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9
Single-Electron Tunneling

The charge stored on a capacitor is not quantized: it consists of polarization
charges generated by displacing the electron gas with respect to the positive
lattice ions and can take arbitrary magnitudes. The charge transfer across a
tunnel junction, however, is quantized in units of the electron charge (single-
electron tunneling), and may be suppressed due to the Coulomb interaction
(Coulomb blockade). These simple facts lay the foundation for a new type of
electronic device called single-electron tunneling (SET) devices. Coulomb
blockade was first suggested back in 1951 by Gorter [123], who explained ear-
lier experiments [164]. It remained largely unnoticed until, almost 40 years
later, Fulton and Dolan built a transistor based on single-electron tunnel-
ing [109]. After introducing the concept of Coulomb blockade in Section 9.1,
we will discuss basic single-electron circuits, in particular the double barrier
and the single-electron transistor, in Section 9.2. Some examples and applica-
tions are given in Section 9.3.

9.1
The principle of Coulomb blockade

Consider a tunnel junction biased by a voltage V. The equivalent circuit of a
tunnel junction consists of a “leaky” capacitor, i.e. a resistor R in parallel with
a capacitor C (Fig. 9.1). For charges |q| < e/2, an electron tunneling across
the barrier would increase the energy stored in the capacitor. This effect is
known as Coulomb blockade [191]. For |q| > e/2, the tunneling event reduces
the electrostatic energy, and the differential conductance is given by dI/dV =
1/R. Experimentally, it is far from easy to observe Coulomb blockade at a
single tunnel barrier, for two reasons.

First of all, in order to avoid thermally activated electron transfers, e2/(8C)≥
kBΘ is required.

Question 9.1: A typical tunnel junction patterned by angle evaporation is formed
by a thin oxide layer (thickness 5 nm, dielectric constant ε ≈ 5). Estimate the maxi-
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Fig. 9.1 Equivalent circuit and energy diagram of a single tunnel junc-
tion. The resistor Re represents the low-frequency impedance of the
environment.

mum area of the capacitor plates for Coulomb blockade to be observed at (a) 4.2 K and
(b) 300 K.

Second, the resistance of the tunnel junction has to be “sufficiently large”.
We can speak of individual electrons tunneling through the barrier only if
the tunnel events do not overlap, which means that the time between two
successive events δt ≈ eR/V must be large compared to the duration τ of
a tunnel event, which can be estimated as τ ≈ h̄/eV [178]. This leads to
the condition R � h̄/e2. Furthermore, quantum fluctuations can destroy the
Coulomb blockade as well. So far, we have neglected the fact that the tunnel
junction is coupled to its environment, which is modeled by the resistance Re
in Fig. 9.1. More generally, the environment represents a frequency-dependent
impedance, although here we restrict ourselves to very small frequencies, such
that the impedance can be replaced by Re.

In fact, our above line of arguing implicitly assumes the so-called local rule,
which states that the tunneling rate across the junction is governed by the dif-
ference in electrostatic energy right before and right after the tunnel event.
According to the global rule, on the other hand, the tunnel rate is determined
by the electrostatic energy difference of the whole circuit. Since the environ-
ment inevitably includes some capacitances much larger than the capacitance
of the tunnel junction, we may expect that, in this case, the Coulomb blockade
vanishes.

The influence of the electromagnetic environment on the performance of
tunnel junctions is discussed in detail in [125]. Here, we just give a simple
argument. The local rule holds provided the tunnel junction is sufficiently
decoupled from the environment. In the leads, quantum fluctuations of the
charge take place. An estimate based on the Heisenberg uncertainty rela-
tion tells us what “sufficiently decoupled” actually means: for quantum fluc-
tuations with a characteristic energy amplitude δE, the uncertainty relation
δE δt ≥ h̄/2 holds. Coulomb blockade is only visible for energy fluctuations
at the junction much smaller than e2/8C, while the time scale is given by the
time constant of the circuit: δt ≈ τ = ReC.
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Hence, Coulomb blockade can be observed on a single tunnel junction only
if the resistance of the environment is of the order of the resistance quantum
h/e2 or higher. The influence of the environmental resistance on the Coulomb
blockade has been calculated in [70] and is shown in Fig. 9.2. These consid-
erations imply that it is not so easy to observe Coulomb blockade at a single
tunnel junction. Since the environment has to be sufficiently decoupled, the
resistance of the leads has to be larger than h/e2. This generates Joule heat-
ing, which in turn makes it difficult to keep the electron temperature below
e2/2CkB. Nevertheless, Coulomb blockade has been observed in single tunnel
junctions biased via wires of sufficiently high resistance (Fig. 9.3).

Fig. 9.2 Evolution of the I–V characteristic of a single tunnel junction
as the resistance of the environment Re is increased. For Re > h/2e2,
the Coulomb gap becomes clearly visible. The traces are shown for
Re/R = 0, 0.1, 1, 10, and ∞. After [70].

Fig. 9.3 The I–V characteristic of Al–Al2O3–Al tunnel barriers, fabri-
cated by angle evaporation. In order to suppress quantum fluctuations,
the cross section of the Al wires is only 10 nm × 10 nm. The super-
conductive state has been destroyed by applying a magnetic field.
After [57].
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The limitations imposed by the need to decouple the environment from the
tunnel junction can be relaxed by using two tunnel junctions in series (Fig. 9.4),
since here quantum fluctuations at the island in between the junctions are
strongly suppressed [125]. The number of electrons at the enclosed island
can change only by tunneling across one of the barriers, an event essentially
free of dissipation. The energy relaxation will take place somewhere in the
leads, far away from the island. The resistance of relevance for the suppres-
sion of the quantum fluctuations is now that of a tunnel barrier, while the
capacitance corresponds to the total capacitance of the island to its environ-
ment. Therefore, quantum fluctuations at the island can be suppressed easily
without running into heating problems.

Fig. 9.4 A double barrier structure attached to source (S) and drain
(D). CSD denotes a residual capacitance between the two leads.

Question 9.2: The self-capacitance of a metallic grain is sometimes estimated by
Cself = V/q, where V denotes the potential of the grain and q the charge transferred
onto it from infinity (at zero potential). For a sphere, Cself equals 4πεε0r, whereas,
for a circular disk, Cself = 8εε0r (r denotes the radius of the island). Estimate Cself
and the charging energy for some reasonable grain radii.

9.2
Basic single-electron tunneling circuits

Before we discuss single-electron tunneling in the double barrier system, it is
useful to have a look at the problem from a more general point of view, which
is then used to analyze specific examples including the circuit of Fig. 9.4.

Consider an arrangement of (n + m) conductors embedded in some insu-
lating environment. Each conductor i is at an electrostatic potential Vi, has a
charge qi stored on it, and has a capacitance CiD to drain (ground).1 Between

1) In publications, one frequently encounters an “antisymmetric bias
condition”, where a voltage of VS = +V/2 is applied to the source,
and the drain voltage is VD = −V/2. The electrostatics is different in
that case.
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each pair of conductors i and j, there is a mutual capacitance Cij. Some of these
capacitances may belong to tunnel junctions, which allow electron transfers
between the corresponding conductors. Furthermore, we assume that m con-
ductors are connected to voltage sources, which we call electrodes, while the
n remaining ones are islands.2 For convenience, we enumerate the n islands
from 1 to n, and the m electrodes from n + 1 to n + m.

The charges and potentials of the islands can be written in terms of an is-
land charge vector �qI and potential vector �VI, respectively. Similarly, charge
and potential vectors can be written down for the electrodes, �qE and �VE. The
state of the system can be specified by the total charge vector �q = (�qI,�qE).
Equivalently, it can be characterized by the total potential vector defined as
�V = (�VI, �VE). Charge and potential vectors are related via the capacitance
matrix C:

�q = C�V (9.1)

We write C as

C =
(

CII CIE
CEI CEE

)
(9.2)

The capacitance submatrices between type A and type B conductors (A, B can
be electrodes or islands) are denoted by CAB. Note that the ground is not a
conductor in terms of our definition, and that C is symmetric. The matrix
elements of C are given by (see Appendix B)

(C)ij =

⎧⎪⎪⎨
⎪⎪⎩
−Cij j = 1, . . . , n + m; j �= i

CiD +
n+m
∑

k=1; k �=i
Cik j = i

The electrostatic energy3 E is given by the energy stored at the islands, minus
the work done by the voltage sources. Minimizing this energy gives us the
ground state.

As we shall see, in single-electron circuits, usually the voltages applied to
the electrodes are parametrically changed, and the initial island charge vector
�qI given. As �VE is changed, the potential difference between two conductors
connected by a tunnel junction may become sufficiently large for electrons to
tunnel, resulting in a new charge configuration. Such charge rearrangements
will take place as soon as the electrostatic energy of the new configuration is

2) The electrostatics of such systems in terms of the capacitance matrix
is discussed in Appendix C.

3) The electrostatic energy is the free energy E = U − µN, where U
is the total energy, µ is the electrochemical potential, and N is the
number of electrons.
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equal to, or smaller than, the energy of the original configuration. The charge
transfer can be specified by the change of the charge vector ∆�q = �qnew−�q. For
a system initially in its ground state, we can find the parametric transition to
a new ground state from the condition

∆E = Enew − E ≤ 0 (9.3)

It may look very cumbersome to calculate the energy differences of all the
possible charge transfers and find its minimum. Usually, however, only very
few electron transfers have to be considered.

In Eq. (9.3) ∆E is given by4

∆E[�VE,�qI, ∆�q] = ∆�qIC
−1
II [�qI + 1

2 ∆�qI − CIE�VE] + ∆�qE�VE (9.4)

This equation is an important relation, which can be used to analyze Coulomb
blockade in all systems that can be characterized by a capacitance matrix. Note
that it cannot be used to study Coulomb blockade at the single junction, since
the crucial time scale involved there does not enter the formalism leading to
Eq. (9.4). We are now ready to study the double barrier shown in Fig. 9.4.

9.2.1
Coulomb blockade at the double barrier

The system consists of one electrode (source S) and one island (1). In the fol-
lowing, islands will be labeled by arabic numbers and electrodes by capital
letters. The capacitance matrix reads

C =
(

C11 −C1S
−C1S CSS

)
with C11 = C1S + C1D and CSS = C1S + CSD. The charge on the island is given
by the number n of electrons tunneled onto it, plus an arbitrary background
charge q0, induced by the environment: q = q0 − ne. Four different charge
transfers are relevant. An electron can hop in both directions across C1S or
C1D. For electron transfers across C1S, we have �V = (V1, V), �q = (q0 − ne, qS),
and ∆�q = ±e(−1, 1). Here “+ (−)” corresponds to a transfer of one electron
from S to 1 (1 to S). Consequently, the energy difference reads, according to
Eq. (9.4),

∆E[V, q0 − ne,±e(−1, 1)] =
e

C11

[
e
2
± (ne− q0 + C1DV)

]
(9.5)

For tunnel events across C1D, ∆�q = ±e(−1, 0). Here, “+ (−)” corresponds to
a transfer of one electron from D to 1 (1 to D). This gives

∆E[V, q0 − ne,±e(−1, 0)] =
e

C11

[
e
2
± (ne− q0 − C1SV)

]
(9.6)

4) For a derivation of Eq. (9.4), see Appendix C.
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Coulomb blockade is established only if all four energy differences are pos-
itive. This defines a voltage interval of vanishing current:

Max
{

1
C1S

[−q0 + e(n− 1
2 )],

1
C1D

[q0 − e(n + 1
2 )]

}

< V < Min
{

1
C1S

[−q0 + e(n + 1
2 )],

1
C1D

[q0 − e(n− 1
2 )]

}
(9.7)

Let us study some special scenarios.

1. No background charges. The simplest situation is n = 0, no background
charges (q0 = 0), and identical junction capacitances C1S = C1D =
C11/2. Now Eq. (9.7) reads −e/C11 ≤ V ≤ e/C11. For V = 0, we
get

∆E[0, 0, e(∓1,±1)] = ∆E[0, 0, e(±1, 0)] = e2/(2C11)

All four charge transfer processes are suppressed (Fig. 9.5(a)). Applying
a positive voltage V = e/C11 to the source means that

∆E[V, 0, e(−1, 1)] = e2/C11 > 0

∆E[V, 0, e(1,−1)] = 0 = ∆E[V, 0, e(−1, 0)]

and

∆E[V, 0, e(1, 0)] = e2/C11 > 0

At this voltage, an electron can either tunnel from drain to the island
or from the island to source (Fig. 9.5(b)). Both processes have the same
probability.

Question 9.3: Suppose that an electron has just tunneled from drain onto the
island under these conditions. The system is in the state depicted in Fig. 9.5(b).
Show that, now, an electron will tunnel from the island to source, and a current
is established. Calculate the energy differences indicated in Fig. 9.5(c).

The system thus oscillates between the situations depicted in Figs. 9.5(b)
and (c). In each oscillation cycle, a single electron is transferred from
drain to source. In addition, the tunnel events show a pair correlation.
Shortly after an electron has tunneled from drain to the island, a tunnel-
ing process from the island to drain will take place, and vice versa.
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Fig. 9.5 Energy differences of
the four electron transfers at
the double barrier. Open circles
denote empty states, while full
circles correspond to occupied
states. (a) No voltage is applied
(V = 0), and Coulomb blockade
is established. (b) V = e/C11.

Electrons can hop from drain onto
the island, as well as from the is-
land to source. (c) Differences in
the electrostatic energy after an
electron has, starting from the sit-
uation in (b), tunneled from drain
onto the island.

2. Effect of a background charge q0. Let us assume that n = 0, and C1S = C1D,
which leads to the condition for Coulomb blockade

Max
{

2
C11

(
− q0 − e

2

)
,

2
C11

(
q0 − e

2

)}

< V < Min
{

2
C11

(
− q0 +

e
2

)
,

2
C11

(
q0 +

e
2

)}

This means that, by a non-zero q0, the Coulomb gap can be reduced, but
never be increased. In fact, for q0 = (j + 1

2 )e with j being an integer, the
Coulomb gap vanishes completely. Background charges can seriously
hamper the observation of the Coulomb blockade, especially when they
are time-dependent.

Question 9.4: Draw the energy diagram corresponding to Figs. 9.5(a)–(c) for
q0 = e/4. Assume equal capacitances.

Question 9.5: Show that for C1S �= C1D, the larger capacitance determines
the Coulomb gap, which gets reduced compared to the Coulomb gap for identical
junctions.
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Coulomb blockade in metallic islands has been known for a long time. As
an example of the early indications, we take a look at an experiment of Gi-
aever and Zeller [117]. The authors measured the current–voltage characteris-
tic of a granular Sn film sandwiched between an oxide layer and metallic elec-
trodes (Fig. 9.6). The average diameter of the Sn granules was 11 nm, such that
single-electron tunneling is expected to play a role at low temperatures. The
system contains an ensemble of double barriers in parallel. Therefore, we ex-
pect to observe a gap in the I–V characteristic around V = 0 that corresponds
to the average single-electron charging energy. Leakage currents through the
oxide in between the islands are quite small, since the conductance of tun-
nel barriers decreases exponentially with increasing barrier thickness. At zero
magnetic field, both the Al electrodes as well as the Sn granules are in the su-
perconductive state, and the superconductive energy gap strongly influences
the transport measurements.5 However, by applying a magnetic field, the
superconductive state is destroyed and our previous model becomes applica-
ble. The Coulomb gap manifests itself in an increased differential resistance
around V = 0, compared to that observed at larger voltages.

Fig. 9.6 The experiment of Giaever and Zeller. After [117]. A granular
Sn film was embedded in an oxide layer and covered on both sides by
Al, which acted as source and drain.

9.2.2
Current–voltage characteristics: The Coulomb staircase

Besides the Coulomb gap around V = 0, the Coulomb blockade generates un-
der certain conditions a staircase-like structure in the current–voltage charac-
teristic, known as a Coulomb staircase. In contrast to our earlier considerations
concerning transport through mesoscopic structures, we study here a system
of interacting electrons, and a charge transfer changes the electrostatic energy

5) Some information about the interplay of superconductivity and
single-electron tunneling can be gained from Paper P10.4.
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as well. To include the interaction, we use the so-called transfer Hamiltonian
model, which allows us to relate the change in energy ∆E due to a tunnel
event with a tunnel rate Γ(∆E). For the transmission coefficients calculated in
earlier chapters, we always assumed that the energy is conserved. Here, how-
ever, the electrostatic energy changes as an electron tunnels, and the voltage
sources do some work on the system.

Such situations can be conveniently dealt with by using Fermi’s golden
rule, which originates in time-dependent perturbation theory. The transfer
Hamiltonian model starts from an impenetrable barrier, separating two elec-
tron gases. Tunneling is treated as a perturbation and is described by a per-
turbation Hamiltonian Ht, which is of no further interest to us here. The inter-
ested reader is referred to [90] for details. Applied to a tunnel barrier, Fermi’s
golden rule states that the transition rate for an electron in the initial state |i〉
to a final state | f 〉 on the other side of the tunnel barrier is given by

Γi→ f =
2π

h̄
|〈i|Ht| f 〉|2 δ(Ef − Ei − ∆E) (9.8)

Here, Ei and Ef denote the energies of the initial and final states with respect to
the bottom of the conduction band, and the matrix element 〈i|Ht| f 〉 describes
the coupling of the left-hand side to the right-hand side of the tunnel barrier.
This transition rate is just the transmission probability per unit time. In order
to determine the total transition rate Γ(∆E), we have to make the following
considerations.

1. The tunneling rate at energy E will be proportional to the spectral elec-
tron density n(e) = Di(E) f (E). Here the index i denotes the side of the
barrier that hosts state i, Di is the relevant density of states, and f (E)
denotes the Fermi–Dirac distribution function.

2. Since we are dealing with fermions, the electrons can tunnel only into
an empty state | f 〉. The transfer rate for an electron in |i〉 will thus be
proportional to D f (E + ∆E)[1− f (E + ∆E)].

3. We have to integrate over all energies at which states with non-zero tun-
neling probability exist. These are all the states above the maximum of
the conduction band bottoms on both sides Ecb,max.

Therefore, the total transition rate is given by

Γ1→2(∆E) =
2π

h̄

∞∫
Ecb,max

|〈i|Ht| f 〉|2Di(E)D f (E− ∆E)

× f (E)[1− f (E− ∆E)] dE (9.9)
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Now, 1 and 2 denote the conductors that contain the initial and final states,
respectively. For large energy barriers, we can safely assume that the matrix
elements of Ht will be approximately independent of energy. Second, we as-
sume that the density of states does not depend on energy, either since the
electron gas is two-dimensional, or since the voltage drop is sufficiently small.
Furthermore,

f (E)[1− f (E− ∆E)] =
f (E)− f (E− ∆E)
1− exp(∆E/kBΘ)

If we further consider only cases where the temperature is sufficiently low,
we can approximate the Fermi functions by step functions, and obtain

Γ1→2(∆E) =
1

Re2
∆E

1− exp(∆E/kBΘ)
(9.10)

Here, the resistance R of the tunnel barrier has been defined as

R =
h̄

2πe2|〈i|Ht| f 〉|2D2 (9.11)

(see Exercise E9.2). The current is then obtained from the difference of tunnel
rates in both directions,

I = e[Γ1→2(∆E1→2)− Γ2→1(∆E2→1)]

Let us apply this result to the island of Fig. 9.4. For a steady state, the aver-
age charge at the island is constant, and the current from source to the island
is given by

I(V) = e
∞

∑
n=−∞

p(n)[Γ1→S(∆E1→S(n))− ΓS→1(∆ES→1(n))] (9.12)

Equivalently, I(V) can be expressed in terms of the drain tunneling rates.
Here, we denote the tunneling rate from 1 to source by Γ1→S(∆E1→S(n)), while
the reverse process is denoted accordingly.

Of course, the energy differences now depend on the number of excess elec-
trons n stored on the island. The probability of finding n electrons on the
island is denoted by p(n). We expect this function to be peaked around one
number, which is given by the sample parameters and by V. The steady state
condition furthermore requires that the probability for making a transition
between two charge states (characterized by n) is zero. This means that the
rate of electrons entering the island occupied by n electrons equals the rate of
electrons leaving the island when occupied by (n + 1) electrons:

p(n)[Γ1→S(∆E1→S(n)) + Γ1→D(∆E1→D(n))]

= p(n + 1)[ΓS→1(∆ES→1(n + 1)) + ΓD→1(∆ED→1(n + 1))] (9.13)
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Fig. 9.7 Coulomb staircase as calculated from Eq. (9.12), for different
background charges q0. The structure is periodic in q0, with a period
of one elementary charge. Typical sample parameters have been as-
sumed, namely C1S = C1D = 0.1 fF, R1S = 20 MΩ, R1D = 1 MΩ, at
a temperature of T = 10 mK. The inset shows the thermal smearing of
the Coulomb gap (for q0 = 0) as the temperature is increased to 1 K.

We are now ready to calculate the I(V) characteristic. Equation (9.13), together
with the normalization condition

∞

∑
n=−∞

p(n) = 1

allows us to obtain p(n), which we insert in Eq. (9.12). This requires some nu-
merics, which is considerably simplified by the fact that only a few occupation
numbers have non-vanishing probabilities.

Fig. 9.7 shows staircases calculated from Eq. (9.12) for different background
charges. The staircases are periodic in q0 with a period of one elementary
charge. Qualitatively, the staircase can be understood as follows: Suppose the
tunnel rate across junction S is much larger than that across junction D, and the
voltage applied is positive. The voltage now drops completely across junction
D, i.e. V1D ≈ V. From Eq. (9.4), we calculate from ∆E[V,−ne, e(−1, 0)] = 0 the
threshold voltages V(n0) and V(n0 + 1), which differ by ∆V = e/C1S ≈ e/C11.
If the voltage is increased by this amount, an additional electron can jump on
the island via the drain junction. This increases the current (which is governed
by Γ1→D and by ΓD→1) by ∆I = e/R1DC11 for sufficiently low temperatures,
as can be seen by inserting

e∆V = ∆E[V,−(n + 1)e, e(−1, 0)]− ∆E[V,−ne, e(−1, 0)]
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Fig. 9.8 Steps of the Coulomb staircase for various sample para-
meters, as calculated for T = 10 mK. Left: C1S = C1D = 0.1 fF,
R1D = 1 MΩ. For R1S = R1D, the steps are absent, while for
R1S = 100R1D, they are quite pronounced. Right: Coulomb stair-
case of an island with two junctions of both different capacitances and
different resistances, i.e. C1S = 0.1 fF, C1D = 1 aF.

in Eq. (9.12). The markedness of the staircase steps strongly depends on the
sample parameters (Fig. 9.8). The steps become most pronounced if both the
resistance and the capacitance of one junction are large compared to those of
the second junction. Experimentally, however, this is hard to achieve, since
small tunnel resistances tend to correspond to small capacitances as well. An
analytical model for the Coulomb staircase in this limit is discussed in Paper
P9.2.

Particularly beautiful Coulomb staircases have been observed in scanning
tunneling experiments on clusters, where the experimental setup consists of
a conducting granule or cluster, deposited on an insulating layer on top of a
conducting substrate. The tip of a scanning tunneling microscope (STM) is
positioned on top of the cluster (Fig. 9.9(a)) and the current is measured as a
function of the voltage applied to the STM tip with respect to the substrate [6].
In such experiments, the resistance of one barrier is given by the distance be-
tween tip and granule, which can be changed over a wide range. Fig. 9.9(b)
shows typical experimental data.

9.2.3
The SET transistor

In 1987, Fulton and Dolan [109] published a seminal experiment: By angle
evaporation, a small metallic island was patterned, coupled to source and
drain via tunnel barriers with cross sections in the range of 50 nm× 50 nm. In
addition, a third electrode (the gate electrode) was defined such that the gate–
island resistance approaches infinity, and thus couples to the island only ca-
pacitively. In this way, the effective background charge and thus the width
of the Coulomb gap can be tuned continuously with the gate voltage, and,
for sufficiently small source–drain voltages, the current flowing from source
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Fig. 9.9 (a) One experimental setup for measuring the Coulomb stair-
case. (b) Experimental data, a least squares fit of which gives the pa-
rameters CS = 2 aF, CD = 4.14 aF, RS = 34.9 MΩ, RD = 132 MΩ,
and an offset charge of 0.12e. Here, the granule was a small indium
droplet on top of an oxidized conducting substrate. The temperature
was 4.2 K. The measurement is adapted from [6].

Fig. 9.10 Schematic diagram of a SET transistor.

to drain can be controlled. The system constitutes a transistor based on the
Coulomb blockade and is known as a single-electron tunneling (SET) transis-
tor. Its equivalent circuit is shown in Fig. 9.10.

For simplicity, let us assume that the background charge vanishes for zero
gate voltage. This is no restriction of generality, since additional background
charges can always be compensated for by a gate voltage offset. The inverse
capacitance matrix now reads (C−1)11 = 1/C11, and (C−1)ij = 0 otherwise.
Furthermore, CIE = (−C1S,−C1G). The electrode voltage vector is given by
�VE = (V, VG), while the island charge vector reads �qI = −ne. The Coulomb
gap is given by the onset of the same tunneling events as for the single is-
land studied above. Now, however, the Coulomb gap depends upon the gate
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Fig. 9.11 Stability diagram of a single-electron transistor. Within the
diamonds, Coulomb blockade is established, while outside, a current
flows between source and drain. The slopes of the boundaries are
given by C1G/(C11 − C1S), and by −C1G/C1S, respectively.

voltage. The corresponding energy differences are

[∆E[(V, VG),−ne,±e(−1, 1)] =
e

C11
[ 1

2 e± (C11 − C1S)V ± ne∓ C1GVG]

∆E[(V, VG),−ne,±e(−1, 0)] =
e

C11
[ 1

2 e∓ C1SV ± ne∓ C1GVG]

Coulomb blockade is established if all four energy differences are positive. For
each n, this condition defines a stable, diamond-shaped region in the (VG, V)
plane, with the four boundaries given by the onset conditions:

∆E[(V, VG),−ne,±e(−1, 1)] = 0 =⇒

V(VG, n) =
C1G

C11 − C1S
VG −

e(n± 1
2 )

C11 − C1S

∆E[(V, VG),−ne,±e(−1, 0)] = 0 =⇒

V(VG, n) = −C1G

CS
VG +

e(n± 1
2 )

C1S
(9.14)

These stable regions are known as Coulomb diamonds, and line up along the
VG-axis (Fig. 9.11).

Fig. 9.12 shows a measurement of the stability diagram of a Al–Al2O3
single-electron transistor. The experimentally obtained shape of the Coulomb
diamonds, as well as the current–voltage characteristic, agree very well with
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Fig. 9.12 Stability diagram of an Al–Al2O3 SET transistor (its dimen-
sions are shown to the left), measured at a temperature of 30 mK. At
the bottom, Coulomb blockade oscillations are shown for V = 10 µV.
Adapted from [111].

the model just developed. For |V| < e/C11, the current oscillates strongly as
a function of the gate voltage, an effect known as Coulomb blockade oscillations.
Current peaks occur at VG = (e/C1G)(n + 1

2 ). In each gate voltage period
∆VG = e/C1G, n changes by one. It is important to point out that these oscil-
lations have nothing to do with resonant tunneling. Neither did we assume
phase coherence, nor does the nearest-neighbor spacing of the energy levels
have to be larger than kBΘ! In fact, for the system shown in Fig. 9.12, the level
spacing is well below 1 µeV. We shall see in the following chapter on quan-
tum dots how single-electron tunneling coexists with size quantization. The
weak structures outside the diamonds correspond to Coulomb staircases for
each gate voltage, telling us that the two tunnel barriers are not identical.

The line shape of the Coulomb blockade resonances in the limit of negli-
gible source–drain voltage has been derived in [184] and in [23]. The typical
experimental situation is characterized by hΓ � ∆ � kBΘ � EC. This is
known as the metallic regime. Here, Γ denotes the coupling of the island to the
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leads, while ∆ is the spacing of the discrete (kinetic) energy levels of the is-
land. Coulomb blockade is well pronounced in this regime, but many energy
levels carry current. The line shape of the conductance resonances is given to
a good approximation by

G(E) =
e2Disland

2
ΓSΓD

ΓS + ΓD cosh−2
(

E− Emax

2.5kBΘ

)
(9.15)

Here, Disland is the density of states in the dot, ΓS,D denote the couplings
of the dot to source and drain, while Emax is the energy at the peak am-
plitude. Note that the gate voltage can be transformed into an energy via
δE = eC1G/C11δVG. Increasing the temperature thus broadens the resonances,
but does not change the peak conductance. Since the conductance of an indi-
vidual energy level of the island scales as 1/Θ (see Exercise E8.4), and the
number of contributing states is proportional to Θ, the total temperature de-
pendence of the peak conductance just cancels [23].

It is important to realize that Coulomb oscillations do not measure the den-
sity of states of the island, but the addition spectrum. The density of states
tells us how many electrons can be in the system at a particular energy, for a
fixed number of electrons. The addition spectrum, on the other hand, tells us
at which energies electrons can be added to the system. If the system is inter-
acting, these two quantities are different, a fact that is clearly demonstrated
here. Besides being a somewhat unconventional transistor with an oscillatory
transconductance dI/dVG, this device is extremely sensitive to charges in the
vicinity of the island and can thus be used as an electrometer, as used, for
example, to study the electrochemical potential in semiconductor heterostruc-
tures [161, 321]. Particularly appealing is the integration of a SET transistor
in the tip of a scanning probe microscope, which results in an electrometer
of both high spatial and charge resolution [131, 340]. The charge resolution
is ultimately limited by shot noise; a sensitivity of 10−4 electrons has been
demonstrated experimentally in [348].

Question 9.6: Estimate the charge resolution δq achievable with the single-electron
transistor of Fig. 9.12. Assume the operation point is in the wing of a Coulomb block-
ade resonance, and assume a current resolution of 10 fA.

In transistor operation, its advantage is low power consumption, since,
for switching, the charge needs to be changed by only a small fraction of e.
Schemes for a digital logic based on single-electron tunneling have been de-
veloped, and experimental implementations are being investigated [7, 178].
One problem is to reduce the island size sufficiently in order to operate the
devices at room temperature. To date, there are several reports on SET tran-
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Fig. 9.13 Current–voltage characteristics of a resistively coupled
single-electron transistor. Shown is both the source current (solid
lines) and the gate current (dashed lines) for VG varying from −e/2C
to e/2C in steps of e/8C. The traces are offset vertically for clarity.
(Adapted from [179].)

sistors operating at room temperature (see e.g. [275]), but production of such
devices is by no means standard. In addition, the switching is strongly dis-
turbed by fluctuating background charges, although a charge stability of 0.01
elementary charges over weeks has been demonstrated in silicon-based SET
transistors [349]. Furthermore, the voltage gain in such transistors is limited.

These limitations can be overcome, in principle, by using resistively coupled
single-electron transistors. The circuit is shown in Fig. 9.13: the gate couples
to the island via a gate resistance RG � h/(2e2). In describing this device,
Eq. (9.10) has to be modified, since charge can also flow from the gate onto the
island:

p(q)
[

ΓS→1(∆E(q)) + ΓD→1(∆E(q)) +
1

RGC11

∂

∂q
(q−VGC11 + VC1D)

]
= p(q + e)[Γ1→S(∆E(q + e)) + Γ1→D(∆E(q + e))] (9.16)

Now p(q) is the probability density of finding the total charge q on the island.
The corresponding current–voltage characteristics are shown in Fig. 9.13.

In this device, the gate voltage keeps the island potential fixed at long time
scales (t � 1/RGC11). If, however, V is sufficiently large and an electron
can tunnel from S into the island, the gate response is too slow to prevent
an additional voltage buildup at the drain junction, and the electron is able
to tunnel to drain. If |VG| > e/C1D, a gate current starts to flow, and the is-
land is open. Therefore, there is only one Coulomb diamond, centered around
(V, VG) = (0, 0). The transconductance is no longer oscillatory in VG, and the
device is much less sensitive to fluctuating background charges. Fabricating
such a transistor, however, hits some experimental difficulties that have yet to
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be overcome: the heating problem is similar to that in a single tunnel junction,
and the stray capacitance between gate and island should be negligible. In
addition, this Coulomb diamond is much more sensitive to thermal smearing
and noise than those in “conventional” SET transistors [179].

9.3
SET circuits with many islands: The single-electron pump

As an example of a more complex SET circuit, we study the system of two
islands in series, also known as a single-electron pump (Fig. 9.14).

Fig. 9.14 Circuit of two islands in series. Each island can be tuned by
a nearby gate electrode.

Via a tunnel junction, island 1 is coupled to source and island 2 to drain.
The total capacitances C11 of both islands are assumed to be equal. Further-
more, we neglect several capacitance matrix elements (except those shown in
Fig. 9.14) and assume that electrode A (B) couples only to island 1 (2), with
equal capacitances. Nevertheless, VB influences V1 via the inter-island capac-
itance C12 and vice versa. We will not study the effect of a source–drain bias
voltage. Rather, we are interested in the ground state of the system as a func-
tion of VA and VB. We assume that we can probe this state by applying a neg-
ligibly small source–drain voltage. Hence, we set VS = 0. The island charge
vector is given by −e(n1, n2), and the electrode voltage vector by (VA, VB, 0).
The capacitance matrices of interest are

CII =
(

C11 −C12
−C12 C22

)

CIE =
(−CG 0 −C1S

0 −CG 0

)
with C11 = C22 = C1S + C12 + CG = C2D + C12 + CG. Six electron transfers are
of importance.
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1. An electron tunnels between source and 1, ∆�qI = e(±1, 0), ∆�qE =
e(0, 0,∓1). The onset of this transfer is determined by

∆E[�VE,−e(n1, n2), ∆�q] = 0 =⇒
C11[CGVA − (n1 ∓ 1

2 )e] = −C12[CGVB − n2e] (9.17)

2. An electron is transferred between drain and 2, ∆�qI = e(0,±1), ∆�qE =
(0, 0, 0), which gives

C11[CGVB − (n2 ∓ 1
2 )e] = −C12[CGVA − n1e] (9.18)

3. Finally, electrons can be exchanged between 1 and 2, ∆�qI = e(±1,∓1),
∆�qE = (0, 0, 0), leading to

VA − e
CG

(n1 ∓ 1
2 ) = VB − e

CG
(n2 ± 1

2 ) (9.19)

These boundaries define regions of stable electron configurations in the
(VA, VB) plane, each of which is characterized by the island charge vector
that corresponds to the lowest energy. For C12 → 0, islands 1 and 2 are no
longer coupled. It becomes impossible to influence island 1 by VB and vice
versa. In this limit, the stability diagram consists of squares given by condi-
tions 1 and 2. Condition 3 plays no role, since the corresponding lines just
touch two corners of the square (Fig. 9.15(a)).

Question 9.7: Investigate the stability diagram of the double island in the limit of
connected islands.

Fig. 9.15 Stability diagram of the two-island system of Fig. 9.14,
(a) for completely decoupled islands and (b) for an inter-dot capaci-
tance C12 = CG.
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The general situation is shown in Fig. 9.15(b): the boundaries (1) and (2) tilt
for C12 > 0, and the stable regions develop a hexagonal shape. A current can
pass from source to drain only if electrons can tunnel between the two islands
as well as between island 1 (2) and source (drain). This degeneracy exists only
at the corners of the elongated hexagons.

Question 9.8: Study the effect of cross capacitances on the stability diagram. Con-
sider equal capacitances between gate A (B) and island 2 (1), which are much smaller
than CG.

The charge configuration of the double island system can be directly mon-
itored by coupling a SET transistor to each island (Fig. 9.16). In this setup,
the SET transistor labeled by 3 (4) serves as an electrometer to measure the
charge on island 1 (2) [5]. In Fig. 9.16(a), the current through the double island
is shown as a contour plot. As expected, current flows predominantly at the
corners of the stable regions. Figs. 9.16(b) and (c) show the conductance of
the electrometers 3 and 4, respectively, which is a measure of the charge on
island 1 (2). The transition of the island charges is clearly visible as a sharp in-
crease of the electrometer conductance along the direction that corresponds to
changing the charge at the measured island. In Fig. 9.16(d), the difference sig-
nal of the two electrometers is shown, which emphasizes that, in each stable
region, the charge configuration is really a different one.

In [245], it has been demonstrated for the first time that, with this device,
electrons can be “pumped” by the gate voltages. The current can even be
made to flow in the opposite direction of the source–drain bias voltage drop.
In order to understand this experiment, we first consider the effect of a non-
zero bias voltage: it shifts the boundaries of the stability diagram and gen-
erates triangular regions at the corners of the hexagons. Inside the triangles,
Coulomb blockade becomes impossible. In order to operate the pump, the DC
component of the gate voltages VA and VB are adjusted such that the device is
located within one of these triangles (Fig. 9.17(a)).

Question 9.9: Calculate the shifts of the boundaries given in Fig. 9.17(a).

In addition, an AC voltage is applied to gates A and B, with a phase shift
of (not necessarily exactly) ±π/2. For sufficiently large AC amplitudes, the
trajectory of the device state is a circle enclosing the triangle. Circling around
the triangle labeled “P” in the positive direction corresponds to a sequence of
states (n1, n2) → (n1 + 1, n2) → (n1, n2 + 1) → (n1, n2). This means that, for
each round trip, one electron is transferred from source to drain, independent
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Fig. 9.16 Measurement of the stability diagram of the double island
system. Left: Equivalent circuit of the double island system 1 and 2,
with each island coupled to a SET transistor acting as an electrom-
eter. Right: (a) conductance of the double island as a function of the
gate voltages VA and VB in a contour diagram; (b, c) conductance of
electrometer 3 (4), respectively; (d) difference signal of the two elec-
trometers. (Adapted from [5].)

Fig. 9.17 (a) A non-zero bias voltage shifts
the boundaries of the stability diagram in the
VB direction by

∆V1S = − VS

CG

(
C +

C2

C12
− C12

)

∆V2D = − VS

CG

C2
12

C

∆V12 =
VS

CG
C12

respectively. As a result, triangular shaped re-
gions are formed in which Coulomb blockade
no longer exists. The circles denote the tra-
jectories of the device as small AC voltages
are applied to gates A and B. (b) Operation
of the electron pump at different frequen-
cies. The actual phase shift of the AC signal
was ±130◦. Also shown are the I–V char-
acteristics in the center and at a corner of a
stable region, without an AC voltage applied.
After [193].
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of the direction and magnitude of the bias voltage. The current plateaus of the
single-electron pump are shown in Fig. 9.17(b) as a “P” point is encircled with
two different frequencies in positive (phase shift π/2) and negative (phase
shift −π/2) directions. Note that the current is independent of the sign of VS
within a window around VS = 0.

Also shown is the current–voltage characteristic when no AC signal is ap-
plied. Here, the current plateaus are absent. Provided the trajectory encloses
the triangle completely and the AC amplitude is sufficiently small, such that
other electron transfers are impossible, the current is coupled to the frequency
via

I = e f

Furthermore, for the system to follow the frequency, f has to be smaller than
the inverse time constant 1/τ of the device, given by roughly τ = R12C12.
Encircling type “N” points in the same direction, or switching the direction in
type “P” points, respectively, reverses the sign of the current.

Frequencies are the most accurate quantities we have in physics (the “NIST-
F1 standard” is currently the frequency standard in the US and has an accu-
racy of 10−15). This raises the question whether the single-electron pump can
be used as a current standard, with the current coupled to a frequency (at
present, currents can be defined with a relative accuracy of 10−6 [203]). Here,
the low current that can be pumped through a single-electron pump consti-
tutes a problem. We may, however, rephrase this question and ask: How
accurate is the number of electrons pumped? It turns out that the accuracy
is dominated by multi-junction tunneling events, so-called cotunneling. Even
with Coulomb blockade established, an electron may tunnel onto the island
virtually. If this electron, or a different one, tunnels off the island across the
second barrier, a real current results. Cotunneling can be suppressed by in-
creasing the number of tunnel junctions [14, 15, 203]. Fig. 9.18 shows an ex-
ample where the cotunneling has been suppressed by placing high on-chip
resistors in series with the SET device [193].6

Keller and coworkers [172] used an electron pump (see Fig. 9.19) that con-
sists of six islands in series to charge a capacitor with an accuracy of 10−8,
i.e. the uncertainty is one electron for 108 pumped electrons. By measuring
the voltage drop V across the capacitor after pumping N electrons, the capac-
itance C = Ne/V could be determined with a standard deviation of 3× 10−7.

6) The results shown in Figs. 9.16 and 9.17 have actually been obtained
with a thin-film Cr resistor located at the entrance and exit of the
electron pump (see [193]).
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Fig. 9.18 Comparison between the observed current plateau of the
single-electron pump (circles) and the current I expected from I = e f .
Close to the center of the plateau, a relative error of 10−6 is found.
Here, cotunneling has been suppressed by resistors in series with the
single-electron pump. Adapted from [193].

Fig. 9.19 Principle of the capacitance standard: the single-electron
pump, consisting of several SET transistors in series, transfers a well
defined number of electrons onto the plate of a capacitor, and the volt-
age drop is measured.

Papers and Exercises

P9.1 In [110], a single-electron transistor is used for detecting charge re-
arrangements in the substrate. How does this work?

P9.2 Hanna and Tinkham [140] developed an analytical model for the Cou-
lomb staircase in the limit of strongly differing junction couplings. Work
out their model and reconstruct the authors’ “I(V) phase diagram” in
Fig. 1b of that paper.

P9.3 Geerligs et al. [113] demonstrated the operation of a single-electron turn-
stile, a slightly different concept for counting electrons than the single-
electron pump. Explain the pumping mechanism of the single-electron
turnstile.
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P9.4 Superconductivity adds a new and exciting twist to single-electron tun-
neling. Work out the basic modifications due to superconductivity. A
good starting point is Fitzgerald et al. [96].

E9.1 The “single-electron tunneling box consists of an island in between a tun-
nel barrier and a capacitor with infinite resistance (see Fig. 9.20). The
tunnel resistance is sufficiently high to suppress quantum fluctuations.
Calculate the number of excess electrons on the island as a function of
the voltage.

Fig. 9.20 Equivalent circuit of the SET box for Exercise E9.1.

E9.2 Calculate the current through a tunnel barrier in the absence of single-
electron charging effects. Show that our definition of the resistance in
Eq. (9.11) is reasonable for small voltages applied, since Ohm’s law is
obtained.

E9.3 Modify the double island system of Fig. 9.14 such that both source and
drain couple to island 1 only. Island 2 “dangles” (see Fig. 9.21). In the
limit of zero source–drain bias voltage, what does the phase diagram
in the (VA, VB) plane look like? Discuss the relevance of direct electron
transfers between island 2 and the source/drain contacts. Assume iden-
tical capacitances.

Fig. 9.21 Sketch of the double island system of Exercise E9.3.
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Further Reading

A classic review article was written at the beginning of the “single-electron
tunneling age” by Averin and Likharev [13]. A stimulating book containing
collections of articles on various aspects of single-electron tunneling phenom-
ena is [124]. Furthermore, [178] is an article entitled “Coulomb blockade and
digital single electron devices”, which focuses on the relevant aspects of a fu-
ture single-electron logic.




