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Abstract

So far practically all detections of extrasolar planets have been obtained from
radial velocity data, in which the presence of planetary bodies is deduced from
temporal variations in the radial motion of the host star. To perform any dy-
namical study for these systems, it is necessary to specify: (i) initial condi-
tions (mass and orbital elements) and (ii) an adequate coordinate system from
which to construct the equations of motion. This chapter discusses both of
these points.

In the first part we introduce the reader to the process of orbital determi-
nation from Doppler data, for both single and multiple exoplanetary systems.
We distinguish between primary parameters (which are obtainable directly
from the observational data) and secondary parameters which require addi-
tional information about the system, such as the stellar mass or inclination of
the orbital plane. For multiple planetary systems we also discuss the differ-
ences between Keplerian fits, in which the mutual perturbations between the
planets are neglected, and dynamical (or N-body) fits.

The second part of the chapter is devoted to the construction of the equa-
tions of motion in different coordinate systems. Special attention is given to
the Hamiltonian formalism in barycentric, Jacobi and Poincaré coordinates,
and we explain how to obtain orbital elements in each case. Finally, we dis-
cuss some of their advantages and disadvantages, particularly with respect to
orbital fits and general dynamical studies.

1.1
Exoplanet Detection

Planets are very dim objects, and their direct observation is an extremely dif-
ficult task. Even Jupiter, the biggest planet in our own solar system, has only
about 10−9 times the luminosity of the sun, making a similar exoplanet un-
observable to us by present techniques. The first direct observation of an ex-
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oplanet (GQ Lupi) only occurred in 2005 with VLT and, as of July 2006, three
other exoplanets have also been imaged (2M1207, AB Pic and SCR 1845). How-
ever, most of the exoplanetary bodies have never been seen at all.

If an exoplanet cannot be seen, how can we know it is there? The basic idea
is that, even if invisible, the presence of a planetary body may affect the lumi-
nosity of the star, or its motion with respect to background objects. Thus, we
may deduce the existence of a planet by analyzing changes in some observable
aspect of the star it revolves around. Such ”indirect” detection methods are
the main backbone in current discovery strategies of exoplanets. Five differ-
ent techniques have been proposed and developed in recent years: (i) Stellar
Transit, (ii) Radial Velocity Curves (Doppler), (iii) Gravitational Micro-lensing,
(iv) Stellar Interferometry and (v) Astrometry. For details on these and other
proposed methods, the reader is referred to Perryman [1] for a very compre-
hensive review.

Although very promising, Micro-lensing and Astrometry are still far from
fulfilling their potential. Only four planetary candidates have been proposed
based on micro-lensing techniques (OGLE-05-071L, OGLE-05-169L, OGLE-05-
390L and OGLE235-MOA53), and even though some estimate may be obtained
concerning mass and orbital period, there is no information about the remain-
ing orbital elements. A similar picture can be given for interferometric tech-
niques, and at present only four positive detections are counted. Astrometry
has yet to yield a discovery, although the projected launch of several space
telescopes (e.g., Kepler, TPF) will almost certainly change this picture. Conse-
quently, and at least at present, practically all the currently exoplanet popula-
tion has been obtained either by Stellar Transit or Doppler. The former is the
subject of another chapter of this book, while the latter is the main objective of
the present text.

1.2
Radial Velocity in Astrocentric Elements

The observation of a Doppler shift of the spectral lines of a star denounces a
change in the velocity of the star with respect to the observer. Since the ob-
server himself is moving with a velocity ∼ 30 km s−1, variable in direction, it
is necessary to subtract this motion from the observational data and reduce it
to the barycenter of the solar system (for a description of the necessary opera-
tions see Ferraz-Mello et al. [2]).

The velocity of an isolated star, with respect to the barycenter of the solar
system, is constant, at least for times short as compared to the timescale of
galactic motion. However, if it has N planetary companions, the star will
display a motion around the common barycenter of the system (see Fig. 1.1).
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Fig. 1.1 The sinusoidal motion of a star due to the presence of a
planetary companion. The faint field stars are used as a reference
frame.

In order to understand this effect, we begin studying the kinematics of a single
planet in elliptic orbit around the star. In an astrocentric reference frame, the
position and velocity vectors of the planet are given by Brouwer and Clemence
[3] and Murray and Dermott [4]:

r = r cos f ı̂ + r sin f ĵ (1.1)

v = − 2πa

T
√

1 − e2

[
sin f ı̂ − (e + cos f ) ĵ

]

where

r =
a(1 − e2)

1 + e cos f
d f
dt

=
2πa2

Tr2

√
1 − e2 (1.2)

Here r is the magnitude of the radius vector r, the velocity vector is denoted by
v, f is the true anomaly, a is the astrocentric semi-major axis, e is the eccentric-
ity, and ı̂ and ĵ are two unit vectors in the orbital plane. The first is orientated
in the direction of the pericenter, and the latter is orthogonal to it. The orbital
period T can be obtained directly from Kepler’s third law. Denoting by m0 the
mass of the star and m the mass of the planet, we have:

n2a3 = G(m0 + m) (1.3)

where the mean motion n = 2π/T is the mean angular velocity along the
orbit.

We must now transform these vectors to a new coordinate system that is
independent of the plane of orbital motion. For exoplanets it is customary to
use a modification of the so-called Herschel astrocentric coordinates, which
were first developed for studies of visual double stars. It uses the sky (i.e., a
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plane tangent to the celestial sphere) as the reference plane, and a schematic
view is presented in Fig. 1.2. The x-axis is taken along the intersection line
between the orbital plane and the sky. Its direction is chosen towards γ, which
is the node where the motion of the planet is directed towards the observer.
The y-axis is also tangent to the celestial sphere, and is such that the resulting
system is right-handed. Finally, the z-axis is directed along the line of sight,
away from the observer.

Fig. 1.2 The rotated astrocentric reference frame showing the
orbital plane and the plane tangent to the celestial sphere (sky).
The origin of the angles is the point γ.

In this coordinate system, the unit vectors ı̂, ĵ and k̂ of the orbital plane have
components:

ı̂ =

⎛
⎝ cos ω

sin ω cos I
− sin ω sin I

⎞
⎠ ĵ =

⎛
⎝ − sin ω

cos ω cos I
− cos ω sin I

⎞
⎠ k̂ =

⎛
⎝ 0

sin I
cos I

⎞
⎠ (1.4)

k̂ is perpendicular to the orbital plane of the planet. This decomposition of the
unit vectors is analogous to the transformations commonly used in celestial
mechanics to pass to coordinates with respect to the ecliptic (except that here
we fix Ω = π). I is the inclination of the orbital plane with respect to the sky,
and the argument of the pericenter is given by ω + π. The addition of the
angle π is due to the direction of the x-axis, which is chosen opposite to the
“ascending node” N.
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We can now obtain the components of r and v in this new reference frame.
After a few simple algebraic manipulations, we obtain the velocity v =
(vx, vy, vz) where:

vx = − 2πa

T
√

1 − e2

[
sin ( f + ω) + e sin ω

]

vy =
2πa cos I

T
√

1 − e2

[
cos ( f + ω) + e cos ω

]
(1.5)

vz = − 2πa sin I

T
√

1 − e2

[
cos ( f + ω) + e cos ω

]

Having the astrocentric velocity vector of the planet in the desired reference
frame, we can pass to barycentric coordinates. Calling V the barycentric ve-
locity vector of the planet, and V∗ that of the star, we have that v = V − V∗.
On the other hand, since the barycenter is fixed in this reference frame, we
have m0V∗ + mV = 0. Solving for V∗, we obtain:

V∗ = − m
m0 + m

v (1.6)

which represents the velocity of the motion of the star around the center of
mass of the system. To calculate the velocity actually detected by the ob-
server, we must add the velocity V0 of the barycenter itself with respect to
background stars.

It is useful to decompose this observable velocity into the tangential velocity
component Vt and the radial velocity Vr = V∗z + V0z. The former causes a
displacement of the position of the star with respect to background stars. Its
measurement is the role of astrometry but, as mentioned before, telescopes on
earth are currently not able to detect these variations except in a few cases. The
radial velocity Vr is far easier to detect, even with ground-based instruments,
due to changes in the frequency (Doppler shift) of spectral lines from the star’s
spectrum. The best stellar candidates are those that, on one hand, contain a
fair amount of absorption lines in the visible spectrum (i.e., must not be too
hot) but, on the other hand, the number of lines must not be too large (i.e.,
the star must not be too cold). Thus, the best candidates are stars of spectral
type F or G; in other words, similar to our own sun. A complete expression
for the radial velocity can be found simply by substituting V∗z from Eqs. (1.5)
and (1.6), and yields:

Vr =
2πa

T
√

1 − e2

m sin I
(m + m0)

[
cos ( f + ω) + e cos ω

]
+ Vr0 (1.7)

where Vr0 = V0z is the (constant) reference radial velocity of the barycenter.
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The extension to N planets is straightforward and follows the same lines, as
long as we neglect mutual perturbations and assume Keplerian solutions. We
can then write the complete radial velocity of the star at a given time t as:

Vr(t) =
N

∑
i=1

Ki

[
cos ( fi + ωi) + ei cos ωi

]
+ Vr0 (1.8)

where

Ki =
mi sin Ii

M
2πai

Ti

√
1 − e2

i

(1.9)

and

M =
N

∑
i=0

mi (1.10)

is the total mass of the system (star and planets). Transforming from semi-
major axis to mean motions via Kepler’s third law, we can then rewrite the
coefficients Ki as:

Ki =
(
G(M + mi)

)1/3 mi sin Ii

M n1/3
i (1 − e2

i )
−1/2 (1.11)

or, more succinctly, as

Ki = Fi(M, mi, Ii) n1/3
i (1 − e2

i )
−1/2 (1.12)

where Fi(M, mi, Ii) is sometimes called the ”mass function” and groups all
the terms that depend explicitly on the stellar and planetary masses, as well
as the orbital inclination. This expression is valid only for astrocentric or-
bital elements. If Jacobian coordinates are employed, the expression given by
Eq. (1.38) must be used.

The basis of the Doppler method is then to build an observational data base
of the changes in the radial velocity of a target star. These radial velocity data
points represent a discretized representation of the radial component of the
left-hand side of Eq. (1.8). The idea now is to deduce, from this data set, the
masses and orbital parameters of all the planetary companions that make up
the right-hand member of the same equation.

Note that Vr(t) is the sum of N periodic terms, each with semi-amplitude
Ki. However, the true anomaly fi is only a linear function of time in the case
of circular orbits ei = 0. In the general elliptic case, only the mean anomaly
�i has a constant derivative (given by the mean motion ni). The relationship
between f and � is given in terms of the (intermediate) eccentric anomaly u,
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and via the following two equations:

tan ( f /2) =
√

1 + e
1 − e

tan (u/2) (1.13)

u − e sin u = � = n(t − τ)

The second expression is the classical Kepler equation, and must be solved
iteratively to obtain the passage from � (or the time) to the eccentric anomaly.
The quantity τ is sometimes referred to as the time of passage through the
pericenter. Finally, the mean motion n is related to the semi-major axis and
masses through Kepler’s third law.

As an example, Fig. 1.3 shows the shape of two fictitious radial velocity
curves, constructed from Eq. (1.8) with only one planet. The continuous line
shows the case of a circular orbit (e = 0), while the dashed line presents an
example of a highly elliptic body (e = 0.6). Although both periods and semi-
amplitudes are the same, the second curve shows distinctive peaks each time
the planet crosses the pericenter of its orbital motion. Another noticeable effect
of the eccentricity is a change in the averaged value of Vr. Once again, this is
due to the nonlinear behavior of the true anomaly f for noncircular orbits.
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Fig. 1.3 Fictitious radial velocity curves, using Eq. (1.8) with
K = 1, ω = 180 degrees and T = 50 in arbitrary time units.
Continuous line corresponds to a circular orbit, while the dashed
curve was calculated with e = 0.6.

As a final important point, it must be stressed that there is no free angle
equivalent to the longitude of the ascending node Ω that can be simply added
to the orbital elements of the planets. As shown in Fig. 1.2, Ω measures the an-
gular distance from the x-axis and the “ascending node” N, and in Herschel’s
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modified coordinate system it is set to Ω = π. Expressions (1.5) for the veloc-
ity components (vx, vy, vz) were derived for this orientation of the x-axis, and
thus implicitly depend on this choice of Ω. Any other value for Ω would be
inconsistent with the orbit issued from the observations.

1.3
Orbital Fits from Radial Velocity Curves

1.3.1
Primary Parameters

Until recently, radial velocity data were zealously guarded by the observa-
tional teams and not available to the general scientific community. Fortu-
nately this picture is changing (albeit slowly), and some information is cur-
rently available from the on-line versions of the published papers. This infor-
mation is already pre-processed, in the sense that all the necessary steps have
been taken to reduce the velocities to the barycenter of our solar system.

A real example of a radial velocity data set can be seen in Fig. 1.4 (sym-
bols). Each point corresponds to discrete values Vr(tk) of HD 82943, a system
known to contain two planets in a 2/1 mean-motion resonance (see Mayor et
al. [5], Ferraz-Mello et al. [6]). Doppler data is usually presented in a multi-
column format giving, among other information, the times of observation tk
(usually in Julian days), radial velocities Vrk = Vr(tk) (usually in meters per
second) and the expected uncertainties εk (also in m s−1). This latter values
correspond to the size of the error bar of the radial velocity data, and a Gauss-
ian error distribution is usually assumed. Current instrumentation and re-
duction techniques have lowered the values of εk to the order of a few m s−1.
When observations include data from more than one instrument, the origin of
each data segment is also included in the files.

With the numerical data in hand, we first assume that the temporal varia-
tions of Vr are caused by the presence of one (or more) exoplanets, and there-
fore correspond to time-discrete values of a function of type (1.8). That being
the case, our second task is to develop a numerical algorithm to deduce the
number of periodic terms contained in the signal (i.e., number of planets N),
and for each to estimate the values of the set

(Ki, ni, ei, ωi, τi) (i = 1, . . . , N) (1.14)

plus the barycentric radial velocity Vr0. These are sometimes referred to as
the “primary parameters” of an orbital fit. The individual planetary masses
(multiplied by sin Ii) are derived from the calculated value of Ki and the mass
function. Notice that the number of free parameters is equal to 5N + 1, con-
sisting of five orbital parameters per planet plus the radial velocity Vr0 of the
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Fig. 1.4 (a) Radial velocity data points of the HD82943 star,
together with an orbital with two planets. (b) Residuals from the
fit. Figure obtained with a dynamical two-planet fit.

barycenter of the extrasolar system. As we shall show later on, Vr0 does not
necessarily correspond to the time-averaged value of Vr, unless all exoplan-
ets move in circular orbits. In the case where the data includes values from
different instruments and observatories, individual values of Vr0 are usually
assigned. As a final note of caution, in the case of more than one planet, the
calculated orbital periods (or mean motions) are not osculating, but apparent
(see [6]).

The mass of the star is taken from sophisticated stellar models. However,
one must keep in mind that, even for Hipparcos stars having the best available
spectroscopy and astrometry, the more accurate models do not allow to know
the masses better than � 8 percent (Allende et al. [7]). This fact supersedes
some discussions on the nature of the published planetary elements, if astro-
centric or barycentric. The difference between coordinates in these systems
is usually much smaller than the uncertainty in our knowledge of the stellar
mass.

Even though the functional form of Vr(t) given by (1.8) is the sum of peri-
odic terms, it is not usually convenient to attempt an orbital fit using a direct
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Fourier analysis. The reasons are twofold. First, a precise identification of
the leading frequencies with Fourier decomposition requires that the obser-
vational data should cover several periods. This is not usually the case, spe-
cially for planets with large semi-major axis. Second, radial velocity data is not
evenly spaced in the time axis and, even worse, usually contains months-long
gaps where observations are not favorable. Both problems can be overcome
using a more general Fourier method, such as the Dates Compensated Fourier
Transform [8] or the CLEANest algorithm [9], which were specifically devel-
oped for nonequidistant data points and arbitrary frequencies. However, a
least-squares algorithm is usually more precise and requires less fine-tuning
of the results. Thus, practically all orbital fits have been calculated using this
approach.

We then search for adequate coefficients (1.14) of a fitting function y(t), of
type (1.8), such that the residual function

Q2 = ∑
tn

[y(tn) − Vr(tn)]2

ε2
n

(1.15)

is minimum. Notice that this definition includes the uncertainty of each data
point Vr(tn) and has the advantage of considering different precisions among
the data. This is particularly important when mixing observations from differ-
ent instruments. In the case where the εn correspond to the standard deviation
of the data, Q2 is equal to the χ2 of the data modelization.

Initially, deterministic versions of nonlinear least-squares were used, such
as hill-climbing techniques or the Levenberg–Marquardt method (see [5, 10,
11]). The main drawback with these methods is that they are unable to dis-
tinguish between local and global minima of Q2; consequently, there is no
guarantee that the calculated orbital elements correspond to the best fit of
the data sets. Since the number of free parameters can be large, the shape
of the residual function may be complex and contain numerous local minima,
several of them possibly with similar values. Moreover, since the problem is
highly nonlinear, the result may be highly sensitive to the initial values of the
parameters. An example of this behavior was given by Mayor et al. [5] for the
two HD 82943 planets. The authors presented two different fits: in the first the
orbital eccentricities of the planets were (e1, e2) = (0.4, 0.0) and for the second
(e1, e2) = (0.4, 0.18). Although the eccentricity of the outer planet changed
significantly, the value of Q2 only varied by � 0.1 percent. What is more
worrisome in this case is that the best-fit solutions found by several authors
actually corresponds to orbits which are dynamically unstable in timescales of
the order of 105–106 years (see [6]). Thus, given a limited set of observations,
the orbital configuration of the real planets does not necessarily correspond to
the best fit.
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Since results of orbital fits sometimes seem very sensitive to the numerical
method and/or data set, we need to fine-tune our techniques. We need a strat-
egy (or method) that can identify the global extrema of the residual function.
Additionally, we must be able to estimate the confidence levels (i.e., errors)
in the orbital parameters themselves. Due to the highly nonlinear character-
istics of the equations, it is not correct to assume Gaussian distribution errors
in (V0r,Ki, ni, ei, ωi, τi). Consequently, the standard deviations that are some-
times seen, alongside the best fits, can be misleading and must be considered
with utmost care [12].

Considering that the result of classical nonlinear best-fit methods depends
on the initial guess, a possible approach towards a global minimum is to ap-
ply the same method to a large number of initial conditions, distributed ran-
domly in the parameter space. This so-called Monte Carlo approach was used
by Brown [13] to the Vr data from HD 72659. A year later, Ferraz-Mello et al.
[6] employed a similar approach to study the two-planet system of HD 82943.
One of the main advantages of this type of Monte Carlo algorithm is the pos-
sibility of estimating the confidence region of each of the orbital elements; in
other words, the different possible primary parameters that are all compati-
ble with the given data set. For the particular case of HD 82943, we found a
large set of different orbital fits which yield practically the same value of the
residual function (see Fig. 1.5). Thus, in some cases, it is not possible to give a
single value of the parameter set as the “correct” orbital fit.

A different strategy for the search of global minima of the orbital fit, is the
use of genetic algorithms. This technique is based on natural selection (mim-
icking the behavior of biological populations), by which an initially random
population of initial guesses evolves towards the global minimum. Although
this approach can require larger computational resources than deterministic
methods, it has proved to be extremely robust in all applications to exoplan-
etary systems (e.g. [14, 15]). Other advantages of this approach include its
simple manipulation, and its ability to introduce non-Gaussian error estima-
tions with no significant complications. A recommended introductory text on
genetic algorithms can be found in Charbonneau [16].

1.3.2
Secondary Parameters

Whatever the chosen numerical approach, the orbital fit yields values for
V0r,Ki, ni, ei, ωi and τi. From these we must now estimate the planetary
masses and semi-major axes. These quantities are related to the primary pa-
rameters through the Eqs. (1.3) and (1.11). Notice that we have two algebraic
equations with three unknowns, and it is impossible to separate the value
of sin Ii from the planetary mass. Thus, the values of m and a must be de-
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Fig. 1.5 Projections of possible orbital fits (in astrocentric orbital
elements) for the two HD 82943 planets, on the planes (xi, yi) =
(ei cos ωi, ei sin ωi). Different symbols correspond to different val-
ues of the of r.m.s. of the residuals (from Ferraz-Mello et al. [6]).

termined assuming some ad hoc value for the orbital inclination. Usually, a
value of 90 degrees is chosen, which corresponds to an edge-on orbital fit and
minimum planetary masses. The sensitivity of both m and a to different val-
ues of I is shown in Fig. 1.6. In this plot we have used the following primary
parameters: F = 10−3, M∗ = 1 and n = 2π/365 days−1. Notice that both
the mass and semi-major axes increase as smaller inclinations are assumed,
although the mass is the most sensitive parameter. The change in a is not very
important except for small values of I.

A possible determination of the real individual planetary masses occurs
when both Doppler data and stellar transits are simultaneously available for
an exoplanetary system. In this case, the inclination I is known, and m can
be uncoupled from this angle. So far, only a handfull of exoplanets have been
observed by both techniques and, for most of the rest, the masses and semi-



1.3 Orbital Fits from Radial Velocity Curves 13

0 15 30 45 60 75 90
inclination  [deg]

0

1

2

3

planetary mass

semimajor axis

Fig. 1.6 Variation of the planetary mass m (in units of stel-
lar mass) and semi-major axis a (in AU), as a function of the
unknown inclination of the orbital plane I, for fixed values of the
primary parameters of an orbital fit. The plot was constructed with
F = 10−3, M∗ = 1 and n = 2π/365 days−1.

major axis are still affected by Ii. At first hand, this seems a major limitation for
any dynamical analysis, since these are probably the most important param-
eters. However, if for multiple planetary systems we assume that all planets
are co-planar, then the ratios:

mj

mi

aj

ai
(i, j = 1, . . . , N) (1.16)

are unaffected by the value of the spatial inclination. In other words, although
the individual values of mi and ai may be unknown, the relative values can be
deduced, and used in our dynamical studies.

1.3.3
N-Body Fits

In the previous analysis, we have assumed that the motion of each planet
orbiting a given star can be modeled by a Keplerian ellipse. This is an approx-
imation since mutual perturbations will cause the orbital elements to change
with time. If the estimated values for the planetary masses (minimum values)
are sufficiently small or the mutual separation (i.e., ai/aj) are sufficiently large,
we can assume that the orbital variations are negligible within the timespan
of the observations. In that case, the multi-Keplerian fits presented before are
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valid approximations to the problem. However, if the mutual perturbations
are large, we must modify the orbital fit to accommodate nonconstant orbital
elements. This is usually referred to dynamical (or N-Body) orbital fits.

We assume a data file consisting of several observations, starting at time t =
t0 and ending at t = tM. In this interval, the orbital elements are allowed to
vary with time. A dynamical fit proceeds the same way as the multi-Keplerian
version, except for the calculation of the model values of Vr(ti). For perturbed
orbits, it is no longer optimal to use (1.8) to relate the radial velocity with the
orbital elements. The procedure can be separated into the following steps:

1. Specify initial conditions (ni0, ei0, ωi0, τi0, Ii0) for all the planets, which will
correspond to the astrocentric orbits at the beginning of the observations.
The orbital period of each planet must be osculating, and not apparent [6].
We will also require values for the real planetary masses, unaffected by the
inclinations Ii.

2. Transform the orbital elements to Cartesian coordinates and velocities. We
will need Kepler’s third law to obtain the semi-major axes, and thus the
result will depend on the stellar mass m0. From this data we can calculate
the velocity vector of the star V (with respect to the barycenter of the sys-
tem) at t0. Choosing the reference frame of the coordinate system tangent
to the celestial sphere, the first model value of Vr(t0) will be given by the
z-component of V.

3. Using an N-body numerical integrator, calculate the positions of the planets
at all the subsequent times of observation (i.e., t = t1, . . . , tM).

4. For each ti, repeat the calculations in Step 2, and obtain the complete set of
radial velocities Vr(ti).

Having all the values of Vr(ti) for the chosen initial conditions and real plan-
etary masses, we can calculate the residual function. The best fit will then
be the set of initial parameters (ni0, ei0, ωi0, τi0, Ii0) and planetary masses that
minimizes Q2. The use of numerical integrations will obviously increase the
amount of CPU time; thus N-body fits are sometimes done as a second-order
approximation from initial Keplerian parameters.

A factor to be taken into account is the uncertainty in the value of the stellar
mass, and its propagation to other quantities in the orbital fit. To obtain ai we
must use Kepler’s third law, and the results depend explicitly on the choice
of m0. A possible way to avoid these problems is to use an adimensional for-
mulation for the equations of motion (see [2]). Even if this approach is not
employed, it can easily be seen that the ratios mi/mj and ai/aj between any
two planets are unaffected by the particular value of m0. The same character-
istic was also seen in the dependence of the orbital fits with the inclinations I.
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Thus, any dynamical study that can be constructed as a function of these ratios
will yield results virtually independent of I and m0.

One of the most important traits of dynamical fits is its theoretical ability to
assess the planetary masses independently of other detection methods, thus
allowing us to bypass the limitations of radial velocity data. However, this
task is not always possible. Even for fixed edge-on systems, the difference
between a dynamical and a multi-Keplerian fit is appreciable only if: (i) the
planets are under significant mutual perturbations and, (ii) the observational
timespan is large. This is true only in a very few cases, the most well known
example being GJ 876 [10]. For almost all other known planetary systems, the
distinction is practically unnoticeable.

An example is given in Fig. 1.7 for the HD 82943 planets. We can see little
difference between both fits (Keplerian and dynamical) within the observa-
tion interval and, at least for this system, both models yield similar results.
However, the divergence between results will increase with time, and longer
observational timespans should be able to detect the effects of mutual pertur-
bations between the planets.
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T I ME  (yr )

-1 5 0

-1 0 0

-5 0

0

5 0

1 0 0

Ra
di

al
 V

el
oc

ity
 (

m
/s

)

Fig. 1.7 Reconstruction of the radial velocity curve for HD 82943,
from a multi-Keplerian fit (gray dots) and an N-body fit (black
dots). The solid line shows the difference (Keplerian minus dy-
namical). For more details, see Ferraz-Mello et al. [6].

Since dynamical fits are not necessary for most planetary systems, in prac-
tice we are still not able to decouple the planetary masses from the inclina-
tions. The values of Ii are not usually considered variables, but fixed at some
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initial value, and co-planarity between the planets is assumed. Thus, the true
potential of N-body fits is still far from being fulfilled. Once again, however,
larger observational timespans will certainly change this picture.

1.4
Coordinate Systems and Equations of Motion

Even with all the limitations and uncertainties, stemming both from the ob-
servations and reduction techniques, orbital fits yield (minimum) masses and
orbital elements of the planets in a given stellar system. As a first step towards
a dynamical study, we must construct their equations of motion.

Suppose a system consisted of a star of mass m0 and N planets of mass
mi, thus making this a (N + 1)-body problem. Let Xi denote the position
vectors of all bodies with respect to an inertial reference frame centered in the
barycenter of the system. Then, from Newton’s law of gravitation, we have:

Ẍi = −G
M

∑
j = 0
j �= i

mj
Xi − Xj

|Xi − Xj|3 (1.17)

where the double dot denotes the second derivative with respect to the time.
Introducing the astrocentric positions of the planets as ri = Xi − X0, we can
write the equations of motion for the planets in astrocentric variables as:

r̈i = −G (m0 + mi)
|ri|3 ri + G

M

∑
j = 1
j �= i

mj

(
rj − ri

|rj − ri|3 − rj

|rj|3
)

(1.18)

In terms of these coordinates, the barycentric motion of the star is given by:

X0 = −∑N
i1

miri

∑N
i1

mi
(1.19)

The second term inside the brackets is due to the noninertiality of the astro-
centric reference frame, and is caused by the perturbations of the planets on
the motion of the star.

1.4.1
Barycentric Hamiltonian Equations

Since dynamical studies of extrasolar planets benefit from the Hamiltonian
structure of the equations of motion, we devote the rest of this section to



1.4 Coordinate Systems and Equations of Motion 17

presenting three different forms of canonical variables and Hamiltonian func-
tions. Although this is a well established problem in celestial mechanics, the
vast majority of papers deal with the so-called restricted problem in which
only two bodies have finite masses.

The barycentric Hamiltonian equations of the (N + 1)-body problem are
easy to obtain from Eq. (1.17). Defining Πi = miẊi as the linear momenta
associated to each position vector Xi, these variables are canonical, and the
Hamiltonian of the system is the sum of their kinetic and potential energies:

H̃ =
1
2

N

∑
k=0

Π2
k

mk
− G

N

∑
k=0

N

∑
j=k+1

mkmj

Δkj
(1.20)

where Δkj = |Xk − Xj|. This system has, however, 3(N + 1) degrees of free-
dom, that is, six equations more than the usual Laplace–Lagrange formulation
of the heliocentric equations of motion.

The system can be reduced to 3N degrees of freedom through the conve-
nient use of the trivial conservation laws concerning the inertial motion of the
barycenter. There are two sets of variables used to reduce to 3N the num-
ber of degrees of freedom of the above system. Each will be discussed in the
following subsections.

1.4.2
Jacobi Hamiltonian Formalism

The most popular reduction, due to Jacobi, is widely used in the study of the
general three-body problem and of planetary and stellar systems. In Jacobi’s
formulation, the position and velocity of the planet m1 are given in a reference
frame with origin in m0 (equal to the star); the position and velocity of m2 are
given in a reference frame with the origin at the barycenter of m0 and m1; the
position and velocity of m3 are given in a reference frame with the origin at the
barycenter of m0, m1 and m2, and so on. If we denote with ρk (k = 1, . . . , N)
the vectors thus defined, we have

ρk = Xk − 1
σk

k

∑
j=0

mjXj (k = 1, . . . , N) (1.21)

where

σk =
k

∑
j=0

mj (1.22)

The quantities ρk are our new coordinates; we must now search for their
canonical momenta πk. These can be obtained from the original pk by means
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of the simple canonical condition ∑N
i=1(πidρi − ΠidXi) = 0, and give the im-

plicit relation:

Πk = πk −
N

∑
j=k+1

mkπj

σj−1
(1.23)

The reader is referred to Ferraz-Mello et al. [2] for details of this construction.
A lengthy, but simple calculation shows that nonconstant terms of the total
kinetic energy, in these variables, are given by

T =
N

∑
i=1

π2
i

2β̃i
(1.24)

where β̃i are the so-called reduced masses of the Jacobian formulation, defined
by

β̃i =
miσi−1

σi
(1.25)

The complete Hamiltonian of the relative motion of the N planets, can be writ-
ten as:

H = H0 + H1 (1.26)

where:

H0 =
N

∑
k=1

(
π2

k

2β̃k
− Gσk β̃k

ρk

)
(1.27)

H1 = −G
N

∑
k=1

N

∑
j=k+1

mkmj

Δkj
− G

N

∑
k=1

mk

(
m0

Δ0k
− σk−1

ρk

)

Constant terms were discarded, since they do not contribute to the equations.
This function defines a system with 3N degrees of freedom in the canonical
variables (ρk, πk) with (k = 1, . . . , N).

Notice that H0 may be written as the sum of N terms of the form

Fk =
π2

k

β̃i
− Gσk β̃k

ρk
(1.28)

each of which represents the Hamiltonian for the unperturbed motion of mk
around the center of gravity of the first (k − 1) mass-points. It is easy to see
that it has the same functional form as the two-body Hamiltonian in astro-
centric coordinates, except for a change of definition in the masses. Thus, the
solution of the unperturbed system with H1 = 0 are also conics, and we can



1.4 Coordinate Systems and Equations of Motion 19

use (1.28) to define new Jacobian orbital elements. These will differ from their
astrocentric counterparts in the first order of the planetary masses.

1.4.3
Poincaré Hamiltonian Formalism

A different reduction to 3N degrees of freedom is due to Poincaré [17]. The
resulting equations were not often used in studies of the solar system, perhaps
because Poincaré himself mentioned he believed its difficulties outweighted
its advantages [18]. However, in recent years this approach has been applied
successfully to several problems in planetary dynamics [19–22]. In fact, and as
we will show below, Poincaré’s formalism is not so complex at all and, when
compared to Jacobi’s approach, the expressions are significantly simpler, and
even easier to use.

The definition of the new canonical variables (ri, pi) for the N planets are
very simple. The new coordinates ri are simply equal to the astrocentric posi-
tion vectors Xi − X0, and the new momenta pi are the same linear momenta
Πi of the barycentric formulation. Hence,

ri = Xi − X0 pi = Πi (i = 1, 2, . . . , N) (1.29)

It is noteworthy that this definition mixes coordinate systems, the positions
being astrocentric while the momenta are barycentric.

We refer the reader to [2] for more details on the construction of these vari-
ables, as well as the algebraic manipulations to obtain the Hamiltonian func-
tion. The works of Laskar [19] and Laskar and Robutel [20] are also highly
recommended references.

The Hamiltonian of the reduced system can once again be written as H =
H0 + H1, where

H0 =
N

∑
i=k

(
1
2

p2
k

βk
− μkβk

rk

)
(1.30)

H1 =
N

∑
k=1

N

∑
j=k+1

(
−Gmkmj

Δkj
+

pk · pj

m0

)

and

μk = G(m0 + mk) βk =
m0mk

m0 + mk
(1.31)

We note that H0 is of the order of the planetary masses mk while H1 is of order
two with respect to these masses. Then H0 may be seen as the new expression
for the undisturbed energy while H1 is the potential energy of the interaction
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between the planets. It is worth noting that each term

Fk =
1
2

p2
k

βk
− μkβk

rk
(1.32)

is the Hamiltonian of a two-body problem in which the mass point mk is mov-
ing around the mass point m0.

The expression for the perturbation term H1 is worth a couple of comments.
On one hand, it is more compact than its counterpart in Jacobi coordinates
(Eq. (1.27)). In fact, it is very similar to the expression of the disturbing func-
tion in the astrocentric reference frame. If we add a greater simplicity of the
definition of the canonical variables, Poincaré’s approach begins to appear
more appealing than Jacobi’s. On the other hand, Poincaré’s expression for
H1 includes terms that depend on the momenta, and this characteristic is baf-
fling to a first-time user. Most of us are used to working with potentials that
are only a function of the positions, and mixed variables have the feel of non-
conservative systems. The explanation, however, simply lies in the different
reference frames chosen for the coordinates and momenta.

1.4.4
Generalized Orbital Elements and Delaunay Variables

The reduced Hamiltonians (1.27) and (1.30) were written in Cartesian coor-
dinates. The purpose of this subsection is to obtain “general” orbital ele-
ments and Delaunay variables corresponding to both Jacobi and Poincaré for-
malisms.

Orbital elements (or their Delaunay canonical counterparts) of each plane-
tary mass mi are defined as solutions of each Fi making up the unperturbed
Hamiltonian H0. The expression for Fi in each coordinate system is:

Astrocentric : Fk =
1
2

(mkṙk)2

mk
− G(m0 + mk)mk

rk

Jacobi : Fk =
1
2

π2
k

β̃k
− Gσk β̃k

ρk

Poincar : Fk =
1
2

p2
k

βk
− μkβk

rk

(1.33)

Recall, however, that astrocentric coordinates (rk, mkṙk) are only canonical if
N = 2, while the Jacobi and Poincaré version are canonical for any number of
bodies.

Notice that all three expressions in (1.33) have the same functional form
with respect to the coordinates; only the mass parameters are different. This
means that the solution in each coordinate system will also have the same
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form, and their integrals of motion (e.g., orbital elements) can be obtained
with the same formulas. In particular, we can write a general expression for
Fk in the form:

Fk =
1
2

mv2 − μ

|r| (1.34)

where the meaning of the set (r, v, m, μ) in each reference frame is summarized
in Table 1.1.

Table 1.1 Correspondence between coordinates and mass parameters defining the unper-
turbed Hamiltonian H0 in three different reference frames.

Coordinate Position Velocity Mass μ

system (x) (v) (m)

Astrocentric rk ṙk mk G(m0 + mk)
Jacobi ρk πk/β̃k β̃k Gσk

Poincaré rk pk/βk βk μk

We can now use the usual two-body formulas to define generalized orbital
elements in each reference frame. These expressions can be found in any text-
book on celestial mechanics (e.g., [3, 4, 23]). For the semi-major axis and ec-
centricity, we have:

a def=
μr

2μ − rv2

e def=

√(
1 − r

a

)2

+
(r · v)2

μa

(1.35)

The remaining elements also follow the same usual definitions. Kepler’s Third
Law also reads:

n2a3 = μ (1.36)

where, once again, the different definitions of μ yield different relations be-
tween the semi-major axis and orbital frequency. Last of all, we need to mod-
ify the orbital elements (a, e, I, l, ω, Ω) to a canonical set. The usual choice is
the so-called mass-weighted Delaunay variables (L, G, T, l, ω, Ω), where the
new momenta are defined by:

L = m
√

μa

G = L
√

1 − e2

T = G cos I

(1.37)
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It is interesting to note that Eqs. (1.35) and (1.36) are valid for all our reference
systems; the only difference lies in the definitions found in Table 1.1 for each
individual case.

1.4.5
Comparisons Between Coordinate Systems

We have seen that, at least formally, the Poincaré formalism is simpler and
more compact than the Jacobi variables. But how does each perform in prac-
tice? We have simulated the short-term orbital evolution of a co-planar system
formed by a central star with m0 = 0.32M⊕ and two planets with masses
m1 = 20MJup and m2 = 5MJup. Initial conditions were chosen such that
both planets have circular orbits with semi-major axes a1 = 0.131 AU and
a2 = 0.232 AU and are in opposition. The large planetary masses were chosen
in order to have strong perturbations and to avoid misleading graphics hiding
the actual behavior of the orbital parameters.

Figure 1.8 shows the variations of the semi-major axis (a) and eccentricity (b)
of the outer planet only. The orbital elements were calculated in each of the
three reference frames (astrocentric, Jacobi and Poincaré). The inner planet
shows very little difference, and is not shown. The results noted in Fig. 1.8
should be taken with care. The Jacobi variables are those showing the less
variable elements in this example, but this is due to the fact that the planet in
the innermost orbit is much larger. Thus, the results appearing here can differ
from system to system and depend on the arbitrary order in which the planets
are chosen in the construction of Jacobian coordinates. When a natural choice
is possible, as in the given example, Jacobi elements are those showing the
least variations.

The main advantage of having a small temporal variation, at least on short
timescales, can be found in orbital fits. If the two-body values of a and e vary
little, then a multi-Keplerian orbital determination from radial velocity data
will be more precise than a case where the same parameters show significant
variations throughout the observational interval. For these reasons, in recent
years Jacobi coordinates have been a popular choice for orbital determination.
The only problem lies in the hierarchical structure of Jacobi coordinates. In
order to define the variables, we must first know which is the first planet,
which is the second, etc. This prior knowledge is not necessary in Poincaré
or astrocentric variables, and can lead to confusion or erroneous results if not
done with care.

Orbital fits in Jacobi coordinates can be undertaken in the same way as de-
duced for astrocentric elements, except for a change in the definition of the
semi-amplitudes Ki. Thus, the complete radial velocity of the star m0 is still
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given by (1.8), but now:

Ki =
mi sin Ii

σi

2πai

T̂i

√
1 − e2

i

with T̂i =
2πa3/2

i√Gσi
(1.38)

and where σi = ∑i
k=0 mi, and all orbital elements are Jacobian. The reader is

referred to Lee and Peale [24] for further details.
In conclusion, Jacobi seems a good choice for orbital representation, espe-

cially if N-body fits are not employed. However, the larger sensitivity of the
astrocentric coordinates to mutual perturbations has its advantages. If dy-
namical fits are used in the hope of uncoupling the planetary masses and
the inclinations, astrocentric coordinates are preferable, since the orbital varia-
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Fig. 1.8 Evolution of semi-major axis and eccentricity of the outer
body (two-planet system) in three different coordinate systems.
Continuous lines correspond to astrocentric orbital elements, dot-
ted lines to Jacobi variables, and dashed lines to orbital elements
deduced from Poincaré canonical variables.
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tions will first become appreciable in this reference frame. Thus, the choice be-
tween Jacobi and astrocentric for the process of orbital determination depends
on the problem at hand, and on the information desired by the researcher.
Whatever the choice, the Poincaré canonical variables still stands out as the
most adequate reference frame for dynamical studies. The transformation be-
tween all systems is straightforward, and there should not be any inhibitions
in using different coordinates for different tasks.

1.4.6
The Conservation of the Angular Momentum

If the only forces acting on the N + 1 bodies are their point-mass gravitational
attractions, the angular momentum is conserved:

L =
N

∑
i=0

miXi × Ẋi (1.39)

Since ∑ i = 0NmiXi = ∑ i = 0NmiẊi = 0, the above equation gives

L =
N

∑
i=0

miri × pi (1.40)

which, in terms of the orbital elements, yields

L =
N

∑
i=1

βi

√
μiai(1 − e2

i )k̇i (1.41)

where ki are the unit vectors normal to the orbital planes. This is an exact
conservation law. In this equation ai and ei are not the usual astrocentric os-
culating elements but the canonical Poincaré elements.

The conservation law given by (1.40) is also true if Jacobian coordinates
are used. It is worth emphasizing that when ai and ei are the astrocentric
osculating elements, the expression

L̂ =
N

∑
i=1

mi

√
μiai(1 − e2

i )k̇i (1.42)

is no longer an exact conservation law. One may easily see that:

L̂ = L−
N

∑
i=1

miX0 × Ẋ0 (1.43)

showing that the quantity L̂ has in fact a variation of order O(m2
i ). Thus, the

conservation of the total angular momentum can only be obtained in canonical
variables, and not in astrocentric orbital elements.
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14 Stepiński, T.F., Malhotra, R. and Black,
D.C.: 2000, The upsilon Andromeda sys-
tem: models and stability. ApJ, 545, 1044–
1057.
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