page XVI, SI units are almost always adopted. Pages XV and XVI have
lists of physical constants, plasma parameters and frequently used symbols.

1.1 Tokamak machines

1.1.1 Topology and ignition

A tokamak is a toroidal chamber which uses a strong toroidal magnetic field, Bϕ, to contain a
high temperature plasma within the torus. Charged particles cannot easily move across strong
magnetic fields and if the fields are closed into nested surfaces, then deuterium and tritium ions
trapped in this way and colliding with sufficient energy to overcome their repulsive Coulomb
potential, will fuse and liberate energy. The toroidal field is produced by external electric
currents flowing in coils wound around the torus, as shown in Fig. 1.1. Superimposed on the
toroidal field is a much weaker poloidal field, Bθ, generated by an electric current Ip flowing
in the plasma around the torus. The plasma forms the secondary circuit of a transformer,
so that Ip is induced by changing the magnetic flux BT passing through the torus, which is
usually carried by an iron core as indicated in the figure.
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Figure 1.1: Tokamak currents and fields: (a) toroidal plasma current induced by transformer,
(b) primary winding
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In a plasma consisting of deuterium, or deuterium mixed with tritium, the fusion reactions

D2 + D2 →
{

He3 + n1 + 3.27 MeV

T3 + H1 + 4.03 MeV

and

D2 + He3 → He4 + H1 + 18.3 MeV

D2 + T3 → He4 + n1 + 17.6 MeV

will occur frequently if the ion temperature, Ti, and the ion number density, ni, are large
enough. Furthermore, in a fusion reactor these high values of Ti and ni must be maintained
long enough for the energy liberated by fusion to more than balance the energy losses due
to radiation, conduction, convection and neutron flux. Let τE be the time it takes these loss
processes to remove all the energy from the system, then for a given value of niτE there
is a minimum temperature at which the plasma is said to ignite, i.e. at which the liberated
fusion energy is just adequate to balance all losses. As D-D plasmas require considerably
higher temperatures to achieve ignition, almost all reactor proposals have concentrated on
D-T fusion.

Figure 1.2: Ignition curve for a D-T plasma

Figure 1.2 shows the ignition curve for a D-T plasma. It has a minimum at a temperature
of about 30 keV, where for ignition we need niτE > 1.5×1020 m−3s. A slightly lower bound
(niτE > 6×1019 m−3s) known as Lawson’s criterion (Lawson 1957) is obtained if a con-
tinuous power supply from outside the system is used to compensate transport and radiation
losses. Combining the neτE value with T̂ ∼ 10 keV, we obtain

τEniT̂ > 3×1021 s m−3 keV , (1.1)
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which is based on the assumption that the number density and temperature profiles across the
minor radius are flat. When allowance is made for typical profile shapes, and the constraint is
applied to the peak values, T0 and ni0 of the temperature and number density profiles, (1.1) is
replaced by

τEni0T̂0 > 5×1021 s m−3 keV .

Observations show that electron energy loses are dominant and in a pure D-T plasma, by
charge neutrality, ni = ne, and so to a good approximation the left-hand side of (1.1) can be
replaced by τEeneT̂e.

Let B denote the strength of the magnetic field1, then for a reason explained in the first of
the plasma physics notes in the Appendix, B2/2µ0 is called the magnetic pressure, where µ0

is the free-space permeability. An important parameter in plasma physics is the ratio of the
plasma pressure p to the magnetic pressure, which is known as the plasma beta,

β ≡ 2µ0p

B2
. (1.2)

The power output for a given magnetic field and plasma assembly is proportional to the square
of beta, and for an adequate return on an energy investment in magnetic fields, it has been
estimated that in a reactor β should exceed 0.1.

Figure 1.3: The Joint European Torus (JET)

1Strictly the magnetic induction, but the misnomer ‘field’ is commonly adopted in plasma physics.
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1.1.2 Some early tokamaks

The advantage of the Russian tokamak machine over similar toroidal devices that were being
developed in the United States and Great Britain at the same time, lay in the better stability
obtained by using much stronger toroidal magnetic fields. ‘Stability’ in this context means
no more than the persistence of the magnetic fields and electric currents — at least in the
earlier machines — for times of the order of milliseconds. The British ZETA machine, which
received much publicity in the 1950s, was so-called ‘stable’ for less than about 5 milliseconds,
whereas the discharge in comparable tokamaks lasted over ten times longer.

In his review of the history of tokamak research from 1955 to 1980, Rutherford (1980)
noted that this confinement device was responsible for more than half the articles published
in the specialist journal Nuclear Fusion. The first substantial tokamak was T-3, built at the
Kurchatov Institute, Moscow in the 1960s. It had a minor radius of 15 cm, a major radius of
100 cm, a toroidal magnetic field of 15 kG, and carried a plasma current of 100−250 kA. In the
standard notation (see Fig. 1.4), a = 0.15 m, R0 = 1 m, Bϕ = 1.5 T, Îp = 0.1 − 0.25 MA.

Some twenty years later the Joint European Torus (JET) was constructed at a cost of
around £200 M on the Culham site at Abingdon, England, and this is currently the largest
tokamak in the world. The cross-section of the torus in JET is D-shaped, with a (horizon-
tal) width of 2.4 m and a height of 4.2 m. Its parameters are: a = 1.2 × 2.1 m, R0 = 3 m,
Bϕ = 3.5 T, Îp = 5 MA. Whereas T-3 reached electron temperatures ∼ 0.4 − 1.0 keV and
ion temperatures ∼ 0.2 keV at average electron number densities of n̄e ∼ 2×1019 m−3 and
energy confinement times of only a few milliseconds, by 1986 JET had achieved Te ∼ 6 keV,
Ti ∼ 12 keV, n̄e ∼ 3.5×1019 m−3 and τE ∼ 0.9 s, although not simultaneously. However,
from (1.1) increases by factors of 3 in Ti and 5 in niτE were still required for ignition.

Wesson (2004) gives details of forty-four tokamaks built up to 1985 in England, France,
Germany, Italy, Japan, USA, and USSR; Table 1.1 lists those built since 1975. Notice that
under the column of the minor radius, DOUBLET III and JET have two lengths written as
a × b where b is the half-height of the plasma and a is the minor radius, or half-width of the
plasma; these lengths serve as a rough specification of D-shaped cross sections (e.g. JET’s

Table 1.1: Typical values of tokamak parameters (not simultaneous)

Machine year R0 a Bϕ Îp n̄e T̂e0 T̂i0 τE

(m) (m) (T) (MA) 10−19m−3 (keV) (keV) (ms)

DITE 1975 1.17 0.26 2.7 0.2 5 0.7 0.6 14
PLT 1975 1.3 0.40 3.5 0.6 5 3 3 40
T-10 1975 1.5 0.37 4.5 0.5 4 1.4 0.7 50
DOUBLET III 1979 1.43 0.44 × 0.75 2.4 0.9 10 4 4 100
TFTR 1982 2.4 0.80 5.0 2.2 4 2 8 200
JET 1983 3.0 1.2 × 2.1 3.5 5.0 3.5 6 8 500
TEXTOR 1983 1.75 0.46 2.0 0.4 3 1.2 0.8 40
JT-60 1985 3.0 0.9 4.5 2.0 7 3 5 100
DIII-D 1986 1.67 0.67 2.1 5.0 8 26 20 160
ASDEC (upgrade) 1991 1.65 0.50 3.9 1.4 11
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vacuum vessel shown in Fig. 1.3). The elongation of the cross-section follows from a solution
of the MHD equilibrium equations, which determine the magnetic field structure appropriate
for a given choice of pressure and current profiles (Section 2.1). However, in this text to
simplify the analysis with relatively little impact on general conclusions concerning transport,
the ‘elongation’ variable, κ = b/a, will be taken to be unity.

1.1.3 Toroidal current

There is one evident disadvantage in the tokamak design as illustrated in Fig. 1.1, namely that
its operation is necessarily pulsed because resistivity will gradually dissipate the inductive
current and switch off the discharge. Quite apart from its role in heating the plasma through
ohmic dissipation, a toroidal current is essential to maintain an elongated toroidal system in
equilibrium, for without the Bθ field that it generates, there is a vertical instability that causes
the plasma to drift in the direction of elongation. The force driving this instability results from
the interaction of the poloidal field coil currents (see Fig. 1.1) and the plasma current. In some
cases feedback control circuitry is necessary to maintain the plasma’s position (see Wesson,
2004, p. 342).

Early tokamaks, which relied entirely on inductive currents for both heating and stabi-
lization, were therefore designed for pulsed operation in the hope that the pulse time could
be made sufficiently long for fusion to be effective; but these times are measured in seconds
rather than minutes and are too short for reactor operation.

Finding other ways of continuously heating the plasma and of maintaining the stabilizing
toroidal current, has been an important quest in recent tokamak research. Steady currents can
be driven around the torus with radio-frequency (RF) waves and also with neutral beam injec-
tion (NBI), but there are limits to this type of ‘current drive’ that make it unable to generate
all of the current required for a stable reactor. One such constraint, called the ‘Greenwald’
limit, is concerned with the avoidance of major disruptions (Section 6.2.1). For a survey of
NBI current drive the reader is referred to ITER team (1999, p. 2527).

However, there is another mechanism that generates non-inductive toroidal currents. It is
widely believed that a large current of this type, termed a ‘bootstrap’ current, can be generated
simply by the existence of radial gradients in the plasma density and temperature. Observa-
tions certainly support the presence of a non-inductive current, but its origin is not the boot-
strap phenomenon, for as shown in Section 3.4.3, such a current does not satisfy Ampère’s
law and cannot exist. In Section 5.3.2 we show that the observed non-inductive current is a
result of the toroidal electric field generated by the radial flow of the plasma across the Bθ

magnetic field.

Let vD be the radial velocity of the plasma flowing across the tokamak magnetic field, then
the toroidal electric field, say ELR

ϕ , driving the non-inductive current is proportional to the
product vDBθ , so the ‘price’ of this potentially steady current is the continual loss of plasma
from the torus. Regular refueling by beam injection near the minor axis is therefore required
to maintain the current, a process with its own limitations (see Section 1.4.2).
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Figure 1.4: Cylindrical and local coordinates for a tokamak machine

1.2 Basic tokamak variables

1.2.1 Aspect ratio

Figure 1.4 shows the coordinate systems for a tokamak of circular cross-section. The local
radial dimension lies in the range 0 < r < a, where a is the maximum radius of the plasma. In
order to prevent the plasma reaching the vacuum vessel, either a material limiter or a magnetic
divertor is used, as shown in Fig. 1.5. Most tokamaks have limiters, but divertors have the
merit of reducing the influx of ionized impurities into the interior of the plasma by diverting
them into an outer “scrape-off” layer.

The tokamak aspect ratio, R0/a, usually lies between 3 and 5 and as we shall see later, it
has an important role in plasma energy confinement.

Figure 1.5: Separation of plasma from wall by (a) a limiter, (b) a divertor
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Figure 1.6: Nested magnetic surfaces confining a plasma

1.2.2 Beta

Several forms of the ratio of the average plasma pressure to the magnetic field pressure2 arise
in tokamak theory. For simplicity we shall assume that the magnetic surfaces have concentric,
circular cross-sections and that conditions are independent of the value of the toroidal variable,
ϕ, defined in Fig. 1.4. To obtain the volume-averaged pressure 〈p〉, we integrate over a cross-
section ϕ = const.,

〈p〉 =
∫

p dS

/∫
dS =

2
a2

∫ a

0

p(r)r dr . (1.3)

From the ϕ̂-component of the differential form of Ampère’s law relating the magnetic
field vector B to the electric current density j, viz. ∇×B = µ0j, we get

1
r

∂

∂r

(
rBθ

)
= µ0jϕ , Bθ =

µ0

r

∫ r

0

jϕ(r′)r′ dr′ (1.4)

and

Ip = 2π

∫ a

0

jϕr dr = 2πaBθa/µ0 , (1.5)

where Ip is the total current flowing around the torus and Bθa is the poloidal magnetic field
at the limiter, r = a. In the following we shall assume that small variations in Bϕ across the
plasma cross-section can be ignored.

In Section A.1 it is shown that in equilibrium configurations, B and j lie on constant
pressure surfaces, which if closed, appear as continuous windings of intersecting magnetic
field and current lines; these are said to lie on ‘magnetic surfaces’ and p is termed a ‘surface
quantity’. Figure 1.6 shows a set of nested surfaces, with a limit line at their center, known as
the ‘magnetic axis’. If p increases towards the axis, its negative gradient is balanced by the
j×B force directed inwards; the plasma is thus confined by the magnetic force.

2See Section A.1, the first of the Plasma Physics Notes, collected in the Appendix and mostly intended
for readers not familiar with the equations of plasma physics. The Notes are referenced in the text as Sec-
tion A.1, Section A.2 . . . and the equations are numbered consecutively throughout the Appendix: (A.1), (A.2),. . . ,
(A.100),. . . , etc.
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Functions of importance in tokamak theory are the toroidal beta βt and the poloidal beta
βp, which are defined by

βt =
2µ0〈p〉

B2
ϕ

, βp =
2µ0〈p〉
B2

θa

=
8π2a2〈p〉

µ0I2
p

. (1.6)

In Section 1.1 we mentioned the connection between βt and the economic viability of a
tokamak reactor, which expressed as a percentage, is βt ≥ 10%; this is only a rough estimate
of the economic constraint — higher values may be required.

On the other hand, ideal MHD stability imposes an upper limit on βt. The type of in-
stability involved is termed a ‘ballooning mode’ (see Section 6.3.2), and the outcome are the
approximate β-limits,

βt ≤ 0.15
a

R0qa
, βp ≤ 0.15

R0qa

a

(
qa ≡ aBϕ

R0Bθa

)
,

or
βN ≡ 20βt

R0qa

a
= 20βp

a

R0qa
≤ 3.5 , (1.7)

where βN is called the ‘normalized’ beta and qa is the safety factor defined in the following
section.

1.2.3 Safety factor

The safety factor is another important parameter, so named because of its association with
stability, as explained in Section A.24. In a large aspect ratio tokamak with a circular cross-
section, this parameter is defined by

q(r) =
rBϕ

R0Bθ
=

ε
S

, (1.8)

where

ε ≡ r

R0
, S ≡ Bθ

Bϕ
=

µ0

Bϕr

∫ r

0

jϕ(r′)r′ dr′ . (1.9)

In tokamaks S is much smaller than unity.
At the limiter by (1.5) and (1.18) q has the value

qa =
aBϕ

R0Bθa
=

2πa2

µ0Ip

Bϕ

R0
=

5a2Bϕ

ÎpR0

,
(
Îp in MA

)
. (1.10)

Hence the average current density, 〈jϕ〉 = Ip/πa2, is

µ0〈jϕ〉 =
2Bϕ

R0qa
. (1.11)

By expanding jϕ in the form jϕ = jϕ0 + O(r2), where jϕ0 is the current density on the minor
axis, we find from (1.8) and (1.9) that on the magnetic axis (r = 0), the safety factor has the
value

q0 =
2Bϕ

µ0jϕ0R0
. (1.12)
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From (1.11) and (1.12) we obtain

qa/q0 = jϕ0/〈jϕ〉 , (1.13)

hence large values of qa/q0 correspond to peaked current profiles.
The general definition of q is

q =
∮

Bϕ

R0Bθ
ds ,

where the integral is along a closed path enclosing the minor axis and lying on a specific
magnetic surface; thus q is a surface quantity.

1.2.4 Z-effective

Tokamaks usually have several types of ion in their plasmas, due mainly to impurities en-
tering from the torus walls, and a convenient measure of the extent to which the plasma is
contaminated is the function known as ‘Z-effective’, defined by

neZeff =
∑

s

nsZ
2
s ne =

∑
s

nsZs ,

where Zs is the charge number for the s-type ion. In a pure hydrogen plasma, Zeff = 1, but few
tokamaks achieve values even near this ideal. Pfeiffer and Waltz (1979) list 118 observations
on 11 early tokamaks. Many of these machines were heavily contaminated, the average Zeff

being about 5. Initially the JET tokamak had Zeff lying in a range extending from above 2 to
about 10 (Christiansen et al. 1985). More recently this has dropped to a range from just below
2 to about 3.5.

Figure 1.7, from the JET Team (1990), illustrates the importance of the choice of boundary
materials in limiter tokamaks. An empirical law for JET of the type Zeff ∝ 1/(n0.9

19 q0.7
a ),

Figure 1.7: Zeff as a function of density with either graphite or beryllium limiters
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where n19 = n/1019, has been found (Cordey et al. 1985b), while Matthews et al. (1997)
have compiled a multi-machine data base showing that Zeff depends on the radiated energy,
the plasma surface area and n2

e for all divertor tokamaks, independent of geometry.
Impurity concentrations may be determined by analyzing resonance line intensities in the

vacuum UV, supplemented by measurements of soft X-ray spectra; this data, coupled with a
theory for ionization rates, enables Zeff to be estimated. Another method determines Zeff from
the visible bremsstrahlung radiation. In JET the two methods yield values for Zeff that are
usually within ±1 of each other. The main impurities in JET are C (2–3 per cent), O (1–4 per
cent), Cl and Ni (Denne et al. 1985).

A further method of estimating Zeff relies on an application of Spitzer’s (1962) formula for
the parallel resistivity (see Section A.2). Measurements of the plasma current Ip, the ‘loop’
voltage V� around the torus, and assumptions about the radial distribution of the variables,
enables Zeff to be calculated from the integral

Ip =
∫

jϕ dS = 2π

∫ a

0

ϕ̂ · σ · (
E + v ×B

)
dr ,

where σ is the conductivity tensor, E is the electric field, and v is the plasma velocity. We
also need the equation for the electron collision interval (see (A.16) in Section A.2),

τe =
2.75×105

ln Λ
T

3/2
e

neZeff
, (1.14)

and the relation

Vt/2πR0 = ϕ̂ · (
E + v ×B

)
= Eϕ + vrBθ , (1.15)

defining the total voltage Vt. It is usual to omit the term vrBθ compared with Eϕ, but this can
result in appreciable errors, as will be explained in Section 5.3.2.

An important modification to this method (Christiansen et al. 1985) replaces the parallel
conductivity σ‖ (see (A.45)) by the so-called neoclassical (Section 1.5.1) conductivity, one
formula for which is (Wesson 2004, p. 174)

σ̂‖ = gσ‖ ,
(
g ≈ (

1 − ε
1
2
)2

, ε = r/R0

)
. (1.16)

As will be explained in Section 2.4.4, the factor g is due to the trapping of particles between
magnetic mirrors in the tokamak field, which reduces the number of electrons available to
conduct electric currents. (In the rest of this text, we shall use σ̂‖ and η̂ ‖ = η/g to denote the
‘trapped particle’ values of the parallel conductivity and parallel resistivity.)

1.3 Global confinement times

Overall measures of the confinement properties of tokamaks are provided by the times taken
for the whole of their mass, momentum, and energy to be lost in the absence of replacements.
In the following we shall ignore the toroidal curvature, treating the cross-sections as having
axial symmetry about the minor axis. Alternately, we could take poloidal averages to remove



1.3 Global confinement times 11

the θ-dependence of the variables, but to first-order in ε = r/R0 the results are the same. The
most frequently used and important global confinement time is that for the plasma thermal
energy. Before defining it, we need an appropriate form of the energy equation.

From the equation of plasma motion (see (A.3)),



{ ∂

∂t
+ v · ∇

}
v + ∇p = j×B ,

where 
 is the plasma density and v is the fluid velocity, we find that

v · (∇p − j×B
)

= 
v ·
{∂v

∂t
+ v · ∇v

}
. (1.17)

Let vD denote the radial velocity of the plasma, which with good plasma confinement, we
expect to be quite small. In tokamaks the force lies in the radial direction and (1.17) shows
that v · (∇p− j×B

)
is O(v2

D), small enough to be removed from the plasma energy equation
defined in (A.29). Also the poloidal average of jθEθ is zero, whence

∂(
u)
∂t

+
1
r

∂

∂r

{
r
(

hvD + Qr

)}
= jϕEϕ − L , (1.18)

where 
u (= 3
2 p) and 
h (= 5

2 p) are the internal energy and enthalpy densities, Qr is the
sum of the electron and ion heat fluxes and L is the rate at which energy lost by radiation.

1.3.1 Energy confinement time

The total thermal energy in the torus is proportional to

W =
1
2π

∫
3
2 p dS =

∫ a

0

3
2kB(neTe + niTi) r dr , (1.19)

so if (1.18) is integrated over a plasma cross-section orthogonal to the minor axis, the result
can be expressed

∂

∂t

(
ln W

)
+

1
τE

=
1
τ∗

E

− 1
τE

R
, (1.20)

where

τE ≡ W
/[

r(5
2pvD + Qr)

]
r=a

, (1.21)

τ∗E ≡ W

/∫ a

0

jϕEϕr dr , (1.22)

and
τE

R ≡ W

/∫ a

0

L r dr . (1.23)

These expressions define the energy confinement time τE, the energy replacement time τ∗
E

,
and the radiation loss time τE

R. In deriving (1.22) it is assumed that τ∗E is due only to ohmic
heating, jϕEϕ. With other methods of supplying thermal energy, the denominator on the right
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hand side of (1.22) is modified to give the total power input. An apparent difficulty in the
definition of τE is that the denominator is evaluated at the limiter, where the variables will be
sensitive to boundary conditions. A method of avoiding this strong local dependence will be
given in Section 4.1.3.

The radiation losses vary considerably from one tokamak to the next, depending on the
amount and type of impurities that have entered from the walls. With a relatively clean plasma
the radiated power will lie between 10 and 20 per cent of the input power, but with contami-
nated plasmas, Zeff can be 5 or larger, resulting in some 50 per cent or more of the input power
being radiated. Impurity radiation typically peaks at temperatures less than 100 eV (Ashby and
Hughes 1981), so that clean, hot plasmas radiate mostly from the peripheral regions. In these
cases the radiation term in (1.18) can be neglected almost up to the limiter position. If steady
conditions can be assumed, (1.20) gives

τE =
τ∗EτE

R

τE
R − τ∗E

. (1.24)

Values of τ∗
E

and, with more difficulty, τE
R, can be deduced from observations, and a theory of

the transport of energy and mass in tokamaks would enable τE to be calculated. Allowing for
the uncertainty in the observations, a satisfactory theory should yield values of τE agreeing
with the right-hand side of (1.24) to within a factor of about 2 for a wide range of tokamak
conditions.

Besides giving correct values for the confinement time, a tokamak transport theory must
also pass the more difficult test of giving the correct radial dependence for dependent variables
like Te and ne. When the mass and thermal diffusivities are themselves complicated, non-
linear functions of these variables, a particularly severe test for the theory is that the radial
dependencies that it predicts for these diffusivities agree with the experimental distributions
of these quantities, a issue to which we shall return in Section 4.1.2.

1.3.2 Electron-energy confinement time

In many tokamak experiments the ion temperature and density are poorly known and in these
cases it is usual to introduce the electron analogues of τE and τ∗E . The energy equation for the
electron gas is (see (A.28)):

∂

∂t

(

eue

)
+ ∇ · (


eheve + Qe

)
= j · E + v · (∇pe − j×B

)
+ Qei − Le ,

where we have used the approximation ve = v − j/ene, which follows from the definition of
j given in (A.11), the relation v = (mivi + meve)/(mi + me) and me 
 mi.

It follows from ∇ · j = 0 and the assumed geometry that ∂jr/∂r = 0, so that
vir = ver = vD (known as the ambipolar condition). From (1.17) and Dalton’s law,
p = pi + pe, we find that for the electron gas (1.18) is replaced by:

∂(
eue)
∂t

+
1
r

∂

∂r

{
r
(

ehevD + Qer

)}
= jϕEϕ − vD

∂pi

∂r
+ Qei − Le . (1.25)

We also need the perfect gas law, pe = nekBTe, where kB is Boltzmann’s constant3.
3There is a list of physical constants on page XV.
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The electron time scales are:

τEe ≡ We

/[
r(5

2pevD + Qer)
]
r=a

, (1.26)

τ∗
Ee ≡ We

/∫ a

0

jϕEϕr dr , (1.27)

and
τE

R
e ≡ We

/∫ a

0

Le r dr , (1.28)

where

We =
∫ a

0

3
2kBneTe r dr . (1.29)

However, the appearance of −vD∂pi/∂r and Qei on the right-hand side of (1.25) requires a
knowledge of ni(r) and Ti(r) for an accurate determination of τE; these terms are usually
neglected, which is justified if approximate estimates are sufficient.

1.3.3 Particle confinement time

Balance of electron numbers gives

∂ne

∂t
+

1
r

∂

∂r

(
rnevD

)
= Se(r) , (1.30)

where Se(r) is the electron number density source term. In the steady state this equation
yields

τp = τ ∗
p , (1.31)

where

τp ≡
∫ a

0

ner dr
/[

rnevD

]
r=a

, (1.32)

is the plasma confinement time and

τ ∗
p ≡

∫ a

0

ner dr

/∫ a

0

Ser dr . (1.33)

is the plasma replacement time.
The main problem in using (1.31) to test a theory of mass diffusivity lies in finding an

estimate for Se(r). In clean plasmas Se is largely due to the ionization of the working gas,
which raises the problem of the distribution of the neutrals. In highly contaminated plasmas
ionization of impurities is the main source of electrons, so a theory giving their distribution is
required. Estimates of τ ∗

p can be made from observations of the response of the discharge to
a brief puff of neutral gas admitted through a fast-acting valve. These difficulties are reflected
in the fact that relatively few data are available for the particle replacement time; some of the
early observations have been listed by Hugill (1983).
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1.3.4 Momentum confinement time

Let the plasma be subject to a force density Fb due to a beam of particles being injected from
an outside source, then the momentum equation for the plasma as a whole reads (see (A.7))

∂

∂t

(

v

)
+ ∇ · (


vv
)

+ ∇p + ∇ · = j×B + Fb .

The forces j×B and ∇p lie along r̂, where r̂ is unit vector in the radial direction, therefore
in the axi-symmetric geometry described earlier, this equation has the toroidal component,

∂

∂t

(

vϕ

)
+

1
r

∂

∂r

(
r
vrvϕ

)
+ ∇ · · ϕ̂ = Fb · ϕ̂ , (1.34)

where ϕ̂ is unit vector in the toroidal direction. The toroidal momentum confinement and
replacement times are:

τϕ = Hϕ

{∫ a

0

∇ · · ϕ̂ r dr +
[
r
vrvϕ

]
a

}−1

, (1.35)

and
τ ∗
ϕ = Hϕ

/∫ a

0

Fb · ϕ̂ r dr =
2π2R2

0a
2Hϕ

Beam torque
, (1.36)

where

Hϕ ≡
∫ a

0


vϕr dr , (1.37)

and the beam torque is about the major axis. Similar definitions can be given for the poloidal
momentum time-scales. In the steady-state (1.34) has the integral τϕ = τ ∗

ϕ .
Collisions ensure that all ions have much the same toroidal speed, so that the Doppler shift

of spectroscopic lines from various impurities can be used to determine vϕ. Estimates of the
beam torque supplied to the plasma can be obtained by applying Monte Carlo methods to the
beam particles, and then values of τ ∗

ϕ given by (1.36) may be used to check any theory yielding
values for τϕ. Also, an approximate value of τϕ may be obtained directly by switching off
the beam and determining the e-folding time, τsϕ, for vϕ to decay to ohmic collisional levels.
With linear viscosity, we would expect τsϕ ≈ τϕ, although this proves to be inaccurate (see
Section 5.4.3).

1.4 Heating

A brief account of the various methods of heating tokamak plasmas is appropriate at this
stage, since the central problem that will concern us later is the loss of this thermal energy
at rates many times greater than initially predicted by the usual theories. Figure 1.2 indicates
the magnitude of the heating task. Three types of heating are commonly used — ohmic
heating (OH), neutral beam injection (NBI) and radio-frequency heating (RFH); unfortunately
to date the temperatures achieved by these methods are somewhat lower than those required
for ignition.
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1.4.1 Ohmic heating

The experimental evidence in the early experiments (Hugill 1983) appeared to support the
Spitzer formula for the parallel conductivity, which in a hydrogen plasma is (see (A.18))

σ‖ = 1.98 e2neτe/me . (1.38)

The validity of the neoclassical4 factor g appearing in (1.16) is difficult to test in small toka-
maks, but in Section 4.5.3 it will shown that it increases the resistivity in JET by a factor of
∼ 2.86 and ohmic heating is similarly enhanced.

Provided the transformer action illustrated in Fig. 1.1 occurs on a time-scale long enough
to permit the electric field to penetrate the plasma, it may be assumed that Eϕ is approximately
constant across the plasma cross-section. In this case the current profile can be deduced from
the temperature profile, since by Ohm’s law (jϕ = σ‖Eϕ), (1.14) and (1.38) it follows that

jϕ ∝ T 3/2
e /Zeff . (1.39)

The initial heating in tokamaks is due to ohmic dissipation of the toroidal current, which
occurs at the rate,

PΩ = η̂‖ j 2
ϕ

(
η̂‖ ≡ η‖/g

)
(1.40)

per unit volume. While this is sufficient to achieve temperatures up to 1 keV or so, because η‖

is proportional to T
−3/2
e , it becomes inefficient at higher temperatures. An estimate for PΩ at

the center of the plasma can be found from (1.12) and the approximation q0 ≈ 1; thus with
g ≈ 0.35 for JET (see Section 4.5.3),

PΩ0 = η̂‖

(
2Bϕ

µ0R0

)2

≈ 0.20 T̂−3/2
e0

(
Bϕ/R0

)2
Zeff MW m−3 , (1.41)

where T̂e0 is the central temperature in keV.
This input power first heats the electrons, consequently for equilibrium it should balance

the loss rate PL ∼ 3
2kBne0Te0/τEe. Later (Section 4.1.3) we shall show that in low βp plasmas,

τEe ≈ 9.4×10−22〈ne〉aR2
0qa〈T̂e〉−1/2 , (1.42)

where for circular cross-sections,

〈ne〉 ≡ 2
a2

∫ a

0

ne(r) r dr , (1.43)

and
〈Te〉 ≡ 2

〈ne〉a2

∫ a

0

ne(r)Te(r) r dr . (1.44)

With typical profiles (see Section 4.1.1), ne0 ≈ 2.25〈ne〉 and Te0 ≈ 2.1〈Te〉, therefore

PL = 0.41
T̂ 3/2

e0

aR2
0qa

MW m−3 . (1.45)

4For a brief description of neoclassical transport see Section 1.5.1; a fuller account is given in Section 3.4.
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Equating PL and PΩ0 we arrive at the approximate relation

T̂e0 ≈ 0.79
(
aqa

)1/3
B2/3

ϕ Zeff keV . (1.46)

In JET, under typical ohmic heating conditions (a = 1.2, qa = 3, Bϕ = 3), this formula
gives T̂e0 ∼ 2 keV. A typical pre-1980 tokamak (Pfeiffer and Waltz 1979) has a = 0.2,
qa = 5, Bϕ = 3, and by (1.46), T̂e0 ∼ 1.6 keV; these temperatures are similar to those ob-
tained in experiments. The central temperatures are subject to considerable variations because
of MHD instabilities and impurities, so (1.46) is not expected to be accurate, but at least it is
sufficient to indicate the limitations of ohmic heating.

1.4.2 Neutral beam heating

When a beam of high-velocity neutral particles is injected into a tokamak plasma, it becomes
ionized by charge exchange and particle collisions. The fast ions that result are then slowed
down by Coulomb collisions, transferring most of their energy into electron thermal energy.

Let mb, vb, and ξb = 1
2mbv

2
b denote the beam ion mass, velocity, and energy. The drag

force Fbe that the beam particles experience due to collisions with the electrons is mbvb/τbe

where τbe is the slowing-down time for beam particles. The rate at which particle momentum
is lost is proportional to the masses involved, thus τb/τe = mb/Zme. Hence

τbe =
mb

Zme
τe

(
τe =

2.75×105

ln Λ
T

3/2
e

Zne

)
. (1.47)

The collision interval is only weakly dependent on the Coulomb logarithm ln Λ and in evaluat-
ing τe for application to tokamaks, we shall adopt the value ln Λ = 17 as being is sufficiently
accurate for typical temperatures and densities (see (A.17)).

The rate of energy loss is Fbevb = 2ξb/τbe and therefore the electrons are heated at the
rate Pe = 2ξb/τbe. Evaluating the constant we get

Pe = 1.71×10−18 neξb

AbT̂
3/2
e

keV s−1
(
T̂e, ξb in keV, Ab ≡ mb

mp

)
, (1.48)

per beam ion.
Similarly, we find that the plasma ions are heated at the rate

Pi =
mb

mb + mi

2ξb

τbi
≈ 0.97×10−17 niA

1
2
b

Aiξ
1
2
b

, (1.49)

where the energy has been divided between the beam ions and the plasma ions inversely as
their masses (cf. (A.24)) and the slowing-down time for a beam colliding with ions is given
by (Spitzer 1962),

τbi =
mb

mb + mi

4πε0
2mbmiv

3
b

nie4 ln Λ
. (1.50)
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Therefore

Pi = 0.97×10−16 niA
1
2
b

Aiξ
1
2
b

keV s−1
(
ξb in keV

)
. (1.51)

Let

ξc ≡ 14.8AbT̂e(
ZiAi

)3/2
, (1.52)

then the sum of (1.48) and (1.51), i.e. the total plasma heating per beam ion, can be expressed

P = 1.71×10−18 neξb

AbT̂
3/2
e

(
1 +

(ξc

ξb

) 3
2

)
keV s−1 . (1.53)

When ξb = ξc, the electron and ion heating rates are equal.
Injection energies are usually greater than ξc, so at first the electrons are preferentially

heated; as the beam ions slow down and ξb falls below ξc, it is the ions that receive most of
the energy. The net effect is that the total electron heating and ion heating are comparable; ion
temperatures over 15 keV have been achieved in JET by NBI.

To produce a neutral beam it is first necessary to charge the particles by ionization so
that they can be accelerated by an electric field. Following this, they are neutralized by charge
exchange. But there is a balance between the rates at which they are neutralized and re-ionized
by collisions, so a completely neutral beam is not possible. Unfortunately, the ionized fraction
in the beam increases rapidly with increasing beam energy, and since these beam ions would
not penetrate the tokamak field, but would be deflected on to the walls of the injection port,
they are removed magnetically from the beam and dumped; thus the beam efficiency falls off
rapidly with beam energy. A reactor plasma might be over 2 m in radius (see Section 6.5.2),
so for the beam to penetrate far enough to deposit the energy in the central regions implies a
very inefficient beam.

1.4.3 Radio-frequency heating

Radio-frequency (RF) heating depends on the transfer of energy from electromagnetic waves
generated by an external source to particles at suitable resonance frequencies. Resonance
absorption of wave energy does not involve collisions and unlike ohmic heating, the process
becomes more efficient with increasing temperature. A multi-species plasma in a magnetic
field has several resonance frequencies capable of absorbing the energy of incident waves,
and gradients in the number density and temperature mean that these resonances occur in
narrow regions, admitting the possibility of localized heating and hence of some control over
the temperature and current profiles across the minor cross-section. The cyclotron frequencies
are defined in (A.33), viz. ωc = QB/m, where Q is the particle charge and m is its mass.

Ion-cyclotron resonance heating (ICRH) (ω ∼ ωci), lower hybrid resonance heating
(LHRH), (ωce < ω < ωci) and electron-cyclotron resonance heating (ECRH) (ω ∼ ωce)
have proved to be the most successful of the RF experiments, and temperatures have been
raised substantially (up to 5 keV). Lower hybrid resonance has been used in JET to modify
the current distribution by what is termed “current drive”. The waves are directed along the
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field lines and absorption takes place by Landau damping (e.g. see Woods 2004, p. 123) of
those plasma electrons that have a parallel velocity similar to the phase velocity.

The theory of these high-frequency waves and their absorption by Landau damping is an
extensive and much researched subject, but falls outside the range of this introductory text;
Porkolab (1979) has written a general survey, and Wesson (2004) gives a review with many
references.

1.5 Electron energy confinement time

1.5.1 Ohmically-heated tokamaks

A large number of early experiments concerned with transport in tokamaks has been reported,
mainly in the journal Nuclear Fusion. Hugill’s review lists 237 papers and deals almost en-
tirely with ohmically-heated discharges (Hugill 1983). The observations reveal two regimes,
corresponding to low and high beta plasmas with continuous variation between. In the pre-
1980 and mainly low beta tokamaks, the empirical scaling laws inferred from observations
were simple, with confidence about the linear dependence of τEe on the line averaged density
n̄e defined in (1.56), but not much else; this situation has changed and now there is general
agreement about the dependence of τEe on all the major plasma parameters in the low beta
regime.

Neoclassical transport

We shall refer to ‘neoclassical’ transport several times before reaching Section 3.1.4 and Sec-
tion 3.4, where the physical basis of the phenomenon will be discussed in detail. For the
present the following remarks will serve to identify the distinction implied by the prefix ‘neo’.

By ‘classical transport’ is meant the diffusion of some property through the plasma carried
by individual ions or electrons moving under the usual Lorentz force, without any disturbance
of their orbits by turbulence or instabilities. Fourier’s law for the diffusive transport of energy
is a good example:

q = −κ · ∇T , (1.54)

where κ is the thermal conductivity tensor, whose structure is described in Section A.7. The
classical value of κ can be derived from kinetic theory. Particles move through a mean free
path (the displacement between successive collisions) and then pass on their excess energy
by colliding with particles that have arrived from a cooler part of the plasma. In a direction
normal to strong magnetic fields, the mean free paths are just twice the Larmor radius (see
Fig. A.2), so transport is considerably inhibited by the limited displacements possible.

Diffusive transport is very different from convective transport in which it is the bodily
movement of fluid elements that moves (convects) the energy through the plasma. Both kinds
of transport are evident in equation (1.26), in which the term 5

2pevD is due to the convection
of electron energy, while Qer represents the diffusion of electron thermal energy.

Neoclassical transport differs from classical transport in that for many particles rather
large displacements are possible during their transit between collisions. These particles are
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trapped in the tokamak magnetic fields and as a consequence trace rather large, banana-shaped
orbits whose widths are many times greater than a Larmor radius; this phenomenon increases
the cross-field transport of heat and momentum to values several hundred times the classical
value. Neoclassical transport was once considered to be the explanation for the rapid loss of
heat from tokamaks, which occurs hundreds of times faster than early expectations based on
the classical theory. However, tokamak losses exceed those predicted by neoclassical theory
by roughly two orders of magnitude, so attention has turned to turbulent transport to explain
both energy and particle losses. We shall discuss these problems in more detail in Chapter 3.

(i) Low beta regime

With ohmic heating it became standard practice to express τEe in the form

τEe = 10−αn̄αn
e aαaRαR

0 qαq
a 〈Te〉αT Zeff

αZ . . . , (1.55)

where the indices α, αn, αa, . . . are chosen to obtain the best statistical fit for a wide range
of observations. The density-averaged temperature 〈Te〉 used above is defined in (1.44); for
density, instead of the volume-averaged density defined in (1.43), it is usual to adopt the line-
averaged density defined by

n̄e ≡ 1
a

∫ a

0

ne dr , (1.56)

which is more closely related to actual observations.
Of course there is no a priori reason why (1.55) should be the correct form and later (in

Section 4.2) we shall find from a theoretical approach that a sum of two terms is required to
explain the functional dependence of τEe. The statistical approach predates the existence of a
reliable theory and in fact now provides a useful test that any proposed theory should pass.

One variable surprisingly absent from (1.55) is the magnetic field strength B, but out of a
dozen empirical scaling laws of this type reported by Hugill (1983), only one involved B, and
in any case (1.10), viz. qa = 5a2Bϕ/ÎpR0, could have been used to remove Bϕ in favor of
the plasma current and the variables already appearing in (1.55).

To determine the indices is not straightforward, since it is rarely possible to vary the pa-
rameters one at a time. Furthermore, with steady-state, ohmically-heated tokamaks, the tem-
perature cannot be externally controlled, and as both τEe and τE

∗
e in (1.26) and (1.27) depend

on Te, the scaling of τE
∗
e with Te masks the confinement time scaling. In principle this ambi-

guity could be overcome with the help of additional non-ohmic heating, but if this additional
heating is dominant, a new independent variable, the input power P , must be added to the
list and again the temperature dependence is obscured. However, if the radiation losses are
negligible, the value of αT in (1.55) can be deduced by dimensional analysis. For this we need
the theorem given in Section A.5, which allows us to write (1.55) in the form,

BτEe ∝ (
n̄ea

2
)αn

(〈Te〉a1/2
)αT

Ba5/4 qαq
a

(
R0/a)

)αR
Zeff

αZ a(αa+αR−2αn−αT /2−5/4)

and since the dimensional term a(··· ) cannot appear, we deduce that

αT = 2
(
αa + αR − 2αn − 5

4

)
. (1.57)
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Table 1.2: Power law indices for τEe

Experiment† α αn αa αR αq αZ αT α∗
T

1 19.02 0.90 0.98 1.63 − 0.23 − −0.88
2 18.44 1 2 − 0.75 − − −
3 20.46 1 0.25 2.75 1 − −0.5 −0.5
4 − 1 1 2 1 − − −0.5
5 20.3 1 2 1 0.5 − − −0.5
6 − 1.15 − − 0.9 − − −
7 21 1 1.04 2.04 0.5 − − −0.34

‘ideal’ − 1 1 2 1 − −0.5
†1. Pfeiffer & Waltz (1979); 118 observations on 11 tokamaks. 2. Ejima et al. (1982); Doublet III.
3. Merezhkin (see Lenov et al. (1980)); T11. 4. Efthimion et al. (1984); TFTR. 5. Equipe TFR (1980);
mainly TFR. 6. Cordey et al. (1985a); JET. 7. Goldston (1984); results combined from 12 tokamaks.

Table 1.2 lists the values of the indices obtained for a wide range of tokamak variables.
When an integer value was clearly indicated by the observations, this was chosen by some
authors even though not quite statistically optimal. Only one group ventured a value for αT ;
this was obtained indirectly, via an experimental determination of the thermal diffusivity. In
the earlier experiments the dependence on qa was not clear, but recent JET measurements give
αq = 0.9± 0.1, supporting the value of unity obtained on T11 and TFTR shown in Table 1.2.

The values of α∗
T in the last column were not given in the papers quoted; they are our

dimensional analysis values given by (1.57). The earlier tokamaks, featured in Pfeiffer and
Waltz’s numerical study, lost about half their energy by radiation, which accounts for their
relatively high adverse scaling with temperature (α∗

T = −0.88). At the bottom of Table 1.2,
the row marked ‘ideal’ gives the values of the indices that we would expect to appear in an
exact theory of electron thermal transport, at least for the density range represented in the
table. The fact that statistical analysis yields numbers for the indices close to integer values
suggests the existence of an under-pinning theory that is unlikely to involve the chaos of
turbulence. It is this theory that shall be developed in later chapters. No ‘ideal’ value for the
index α of the numerical coefficient is possible, for as we will see later, this number depends
on the temperature and density profiles.

The above description applies to τEe, but τE is bound to follow a similar pattern, be-
ing typically about 50% or so longer. In early experiments the ions reached about half the
electron temperature, which implied that although the electrons provided the dominant loss
mechanism, the losses through the ions were also somewhat larger than predicted by the early
theories. Convective energy losses are complications that will be treated later; it is usual to
treat these losses as being negligible, but the experimental evidence for this is not clear.

(ii) High beta regime

At high densities it was discovered that the empirical law τE ∝ n̄e overestimated τE, and a
weaker dependence was required (Gaudreau et al. 1977, Equipe TFR 1980). And at higher
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densities still, τE reaches a flat maximum and then starts to fall as n̄e is increased (Ejima et al.
1982). Figure 1.8 shows an example of the ‘saturation’ of τE with increasing values of n̄eqa

in TFTR (Efthimion et al. 1984).
Since higher density means an increase in collision frequency, it was presumed (Alladio

et al. 1982) that neoclassical transport — in particular ion conductivity — was responsible
for the saturation of τE. But some observations had ion conduction losses several times larger
than neoclassical values (Ejima et al. 1982). It is not clear from the observations that ion
transport is the cause of the additional losses. Goldston (1984) noted similarities in the energy
confinement between the high beta regime and the L-mode (see Section 1.5.2) for neutral beam
heating. He correctly speculated that the same transport processes might well be operating in
each case and as the losses in beam-heated plasmas are known to be dominated by electron
transport, electron losses should also be dominant in the high beta regime.

In Section 4.3.2 it will be shown that in the L-mode

τEe =
0.5

1 + 2.13βp

µ0e
2

(2me)
1
2

n̄eaR2
0qa

〈kBTe〉 1
2

,

where from (1.6) and (1.10)

βp =
2R2

0

a2

µ0〈p〉
B2

ϕ

q2
a ∝ n̄eq

2
a

a2
.

Hence at a fixed values of Bϕ and temperature,

τEe ∝ (a2/qa)βp

1 + 2.13βp
,

Figure 1.8: Total energy confinement time in TFTR
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showing that the electron energy confinement time, considered as a function of poloidal beta,
saturates when βp � 0.47, which implies the existence of a similar constraint on n̄eqa as
indicated in Fig. 1.8. An important conclusion is that we cannot expect to find an accurate
single term formula like (1.55) for τEe over the whole of the accessible βp range.

1.5.2 Auxiliary heated plasmas

By ‘auxiliary’ heating is meant either neutral beam injection (NBI) or radio-frequency heating
(RFH). One might expect the transport of energy from a magnetoplasma to be independent
of the method of heating, but it appears that this is not so in tokamaks. As the auxiliary
heating is increased from zero to levels much higher than the ohmic heating (OH), the energy
confinement time τE changes from the function in (1.55) to a rather different one; furthermore,
with NBI the electrons remain the dominant energy loss channel. The implication is that either
the electron thermal conductivity depends on the method of heating, or more likely, that some
other mechanism involving electrons becomes important. Compared with ohmic heating, RF
heating has the advantages of providing the off-axis current drive required to maintain plasma
stability, and of giving direct ion heating; it also has the merit of generating small ELMs (see
Section 6.4.2). For a review of this topic see ITER team (1999), Chapter 6.

A surprising distinction between tokamaks with divertors and those with limiters was dis-
covered (Wagner et al. 1982a,b), namely that with NBI those discharges with divertors were
able to contain particles and energy for about twice as long as was possible in the same con-
ditions with normal ‘limiter’ discharges; this first regime is termed the ‘H’ (high) mode of
operation while the second usual limiter discharge is referred to as the ‘L’ (low) mode. Lim-
iter discharges have also been made to perform in the H-mode by injecting a small amount
of neon (termed ‘neon puffing’) (Lazarus et al. 1985). It is evident that confinement with
auxiliary heating is quite sensitive to the boundary conditions; it is now accepted that the es-
sential feature for H-mode operation is that there is a reduction in neutral recycling in the main
plasma. Why this should increase τE will be discussed shortly.

(i) The L-mode

In the L-mode the observations from several tokamaks are in broad agreement with the em-
pirical law:

τE = 3.7×10−5Iv
p Pw

b Rx
0ay , (1.58)

where Ip is the plasma current and Pb is the total beam power absorbed by the plasma. From
the relatively few observations available at the time, Goldston (1984) obtained the estimates

v = 1, w = −0.5, x = 1.75, y = −0.37. (1.59)

Note that the energy replacement time for Pb is (cf. (1.19) and (1.22)),

τE
∗ = 3π2R0a

2kB

{〈ni〉〈Ti〉 + 〈ne〉〈Te〉
}
/Pb . (1.60)

Dimensional analysis yields the relation

BτE = F
(
n̄a2, Ip/P

1/3
b , Ip/(aB), β, R0/a, Zeff

)
(1.61)



1.5 Electron energy confinement time 23

for the energy confinement time, and when this is applied to (1.58) the constraints

v + 3w + 1 = 0, x + y = 1 , (1.62)

are obtained. Considering the possible errors involved, Goldston’s values are satisfactory.
Neilson et al. (1983) found that for the ISX tokamak at Oak Ridge, USA, v = 2/3 and
w = −2/3, values that are similar to Goldston’s.

With auxiliary heating there appears to be little, if any, dependence of τE on either n̄e or
B. Since the number of Coulomb collisions per unit path length — termed the ‘collisionality’
— scales as n̄eT

−2, collisions are clearly not the cause of the loss of energy. If turbulence
is assumed to be responsible the process must be independent of n̄e, which rules out several
types of turbulence.

With OH plasmas τE depends on n̄e, whereas with NBI plasmas it does not; therefore
when both forms of heating are present two separate processes are required to explain the
phenomenon.

(ii) The H-mode

There is no consensus about the scaling law in the H-mode. Some research groups find that
τE scales as in the L-mode, except that its magnitude is increased substantially. Others have
found scalings similar to OH plasmas, or intermediate scalings involving both n̄e and Ip. A
successful tokamak reactor will probably need to operate in the H-mode, although the im-
provement in confinement is offset by an increase in impurity level and by the appearance of
an instability known as an edge localized mode (ELM) explained in Section 6.4.2.

One clue to the H-mode phenomenon is the observation that limiter plasmas can be
switched into the H-mode by neon-puffing, and that this increases both τE and the particle con-
finement time τp (Lazarus et al. 1985). It appears that convection is being inhibited, and that
the boundaries are being partially thermally insulated from the body of the plasma. The colli-
sion cross-section between the plasma ions and the introduced impurities is relatively high, so
the neon impedes their radial flow, especially near the boundary; with divertors convection is
naturally lower because of the absence of neutrals recycling into the tokamak plasma. These
two observations suggest that the distinction between L-mode and H-mode plasmas depends
on the thermal boundary condition at the edge of the magnetoplasma; the L-mode requires
good thermal contact, whereas the H-mode depends on this contact being somewhat reduced.

The continuous injection of small, frozen hydrogen isotope pellets is the favored method of
particle refueling for the next generation of tokamaks, since this allows both deeper refueling
and better profile control than with gas puffing. It is found that the plasma that results after
pellet injection has different transport properties from the initial plasma (Hugon et al. 1992),
and the tokamak operates in what is termed a pellet enhanced performance (PEP) mode. For
example pellet injection can switch a limited L-mode plasma into an H-mode and increase the
energy confinement time by a factor ∼ 3 (see Section 6.4.4).

1.5.3 Profile shapes and energy losses

Changes in the shape of the temperature profile can be effected by adding metallic impurities,
and increasing the radiation losses. With sufficient impurities hollow profiles are obtained,
and the resulting values of τE are quite low. A moderate impurity level gives broad profiles
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and improved values for τE, whereas low impurity levels give peaked profiles and the highest
values of τE. These changes in τE occur when the gross parameters of the discharge are
similar. Factors up to 4.6 in τE due to profile alteration alone, have been reported (Meservey
et al. 1976). Profiles that are found to be in fair agreement with observations at low poloidal
beta are:

Te = Te0

(
1 − y

)αt
, ne = ne0

(
1 − y

)αn
(
y = (r/a)2

)
,

where the constants αn and αt usually fall in the ranges (0.6, 1.5) and (1.5, 3) respectively.
Pfeiffer and Waltz’s (1979) list of observations for ohmically heated plasmas have average
values for αt and αn of 2.5 and 1.25 with a considerable spread.

With strong NBI heating, the additional heating and refueling in the central regions tends
to steepen both the density and temperature profiles. A distinction can be made between
tangential co-injection (beam parallel to the toroidal current and tangential counter-injection
(beam anti-parallel).

In purely OH-discharges it is found that in the central region the plasma mass flows in a di-
rection opposing the current, and in the peripheral region it flows with the current. (Suckewer
et al. 1981; Brau et al. 1983). This description applies to the ion component of the plasma,
hence, with co-injection the velocity of the beam particles relative to the plasma particles will
be less in the central regions than with counter-injection. By (1.48) and (1.49) co-injection
will result in more rapid heating of the central plasma and hence steeper temperature profiles.
To anticipate Table 5.3, this means smaller values of τp with co-injection than with counter-
injection, a phenomenon that has been observed on the ISX-B tokamak (Scott et al. 1985).

1.5.4 Disruptive instabilities

There is one remarkable phenomenon that should be mentioned in this introductory chapter. It
is the quite sudden changes that can occur in the basic macroscopic variables like temperature,
number density and the safety factor. By “sudden” is meant substantial changes that can occur
in times of the order of a few electron collision intervals, which by (1.14) for the typical JET
values: Zeff = 2, ne = 2×1019 m−3, Te = 2 − 6 keV is 45 − 200 µs. This means that local
thermodynamic equilibrium is almost lost during these aptly named disruptions.

There are two main types of disruption: first there is a minor disruption from which the
temperature is restored to its original value, evolving along a ‘ramp phase’ that for JET takes
about 40 to 100 micro-seconds to complete. In this case the profile has a sawtooth appear-
ance, with the ramp phase about 500 times longer than the collapse phase. These sawtooth
oscillations appear so regularly that they are interpreted as an indication that the discharge is
behaving normally. Figure 1.9 shows three distinct types of collapse precursors; in Fig. 1.9(a)
the oscillations preceding the sudden collapse have period of about 120 µs and the collapse
itself occurs on the same time-scale, so there appears to be a close relationship between the
‘over-stable’ precursor oscillations and the final collapse.

In certain circumstances, described as being near the density limit, there is a sudden col-
lapse from which recovery does not occur. In this case the sawtooth oscillations that usually
precede a minor disruption do not occur, and the phenomenon is termed a major disruption,
which releases a lot of electromagnetic energy in a chaotic fashion that could seriously dam-
age the tokamak structure and therefore they are usually avoided. As will be shown in Sec-
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Figure 1.9: Three types of minor disruption in JET (in (a) the ordinate is proportional to Te)

tion 6.2.1, there are two circumstances that give rise to these severe instabilities, (i) there is a
‘low qa’ limit and (ii) a ‘density limit’. This upper bound to ne affects the ignition condition
in (1.1) and could make tokamaks economically unviable.
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