
1 Analytic Functions

Abstract. We introduce the theory of functions of a complex variable. Many familiar
functions of real variables become multivalued when extended to complex variables,
requiring branch cuts to establish single-valued definitions. The requirements for
differentiability are developed and the properties of analytic functions are explored
in some detail. The Cauchy integral formula facilitates development of power series
and provides powerful new methods of integration.

1.1 Complex Numbers

1.1.1 Motivation and Definitions

The definition of complex numbers can be motivated by the need to find solutions to
polynomial equations. The simplest example of a polynomial equation without solutions
among the real numbers is z2 � 	1. Gauss demonstrated that by defining two solutions
according to

z2 � 	1 � z � �� (1.1)

one can prove that any polynomial equation of degree n has n solutions among complex
numbers of the form z � x � �y where x and y are real and where �2 � 	1. This powerful
result is now known as the fundamental theorem of algebra. The object � is described as
an imaginary number because it is not a real number, just as

�
2 is an irrational number

because it is not a rational number. A number that may have both real and imaginary com-
ponents, even if either vanishes, is described as complex because it has two parts. Through-
out this course we will discover that the rich properties of functions of complex variables
provide an amazing arsenal of weapons to attack problems in mathematical physics.

The complex numbers can be represented as ordered pairs of real numbers z � �x, y
that strongly resemble the Cartesian coordinates of a point in the plane. Thus, if we treat
the numbers 1 � �1, 0 and � � �0, 1 as basis vectors, the complex numbers z � �x, y �
x � 1 � y � � � x � �y can be represented as points in the complex plane, as indicated in
Fig. 1.1. A diagram of this type is often called an Argand diagram. It is useful to define
functions Re or Im that retrieve the real part x � Re�z� or the imaginary part y � Im�z�
of a complex number. Similarly, the modulus, r, and phase, Θ, can be defined as the polar
coordinates

r �
�

x2 � y2, Θ � ArcTan�y
x
� (1.2)

by analogy with two-dimensional vectors.
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Figure 1.1. Cartesian and polar representations of complex numbers.
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Figure 1.2. Addition of complex numbers.

Continuing this analogy, we also define the addition of complex numbers by adding
their components, such that

z1 � z2 � �x1 � x2, y1 � y2�� z1 � z2 � �x1 � x2� � 1 � �y1 � y2� � � (1.3)

as diagrammed in Fig. 1.2. The complex numbers then form a linear vector space and
addition of complex numbers can be performed graphically in exactly the same manner as
for vectors in a plane.

However, the analogy with Cartesian coordinates is not complete and does not extend
to multiplication. The multiplication of two complex numbers is based upon the distribu-
tive property of multiplication

z1z2 � �x1 � �y1�x2 � �y2

� x1x2 � �2y1y2 � ��x1y2 � x2y1

� �x1x2 	 y1y2 � ��x1y2 � x2y1

(1.4)
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Figure 1.3. Inversion and complex conjugation of a complex number.

and the definition �2 � 	1. The product of two complex numbers is then another complex
number with the components

z1z2 � �x1x2 	 y1y2, x1y2 � x2y1� (1.5)

More formally, the complex numbers can be represented as ordered pairs of real numbers
z � �x, y with equality, addition, and multiplication defined by:

z1 � z2 � x1 � x2 � y1 � y2 (1.6)

z1 � z2 � �x1 � x2, y1 � y2� (1.7)

z1 � z2 � �x1x2 	 y1y2, x1y2 � x2y1� (1.8)

One can show that these definitions fulfill all the formal requirements of a field, and we
denote the complex number field as �. Thus, the field of real numbers is contained as a
subset, � � �.

It will also be useful to define complex conjugation

complex conjugation: z � �x, y � z� � �x,	y (1.9)

and absolute value functions

absolute value: �z� �
�

x2 � y2 (1.10)

with conventional notations. Geometrically, complex conjugation represents reflection
across the real axis, as sketched in Fig. 1.3.

The Re, Im, and Abs functions can now be expressed as

Re�z� �
z � z�

2
, Im�z� �

z 	 z�

2�
, �z�2 � zz� (1.11)
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Thus, we quickly obtain the following arithmetic facts:

� � �0, 1 �2 � 	1 �3 � 	� �4 � 1

scalar multiplication: c � � � cz � �cx, cy

additive inverse: z � �x, y � 	z � �	x,	y � z � �	z � 0

multiplicative inverse: z	1 �
1

x � �y
�

x 	 �y

x2 � y2 �
z�

�z�2

(1.12)

1.1.2 Triangle Inequalities

Distances between points in the complex plane are calculated using a metric function.
A metric d�a, b� is a real-valued function such that

1. d�a, b� > 0 for all a � b

2. d�a, b� � 0 for all a � b

3. d�a, b� � d�b, a�

4. d�a, b� � d�a, c� � d�c, b� for any c.

Thus, the Euclidean metric d�z1, z2� � �z1 	 z2� �
�
�x1 	 x2

2 � �y1 	 y2
2 is suitable for

�. Then with geometric reasoning one easily obtains the triangle inequalities:

triangle inequalities � 				�z1� 	 �z2�� � �z1 � z2� � �z1� � �z2� (1.13)

Note that � cannot be ordered (it is not possible to define < properly).

1.1.3 Polar Representation

The function ��Θ can be evaluated using the power series

��Θ �
�


n�0

��Θn

n!
�

�

n�0

�	n
Θ2n

�2n!
� �

�

n�0

�	n
Θ2n�1

�2n � 1!
� Cos�Θ� � �Sin�Θ� (1.14)

giving a result known as Euler’s formula. Thus, we can represent complex numbers in
polar form according to

z � r��Θ � x � r Cos�Θ� , (1.15)

y � r Sin�Θ� with r � �z� �
�

x2 � y2 and Θ � arg�z� (1.16)

where r is the modulus or magnitude and Θ is the phase or argument of z. Although addition
of complex numbers is easier with the Cartesian representation, multiplication is usually
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easier using polar notation where the product of two complex numbers becomes

z1z2 � r1r2�Cos�Θ1� � �Sin�Θ1��Cos�Θ2� � �Sin�Θ2��
� r1r2�Cos�Θ1�Cos�Θ2� 	 Sin�Θ1�Sin�Θ2� � ��Sin�Θ1�Cos�Θ2� � Cos�Θ1�Sin�Θ2���
� r1r2�Cos�Θ1 � Θ2� � �Sin�Θ1 � Θ2��
� r1r2�

��Θ1�Θ2

(1.17)

Thus, the moduli multiply while the phases add. Note that in this derivation we did not
assume that �z1�z2 � �z1�z2 , which we have not yet proven for complex arguments, relying
instead upon the Euler formula and established properties for trigonometric functions of
real variables.

Using the polar representation, it also becomes trivial to prove de Moivre’s theorem���Θ�n � ��nΘ � �Cos�Θ� � �Sin�Θ��n � Cos�nΘ� � �Sin�nΘ� for integer n . (1.18)

However, one must be careful in performing calculations of this type. For example, one
cannot simply replace ���nΘ1 / n by ��Θ because the equation, zn � w has n solutions �zk, k �
1, n� while ��Θ is a unique complex number. Thus, there are n, nth-roots of unity, obtained
as follows.

z � r��Θ � zn � rn��nΘ (1.19)

zn � 1 � r � 1, nΘ � 2kΠ (1.20)

� z � Exp��2Πk
n
� � Cos�2Πk

n
� � �Sin�2Πk

n
� for k � 0, 1, 2, . . . , n 	 1 (1.21)

In the Argand plane, these roots are found at the vertices of a regular n-sided polygon
inscribed within the unit circle with the principal root at z � 1. More generally, the roots

zn � w � Ρ��Φ � zk � Ρ1 / n Exp��Φ � 2Πk
n

� for k � 0, 1, 2, . . . , n 	 1 (1.22)

of ��Φ are found at the vertices of a rotated polygon inscribed within the unit circle, as
illustrated in Fig. 1.4.

1.1.4 Argument Function

The graphical representation of complex numbers suggests that we should obtain the phase
using

Θ
?
� arctan�y

x
� (1.23)

but this definition is unsatisfactory because the ratio y/ x is not sensitive to the quadrant,
being positive in both first and third and negative in both second and fourth quadrants. Con-
sequently, computer programs using arctan� y

x � return values limited to the range (	Π
2 , Π2 ).
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Figure 1.4. Solid: 6th roots of 1, dashed: 6th roots of ��Φ.

A better definition is provided by a quadrant-sensitive extension of the usual arctangent
function

ArcTan�x, y� � ArcTan �y
x
� � Π

2
�1 	 Sign�x�Sign�y� (1.24)

that returns values in the range (	Π, Π). (Unfortunately, the order of the arguments is
reversed between Fortran and Mathematica.) Therefore, we define the principal branch
of the argument function by

Arg�z� � Arg�x � �y� � ArcTan�x, y� (1.25)

where 	Π < Arg�z� � Π.
However, the polar representation of complex numbers is not unique because the phase Θ

is only defined modulo 2Π. Thus,

arg�z� � Arg�z� � 2Πn (1.26)

is a multivalued function where n is an arbitrary integer. Note that some authors distinguish
between these functions by using lower case for the multivalued and upper case for the
single-valued version while others rely on context. Consider two points on opposite sides
of the negative real axis, with y ! 0� infinitesimally above and y ! 0	 infinitesimally
below. Although these points are very close together, Arg�z� changes by 2Π across the
negative real axis.

A discontinuity of this type is usually represented by a branch cut. Imagine that the
complex plane is a sheet of paper upon which axes are drawn. Starting at the point (r, 0) one

can reach any point z � �x, y by drawing a continuous circular arc of radius r �
�

x2 � y2

and we define arg�z� as the angle subtended by that arc. This function is multivalued
because the circular arc can be traversed in either direction or can wind around the origin an
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Figure 1.5. Branch cut for Arg�z�.

arbitrary number of times before stopping at its destination. A single-valued version can be
created by making a cut infinitesimally below the negative real axis, as sketched in Fig. 1.5,
that prevents a continuous arc from subtending more than �Π radians. Points on the nega-
tive real axis are reached by positive (counterclockwise) arcs with Arg��	�z�, 0� � Π while
points infinitesimally below the negative real axis can only be reached by negative arcs
with Arg��	�z�, 0	� ! 	Π. Thus, Arg�z� is single-valued and is continuous on any path
that does not cross its branch cut, but is discontinuous across the cut.

The principal branch of the argument function is defined by the restriction 	Π <
Arg�z� � Π. Notice that one side of this range is open, represented by <, while the other
side is closed, represented by �. This notation indicates that the cut is infinitesimally below
the negative real axis, such that the argument for negative real numbers is Π, not 	Π. This
choice is not unique, but is the nearly universal convention for the argument and many
related functions. The distinction between < and � many seem to be nitpicking, but atten-
tion to such details is often important in performing accurate derivations and calculations
with functions of complex variables.

Many functions require one or more branch cuts to establish single-valued definitions;
in fact, handling either the multivaluedness of functions of complex variables or the dis-
continuities associated with their single-valued manifestations is often the most difficult
problem encountered in complex analysis. Although our choice of branch cut for Arg�z�
is not unique (any radial cut from the origin to � would serve the same purpose), it is
consistent with the customary definitions of ArcTan, Log, and other elementary func-
tions to be discussed in more detail later. The single-valued version of a function that
is most common is described as its principal branch. For many functions there is con-
siderable flexibility in the choice of branch cut and we are free to make the most conve-
nient choice, provided that we maintain that choice throughout the problem. For example,
in some applications it might prove convenient to define an argument function with the
range 	 3Π

4 < MyArg�z� � 5Π
4 using the branch cut shown in Fig. 1.6. Consider the point

z1 � �	1,	1 for which the standard argument function gives Arg�z1� � 	3Π / 4 while our
new argument function gives MyArg�z1� � 5Π / 4. These functions are obviously different
because the same input gives different output, but both represent precisely the same ray in
the complex plane. Therefore, we should consider the specification of the branch cuts as
an important part of the definition of a single-valued function and recognize that different
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Figure 1.6. Branch cut for MyArg.

choices of cuts lead to related but different functions.
It is important to recognize that, because of discontinuities across branch cuts, simple

algebraic relationships that apply to multivalent functions of complex variables, often do
not pertain to their monovalent cousins. For example, using the polar representation of the
product of two complex numbers we find

z1z2 � r1r2 Exp���Θ1 � Θ2� �z1z2� � �z1��z2� arg�z1z2� � arg�z1� � arg�z2� (1.27)

but this relationship for the phase does not necessarily apply to the principal branch
because

Arg�z1z2� � arg�z1z2� � 2Πn

� arg�z1� � arg�z2� 	 2Πn

� Arg�z1� � Arg�z2� � 2Π�n 	 n1 	 n2

(1.28)

where n must be chosen to ensure that 	Π < Arg�z1z2� � Π. Often the price of single-
valuedness is the awkwardness of discontinuities.

1.2 Take Care with Multivalued Functions

Ambiguities in the definitions of many seemingly innocuous functions require consider-
able care. For example, consider the common replacement�

1
z

?
" z	1 / 2 (1.29)

that one often makes without thinking. Is this apparent equivalence correct? Compare the
following two methods for evaluating these quantities when z ! 	1.

z � 	1 � z	1 � 	1 �

�
1
z
� � (1.30)

z � ��Π � z	1 / 2 � �	�Π / 2 � 	� (1.31)
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Both calculations look correct, but their results differ in sign. These expressions are not
always interchangeable! One must take more care with multivalued functions.

If we represent the complex number z in Cartesian form z � x � �y where x, y are real,
then

1
z
�

1
x � �y

�
x 	 �y

x2 � y2 (1.32)

If x < 0 and y ! � where � is a positive infinitesimal, then z is just above and z	1 is
just below the usual cut in the square-root function (below the negative real axis). Conse-
quently, Arg�z� and Arg�z	1� differ by 2Π and the arguments of

�
1 / z and z	1 / 2 differ by

Π, a negative sign, in the immediate vicinity of the negative real axis. It is usually not a
good idea to use the surd (square-root) symbol for complex variables – for real numbers
that symbol is usually interpreted as the positive square root, but for negative or complex
numbers we should employ a fractional power and define the branch cut explicitly. Then, if
we define 	Π < Arg�z� � Π with a cut infinitesimally below the negative real axis the same
cut would be implied for fractional powers and the value of z	1 / 2 determined using polar
notation would be unambiguous on the negative real axis. Furthermore, 1 / z1 / 2 � z	1 / 2

applies everywhere in the cut z-plane without the sign ambiguity encountered above. Of
course, the sign discontinuity across the cut is still present – it is an essential feature of
such functions.

Let us examine the square-root function, w � f �z� � z1 / 2, in more detail. When z is a
positive real number, the square-root function maps one z onto two values of w � �

�
x.

Similar behavior is expected for complex z because there are always two solutions to the
quadratic equation w2 � z. In polar notation

z � r��Θ, z � w2 � w �
�

r Exp�� Θ
2
� nΠ�� (1.33)

where, by convention,
�

r represents the positive square root for real numbers and where
n � 0, 1 yields two distinct possibilities. Thus, the image of one point in the z-plane is two
points in the w-plane. If we define w � u � �v, the component functions u�x, y� and v�x, y�
can be obtained by solving the equations

x � u2 	 v2 y � 2uv (1.34)

Substituting v ! y/ 2u and solving the quadratic equation for u2, we find

4u4 	 4u2x 	 y2 � 0 � u2 �
x �

�
x2 � y2

2
� u � �

��
x2 � y2 � x

2
(1.35)

where the positive root is required in u2 to ensure real u. Then, solving for v and rational-
izing the expression under the square root, we obtain

v �
y

2u
� �

y
2

�
2�

x2 � y2 � x
� �y

��
x2 � y2 	 x

2y2 (1.36)
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Figure 1.7. Real and imaginary components of z1 / 2.
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Figure 1.8. Dependence of Arg�z1 / 2� upon polar angle.

Finally, taking the positive root of y2, we obtain

u � �

��
x2 � y2 � x

2
v � �Sign�y�

��
x2 � y2 	 x

2
(1.37)

where the relative sign between u and v is determined by the sign of y. Note that there
are only two, not four, solutions. The principal branches of the component functions are
plotted in Fig. 1.7, where it is customary, though arbitrary, to select the positive branch of
u so that positive square roots are obtained on the positive real axis. Similar figures are
obtained for other positive nonintegral powers, rational or irrational.

Notice that v � Im�
�

z� is discontinuous on the negative real axis. The real part is
continuous, but its derivative with respect to y is discontinuous on the negative real axis.
Consider the image of a circular path z � r��Θ, 0 � Θ � 2Π under the mapping w �

�
z.

The argument of w changes abruptly from Π to 	Π as the negative real axis is crossed from
above, as sketched in Fig. 1.8.

In order to define a well-behaved monovalent function, we must include in the defi-
nition of f a rule for selecting the appropriate output value when the mapping z ! w is
multivalent. The customary solution is to introduce a branch cut along the negative real
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axis by restricting the range of the argument of z to 	Π < Θ � Π and agreeing not to cross
the cut in the z-plane. Thus, Sqrt and Arg employ the same branch cut, shown in Fig. 1.5.
We imagine that the cut is infinitesimally below the negative real axis so that the argument
of negative real numbers is Π and x < 0 �

�
x � �

�
�x�. The discontinuity in Arg�zΑ�

across the branch cut depends upon Α. The end points of the branch cut are known as
branch points at which discontinuities first open. Here, the most important branch point is
at z � 0, but one often says that there is also a branch point at �. This somewhat sloppy
language means that for large �z� the branch cut is parametrized by z � R��Θ with R ! �,
but the choice of Θ remains arbitrary; here we happened to choose Θ � Π.

Next consider the slightly more complicated function

f �z� � �z2 	 1�1 / 2
� ��z 	 1�z � 1�1 / 2

(1.38)

Our experience with the square root suggests that we must pay close attention to the points
z � �1 that are the branch points for �z � 11 / 2. By factoring the argument of the square
root and choosing ranges for the phase of each factor according to

z1 � z 	 1 � r1�
�Θ1 , 	Π < Θ1 � Π (1.39)

z2 � z � 1 � r2�
�Θ2 , 	Π < Θ2 � Π (1.40)

we obtain a single-valued version defined by

f1�z� �
�

r1r2 Exp�� �Θ1 � Θ2

2
� kΠ�� , k � �0, 1� (1.41)

and the branch cuts indicated in Fig. 1.9. The principal branch is defined, somewhat arbi-
trarily, by k � 0 because that gives a positive root for z on the real axis with x > 1. The two
heavy points show the branch points in the two factors �z � 11 / 2 and the lines anchored
by those points show the associated branch cuts. Here we decided to draw both branch
cuts to the left, as is customary for Arg�z� or z1 / 2, such that both polar angles are defined
in the range 	Π < Θ1,2 � Π. Since it is clear that any discontinuities will be found along
the real axis where the two phases may be discontinuous, the structure of the function can
be investigated using strategically chosen points on both sides of the real axis labeled a– f
in the figure and its accompanying Table 1.1. This table shows that f1�z� is discontinuous
across the portion of real axis between the two branch points, namely 	1 < x < 1, but
is continuous elsewhere. In effect, the overlapping branch cuts cancel each other in the
region x < 	1 because, at least for this function, the discontinuity is simply a sign change;
however, the behavior of overlapping cuts is not always this simple.

Alternatively, if we define the phases according to

z1 � z 	 1 � r1�
�Θ1 , 0 � Θ1 < 2Π (1.42)

z2 � z � 1 � r2�
�Θ2 , 	Π < Θ2 � Π (1.43)

we obtain another version

f2�z� �
�

r1r2 Exp�� �Θ1 � Θ2

2
� kΠ�� , k � �0, 1� (1.44)

in which the cut in z
1 / 2
1 is now directed toward the right while the cut in z

1 / 2
2 remains to the

left; these cuts are illustrated in Fig. 1.10. The same selection of trial points now produces



12 1 Analytic Functions

Table 1.1. Selected values of f1�z� defined by Eq. (1.41).

Point x y Θ1 Θ2 f1�z�

a x > 1 � 0 0
�

x2 	 1

b x > 1 	� 0 0
�

x2 	 1

c 	1 < x < 1 � Π 0 �
�

1 	 x2

d 	1 < x < 1 	� 	Π 0 	�
�

1 	 x2

e x < 	1 � Π Π 	
�

x2 	 1

f x < 	1 	� 	Π 	Π 	
�

x2 	 1

x

y
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b
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e

f

12
z 1 1 2

z 1 1 2

Figure 1.9. Branch cuts for f1�z� defined by Eq. (1.41).

Table 1.2 that shows that f2�z� is continuous for 	1 < x < 1 but is discontinuous every-
where else on the real axis. Although their algebraic definitions are the same, f1�z� and
f2�z� are clearly different functions, fraternal twins that are distinguished by their branch
cuts. The choice of cuts is a fundamental aspect of the definition of a single-valued ver-
sion of an inherently multivalued function; the definition is not complete until the cuts are
specified. For any particular application the most appropriate version may depend upon
other aspects of the problem, such as physical boundary conditions, or may be chosen for
convenience. If one is most interested in small values of �z� it will probably be more con-
venient to choose f2�z�, but for large values f1�z� is probably preferable, but consistency
must be maintained through any particular problem. Furthermore, although the two ver-
sions suggested here are the most common, they do not exhaust the possibilities.

The moral of this somewhat belabored exercise is that one must be very careful in
manipulating expressions involving complex variables and avoid making unintentional
assumptions about the phases of various subexpressions. Most people tend to be very care-
less with phases, automatically replacing

�
s2 by s without knowing whether s is positive

or negative or complex. Similarly, many people complain that �� often does
not perform simplifications that are perceived to be obvious. The reason for this is that
�� hates to make mistakes and will not make unjustified assumptions about
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Table 1.2. Selected values of f2�z� defined by Eq. (1.44).

Point x y Θ1 Θ2 f2�z�

a x > 1 � 0 0
�

x2 	 1

b x > 1 	� 2Π 0 	
�

x2 	 1

c 	1 < x < 1 � Π 0 �
�

1 	 x2

d 	1 < x < 1 	� Π 0 �
�

1 	 x2

e x < 	1 � Π Π 	
�

x2 	 1

f x < 	1 	� Π 	Π
�

x2 	 1

x

y

a

b

c

d

e

f

12

Figure 1.10. Branch cuts for f2�z� defined by Eq. (1.44).

whether a variable is real or, if it is, about its sign – it assumes that all variables are com-
plex unless told otherwise. The Simplify function has an option that permits the user to
specify permissible assumptions, such as one variable is real, another positive, a third a
negative integer, etc. When you take responsibility for these assumptions, ��

will usually go much further in simplifying your expressions. Often it still will not reach
the elegant representation that one might find in a textbook, but its manipulations will be
correct and that is what matters most.

1.3 Functions as Mappings

A function f maps the complex variable z � �x, y into a complex image w � �u, v accord-
ing to rules specified in the definition w � f �z�. Thus, f maps points in the complex z-plane
onto points in the complex w-plane, a mapping of � ! �. For a single-valued function the
image of a point is a point, but for a multiple-valued function the image of a point may
be a set of points. For continuous functions, the image of a line segment (arc) in the input
plane will be one or more arcs in the output plane. Often considerable insight into the prop-
erties of a function may be obtained by examining the images of coordinate lines (lines
of constant x or constant y). Below we analyze the mappings produced by some familiar
functions.
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Figure 1.11. Mapping: u � �v � �x��y. Lines of constant y are mapped onto radial lines while lines

lines of constant x are mapped onto circles in the w-plane.

1.3.1 Mapping: w � �z

The exponential function is defined by the mapping

w � �z � �x�Cos�y� � �Sin�y�� � u � �v � u�x, y� � �x Cos�y� v�x, y� � �x Sin�y�

(1.45)

The image of a grid of coordinate lines is sketched in Fig. 1.11. Lines of constant y are
mapped into radial lines, while lines of constant x are mapped into circles. The origin, with
x � 0, is mapped onto the unit circle. Increasingly positive x � x0 > 0, mapped onto circles
of exponentially increasing radius �x0 , and increasingly negative x � x0 < 0 mapped onto
exponentially tighter circles, practically indiscernible in this figure. Thus, the images of
the coordinate lines remain orthogonal, but the mapping severely distorts distances.

It is important to recognize that the mapping produced by the exponential function is
many-to-one because

Exp�z � 2Π�k� � Exp�z� for integer k (1.46)

is periodic, so that infinitely many input points z � z0 � 2Π�k are mapped onto the same
image point. Thus, any strip �y	y0� � Π in the z-plane is mapped onto the entire w-plane and
neighboring strips would replicate the covering of the w-plane. Consequently, the inverse
function z � log�w� is many-valued because it represents a one-to-many mapping. By
convention, we define the principal branch of the logarithm function

Log�z� � Log��z�� � �Arg�z� with 	 Π < Arg�z� � Π (1.47)

by limiting the phase y � Arg�w� to the strip 	Π < y � Π by means of a branch cut along
the negative real axis, as indicated by the thick line in Fig. 1.12. With this convention one
obtains the following principal values:

Log�1� � 0 Log��� �
�Π
2

Log�	1� � �Π Log�	�� � 	
�Π
2

(1.48)



1.3 Functions as Mappings 15

x

y

u

v

Figure 1.12. Mapping: u��v � Exp�x��y�. The mapping of any strip �y	y0� � Π covers the w-plane.

The branch cut for the inverse mapping is shown in the w-plane.

One might imagine the w-plane as a circular paper disk with a cut from its edge to the
center, which prevents a continuous curve to be drawn crossing the cut. A vertical line
segment in the z-plane between y � 	Π � � and y � Π 	 � is mapped onto a circular
arc between Arg�w� � 	Π � � and Arg�w� � Π 	 �. Although the two ends of the arc
approach other from opposite sides of the branch cut as � ! 0�, they differ in phase by 2Π.
Therefore, although the branch cut permits the inverse function z � Log�w� to be defined
as a single-valued mapping w ! z, that function is discontinuous across the branch cut.
Often single-valuedness comes only at the expense of discontinuities.

Neighboring strips yn � y0 � nΠ simply remap the entire w-plane. One might imagine
an infinite collection of w-planes, called Riemann sheets, stacked on top of each other such
that curves which cross the branch cut move from one Riemann sheet to the next. The
index n then identifies a particular Riemann sheet, with the principal branch represented
by n � 0. Thus, it is useful to distinguish between a multivalued log and a single-valued
Log defined by

w � �z � z � log�w� � log��w�� � � arg�w�

� log��w�� � �Arg�w� � 2Π�n � Log�w� � 2Π�n
(1.49)

As a curve winds around the origin of the w-plane in a counterclockwise sense, the
argument increases continuously and each time one crosses the branch cut one moves
from one sheet to the next and increments the winding number n by one unit. Clockwise
winding decrements n, which is permitted to be negative also. Furthermore, the choice
y0 � 0 is not unique and other choices would rotate the branch cut in the w-plane. The
single-valued function produced by the most common choice of branch cut is described as
the principal branch, but for some problems it may become convenient to make a different
choice. However, the branch cuts used for Arg, Log, and related functions are correlated
and must be chosen consistently throughout a particular calculation.

Physics calculations normally must produce a unique answer that can be compared
with a measurable quantity, such that physical functions must be based upon single-valued
functions. Similarly, if one is to compute the value of an expression using a computer
program, there must be a unique result. Numerical methods cannot tolerate multivalued
expressions – the programmer must provide an unambiguous prescription for selecting the
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appropriate branches of multivalued functions; a machine cannot perform that job for you.
It is useful to visualize a function as a machine. When you supply appropriate input, it
produces a definite and predictable output. A function is not really defined until its branch
cuts and its discontinuities across those cuts are completely specified. Furthermore, there
is often considerable flexibility in the selection of cuts that can be exploited to simplify
the problem at hand, one selection for one problem and another for the next. Therefore,
one must always be aware of the branch cuts used to regularize an inherently multivalued
function.

1.3.2 Mapping: w � Sin�z�

The sine function is extended to complex variables by the definition

Sin�z� �
��z 	 �	�z

2�
(1.50)

Using

z � x � �y � Sin�z� �
�	y�Cos�x� � �Sin�x�� 	 �y�Cos�x� 	 �Sin�x��

2�

�
�y � �	y

2
Sin�x� � �

�y 	 �	y

2
Cos�x�

(1.51)

and the familiar definitions

Cosh�y� �
�y � �	y

2
Sinh�y� �

�y 	 �	y

2
(1.52)

for real variables, the components of the sine function become

u � �v � Sin�x � �y� � u � Sin�x�Cosh�y� v � Cos�x�Sinh�y� (1.53)

The mapping of (x, y) coordinate lines is illustrated in Fig. 1.13. Lines of constant x are
mapped into hyperbolae while lines of constant y are mapped into confocal ellipses with
foci at �u, v � ��1, 0. The definition of the inverse mapping z � ArcSin�w� requires
branch cuts because any strip �x	x0� � Π is mapped onto the entire w-plane. It is customary
to map the principal branch of ArcSin onto the strip 	Π

2 < x < Π
2 , but two choices remain

for the branch cuts. Recognizing that as �x� ! Π
2 the hyperbolic images of the vertical lines

collapse upon the real axis, the most common choice is to place the branch cuts along the
open interval �u� > 1. This choice reduces to the standard definition of ArcSin�x� for real
arguments in the range �x� � 1.
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Figure 1.13. Mapping: u � �v � Sin�x � �y�. Lines of constant x are mapped onto hyperbolas while

lines of constant y are mapped onto confocal ellipses.

1.4 Elementary Functions and Their Inverses

1.4.1 Exponential and Logarithm

Some properties of the exponential are preserved by extension from the real axis to the
complex plane. For example, using

�z1�z2 � �x1�x2 �Cos�y1� � �Sin�y1�� �Cos�y2� � �Sin�y2��
� �x1�x2 �Cos�y1�Cos�y2� 	 Sin�y1�Sin�y2�

�� �Sin�y1�Cos�y2� � Cos�y1�Sin�y2���
� �x1�x2 �Cos�y1 � y2� � �Sin�y1 � y2�� (1.54)

we find

�z1�z2 � �z1�z2 (1.55)

Similarly one can easily prove

1
�z � �	z �z1

�z2
� �z1	z2 (1.56)

and

��zn � �nz for n � Integers (1.57)

for integer n. However, one must generally assume that

��z1 z2 � �z1z2 (1.58)

for arbitrary powers z2. For example, ��z1 / n is multivalued, producing n values for inte-
ger n, while �z/ n represents a unique complex number.
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We define the multivalent logarithm function w � log�z� in terms of the solutions to
the equation z � �w, such that

z � �w ,

z � �z��� arg�z� � log�z� � log��z�� � � arg�z� � Log��z�� � �Arg�z� � 2Π�n
(1.59)

where the principal value is used for the logarithm of the positive real number �z� and where
n is an arbitrary integer. Thus, this version of the logarithm function produces infinitely
many values for any z . Consequently, we cannot simply replace log��z� by z during calcu-
lations because

z � x � �y � �z � �x��y � log��z� � Log���z�� � �Arg��z� � 2Π�n

� x � ��y � 2Πn

� z � 2Π�n

(1.60)

is ambiguous. By selecting n ! 0, we define the single-valued principal branch as

Log�z� � Log��z�� � �Arg�z� (1.61)

and obtain

Log��z� � z (1.62)

as expected. On the other hand, some functional relationships that pertain to real arguments
remain true for the multivalent version but are not necessarily true for the principal branch.
For example, from

log�z1z2� � log��z1z2�� � � arg�z1z2�

� log��z1��z2�� � ��arg�z1� � arg�z2��
� log��z1�� � log��z2�� � ��arg�z1� � arg�z2�� (1.63)

we find

log�z1z2� � log�z1� � log�z2� (1.64)

but the corresponding relationship for the principal branch

Log�z1z2� � Log�z1� � Log�z2� � 2Π�n (1.65)

is more complicated because we must deduce the appropriate n from the phases of z1

and z2.

1.4.2 Powers

Powers of a complex number are defined by

zΑ � Exp�Α log�z� � Exp�ΑLog��z��Exp��Α arg�z� (1.66)
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and are generally multivalued. In polar notation we may write

z � r��Θ � zΑ � Exp�ΑLog�r�Exp��Α�Θ � 2Πn (1.67)

where n is an integer. This definition conforms to simple expectations for rational expo-
nents and preserves the algebraic relationships�zΑ�Β � Exp�Β log�zΑ� � Exp�ΒΑ log�z� � zΑΒ (1.68)�z1z2�Α � Exp�Α log�z1z2� � Exp�Α�log�z1� � log�z2� � zΑ1 zΑ2 (1.69)

However, these algebraic relationships are generally multivalent. If we use a branch cut for
the logarithm under the negative real axis, the same branch cut must be used for multivalent
powers that are complex, nonintegral, or have negative real parts. The discontinuity in the
argument of zΑ across the branch cut is then

$Arg�zΑ� � Limit�Arg�x � ��� 	 Arg�x 	 ���, � ! 0� � Mod�2ΠΑ, 2Π� (1.70)

If Α is rational there are a finite number of Riemann sheets, but for irrational Α there are
an infinite number of Riemann sheets. The principal branch is given by

principal branch: zΑ � Exp�ΑLog�z� � Exp�ΑLog��z��Exp��ΑArg�z� (1.71)

1.4.3 Trigonometric and Hyperbolic Functions

Recognizing that

Cos�x� �
��x � �	�x

2
Sin�x� �

��x 	 �	�x

2�
Tan�x� �

Sin�x�
Cos�x�

(1.72)

Cosh�x� �
�x � �	x

2
Sinh�x� �

�x 	 �	x

2
Tanh�x� �

Sinh�x�
Cosh�x�

(1.73)

for x � �, we define

Cos�z� �
��z � �	�z

2
Sin�z� �

��z 	 �	�z

2�
Tan�z� �

Sin�z�
Cos�z�

(1.74)

Cosh�z� �
�z � �	z

2
Sinh�z� �

�z 	 �	z

2
Tanh�z� �

Sinh�z�
Cosh�z�

(1.75)

for z � �. Inverting these expressions gives

��z � Cos�z� � �Sin�z� �	�z � Cos�z� 	 �Sin�z� (1.76)

�z � Cosh�z� � Sinh�z� �	z � Cosh�z� 	 Sinh�z� (1.77)

Obviously,

Cos�	z� � Cos�z� Sin�	z� � 	Sin�z� Tan�z� � 	Tan�z� (1.78)

Cosh�	z� � Cosh�z� Sinh�	z� � 	Sinh�z� Tanh�z� � 	Tanh�z� (1.79)
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and

Cos��z� � Cosh�z� Sin��z� � �Sinh�z� Tan��z� � �Tanh�z� (1.80)

Cosh��z� � Cos�z� Sinh��z� � �Sin�z� Tanh��z� � �Tan�z� (1.81)

Multiplying out the expressions

Exp���z1 � z2 � Cos�z1 � z2� � �Sin�z1 � z2�

� �Cos�z1� � �Sin�z1���Cos�z2� � �Sin�z2��
� ��z1��z2

(1.82)

Exp���z1 	 z2 � Cos�z1 	 z2� � �Sin�z1 	 z2�

� �Cos�z1� � �Sin�z1���Cos�z2� 	 �Sin�z2��
� ��z1�	�z2

(1.83)

one quickly deduces the addition formulae

Cos�z1 � z2� � Cos�z1�Cos�z2� 	 Sin�z1�Sin�z2� (1.84)

Cosh�z1 � z2� � Cosh�z1�Cosh�z2� � Sinh�z1�Sinh�z2� (1.85)

Sin�z1 � z2� � Sin�z1�Cos�z2� � Cos�z1�Sin�z2� (1.86)

Sinh�z1 � z2� � Sinh�z1�Cosh�z2� � Cosh�z1�Sinh�z2� (1.87)

and

Cos�z�2 � Sin�z�2 � 1 Cosh�z�2 	 Sinh�z�2 � 1 (1.88)

Combining these results, we obtain

Cos�x � �y� � Cos�x�Cosh�y� 	 �Sin�x�Sinh�y� (1.89)

Cosh�x � �y� � Cosh�x�Cos�y� � �Sinh�x�Sin�y� (1.90)

Sin�x � �y� � Sin�x�Cosh�y� � �Cos�x�Sinh�y� (1.91)

Sinh�x � �y� � Sinh�x�Cos�y� � �Cosh�x�Sin�y� (1.92)

for �x, y� � �. Expressions for the real and imaginary components of inverse trigonometric
functions are developed in the exercises.

1.4.4 Standard Branch Cuts

Although there is often some flexibility in the choice of branch cuts, the cuts for related
functions are correlated. Table 1.3 lists the standard choices for elementary functions, but
other choices can facilitate certain calculations. Parentheses (square brackets) indicate an
open (closed) interval.
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Table 1.3. Standard definitions for principal branch of elementary functions.

Function Branch cuts

Abs none
Arg �	�, 0
Sqrt �	�, 0
zs, nonintegral s with Re�s� > 0 �	�, 0
zs, nonintegral s with Re�s� � 0 �	�, 0�
Exp none
Log �	�, 0�
trigonometric functions none
ArcSin, ArcCos �	�,	1 and �1,�
ArcTan �	��,	�� and ��, ��
ArcCsc and ArcSec �	1, 1
ArcCot �	�, ��
hyperbolic functions none
ArcSinh �	��,	� and ��, ��
ArcCosh �	�, 1
ArcTanh �	��,	�� and ��, ��
ArcCsch �	�, �
ArcSech �	�, 0� and �1,�
ArcCoth �	1, 1�

1.5 Sets, Curves, Regions and Domains

The basic concept used to characterize sets, curves, and regions in the complex plane
is neighborhood. A neighborhood of z0 consists of the set of all points that satisfy the
inequality �z 	 z0� < �; the radius � is usually assumed to be small. A point z is an interior
point of the set S if there exists a neighborhood containing only points belonging to S.
Conversely, a point is exterior to S if there exists a neighborhood that does not contain any
points belonging to S. Finally, a boundary point is neither interior nor exterior to S because
any neighborhood, no matter how small, contains both points which belong to S and points
which do not. An open set is a set for which every point is an interior point; in other words,
an open set contains none of its boundary points. A closed set, on the other hand, contains
all of its boundary points. The closure of S consists of S plus all of its boundary points and
is denoted S̄. Note that some sets, such as 0 < �z� � 1, are neither open nor closed because
they contain some but not all of their boundary points, while � is both open and closed
because there are no boundary points. A set is bounded if all points lie within a disk �z� < R
for some finite R and is unbounded otherwise. Finally, a point z0 is an accumulation point
of S if every neighborhood contains at least one other point that also belongs to S. Thus, a
closed set contains all of its accumulation points and, conversely, any set which contains
all of its accumulation points is closed. For example, the origin is the only accumulation
point of the set �zn �

1
n , n � 1,��.

Any set of points that consists only of boundary points constitutes a curve. For exam-
ple, the set of points that satisfy the equation �z 	 z0� � R describes a circle of radius R
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Figure 1.14. Left: A simply connected domain; right: a mutiply connected domain.

centered on (x0, y0) and is an example of a curve. An arc is a curve described by the para-
metric equation z � �x�t�, y�t� where x�t� and y�t� are continuous real functions of the real
variable tmin � t � tmax. An arc is simple if it does not intersect itself, in other words if
t1 � t2 � z�t1� � z�t2� for tmin < t1, t2 < tmax. A simple closed curve does not intersect
itself except at the endpoints where z�tmin� � z�tmax�.

An open set is connected if any pair of points can be joined by a polygonal path that
lies entirely within the set. An open connected set is called a domain. For example, the
annulus 1 < �z� < 2 is a domain because it is open and connected. Any neighborhood is
also a domain. A domain D is described as simply connected if all simple closed curves
within D enclose only points that are also within D and is described as multiply connected
otherwise. A domain together with a subset of its boundary points (none, some, or all) is
called a region. For example, �z % Re�z2� > 1 � Re�z� > 0� describes a simply connected
domain while �z % 1 � �z� � 2� describes a multiply connected region.

1.6 Limits and Continuity

The limit of f �z� as z ! z0 is defined to be the complex number w0 if for each arbitrarily
small positive number � there exists a positive number ∆ for which 0 < � f �z� 	 w0� < �
whenever 0 < �z 	 z0� < ∆. Geometrically, this definition requires that the image w � f �z�
for any point z in a ∆-neighborhood of z0, with the possible exception of z0 itself, should
lie within an �-neighborhood of w0. Note that this definition requires all points in the
neighborhood of z0 to be mapped within the neighborhood of w0 but does not require the
mapping to constitute a domain because the mapping need not produce a connected set.
Furthermore, the limit z ! z0 may be approached in an arbitrary manner. However, the
present definition does not apply to points z0 which lie on the boundary of the domain on
which f �z� is defined because in that case the ∆-neighborhood contains points at which
f �z� may be undefined. Nevertheless, we can extend the definition of limit by limiting the
requirements on the inequalities to those points in the neighborhood of z0 that lie within
the domain of f .

Direct application of the definition of limits can be quite cumbersome, but a few almost
self-evident theorems are quite helpful.
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Theorem 1. Let f �z� � u�x, y� � �v�x, y�, z0 � x0 � �y0, and w0 � u0 � �v0. Then

Lim
z!z0

f �z� � w0 (1.93)

if and only if

Lim
�x,y!�x0,y0

u�x, y� � u0 and Lim
�x,y!�x0,y0

v�x, y� � v0 (1.94)

Theorem 2. Let f0 � Limz!z0
f �z� and g0 � Limz!z0

g�z�. Then

1. Limz!z0
� f �z� � g�z� � f0 � g0

2. Limz!z0
f �z�g�z� � f0g0

3. Limz!z0

f �z�
g�z� �

f0
g0

if g0 � 0

4. Limz!z0
Abs� f �z�� � Abs� f0�

A function f �z� is continuous at z0 if limz!z0
f �z� � f �z0� and is continuous in a

region R if it is continuous at all points within that region. Note that this definition implic-
itly requires f �z� and its limit at z0 to exist.

Theorem 3. Let f �z� be defined in a neighborhood of z0 and suppose that for all points in
that neighborhood f �z� lies within the domain of g�z�. Then if f �z� is continuous at z0 and
g�z� is continuous at f �z0�, it follows that g� f �z�� is continuous at z0.

Consider a sequence of complex numbers �zn�. The limit of a sequence zn ! w requires
that �zn	w� < �whenever n > N���. A Cauchy sequence requires �zn	zm� ! 0 as n, m ! �.
A sequence converges if and only if it is a Cauchy sequence.

1.7 Differentiability

1.7.1 Cauchy–Riemann Equations

Let w � f �z� � u�x, y� � �v�x, y� be a function of the complex variable z � x� �y and define
its derivative by

f '�z� �
�w
�z

� lim
$z!0

$w
$z

� lim
$z!0

f �z � $z� 	 f �z�
$z

(1.95)

Although this definition is simply the obvious generalization of the derivative of a real-
valued function of a real variable, the higher dimensionality of complex variables imposes
nontrivial requirements upon differentiable complex functions. The existence of such a
derivative requires

1. f �z� be defined at z

2. f �z� � �

3. the limit must be independent of the direction in which $z ! 0 .
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The independence of direction is a strong condition which leads to the Cauchy–Riemann
equations, henceforth denoted CR. Approaching the limit using variations along coordi-
nate directions, one finds

$z � $x � lim
$x!0,$y�0

u�x � $x, y� � �v�x � $x, y� 	 u�x, y� 	 �v�x, y�
$x

�
(u
(x

� �
(v
(x

(1.96)

$z � �$y � lim
$x�0,$y!0

u�x, y � $y� � �v�x, y � $y� 	 u�x, y� 	 �v�x, y�
�$y

� 	�
(u
(y

�
(v
(y

(1.97)

Equating the real and imaginary parts separately, then requires

(u
(x

�
(v
(y

(u
(y

� 	
(v
(x

(1.98)

The CR equations are necessary but not quite sufficient to ensure differentiability. To obtain
sufficient conditions, we also require continuity of the partial derivatives of component
functions.

Theorem 4. Let f �z� � u�x, y� � �v�x, y� be defined throughout a neighborhood �z	 z0� < �
and suppose that the first partial derivatives of u and v wrt x and y exist in that neigh-
borhood and are continuous at z0 � �x0, y0. Then f '�z� exists if those partial derivatives
satisfy the Cauchy–Riemann equations

(u
(x

�
(v
(y

(u
(y

� 	
(v
(x

(1.99)

Conversely, if f '�z� exists, then the CR equations are satisfied.

If f �z� is differentiable at z0 and throughout a neighborhood of z0, then f �z� is described
as analytic (or regular or holomorphic) at z0. If f �z� is analytic everywhere in the finite
complex plane, it is described as entire. Examples of entire functions include Exp, Sin,
Cos, Sinh, and Cosh. Functions which are analytic except on branch cuts include Log,
ArcSin, ArcCos, ArcSinh, and ArcCosh.

Recognizing that the CR equations are linear, it is trivial to demonstrate that if f1�z� and
f2�z� are analytic functions in domains D1 and D2, then any linear combination a f1�z� �
b f2�z� is also analytic in the overlapping domain D � D1 ) D2. Similarly, it is straight-
forward, though tedious, to demonstrate that the product f1�z� f2�z� also satisfies the CR
equations and, hence, is analytic in D. Furthermore, one can show that 1 / f2�z� is analytic
in D2 where f2�z� � 0 such that f1�z� / f2�z� is analytic in D except possibly at the zeros of
the denominator. Finally, if f1�w� is analytic at w � f2�z�, then f1� f2�z�� is analytic. Formal
demonstration that these familiar properties of derivatives also apply to analytic functions
of a complex variable is left to the student.
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Example

f �z� � z2 � u � x2 	 y2, v � 2xy �
(u
(x

� 2x �
(v
(y

,
(u
(y

� 	2y � 	
(v
(x

(1.100)

The partial derivatives are continuous throughout the complex plane and satisfy the CR
equation; hence, z2 is entire. In fact, one can show that any polynomial in z is entire.

Example

f �z� � z� � u � x, v � 	y �
(u
(x

� 1 �
(v
(y

� 	1 (1.101)

The partial derivatives are continuous, but do not satisfy CR; hence, z� is nowhere differen-
tiable and is not analytic anywhere. It is important to recognize that functions of a complex
variable can be smooth and continuous without being differentiable. The requirements for
differentiability are stricter for complex variables than for real variables because indepen-
dence from direction imposes correlations between the dependencies upon the real and
imaginary parts of the independent variable. Analytic functions of one complex variable
are not simply functions of two real variables.

1.7.2 Differentiation Rules

Many of the familiar differentiation rules for real functions can be applied to complex
functions. Suppose that f �z� and g�z� are differentiable within overlapping regions. Within
the intersection of those regions, we can derive differentiation rules using the definition in
terms of limits. Alternatively, by separating each function into real and imaginary compo-
nents, one could also employ the CR relations.

For example, one quickly finds that the derivative of a sum

F�z� � f �z� � g�z�

� lim
$z!0

F�z � $z� 	 F�z�
$z

� lim
$z!0

f �z � $z� 	 f �z�
$z

� lim
$z!0

g�z � $z� 	 g�z�
$z

(1.102)

reduces to the sum of derivatives

F�z� � f �z� � g�z� � F '�z� � f '�z� � g'�z� (1.103)

if both functions are differentiable. Similarly, the familiar rule for a differentiation of a
product

F�z� � f �z�g�z� � lim
$z!0

F�z � $z� 	 F�z�
$z

� lim
$z!0

f �z � $z�g�z � $z� 	 f �z�g�z�
$z

(1.104)

is obtained using f �z�$z� * f �z�� f '�z�$z and g�z�$z� * g�z��g'�z�$z for differentiable
functions and retaining only first-order terms,

lim
$z!0

f �z � $z�g�z � $z� 	 f �z�g�z�
$z

� lim
$z!0

f �z�g'�z�$z � f '�z�g�z�$z
$z

(1.105)
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such that

F�z� � f �z�g�z� � F '�z� � f �z�g'�z� � f '�z�g�z� (1.106)

By similar reasoning one can verify all standard differentiation rules, subject to obvious
conditions on differentiability of the various parts. Perhaps the most important is the chain
rule

F�z� � g� f �z�� � F '�z� � �g'�w� f '�z��
w� f �z�

(1.107)

provided that f is differentiable at z and that g is differentiable at w � f �z�.

1.8 Properties of Analytic Functions

Suppose that f �z� � u�x, y� � �v�x, y� is analytic in domain D and suppose that the sec-
ond partial derivatives of the component functions u and v are continuous in D also. (We
will soon prove that analytic functions are infinitely differentiable so that the component
functions u and v must have continuous partial derivatives of all orders within D.) Differ-
entiation of the CR equations then gives

(u
(x

�
(v
(y

�
(2u

(x2 �
(2v
(x(y

�
(2v
(y(x

� 	
(2u

(y2 �
(2u

(x2 �
(2u

(y2 � 0 (1.108)

(v
(x

� 	
(u
(y

�
(2v

(x2 � 	
(2u
(x(y

� 	
(2u
(y(x

� 	
(2v

(y2 �
(2v

(x2 �
(2v

(y2 � 0 (1.109)

Therefore, both the real and imaginary components of f are harmonic functions that satisfy
Laplace’s equation. Furthermore, comparing the two-dimensional gradients�

+u � x̂
(u
(x

� ŷ
(u
(y

� x̂
(v
(y

	 ŷ
(v
(x

� n̂ �
�
+v (1.110)�

+v � x̂
(v
(x

� ŷ
(v
(y

� 	x̂
(u
(y

� ŷ
(u
(x

� 	n̂ �
�
+u (1.111)

�
�
+u ,

�
+v � 0 (1.112)

we find that lines of constant u (level curves) are orthogonal to lines of constant v anywhere
that f '�z� � 0. (Here n̂ represents the outward normal to the xy-plane.) If u represents a
potential function, then v represents the corresponding stream function (lines of force), or
vice versa.

Consider, for example, f �z� � z2 with u � x2 	 y2 and v � 2xy. If we interpret v as an
electrostatic potential, then u represents lines of force. Figure 1.15 shows equipotentials
as solid lines, positive in the first quadrant and alternating sign by quadrant, and lines of
force as dashed lines. The arrows indicate the direction of the force, as prescribed by 	

�
+v.

If electrodes were shaped with surfaces parallel to equipotentials, the interior field would
act as an electrostatic quadrupole lens, focussing a beam of positively-charged particles
along the 45° and 225° directions and defocussing along the 135° and 315° directions.
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Figure 1.15. Level curves for f �z� � z2 � u � �v are shown as solid for v and dashed for u. If the

solid lines are interpreted as equipotentials, the dashed lines with directions given by 	
�
+v represent

lines of force.

Alternatively, if v represents a magnetostatic potential, then u would represent magnetic
field lines. A beam of positively-charged particles moving into the page would be verti-
cally focussed and horizontally defocussed by a magnetic quadrupole lens whose iron pole
pieces have surfaces shaped by v - xy.

It is also easy to demonstrate that, although harmonic functions may have saddle
points, they cannot have extrema in the finite plane. Hence, neither component of an ana-
lytic function may have an extremum within the domain of analyticity. Figure 1.16 illus-
trates the typical saddle shape for components of an analytic function. Furthermore, the
average value of a harmonic function on a circle is equal to the value of that function of
the center of the circle. Proofs of these hopefully familiar properties of Laplace’s equation
are left to the exercises.

Suppose that Z1 is a curve in the z-plane represented by the parametric equations z1�t� �
�x1�t�, y1�t�� and that f �z� is analytic in a domain containing Z1, such that the image W1 of
that curve in the w-plane is represented by w1�t� � f �z1�t��. The slopes of tangent lines at
a point z0 and its image w0 are related by the chain rule, such that

w'
1�t� � f '�z�z'1�t� � arg�w'

1�t� � arg�z'1�t� � arg� f '�z0� (1.113)

Thus, the mapping f �z� rotates the tangent line through an angle arg� f '�z0��. The tangent
to a second curve which passes through the same point z0 is rotated by the same amount,

w'
2�t� � f '�z�z'2�t� � arg�w'

2�t� � arg�z'2�t� � arg� f '�z0� (1.114)

such that angle between the two curves

arg�w'
2� 	 arg�w'

1� � arg�z'2� 	 arg�z'1� (1.115)
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Figure 1.16. Typical saddle: u � x2 	 y2.

is unchanged by the conformal transformation specified by an analytic function f �z�. Sim-
ilarly, distances in the immediate vicinity of z0 are scaled by the factor � f '�z0��, such that

�w 	 w0� � � f '�z0���z 	 z0� (1.116)

Therefore, the image of a small triangle in the z-plane is a similar triangle in the w-plane
that is generally rotated and scaled in size.

1.9 Cauchy–Goursat Theorem

1.9.1 Simply Connected Regions

We have seen that the components of analytic functions are harmonic and might be stim-
ulated to pursue analogies with potential theory as far as possible. Remembering that the
line integral about a closed path vanishes for a potential derived from a conservative force,
we seek to evaluate�

C
f �z� �z � �

C
�u�x 	 v�y � ��

C
�u�y � v�x (1.117)

for an analytic function f � u � �v of z � x � �y where u�x, y� and v�x, y� are real. If
we require P�x, y� and Q�x, y� to be differentiable within the simply connected region R
enclosed by the simple closed contour C, we can apply Stoke’s theorem to prove

�
C
�P�x � Q�y � �

R
�(Q
(x

	
(P
(y
��x�y (1.118)

Let �
V � �P, Q, 0 � n̂ ,

�
+ �

�
V �

(Q
(x

	
(P
(y

(1.119)
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where n̂ is normal to the xy-plane and use �
�
Λ � ��x,�y, 0 as the line element and � �Σ �

n̂�x�y as the area element to obtain�
C
�
�
Λ ,

�
V � �

R
� �Σ ,

�
+ �

�
V � �

C
�P�x � Q�y � �

R
�(Q
(x

	
(P
(y
��x�y (1.120)

Applying this result, known as Green’s theorem, to the real and imaginary parts of the line
integral separately, and using the CR conditions for analytic functions, we find�

C
�u�x 	 v�y � �

R
�	(v

(x
	
(u
(y
��x�y � 0 (1.121)

�
C
�u�y � v�x � �

R
�(u
(x

	
(v
(y
��x�y � 0 (1.122)

and conclude that

f analytic for z within C � �
C

f �z� �z � 0 (1.123)

This result was first obtained by Cauchy, but was later generalized by Goursat. The deriva-
tion above requires not only that f '�z� exist throughout R, but also that it be continuous
therein. The latter restriction can be removed.

Theorem 5. Cauchy–Goursat theorem: If a function f �z� is analytic at all points on and
within a simple closed contour C, then �C

f �z� �z � 0.

1.9.2 Proof

Consider the closed contour C sketched in Fig. 1.17. Divide the enclosed region R into a
grid of squares and partial squares, whereby

�
C

f �z� �z �
n


j�1
�

Cj

f �z� �z (1.124)

where the contributions made by shared interior boundaries cancel such that the net con-
tour integral is the sum of the exterior borders of outer partial squares. For each of these
cells, we construct the function

∆�z, z j� �
f �z� 	 f �z j�

z 	 z j

	 f '�z j� (1.125)

where z and z j are distinct points within or on Cj and evaluate its largest modulus

∆ j � Max�										 f �z� 	 f �z j�

z 	 z j

	 f '�z j�
										� (1.126)

For any positive value of �, a finite number of subdivisions is sufficient to ensure that all
∆ j < � because f �z� is differentiable. Thus, we can now write

f �z� � f �z j� � � f '�z j� � ∆�z, z j���z 	 z j (1.127)



30 1 Analytic Functions

x�Re�z�

y�Im�z�
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C3 C4
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z

z5

Figure 1.17. Proof of the Cauchy–Goursat theorem. Contours about four of the interior squares are

labeled C1	4. If f �z� is continuous, contributions to the contour integral from shared sides cancel,

leaving only the outer border C that passes through partial squares. In the partial square, labeled C5,

we identify two distinct points labeled z and z5.

for any z � Cj, such that

�
Cj

f �z� �z � f �z j��
Cj

�z � f '�z j��
Cj

�z 	 z j �z � �
Cj

∆�z, z j��z 	 z j �z (1.128)

The first two terms obviously vanish, leaving

�
C

f �z� �z �
n


j�1
�

Cj

∆�z, z j��z 	 z j �z (1.129)

which can be bounded by								�C
f �z� �z

								 � n

j�1

										�Cj

∆�z, z j��z 	 z j �z
										 (1.130)

If s j is the length of the longest side of partial square Cj, then �z	 z j � �
�

2s j. Furthermore,
�∆ j � < �, such that										�Cj

∆�z, z j��z 	 z j �z
										 � �

2s j��4s j � Lj (1.131)

where Lj is the length of that part of Cj that coincides with C. Because each factor is

bounded and � ! 0 may be taken arbitrarily small, we find that ��C
f �z� �z� is also arbitrar-

ily small and, hence, must vanish. Therefore, the Cauchy–Goursat theorem is established
without assuming that f ' is continuous.
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Figure 1.18. Wedge contour used for � �

0
Cos�x2� �x.

1.9.3 Example

Contour integration of analytic functions provides powerful new methods for evaluation
of otherwise intractable definite integrals. Although we will consider a wider variety later,
for now consider the integral� �

0
Cos�x2� �x (1.132)

which arises in the Fresnel theory of diffraction. It appears to be difficult to evaluate this
integral using standard methods for real variables; nor is it obvious that this integral even
converges. On the other hand, the Cauchy–Goursat theorem ensures that

I � �
C

Exp��z2� �z � 0 � I1 � I2 � I3 (1.133)

for a contour C consisting of a wedge of opening angle Θ � Π
4 closed by a circular arc at

R ! �; this contour is shown in Fig. 1.18. Consider first the circular arc where

z � R��Θ � ��z
2
� Exp��R2 Cos�2Θ�Exp�	R2 Sin�2Θ� (1.134)

Recognizing that 0 < Sin�2Θ� < 1 is positive on the arc, the integrand is damped by a
factor of order �	R2

such that

R ! � � I2 � 0 � I1 � 	I3 (1.135)

where

I1 � � �

0
Cos�x2� �x � �� �

0
Sin�x2� �x (1.136)

The return line is represented by

z �
1 � ��

2
t � �z �

1 � ��
2
�t ��z

2
� �	t2

(1.137)
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such that

I3 �
1 � ��

2
� 0

�
�	t2

�t � 	
1 � ��

2

�
Π

2
(1.138)

Therefore, equating real and imaginary parts, we find

� �

0
Cos�x2� �x � � �

0
Sin�x2� �x �

�
Π
8

(1.139)

rather easily. By representing the integrand in terms of analytic functions and choosing a
clever contour, one can perform a surprisingly diverse variety of integrals relatively pain-
lessly. In this case we even obtain two results for the price of one. (What a deal!)

1.10 Cauchy Integral Formula

1.10.1 Integration Around Nonanalytic Regions

Suppose that the region R � R1 � R2 enclosed by the simple closed contour C includes a
localized region R2 where the function f is nonanalytic, but that f is analytic everywhere
else within C. The Cauchy–Goursat theorem can be applied to such a region by deforming
the contour in a manner that encapsulates the problematic region. Figure 1.19 illustrates
this technique. The colored region represents the nonanalytic region R2 and the outer circle,
when closed, represents the contour C and is traversed in a positive, counterclockwise,
sense. Note that C need not actually be circular, but it is easier to draw that way. We
imagine drawing line A from C to a point just outside the nonanalytic region. The contour
C2 goes around this region in a negative, clockwise sense, remaining within the analytic
region R1, ending close to its starting point. We then return along B to the contour C1.
The common path AB traversed in opposite directions between inner and outer contours
is sometimes called a contour wall and serves to create a simply connected region R1 for
which the Cauchy–Goursat theorem requires

�
C1

f �z� �z � �
A

f �z� �z � �
B

f �z� �z � �
C2

f �z� �z � 0 (1.140)

Recognizing that, for a continuous integrand, the contributions of A and B must become
equal and opposite as the separation between those paths becomes infinitesimal, we find

�
A

f �z� �z � �
B

f �z� �z � 0 � �
C

f �z� �z � 	�
C2

f �z� �z (1.141)

Here the negative sign occurs because the inner contour is traversed in the opposite direc-
tion when reached by means of the contour wall. Therefore, the original contour can be
shrink-wrapped about the nonanalytic region without changing the value of the contour
integral.

If the path C encloses several localized nonanalytic regions, we simply construct sev-
eral contour walls. The net contour integral is then just the sum of the contributions
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Figure 1.19. Construction of a contour wall and demonstration that a contour within an analytic

region may be shrink-wrapped around and enclosed nonanalytic region.

from shrink-wrapped contours around each nonanalytic region. Take care with the signs
though – if the original contour is traversed in a positive sense, the nonanalytic regions
are enclosed in a negative sense by the continuous deformed contour that circumvents
nonanalytic regions. However, recognizing that the entire contour integral vanishes and
that the contour walls cancel, the net integral for a simple contour that encloses nonan-
alytic regions reduces to the sum of the contributions made by shrink-wrapped contours
enclosing the nonanalytic regions in a positive sense. Therefore, if there are N isolated
nonanalytic regions within the simple closed contour C, we find

�
C

f �z� �z �
N


k�1
�

Ck

f �z� �z (1.142)

where each simple closed contour Ck encloses one of the nonanalytic regions and is tra-
versed with the same sense as the original contour C.

We postpone consideration of extended nonanalytic regions to the next chapter, but in
the next few sections consider the important special case of an isolated singularity within
the contour.

1.10.2 Cauchy Integral Formula

Suppose that the contour C lies within a region R in which f �z� is analytic, but that it
surrounds another region R' in which f is not analytic. We demonstrated above that the
contour can be deformed, such that C ! C' where C' is immediately outside R', without
changing the value of the contour integral

�
C

f �z� �z � �
C'

f �z� �z (1.143)
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Thus, a contour integral that encloses a single localized nonanalytic region can be shrink-
wrapped about the border of that region. This result is particularly useful for the case of
an isolated singularity for which the region of nonanalyticity consists of a single point z0.
Consider the integral

�
C
�s

f �s�
s 	 z

(1.144)

where f is analytic throughout the region enclosed by C while the integrand it singular
at z. If z is outside C the integral vanishes because the integrand is analytic at all points
within C. Alternatively, if z lies within C, we can reduce C to a small circle surrounding z,
such that

s 	 z � r��Θ � �s � �r��Θ �Θ (1.145)

Thus, the integral can be approximated

�
C
�s

f �s�
s 	 z

* f �z��
C

�r��Θ �Θ

r��Θ
� 2Π� f �z� (1.146)

to arbitrary accuracy as r ! 0. Therefore, we obtain the Cauchy integral formula:

Theorem 6. Cauchy integral formula: If a function f �z� is analytic at all points on and
within a simple closed contour C, then f �z� � 1

2Π� �C
f �s�
s	z �s for any interior point z.

This remarkably powerful theorem requires that the value of an analytic function at any
interior point is uniquely determined by its values on any surrounding closed curve and is
analogous to the two-dimensional form of Gauss’ theorem. The behavior of an analytic
function is severely constrained.

1.10.3 Example: Yukawa Field

Using elementary field theory, the virtual pion field surrounding a nucleon is represented
in momentum space by

Φ̃�q� �
02

q2 � 02 (1.147)

The spatial distribution is then obtained from the three-dimensional Fourier transform

Φ�r� � � �3q

�2Π3
��q,rΦ̃�q� �

4Π

�2Π3
02

r � �

0

q Sin�qr�

q2 � 02 �q (1.148)

where spherical symmetry and the multipole expansion of the plane wave have been used
to reduce the integral to one dimension. (Alternatively, the angular integrals can be evalu-
ated directly.) Recognizing that the integrand is even, we can write

� �

0

q Sin�qr�

q2 � 02 �q �
1
2 � �

	�

q Sin�qr�

q2 � 02 �q �
1
2� � �

	�

q Exp��qr�

q2 � 02 �q (1.149)
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Figure 1.20. Great semicircle with enclosed pole at z � �0.

because the contribution from Cos�qr� vanishes by symmetry. Now consider the contour
integral

I�0� � �
C

g�z�
z 	 �0

�z (1.150)

where

g�z� �
z��zr

�z � �0
(1.151)

is analytic in the upper half-plane. If we choose a contour C, shown in Fig. 1.20, consisting
of the real axis and a semicircle in the upper half-plane with R ! �, affectionately called
a great semicircle, this integral can be expressed as

I�0� � � �

	�

q Exp��qr�

q2 � 02 �q � �R2 � Π

0

Exp��rR��Θ
R2�2�Θ � 02 �Θ (1.152)

Using

Exp��rR��Θ � Exp��rR Cos�Θ��Exp�	rR Sin�Θ�� (1.153)

and recognizing that Sin�Θ� > 0 in the upper half-plane, we realize that the contribution of
the circular arc decreases exponentially with R and vanishes in the limit R ! �. Therefore,
with the aid of the Cauchy integral formula

I�0� � 2Π�g��0� � �Π�	0r (1.154)

we obtain the Yukawa field

Φ�r� �
02

4Π
�	0r

r
(1.155)

that is central to the meson exchange model of the nucleon–nucleon interaction that binds
atomic nuclei together.
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1.10.4 Derivatives of Analytic Functions

Let

f �z� �
1

2Π� �C
�w

f �w�
w 	 z

(1.156)

represent a function that is analytic in the domain D containing the simple closed con-
tour C. First we demonstrate that differentiation can be performed under the integral sign.
Using

f �z � $z� 	 f �z� �
1

2Π� �C
�w � f �w�

w 	 z 	 $z
	

f �w�
w 	 z

�
�

$z
2Π� �C

�w
f �w�

�w 	 z�w 	 z 	 $z

(1.157)

we recognize that the left-hand side vanishes in the limit $z ! 0 because f �z� is continuous
and must demonstrate that the right-hand side shares this property. Recognizing that the
integrand is analytic everywhere within C except at z, we may reduce the contour to a
small circle of radius r around z. Let M � max�� f �w��� on the reduced contour, and use the
triangle inequalities to evaluate the maximum modulus of the integrand, such that								$z�

C
�w

f �w�
�w 	 z�w 	 z 	 $z

								 � �$z��
C
�w

M
��w 	 z�w 	 z 	 $z�

� 2Πr
M�$z�

r�r 	 �$z�

(1.158)

vanishes in the limit $z ! 0 for finite r. Thus, we find that

lim
$z!0

f �z � $z� 	 f �z�
$z

�
1

2Π� �C
�w

f �w�

�w 	 z2

� f '�z� �
1

2Π� �C
�w f �w�

�
�z

�w 	 z	1 (1.159)

is also analytic within D. Repeating this process, we obtain

f �n�z� �
�n f �z�
�zn �

n!
2Π� �C

�w
f �w�

�w 	 zn�1 (1.160)

by induction. Therefore, we have demonstrated by construction the remarkably powerful
theorem that analytic functions have derivatives of all orders. This also requires all partial
derivatives of its component functions to be continuous in D. This theorem will soon be
used to derive series representations of analytic functions.

Theorem 7. If a function f is analytic at a point, then derivatives of all orders exist and
are analytic at that point.
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1.10.5 Morera’s Theorem

The converse of Cauchy–Goursat theorem is known as Morera’s theorem:

Theorem 8. Morera’s theorem: If a function f �z� is continuous in a simply connected
region R and �C

f �z� �z � 0 for every simple closed contour C within R, then f �z� is
analytic throughout R.

If every closed path integral vanishes, the path integral between two points in the
domain of analyticity D depends only upon the end points and is independent of the path,
provided that the path lies entirely within D. Hence, we define the function F�z� by means
of the definite integral

F�z2� 	 F�z1� � � z2

z1

f �z� �z (1.161)

Clearly,

� z2

z1

� f �z� 	 f �z1���z � F�z2� 	 F�z1� 	 �z2 	 z1 f �z1� (1.162)

such that the limit as z2 ! z1

lim
z2!z1

� z2

z1
� f �z� 	 f �z1���z

z2 	 z1
� lim

z2!z1

F�z2� 	 F�z1�
z2 	 z1

	 f �z1� � F '�z1� 	 f �z1� (1.163)

compares F '�z1� with f �z1�. However, the integral vanishes in the limit of vanishing range
of integration because f �z� is continuous in D, such that

lim
z2!z1

� z2

z1
� f �z� 	 f �z1���z

z2 	 z1
� 0 � F '�z1� � f �z1� (1.164)

Thus, F�z� is analytic in D with F '�z� � f �z�. Therefore, because the derivative of an
analytic function is also analytic, we conclude that f �z� must also be analytic, proving
Morera’s theorem.

Morera’s theorem is sometimes useful for proving general properties for analytic func-
tions of various types, but is rarely of practical value to more detailed calculations.

1.11 Complex Sequences and Series

1.11.1 Convergence Tests

An infinite sequence of complex numbers �zn, n � 1, 2, . . . � can be represented by com-
bining two sequences of real numbers �xn, n � 1, 2, . . . � and �yn, n � 1, 2, . . . � such that
zn � xn��yn. The sequence zn converges to z if for any small positive Ε there exists an inte-
ger N such that �zn	 z� < Ε for n > N. Convergence of a complex series zn to z � x��y then
requires convergence of both xn to x and yn to y. Many of the properties of real sequences
can be adapted to complex sequences with only minor and obvious changes. Therefore,
we state without proof the Cauchy convergence principle:
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Theorem 9. The sequence �zn� converges if and only if for every small positive Ε there
exists an integer NΕ such that �zm 	 zn� < Ε for any m, n > NΕ.

If �zn� and �wn� are two convergent sequences with limits z and w, then �azn � bwn� and
�znwn� are also convergent sequences with limits az � bw and zw.

An infinite series of complex numbers zk converges if the sequence of partial sums

Sn �
n


k�1

zk (1.165)

converges to S, such that

lim
n!�

Sn � S � S �
�


k�1

zk (1.166)

If the sequence of partial sums does not converge, the corresponding series diverges.
A series is absolutely convergent if the series of moduli

n

k�1

�zk � (1.167)

converges. An absolutely convergent series converges, but a convergent series need not
converge absolutely. A convergent series that is not absolutely convergent is described as
conditionally convergent. For example, the alternating harmonic series ��

k�1�	
k / k con-

verges conditionally but not absolutely because ��
k�1 k	1 diverges. Term-by-term addition

of convergent series yields another convergent series, but convergence of a series formed
by termwise multiplication requires absolute convergence of the individual series.

If �zk� does not converge to zero, the corresponding series diverges because the sequence
of partial sums will not satisfy the Cauchy convergence condition. However, convergence
of the sequence of terms to zero does not ensure convergence of the series. The most gen-
eral analysis of a series separates its terms into real and imaginary parts and then applies
one of the many tests developed for series of real numbers to the real and imaginary sub-
series separately; the complex series then converges if both its real and imaginary subseries
converge. However, it is usually simpler and often sufficient to test for absolute conver-
gence instead. The following convergence tests familiar for real series can be generalized
to complex series.

Comparison test: If 0 � �zk � � ak for sufficiently large k and �k ak converges, then �k zk

converges absolutely.

Ratio test: If �zk�1 / zk � � r for all k > N, then �k zk converges absolutely if r < 1. Alter-
natively, if r � limk!� �zk�1 / zk � the series converges absolutely if r < 1 but diverges if
r > 1. This test is inconclusive if r � 1.

Root test: If �zk �
1 / k � r for all k > N, then �k zk converges absolutely if r < 1. Alterna-

tively, if r � limk!� �zk �
1 / k the series converges absolutely if r < 1 but diverges if r > 1.

This test is also inconclusive if r � 1.
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Integral test: Suppose that f �k� � �zk � where f �x� is defined for x 2 n 2 1. The series then
converges absolutely if the integral � �

n
f �x� �x converges.

Note that the ratio test is indeterminate when limk!� �zk�1 / zk � � 1. For example, the har-
monic series zk � k	1 diverges while the alternating harmonic series converges. A “sharp-
ened” version, established in the exercises, shows that a series converges absolutely if the
ratio of successive terms takes the form									an�1

an

									 � 1 	
s
n

(1.168)

for large n with s > 1.
Often the terms of a series will themselves be functions of a complex variable, z, such

that

fn�z� �
n


k�1

gk�z� (1.169)

represents a sequence � fn�z�� of partial sums. If such a sequence converges for all z in a
region R, such that

z � R � f �z� � lim
n!�

fn�z� � lim
n!�

n

k�1

gk�z� (1.170)

then fn�z� is described as a series representation of the function f �z� valid within the con-
vergence region R. Often the convergence region takes the form of a disk, �z	 z0� � R, with
center z0 and radius of convergence R. If a series converges for all z within �z 	 z0� < R
but diverges for some points on the circle �z 	 z0� � R, one still reports a radius of conver-
gence R. The problem then is to determine the radius of convergence.

Example

What is the radius of convergence for a geometric series, ��
k�0 zk, extended to the complex

plane? According to the ratio test,									 zk�1

zk

									 � 									 zk�1

zk

									 � �z� (1.171)

this series converges absolutely for any �z� < 1 and diverges for �z� > 1. Thus, the radius of
convergence is 1. Notice that even though the ratio test is inconclusive for �z� � 1, this series
clearly diverges on the unit circle because the terms do not approach zero. Alternatively,
by the ratio test

lim
k!�

�zk �
1 / k � �z� (1.172)

one finds convergence for �z� > 1 and divergence for �z� 2 1. Furthermore, one can demon-
strate that

�z� < 1 � lim
n!�

n

k�0

zk �
1

1 	 z
(1.173)
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within the radius of convergence. Let

fn�z� �
n


k�0

zk �
1 	 zn�1

1 	 z
(1.174)

represent a sequence of complex numbers, where the last step is verified by direct multi-
plication

�1 	 z�1 � z � z2 � . . . � zn � �1 � z � z2 � . . . � zn 	 �z � z2 � . . . � zn�1

� 1 	 zn�1 (1.175)

Then, separating the constant term (for fixed z) from the variable part of the sequence

fn�z� �
1

1 	 z
	

zn�1

1 	 z
(1.176)

and recognizing

�z� < 1 � lim
n!�

zn�1

1 	 z
� 0 (1.177)

one finds that

�z� < 1 � lim
n!�

fn�z� �
1

1 	 z
(1.178)

Therefore, the geometric series

�z� < 1 �
�


k�0

zk �
1

1 	 z
(1.179)

converges to a simple analytic function within the unit circle, thereby extending a familiar
result from the real axis to the complex plane.

1.11.2 Uniform Convergence

A sequence of functions � fn�z�� is said to converge uniformly to the function f �z� in a
region R if there exists a fixed positive integer NΕ such that � fn�z� 	 f �z�� < Ε for any z
within R when n > NΕ. Consequently, a uniformly convergent series fn�z� � �n

k�1 gk�z�
provides an approximation to f �z� within R with controllable accuracy – there exists a
finite number of terms, even if large, that guarantees a specified degree of accuracy any-
where within the region of uniform convergence. The region of uniform convergence is
always a subset of the region of convergence. For example, although the geometric series��

k�0 zk converges uniformly to �1 	 z	1 within any disk �z� � R < 1 with less than unit
radius and is convergent within �z� < 1, one cannot properly claim uniform convergence
throughout the open region �z� < 1 because the convergence becomes so slow near the cir-
cle of convergence that there will always be points within that region that require more than
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N terms to achieve the desired accuracy no matter how large N is chosen. Convergence at
z without uniform convergence within the region of interest is described as pointwise.

The most common test for uniform convergence is offered by the Weierstrass M-test:
The series �k fk�z� is uniformly convergent in region R if there exists a series of positive
constants Mk such that � fk�z�� � Mk for all z in R and �k Mk converges. The proof follows
directly from the comparison test. (For what it’s worth, M stands for majorant.)

The follow theorems for manipulation of uniformly convergent series can be estab-
lished by straightforward generalization of the corresponding results for real functions.

Continuity theorem: a uniformly convergent series of continuous functions is continuous.

Combination theorem: the sum or product of two uniformly convergent series is uni-
formly convergent within the overlap of their convergence regions.

Integrability theorem: the integral of a uniformly convergent series of continuous func-
tions is equal to the sum of the integrals of each term.

Differentiability theorem: the derivative of a uniformly convergent series of continuous
functions with continuous derivatives is uniformly convergent and is equal to the sum
of the derivatives of each term.

Furthermore, by combining these results one can obtain the more general Weierstrass the-
orem establishing uniformly convergent series as analytic functions within their conver-
gence regions. Thus, the property of uniform convergence is important because it makes
available all theorems in the theory of analytic functions.

Theorem 10. Weierstrass theorem: If the terms of a series�k gk�z� are analytic throughout
a simply-connected region R and the series converges uniformly throughout R, then its sum
is an analytic function within R and the series may be integrated or differentiated termwise
any number of times.

1.12 Derivatives and Taylor Series for Analytic Functions

1.12.1 Taylor Series

It is now a simple matter to demonstrate the existence of power-series expansions for
analytic functions. Suppose that f is analytic within a disk �z 	 z0� � R centered upon z0

and assume that

f �z� �
�


n�0

an�z 	 z0
n (1.180)

Consider the integral

Ik �
1

2Π� � �z
1

�z 	 z0
k (1.181)
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evaluated on the circle �z 	 z0� � R. Using �z � �R��Θ �Θ, we find that

Ik �
R1	k

2Π � 2Π

0
���1	kΘ �Θ � ∆k,1 (1.182)

vanishes unless k � 1. Therefore, the coefficients of the power series can be evaluated
according to

an �
1

2Π� � �z
f �z�

�z 	 z0
n�1 �

f �n�z0�
n!

(1.183)

Although we performed this calculation using circular contours, the same results would be
obtained for arbitrary simple contours within the analytic region because the singularities
in the integrands are confined to a single point, which can be excised. A power series
centered upon the origin is sometimes called a Maclaurin series while a more general
power series about arbitrary z0 is called a Taylor series.

Theorem 11. Taylor series: If a function f is analytic within a disk �z 	 z0� � R, then the

power series f �z� � ��
n�0 an�z	 z0

n with an �
f �n�z0�

n! converges to f �z� at all points within
the disk. Conversely, if a power series converges for �z 	 z0� � R, it represents an analytic
function within that disk.

It is instructive to demonstrate convergence of the power series directly. Expanding

�s 	 z	1 � �s 	 z0
	1 �1 	 z 	 z0

s 	 z0
�	1

� �s 	 z0
	1
344444
5
An �

n

k�0

� z 	 z0

s 	 z0
�k677777
8

(1.184)

where

An �
�z 	 z0

n�1

�s 	 z0
n�s 	 z

(1.185)

the Cauchy integral formula becomes

f �z� �
1

2Π� �C
�s

f �s�
s 	 z

�
n


k�0

ak�z 	 z0
k � Rn�z 	 z0

n�1 (1.186)

where

ak �
1

2Π� � �s
f �s�

�s 	 z0
k�1 �

f �k�z0�
k!

(1.187)

as before and where the remainder takes the form

Rn �
1

2Π� �C
�s

f �s�
�s 	 z

�z 	 z0
n�1

�s 	 z0
n�1 (1.188)

Identifying

�z 	 z0� � Ρ, M � max�� f �s���, ∆ � min��s 	 z�� (1.189)
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and choosing a circular contour with

�s 	 z0� � r > Ρ (1.190)

we find

�Rn� � �Ρ
r
�n�1 r

∆
M � lim

n!�
Rn � 0 (1.191)

Thus, this power series converges throughout the region of analyticity that surrounds z0.
Therefore, the radius of convergence is the distance to the nearest singularity in the com-
plex plane. With more careful analysis, one may find that a Taylor series converges at some
points on the circle of convergence also.

The Taylor series for f �z� about a point z0 � �x0, 0 on the real axis has the same form as
the expansion of f �x� interpreted as a function of the real variable x. More importantly, this
extension of the Taylor theorem to the complex plane often provides the simplest method
for evaluating the radius of convergence of a power series. Consider the hyperbolic tangent

Tanh�z� � z	
1
3

z3 �
2

15
z5 	

17
315

z7 �
62

2835
z9 	

1382
155 925

z11 �
21 844

6 081 075
z13 � , , , (1.192)

It is difficult to evaluate the general term and to deduce the radius of convergence from
the real-valued series, but from the function of a complex variable we know immediately
that the radius of convergence is Π / 2 because the nearest roots of Cosh�z� are found at
z � ��Π / 2.

Sometimes it is necessary to determine the radius of convergence directly from the
terms of the power series. Then one finds

R � � lim
n!�

									an�1

an

									�	1

(1.193)

using the ratio test, or

R � lim
n!�

�an�
	1 / n (1.194)

using the root test. For example, the Maclaurin series for Log�1 � z� takes the form

Log�1 � z� �
�


n�1

�	n�1 zn

n
(1.195)

and one obtains a convergence radius R � 1 using the ratio test. In this case the conver-
gence radius is limited by the branch point at z � 	1. Notice that at z � 1 this power series
reduces to the alternating harmonic series

�

n�1

�	n�1

n
� Log�2� (1.196)

and thus converges for at least one point on the convergence circle, while at z � 	1 the
resulting harmonic series diverges. Applying the root test instead suggests a limit

lim
n!�

n1 / n � 1 (1.197)

that might not be obvious otherwise.
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1.12.2 Cauchy Inequality

Let

M�r� � max�z	z0 ��r � f �z�� (1.198)

represent the maximum modulus of an analytic function on a circle of radius r surrounding
z0. We then find that

�an� �
1

2Π � �z
M

rn�1 � Mr	n � �an�r
n � M�r� (1.199)

constrains the coefficients of the Taylor series.

Theorem 12. Cauchy inequality: If a function f �z� � ��
n�0 an�z 	 z0

n is analytic and
bounded in D and � f �z�� � M on a circle �z 	 z0� � r, then �an�r

n � M.

1.12.3 Liouville’s Theorem

Theorem 13. Liouville’s theorem: If a function f �z� is analytic and bounded everywhere
in the complex plane, then f �z� is constant.

According to the Cauchy inequality, if � f �z�� < M for �z� < R, then �an�R
n < M. If this

inequality applies in the limit R ! �, then we must require an ! 0 for n > 0. Therefore,
if f is not constant, it must have a singularity somewhere. The behavior of functions of a
complex variable is largely determined by the nature and locations of their singularities.

1.12.4 Fundamental Theorem of Algebra

Theorem 14. Fundamental theorem of algebra: Any polynomial Pn�z� � �n
k�0 anzn of

order n 2 1 must have at least one zero z0 % Pn�z0� � 0 in the finite complex plane.

Although it is difficult to prove the fundamental theorem of algebra using purely alge-
braic means, it is an almost trivial consequence of Liouville’s theorem. If Pn�z� has no
zeros, then the function f �z� � 1 / Pn�z� would be analytic throughout the entire complex
plane. Recognizing that

�z� � R ! � � �Pn�z�� ! �an�R
n � f �z� !

1
�an�R

n (1.200)

it is clear that f �z� is bounded. Thus, Liouville’s theorem requires f to be constant, but
f �z� vanishes in the limit R ! �, which contradicts the absence of zeros in Pn. Therefore,
Pn must have at least one zero. Factoring out this root, we write Pn�z� � �z 	 z1Pn	1�z�
and apply the theorem to Pn	1, concluding that it must also have a root if n > 2. Repeating
this process, we determine that a polynomial of degree n must have n roots, although some
might be repeated.
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1.12.5 Zeros of Analytic Functions

If a function f �z� is analytic at z0 there exists a disk �z 	 z0� < R wherein the Taylor series
converges, such that

�z 	 z0� < R � f �z� �
�


n�0

an�z 	 z0
n (1.201)

Suppose that z0 was chosen to be a root of f �z0� � 0, such that a0 � 0. If a1 � 0, we
describe z0 as a simple zero of f , but if all an � 0 with n < m while am � 0, we describe
z0 as a zero of order m. It is then useful to express the Taylor series in the form

f �z� � �z 	 z0
mΦ�z� (1.202)

where the auxiliary function

Φ�z� �
�


n�0

am�n�z 	 z0
n (1.203)

employing the coefficients an with n 2 m has the nonzero value Φ�z0� � am at z0. Clearly
Φ is continuous at z0 and is analytic within the radius of convergence. Therefore, for any
small positive number � there exists a corresponding radius ∆ such that

�Φ�z� 	 am� < � whenever �z 	 z0� < ∆ (1.204)

Suppose there were another point z1 in a neighborhood of z0 where Φ�z1� � 0, such that

Φ�z1� � 0 � �am� < � whenever �z1 	 z0� < ∆ (1.205)

can only be satisfied if am � 0, contrary to our assumption that z0 is a zero of order m.
Therefore, we conclude that if f is analytic and does not vanish identically, there must
exist a neighborhood around any root in which no other root is found; in other words, the
roots of analytic functions are isolated.

Theorem 15. Suppose that a function f �z� is analytic at z0 and that f �z0� � 0. Then
there must exist a neighborhood of z0 containing no other zeros of f unless f vanishes
identically.

1.13 Laurent Series

1.13.1 Derivation

A more general expansion which is useful in an analytic region that surrounds a nonana-
lytic region is provided by the Laurent series.
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C

C2

C1

Figure 1.21. To develop the Laurent series, a small contour C within an analytic region is stretched

toward the limits of the region of analyticity, indicated by C1 and C2, with the aid of contour wall.

Theorem 16. Laurent series: If f �z� is analytic throughout the region R1 < �z 	 z0� < R2,
it can be represented by an expansion

f �z� �
�


n�	�

an�z 	 z0
n (1.206)

with coefficients

an �
1

2Π� �C

f �z� �z

�z 	 z0
n�1 (1.207)

computed using any simple counterclockwise contour C within the analytic region.

If R1 ! 0 and coefficients with n < 0 vanish, then the Laurent series reduces to the
Taylor series.

Suppose that C is a small contour surrounding an interior point z, such that

f �z� �
1

2Π� �C
�s

f �s�
s 	 z

(1.208)

according to the Cauchy integral formula. As shown in Fig. 1.21, we can stretch C to
the limits of the annulus without changing the integral because the integrand is analytic
throughout that region. Recognizing that the opposing segments of the contour wall cancel,
we obtain

f �z� �
1

2Π� �R2

�s
f �s�

s 	 z
	

1
2Π� �R1

�s
f �s�

s 	 z
(1.209)



1.13 Laurent Series 47

where R1 and R2 denote counterclockwise circles at the inner and outer borders of the
analytic annulus. For the outer integral we employ the expansion

�s 	 z	1 � �s 	 z0
	1 �1 	 z 	 z0

s 	 z0
�	1

� �s 	 z0�	1
�


n�0

� z 	 z0

s 	 z0
�n

(1.210)

while for the inner integral

�s 	 z	1 � 	�z 	 z0
	1 �1 	 s 	 z0

z 	 z0
�	1

� 	 �z 	 z0�	1
�


n�0

� s 	 z0

z 	 z0
�n

(1.211)

such that

2Π� f �z� �
�


n�0

�z 	 z0
n �

R2

�s
f �s�

�s 	 z0
1�n �

�

n�0

�z 	 z0
	1	n �

R1

�s f �s��s 	 z0
n (1.212)

Both integrands are analytic throughout the annulus and are independent of z. Hence, these
integrals can be evaluated using any simple closed path within the analytic region. There-
fore, we may combine the two terms into a single expression

f �z� �
�


n�	�

an�z 	 z0
n (1.213)

an �
1

2Π� �C
�z

f �z�

�z 	 z0
n�1 (1.214)

representing the Laurent expansion. One can also show that the Laurent expansion about
a specific z0 is unique within its analytic annulus.

1.13.2 Example

The function

f �z� �
1

z2�1 	 z
(1.215)

has singular points at z � 0, 1. Suppose that we evaluate the Laurent coefficients using
contour integration

an �
1

2Π� �C
�s

f �s�

sn�1 �
R	n	2

2Π � 2Π

0

�	�Θ�n�2

1 	 R��Θ
�Θ (1.216)

on a circle with s � R��Θ and �s � �s�Θ. For R < 1 we can expand the integrand to obtain

R < 1 � an �
R	n	2

2Π

�

k�0

Rk � 2Π

0
Exp���k 	 n 	 2Θ� �Θ (1.217)

Nonvanishing coefficients then require k � n � 2 and k 2 0 � n 2 	2, such that

0 < �z� < 1 � f �z� �
�


n�0

zn	2 (1.218)
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Alternatively, for R > 1 we use �1 	 z	1 � 	z	1�1 	 z	1	1 to obtain

R > 1 � an � 	
R	n	3

2Π

�

k�0

R	k � 2Π

0
Exp�	��k � n � 3Θ� �Θ (1.219)

for which nonvanishing coefficients require k � 	n 	 3 and k 2 0 � n � 	3, such that

�z� > 1 � f �z� � 	
�


n�0

z	n	3 (1.220)

Although the Laurent theorem provides an explicit formula for the coefficients, evalu-
ation of the contour integrals is often difficult and one seeks simpler alternative methods.
In this case we can use the partial fractions

1

z2�1 	 z
�

1

z2 �
1
z
�

1
1 	 z

(1.221)

and

�z� < 1 �
1

1 	 z
�

�

n�0

zn (1.222)

�z� > 1 �
1

1 	 z
� 	

1

z�1 	 z	1
� 	

�

n�1

z	n (1.223)

to obtain the same results without integration. In other cases we may be able to convert a
known Taylor series into a Laurent series. For example,

Log�1 � z� �
�


n�1

�	n�1 zn

n
for �z� < 1 (1.224)

� Log �1 � z	1 � �

n�1

�	n�1 z	n

n
for �z� > 1 (1.225)

where the latter is valid in the largest annulus that excludes the branch cut 	1 � x � 1 on
the real axis.

1.13.3 Classification of Singularities

Suppose that f �z� is singular at z0 but analytic at all other points in a neighborhood of z0;
f is then said to have an isolated singularity at z0. A function that is analytic throughout
the finite complex plane except for isolated singularities is described as meromorphic.
Meromorphic functions include entire functions, such as Exp, that have no singularities in
the finite plane and rational functions that have a finite number of poles. Functions, such
as Log, that require branch cuts are not meromorphic.
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The Laurent expansion about an isolated singularity takes the form

f �z� �
�


n�	�

an�z 	 z0
n (1.226)

If am � 0 for some m < 0 while all an<m � 0, then z0 is classified as a pole of order 	m
and the coefficient a	1 is called the residue of the pole. A simple pole has m � 	1. If the
function appears to have a singularity at z0 but all am vanish for m < 0, z0 is described as
a removable singularity because the function can be made analytic simply by assigning a
suitable value to f �z0�. For example, z � 0 is a removable singularity of

f �z� �
Sin�z�

z
�

�

n�0

�	n

�2n � 1!
z2n (1.227)

because with the assignment f �0� � 1 the function is continuous and its Laurent series
reduces to a simple Taylor series.

If the Laurent expansion has nonvanishing coefficients for arbitrarily large negative
n ! 	� and the inner radius vanishes, then it has an essential singularity at z0. According
to Picard’s theorem, essential singularities have the nasty property that f �z� takes any,
hence all, values in any arbitrarily small neighborhood infinitely often with possibly one
exception. For example,

�1 / z �
�


n�0

z	n

n!
(1.228)

has an essential singularity at the origin. The equation w � �1 / z is satisfied by

w � �1 / z � z �
1

Log�w�
� �Log �w� � �Arg�w� � 2nΠ�	1 (1.229)

for any integer n. By choosing n sufficiently large, one can make �z� as small as desired.
Thus, although �1 / z � 0, the one exception, all other values of w are obtained infinitely
often in a neighborhood of z ! 0, as expected from Picard’s theorem.

Singularities in f �z� at z � � are classified according to the behavior of f � 1
z � at z � 0.

Thus, �z has an essential singularity at �, while z	n is analytic at � if n is a positive
integer.

1.13.4 Poles and Residues

Although the Laurent coefficients are defined in terms of an integral, it is usually easier to
compute the coefficients using a derivative formula similar to that for the Taylor series. If
f �z� is analytic near z0 except for an isolated m-pole at z0, we define an auxiliary function

Φ�z� � �z 	 z0
m f �z� �

�

n�	m

an�z 	 z0
m�n (1.230)
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that is analytic within �z 	 z0� < R where R is the radius of convergence for the Laurent
series. The coefficients can then be obtained by differentiation, whereby

an �
1

�m � n!
� �m�n

�zm�n Φ�z��
z�z0

(1.231)

This result can be written more succinctly as

an �
Φ�m�n�z0�
�m � n!

(1.232)

where Φ�k�z0� denotes the kth derivative of Φ�z� evaluated at z0. This formula is similar to
that for the Taylor series, except that f is replaced by Φ and the index is shifted, and reduces
to the Taylor coefficients for an analytic function with m � 0. However, this method is not
useful at an essential singularity where m � �.

Often we require only the residue of f at z0. For a simple pole we identify the residue
as

m � 1 � a	1 � Φ�z0� � lim
z!z0

�z 	 z0 f �z� (1.233)

while for an m-pole one obtains

m > 1 � a	1 �
Φ�m	1�z0�
�m 	 1!

(1.234)

For example, consider

f �z� �
zn

q�z�
�

zn

az2 � bz � c
(1.235)

where we assume that n 2 0, a � 0, and that a, b, c are real. (Other cases can be treated
separately.) The two poles at the roots of the denominator

z� �
	b �

�
b2 	 4ac

2a
(1.236)

are distinct unless the discriminant b2 	 4ac happens to vanish. We can then write

f �z� �
a	1zn

�z 	 z1�z 	 z2
� Ρi �

a	1zn
i

zi 	 z j

(1.237)

where Ρi is the residue at pole zi and z j is the other pole. If there happens to be a double
pole, we find

z1 � z2 � z0 � a	1 � � �
�z

�a	1zn�
z0

� a	1nzn	1
0 � a	1n �	b

2a
�n	1

(1.238)

An important special case is provided by functions of the form

f �z� �
p�z�
q�z�

with q�z0� � 0 q'�z0� � 0 p�z0� � 0 (1.239)
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where the simple pole at z0 is a zero of q�z�. The Taylor expansion of q�z� then takes the
form

q�z� * q'�z0��z 	 z0 (1.240)

such that the residue of f �z� at z0 becomes

a	1 �
p�z0�
q'�z0�

(1.241)

For example, the function

f �z� �
�az

�z � 1
� zk � �2k � 1Π�, Rk � 	�azk (1.242)

has poles at odd-integer multiples of Π� with residues easily determined using q'�zk� � 	1.

1.14 Meromorphic Functions

1.14.1 Pole Expansion

If a function f �z� only has isolated singularities, it is described as meromorphic. For sim-
plicity suppose that these singularities are simple poles at zn where the index lists the poles
in order of increasing distance from the origin. The behavior near a simple pole can be
represented by z * zn � f �z� * bn

z	zn
. Thus, the function

gn�z� � f �z� 	
n


k�1

bk

z 	 zk

(1.243)

is analytic in a disk �z� � Rn where the radius Rn encloses n poles. According to the Cauchy
integral formula, we may write

gn�z� �
1

2Π� �Cn

gn�s�
s 	 z

�s �
1

2Π� �Cn

f �s�
s 	 z

�s 	
1

2Π�

n

k�1

bk �
Cn

�s

�s 	 z �s 	 zk� (1.244)

where Cn is a circle, �z� � Rn, that encloses n poles without any poles being on the contour
itself. For any z � zk we can use partial fractions to express the second contribution in a
form�

Cn

�s
�s 	 z�s 	 zk

� �
Cn

�s
s 	 zk

	 �
Cn

�s
s 	 z

� 0 (1.245)

where cancellation between equal residues is apparent. Furthermore, if z � zk we also find�
Cn

�s

�s 	 zk
2 � 0 (1.246)

and conclude that

gn�z� �
1

2Π� �Cn

f �s�
s 	 z

�s (1.247)

for z within Cn.
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Next let

Mn � max�						 f �Rn�
�Θ						� (1.248)

represent the largest modulus found on the circle Cn, such that				gn�z�
				 � MnRn

Rn 	 �z�
(1.249)

bounds gn. If f is bounded such that Rn ! � with finite Mn, we can construct a sequence
of gn functions which are also bounded as �z� ! �. Thus, the function

g�z� � lim
n!�

gn�z� (1.250)

is analytic and bounded in the entire complex plane. According to Liouville’s theorem,
such a function must be constant! Hence, we can write

f �z� � g� �
�


k�1

bk

z 	 zk

(1.251)

and all that remains is to determine the value of the constant g�. Using

f �0� � g� 	
�


k�1

bk

zk

� g� � f �0� �
�


k�1

bk

zk

(1.252)

we finally obtain the Mittag–Leffler theorem.

Theorem 17. Mittag–Leffler theorem: Suppose that the function f �z� is analytic every-
where except for isolated simple poles, is analytic at the origin, and that there exists a
sequence of circles �Ck � �z� � Rk, k � 1, n� where each Ck encloses k poles within radius
Rk. Furthermore, assume that on these circles � f � is bounded as Rn ! �. The function can
then be expanded in the form

f �z� � f �0� �
�


n�1

� bn

z 	 zn

�
bn

zn
� (1.253)

where bn is the residue for pole zn.

Unlike Laurent expansions for which the choice of z0 can be somewhat arbitrary, the
pole expansion for meromorphic functions depends only upon intrinsic properties of the
function itself. Although the present version places significant restrictions on the function,
generalizations can often be made fairly easily. For example, if f �z� has a pole at the origin,
one can apply the theorem to the closely related function g�z� � f �z � z0� where z0 is any
convenient point where f �z� is analytic. Similarly, if Mn - Rm�1

n for large Rn, one can
employ an expansion of the form

f �z� �
m


k�1

f �k�0�
zk

k!
�

�

n�1

bn

z 	 zn
� z

zn
�m�1

(1.254)

Poles of higher order can be accommodated also, but we forego detailed analysis here.
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Pole expansions appear in many branches of physics. If f �z� represents the response
of a dynamical system to some driving force, the poles generally represent resonances or
normal modes of vibration while the residues represent the coupling of the driving force
to those normal modes. Pole expansions can also be used to sum infinite series.

1.14.2 Example: Tan�z�

The function Tan�z� has simple poles at zn � �n � 1
2 Π with residue bn � 	1 for integer n,

both positive and negative. Thus, circles Cn of radius Rn � nΠ enclose 2n poles without
singularities on the contours. One can show that Mn ! 1 as n ! �. Hence, Tan�z� fulfills
all requirements for application of the Mittag–Leffler theorem. The pole expansion can
now be expressed as

Tan�z� � 	
�


n�	�

� 1

z 	 �n � 1
2 � Π 	

1�n � 1
2 � Π� (1.255)

� 	
�


n�0

� 1

z 	 �n � 1
2 � Π 	

1�n � 1
2 � Π �

1

z � �n � 1
2 � Π �

1�n � 1
2 � Π� (1.256)

such that

Tan�z� �
�


n�0

2z��n � 1
2 � Π�2 	 z2

(1.257)

With the substitution z ! sΠ / 2, we obtain the partial fraction representation

Π
4s

Tan� sΠ
2
� � 1

1 	 s2 �
1

9 	 s2 �
1

25 	 s2 � , , , (1.258)

Expressions of this type can often be used to sum infinite series. For example, from

lim
s!0

Π
4s

Tan� sΠ
2
� � Π2

8
(1.259)

one immediately obtains

�

k�0

� 1
2k � 1

�2

�
Π2

8
(1.260)

Then using

�

k�1

1

k2 � 1 �
�


k�1

� 1
2k
�2

�
�


k�1

� 1
2k � 1

�2

�
3
4

�

k�1

1

k2 �
�


k�0

� 1
2k � 1

�2

(1.261)

we find
�


k�1

1

k2 �
Π2

6
(1.262)
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1.14.3 Product Expansion

If f �z� is an entire function, its logarithmic derivative Φ�z� � f '�z� / f �z� is a meromorphic
function with poles at the roots of f �z�. If these roots are simple, the corresponding poles
in Φ will also be simple. Near a simple root we express f �z� in the form

z * zn � f �z� * �z 	 znpn�z� � Φ�z� *
1

z 	 zn

(1.263)

where pn�z� is smooth and nonvanishing near zn. Hence, the poles of the logarithmic deriv-
ative all have residue bn � 1. Provided that Φ is suitably bounded at �, we can now use
the pole expansion of Φ to write

�Log� f �
�z

� Φ0 �
�


n�1

� 1
z 	 zn

�
1
zn
� (1.264)

� Log� f �z�� 	 Log� f �0�� � zΦ0 �
�


n�1

�Log�z 	 zn� 	 Log�	zn� �
z
zn
� (1.265)

where Φ0 � f '�0� / f �0�. Exponentiating and simplifying this expression, we obtain the
product expansion

f �z�
f �0�

� Exp�z f '�0�
f �0�

� ��
n�1

�1 	 z
zn
� �z/zn (1.266)

where the zn are the roots of f �z�. Like the pole expansion of meromorphic functions,
the product expansion of entire functions depends only upon intrinsic properties of the
function. Expansions of this type are often useful in symbolic manipulations, but generally
converge too slowly to be useful for numerical evaluations.

1.14.4 Example: Sin�z�

Although Sin�z� is an entire function with simple poles at zn � �nΠ, we cannot employ
the product expansion directly because Φ0 is not finite. However, this difficulty is easily
circumvented by considering instead the function

f �z� �
Sin�z�

z
� Φ�z� � Cot�z� 	

1
z

, Φ�0� � 0 (1.267)

The positive and negative roots can be accommodated by using two products

Sin�z�
z

�
��

n�1

�1 	 z
nΠ
� � z

nΠ

��
n�1

�1 � z
nΠ
� �	 z

nΠ (1.268)

and combining factors pairwise to obtain

Sin�z�
z

�
��

n�1

�1 	 � z
nΠ
�2�� Sin�z� � z

��
n�1

�1 	 � z
nΠ
�2� (1.269)

This form displays all the roots of Sin�z� and is, in effect, a completely factored represen-
tation of its Taylor series.
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Problems for Chapter 1

1. Complex number field
In mathematics, a field � is defined as a set containing at least two elements on which
two binary operations, denoted addition (�) and multiplication (�) satisfy the following
conditions:

a) completeness and uniqueness of addition: 9a, b � �, c � a � b � � is unique

b) commutative law of addition: a � b � b � a

c) associative law of addition: �a � b � c � a � �b � c

d) a � c � b � c � a � b

e) existence of identity element for addition: 9a, b � �, :x % a�x � b � :0 % a�0 � a

f) completeness and uniqueness of multiplication: 9a, b � �, c � a � b � � is unique

g) commutative law of multiplication: a � b � b � a

h) associative law of multiplication: �a � b � c � a � �b � c

i) a � c � b � c � c � 0 � a � b

j) existence of identity element for multiplication: 9a, b � �, :x � 0 % a � x � b �
:1 % a � 1 � a

k) distributive law: a � �b � c � a � b � a � c

The real numbers � obviously form a field with respect to ordinary addition and multi-
plication, but it is not immediately obvious that the complex numbers � form a field with
respect to the extended definitions of addition and multiplication. To demonstrate that �

is a field, you must identify the identity elements for addition and multiplication and must
verify that each of the 11 conditions set forth above is satisfied.

2. Triangle inequalities
Prove the triangle inequalities: ��z1� 	 �z2�� � �z1 � z2� � �z1� � �z2�.

3. Applications of de Moivre’s theorem
Show that

Cos�nΘ� � Cos�Θ�n 	 �n
2
�Cos�Θ�n	2 Sin�Θ�2 � �n

4
�Cos�Θ�n	4 Sin�Θ�4 � , , , (1.270)

Sin�nΘ� � �n
1
�Cos�Θ�n	1 Sin�Θ� 	 �n

3
�Cos�Θ�n	3 Sin�Θ�3 � , , , (1.271)

4. Lagrange’s trigonometric identity
Prove:

n

k�0

Cos�kΘ� �
1
2
�

Sin��n � 1
2 � Θ

2 Sin� Θ2  (1.272)
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Hint: first prove

n

k�0

zk �
1 	 zn�1

1 	 z
(1.273)

5. Quadratic formula
a) Prove that

az2 � bz � c � 0 � z �
�b2 	 4ac1 / 2 	 b

2a
(1.274)

applies even when a, b, c are complex. Why did we not use a � sign in front of the
square root?

b) Use the quadratic formula to determine all roots of the equation Sin�z� � 2. (Hint:
Sin�z� � 1

2� �w 	 1
w  where w � ��z.)

6. Assorted trigonometric equations with complex solutions
Find all solutions to the following equations assuming that a, b are real numbers and that
�a� > 1, �b� > 1. Express your results in the form z � x � �y where x, y are real-valued
expressions that do not involve trigonometric functions and be sure to consider all cases.

a) Cos�z� � a

b) Cos�z� � b�

7. Series RLC circuit
A circuit contains resistance R, inductance L, and capacitance C in series with a generator
of electromotive force ��t� � �0 Cos�Ωt�. Let I�t� represent the current flowing in the
circuit and Q�t� the charge stored in the capacitor. It is useful to express the physical
quantities

��t� � Re��̂��Ωt , I�t� � Re�Î��Ωt , Q�t� � Re�Q̂��Ωt (1.275)

in terms of complex phasors �̂, Î, and Q̂ that represent both the magnitudes and relative
phases for sinusoidal time dependencies.

a) Use Kirchhoff’s laws to derive a phasor generalization of Ohm’s law, �̂ � ÎẐ, where
the impedance Ẑ � Z��Φ is generally complex. Express the modulus, Z, and the phase,
Φ, of the complex impedance in terms of the real parameters of the circuit.

b) Show that the power averaged over a cycle is given by P̄ � 1
2 Re�Î�̂�� and evaluate

this quantity in terms of real parameters. Show that P̄�Ω� exhibits a resonance and
determine its position and full width at half maximum (FWHM). Sketch P̄�Ω� and
Φ�Ω� together.
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8. Smith chart
The complex impedance Z � R � �X for an AC circuit is decomposed into resistive and
reactive components, R and X , where R > 0 and 	� < X < �. Smith proposed a repre-
sentation

W � u � �v �
Z 	 1
Z � 1

(1.276)

that maps the right half-plane for Z onto the unit disk for W . Determine the mappings for
lines of constant R and lines of constant X . Sketch illustrative samples of each.

9. Bilinear mapping
Study the bilinear mapping

w �
az � b
cz � d

, ad 	 bc � 0 (1.277)

by determining the images in the w-plane of representative lines and circles in the z-plane.

10. Component functions
Develop explicit expressions for the real and imaginary components, u�x, y� and v�x, y� for
the following functions of z � x � �y.

a) f �z� � �z2 	 11 / 2

b) g�z� � �z 	 11 / 2�z � 11 / 2

11. Inverse trigonometric functions
Prove:

arcsin�z� � 	� log��z � �1 	 z2�1 / 2� (1.278)

arccos�z� � 	� log�z � �z2 	 1�1 / 2� (1.279)

arctan�z� �
�
2

log� � � z
� 	 z

� (1.280)

This can be done by expressing equations of the form z � Sin� f � in exponential form,
substituting w � �� f , solving for w, and deducing f �z�. Determine the branch cuts needed
to specify the principal branch of each function.

12. An identity
Prove: ArcTan� 2z

z2	1
� � 2 ArcCot�z�

13. Principal value for an imaginary power
Suppose that

Η � � �a 	 1
�a � 1

��b (1.281)

where a, b are real.
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a) Show that this quantity is real and find a simple expression for its principal value.

b) Determine the position and magnitude of any discontinuities.

14. Derivative wrt z�

Show that a function f �x, y� of two real variables can be expressed as a function g�z, z��
of the complex variable z � x � �y and its complex conjugate z� � x 	 �y. Then show
that the requirement (g/(z� � 0 is equivalent to the Cauchy–Riemann equations for the
components of f and argue that an analytic function is truly a function of a single complex
variable, instead of two real variables.

15. Analyticity of conjugate functions
Suppose that f �z� is analytic in some region.

a) Under what conditions is g�z� � f �z�� analytic in the same region?

b) Under what conditions is h�z� � f �z�� analytic?

c) Under what conditions is w�z� � f �z��� analytic?

16. Completion of analytic functions
Which of the following functions u�x, y� are the real parts of an analytic function f �z� with
z � x � �y? If u�x, y� � Re f �z�, determine f �z�.

a) u � x3 	 y3

b) u � x2 	 y2 � y

17. Analyticity for the sum, product, quotient, or composition of two functions
Suppose that f1�z� � u1�x, y��� v1�x, y� and f2�z� � u2�x, y���v2�x, y� are analytic functions
of z � x��y. Show that f1� f2, f1 f2, f1 / f2, and f1� f2�z�� are analytic functions under appro-
priate conditions by demonstrating consistency with the Cauchy–Riemann equations. Be
sure to specify the requisite conditions for each case.

18. Equipotentials and streamlines for exponential function
Sketch the equipotentials u�x, y� and streamlines v�x, y� for w � �z where z � x � �y and
w � u � �v.

19. Equipotentials and streamlines for Tanh
Evaluate and sketch the equipotentials and streamlines for the hyperbolic tangent.

20. Cauchy–Riemann equations in polar form
Suppose that z � x� �y � r��Θ is expressed in polar form and let f �z� � R��< where R�r, Θ�
and <�r, Θ� are real functions of r and Θ. Derive Cauchy–Riemann equations relating (R

(r to
(<
(Θ and (R

(Θ to (<
(r for differentiable functions. (Hint: consider infinitesimal displacements

�zr and �zΘ in the r̂ and Θ̂ directions.)

21. Circular average of analytic function
Demonstrate that if f �z� is analytic within the disk �z 	 z0� � R then the average value of
f �z0 � r��Θ� on any circle �z 	 z0� � r < R is equal to the value at its center, f �z0�.



Problems for Chapter 1 59

22. Maximum modulus principle
Prove that, if f �z� is analytic and not constant within a region R, then � f �z�� does not have
a maximum within the interior of R. Hence, if f is analytic and not constant within R, � f �
must reach its maximum value on the boundary of R.

23. Extrema of harmonic functions
Suppose that u�x, y� is harmonic and not constant within region R. Prove that u�x, y� has
no extrema (neither maximum nor minimum) within R; hence, its extrema must be found
on the boundary of R. (Hint: apply the maximum modulus principle to � f �z� where f is
analytic within R.)

24. Absence of extrema in � f � for analytic functions
If f �z� is analytic in domain D, demonstrate that � f �z�� has no extrema in D. Hint: use
the Taylor series representation to show that no neighborhood �z 	 z0� < r contains an
extremum.

25. An application of the Cauchy integral formula
Suppose that f �z� is analytic on and within the simple closed positive contour C. Evaluate
the following integrals.

a) 1
2Π� �C

t f �t�
t2	z2 �t

b) 1
2Π� �C

t2�z2

t2	z2 f �t� �t

26. Derivatives of analytic functions
Assume that f �z� is analytic on and within a positive simple closed contour C that encloses z.
Use induction to prove

f �n�z� � lim
$z!0

f �n	1�z � $z� 	 f �n	1�z�
$z

�
n!

2Π� �C
�w

f �w�

�w 	 zn�1 (1.282)

where f �n is the nth derivative of f .

27. Fundamental theorem of integral calculus
Prove the fundamental theorem of integral calculus: If f �z� is analytic in a simply con-
nected domain D that includes z0 and z, then

F�z� � � z

z0

f �t� �t (1.283)

is also analytic in D and f �z� � �F�z� / �z.

28. Poisson integral formula
a) Suppose that f �z� is analytic within the disk �z� � r � a. Prove

f �z� �
1

2Π� �C

344444
5

f �s�
s 	 z

	
f �s�

s 	 a2

z�

677777
8
�s (1.284)
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where C is a circle of radius a centered on the origin. Then deduce the Poisson integral
formula

f �r��Θ � a2 	 r2

2Π � 2Π

0

f �a��Φ�

a2 � r2 	 2ar Cos�Φ 	 Θ�
�Φ (1.285)

b) Suppose that we know the electrostatic potential Ψ on the surface of a long cylinder as
the real part of an analytic function (consider only two spatial dimensions). Obtain a
general formula for the potential at any point within the cylinder. Compare the poten-
tial at the origin with the mean-value theorem. Note that, although a formal proof is
not required, the Poisson integral formula can be applied for any function that is har-
monic within C except for a finite number of jump discontinuities upon C.

c) As a specific illustration, compute the interior potential given that Ψ�a��Φ� has the
constant value V for Φ1 � Φ � Φ2 and is zero on the rest of the cylinder. Display
the angular dependence for a representative selection of r values for some choice of
Φ2 	 Φ1.

29. Uniform convergence of power series
Suppose that the power series fn�z� � �n

k�0 akzk converges absolutely such that f �z� �
limn!� fn�z� for �z� < R. Show that fn�z� converges uniformly in any subdisk �z� � B < R.

30. Convergence of series representation for �z

Demonstrate explicitly that the series ��
k�0 zk / k! is absolutely convergent for all z and that

it is uniformly convergent in �z� � R for any finite R. Can one properly claim uniform
convergence for all z?

31. Sharpened ratio test
a) The integral test can be used to established absolute convergence of the series repre-

sentation of the Riemann zeta function

Ζ�z� �
�


n�1

n	z (1.286)

when Re�z� > 1. Use the Weierstrass theorem to prove that Ζ�z� is analytic for Re�z� >
1. (This function has an important role in number theory and often appears in theoret-
ical physics. It can be extended to most of the complex plane by analytic continuation,
but that is beyond the scope of this problem.)

b) Use this result to obtain a sharpened form of the ratio test that states when the ratio of
successive terms takes the form									an�1

an

									 � 1 	
s
n

(1.287)

for large n, the series converges absolutely if s > 1.

c) Prove the existence of Euler’s constant

Γ � lim
n!�

344444
5

n

k�1

1
k
	 Log�n�

677777
8

(1.288)
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32. Laurent series
For each of the following functions, construct a complete set of Laurent series about the
specified point and specify their convergence regions.

a) f �z� � 1
�z	1�z	2 about z � 0

b) f �z� � 2z
z2	1

about z � 2

c) f �z� � 1
�z2	11 / 2 about z � 0

d) f �z� � Sin�z � 1
z  about z � 0

33. Laurent expansion for z2 Log� z
1	z 

a) Define a single-valued branch for

f �z� � z2 Log� z
1 	 z

� (1.289)

and specify the region where your definition is real.

b) What is the nature of the singularity at infinity?

c) Construct a Laurent expansion for �z� > 1.

34. Some trigonometric series based upon a Laurent series
Evaluate the Laurent series for �z 	 a	1 where 	1 < a < 1 in the region �z� > a. Then use
z ! ��Θ to compute ��

m�1 am Cos�mΘ� and ��
m�1 am Sin�mΘ�.

35. Grounded cylinder normal to uniform external field
a) Suppose that an infinitely long conducting cylinder of radius a is grounded. The cylin-

der is subjected to a uniform external electric field directed perpendicular to its sym-
metry axis. Use an analytic function to evaluate and sketch the equipotential surfaces
and the net electric field. (Hint: expand @�z� � Φ�z� � �Ψ�z� as a Laurent series around
the origin and determine the coefficients using the appropriate boundary conditions.)

b) A two-dimensional incompressible fluid flows around an infinite cylinder whose axis
is normal to the plane of motion. At large distances the velocity field is uniform.
Evaluate and sketch the streamlines near the cylinder using an analytic function.

36. Isolated singularities
Classify the isolated singularities for each of the following functions. Be sure to consider
the point at �, using z ! 1 / w with w ! 0.

a)
z2

1 � z

b)
1 	 Cos�z�

z

c) z�1 / z

d)
��z

z2 � 02
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37. Singularity sequence
Identify and classify the singularities of

f �z� �
1

Sin�1 / z�
(1.290)

Is the singularity at the origin isolated? Is it a branch point?

38. Residues
Locate the poles for each of the following functions and evaluate their residues.

a)
z � 1

z2�z � 2�
b) Tanh�z�

c)
�z

z2 � Π2

d)
1

zn ��z 	 1
(integer n)

39. Pole expansions
Develop pole expansions for the following functions, being sure to verify that the necessary
conditions are satisfied.

a) Cot�z�

b) Csc�z�

40. Product expansions
Develop product expansions for the following functions, being sure to verify that the nec-
essary conditions are satisfied.

a) Cos�z�

b) Sinh�z�

41. Product expansion for even functions
Suppose that f �z� is entire and is even, such that f �	z� � f �z�, and that its roots are all
simple. Also assume that, except for simple poles, its logarithmic derivative is bounded at
infinity such that the product expansion of f �z� converges.

a) Show that the product expansion can be expressed in the form

f �z� � f �0�
��

n�1

34444
5
1 	 � z

zn
�267777
8

(1.291)

where f ��zn� � 0 and where the product includes only one member of each pair of
roots.
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b) Show that

f ''�0�
f �0�

� 	2
�


n�1

1

z2
n

(1.292)

f �4�0�
f �0�

� 3 � f ''�0�
f �0�

�2

	 12
�


n�1

1

z4
n

(1.293)

c) Apply these results to f �z� � Sin�z� / z and evaluate the following sums:

�

n�1

n	2
�


n�1

n	4 (1.294)

42. Contour integration of logarithmic derivative
Suppose that f �z� is analytic within a domain D containing the positive simple closed
contour C. The function Φ�z� � f '�z� / f �z� is known as the logarithmic derivative of f . Let

I �
1

2Π� �C
Φ�z� �z (1.295)

a) Suppose that z0 is the only zero of f within D and is of order m. Show that I � m if C
encloses z0.

b) Evaluate I assuming that f '�z� � 0 in D and that C encloses N roots of f but that
f �z� � 0 on C.

43. Argument principle
a) Suppose that f �z� is analytic and nonzero on the positive simple closed contour C

and that it is meromorphic in the domain D contained within C. The function Φ�z� �
f '�z� / f �z� is known as the logarithmic derivative of f . Prove that

1
2Π� �C

Φ�z� �z � N0 	 Np (1.296)

where N0 is the number of zeros and Np is the number of poles in D where each
accounts for multiplicity (e.g., a double root or double pole counts twice).

b) Show that

�
C
Φ�z� �z � �$C arg� f � � 2Π��N0 	 Np (1.297)

measures the change in the argument of f �z� as z moves around C. (Hint: consider the
image C ! A under the mapping w � f �z�.)

44. Rouchés theorem
Prove that if f �z� and g�z� are both analytic on and within the simple closed contour C and
�g�z�� < � f �z�� on C, then f �z� and f �z� � g�z� have the same number of zeros within C.




