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Introduction

My little machine was a primitive precursor of this type of accelerator which today is
called a ‘linac’ for short. However, I must now emphasize one important detail. The
drift tube was the first accelerating system which had earthed potential on both sides,
i.e. at both the particles’ entry and exit, and was still able to accelerate the particles
exactly as if a strong electric field was present. This fact is not trivial. In all naiveté
one may well expect that, when the voltage on the drift tube was reversed, the particles
flying within would be decelerated, which is clearly not the case. After I had proven
that such structures, earthed at both ends, were effectively possible, many other such
systems were invented. – Rolf Wideröe
[From The Infancy of Particle Accelerators, edited by Pedro Waloschek, see ref. [4]]

During the second half of the twentieth century, the linear accelerator has
undergone a remarkable development. Its technological base is a consequence
of the science of both the nineteenth and twentieth centuries, including
the discoveries of electromagnetism by Faraday, Maxwell, and Hertz in the
nineteenth century and the discovery of superconductivity in the twentieth
century. The design of a linear accelerator requires an understanding of
the major areas of classical physics, especially classical mechanics, and
electromagnetism, as well as relativity theory. The linear accelerator has
developed as a great tool for learning about the world of subatomic particles.
The linear accelerator provides beams of high quality and high energy,
sufficient to resolve the internal structure of the nucleus and of its constituent
subnuclear particles. Like a microscope, it has probed the internal structure
of the atomic nucleus and of the nuclear constituents, the proton and
neutron. Measurements made using the beams from an electron linear
accelerator have given us our present picture of the proton, that it is made
of pointlike particles called quarks. Furthermore, the linear accelerator has
been applied in hospitals throughout the world as a source of X rays
for radiation therapy to treat cancer. This application may represent the
most significant spin-off of high-energy and nuclear physics research for
the benefit of mankind. The linear accelerator is truly one of the most
significant examples of high-technological development in the postindustrial
era. The sizes of linacs range from a few meters to a few kilometers, and the
costs range from a few million to a billion dollars, depending on the final
energy.
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2 1 Introduction

As a research tool alone, we can expect that the linear accelerator will have
a great future in the twenty-first century. The straight-line trajectory avoids
power losses caused by synchrotron radiation that accompanies circular radio
frequency (RF) accelerators. The capability for providing strong focusing allows
high-quality and high-intensity beams that enable precision measurements to
be made, and provides high-power beams for many applications. We can
anticipate continuing progress in areas such as radio-frequency quadrupole
(RFQ) linacs, colliding beams, high-power beams, high-frequency RF power
and microwave technology, and RF superconductivity. Further developments
in these areas will lead the linac to new performance levels with higher currents,
better beam quality, and lower power requirements. We can confidently expect
an expansion to new applications in the medical and industrial areas. The
purpose of this book is to present the scientific and technical foundations of
the linear accelerator, how it works, and why it will continue to serve as a
powerful tool for the study of nature, and for many other practical applications.

1.1
Linear Accelerators: Historical Perspective

It might be expected that the term linear accelerator should refer to any device
in which particles are accelerated along a straight line. However, through
common usage in the accelerator field the term linear accelerator has been
reserved for an accelerator in which charged particles move on a linear path,
and are accelerated by time-dependent electromagnetic fields. The abbreviation
linac is commonly used for the term linear accelerator. In a RF linac, the beam is
accelerated by RF electromagnetic fields with a harmonic time dependence [1].
The first formal proposal and experimental test for a linac was by Rolf Wideröe
in 1928, but linear accelerators that were useful for research in nuclear and
elementary particle research did not appear until after the developments
of microwave technology in World War II, stimulated by radar programs.
Since then, the progress has been rapid, and today, the linac is not only a
useful research tool, but is also being developed for many other important
applications.

A particle accelerator delivers energy to a charged-particle beam by
application of an electric field. The first particle accelerators were electrostatic
accelerators in which the beam gains energy from a constant electric field.
Each particle acquires an energy equal to the product of its electric charge
times the potential drop, and the use of electrostatic fields led to a unit of
energy called the electron volt (eV), equal to the product of the charge times
the voltage drop. The main limitation of electrostatic accelerators is that the
maximum energy obtainable cannot exceed the product of the charge times
the potential difference that can be maintained, and in practice this potential
difference is limited by electric breakdown to no more than a few tens of
megavolts. RF accelerators bypass this limitation by applying a harmonic
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time-varying electric field to the beam, which is localized into bunches, such
that the bunches always arrive when the field has the correct polarity for
acceleration. The time variation of the field removes the restriction that the
energy gain be limited by a fixed potential drop. The beam is accelerated within
electromagnetic-cavity structures, in which a particular electromagnetic mode
is excited from a high-frequency external power source. For acceleration, the
beam particles must be properly phased with respect to the fields, and for
sustained energy gain they must maintain synchronism with those fields. The
latter requirement has led to the name resonance accelerators, which includes the
linac, cyclotron, and synchrotron. The ideal particle orbit in an RF accelerator
may be either a straight line for a linac, a spiral for a cyclotron, or a circle for a
synchrotron.

In 1924, Gustav Ising of Stockholm proposed the first accelerator that used
time-dependent fields, consisting of a straight vacuum tube, and a sequence
of metallic drift tubes with holes for the beam [2]. The particles were to be
accelerated from the pulsed voltages that were generated by a spark discharge
and applied across adjacent drift tubes. Synchronism of the applied voltage
pulses with the beam particles was to be obtained by introducing transmission
lines, chosen to delay the pulse from the voltage source to each of the drift
tubes. The concept proposed by Ising was not tested at that time, but the
publication was very important because it influenced the young Norwegian
student, Rolf Wideröe.

The first RF linear accelerator was conceived and demonstrated experimen-
tally by Wideröe in 1927 at Aachen, Germany. It was reported in a paper [3]
that is one of the most significant in the history of particle accelerators,[4]
and which inspired E. O. Lawrence to the invention of the cyclotron [5]. The
linac built by Wideröe was the forerunner of all modern RF accelerators.
The Wideröe linac concept, shown in Fig. 1.1, was to apply a time-alternating
voltage to a sequence of drift tubes, whose lengths increased with increasing
particle velocity, so that the particles would arrive in every gap at the right time
to be accelerated. In the figure, D are drift tubes connected to an alternating
voltage source V that applies equal and opposite voltages to sequential drift
tubes, G are the gaps between the drift tubes in which the electric force acts
to accelerate the particles, and S is the source of a continuous ion beam. For
efficient acceleration the particles must be grouped into bunches (shown by
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Figure 1.1 Concept of the Wideröe drift-tube linac.
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the black dots), which are injected into the linac at the time when the polarity
of the drift tubes is correct for acceleration. The bunching can be accomplished
by using an RF gap B between the dc source and the linac. This gap impresses
a velocity modulation on the incoming beam that produces spatial bunching
at the end of a suitable drift space L. The net effect of the sequence of voltage
kicks is to deliver a total voltage gain to the beam, which is greater than the
impressed voltage V in any single gap.

In Wideröe’s experiment, an RF voltage of 25 kV from a 1-MHz oscillator
was applied to a single drift tube between two grounded electrodes, and
a beam of singly charged potassium ions gained the maximum energy in
each gap. A final beam energy of 50 keV was measured, which is twice that
obtainable from a single application of the applied voltage. This was also the
first accelerator that had ground potential at both the entrance and the exit
ends, and was still able to deliver a net energy gain to the beam, using the
electric fields within. The experiment established the principle that, unlike an
electrostatic accelerator, the voltage gain of an RF accelerator could exceed
the maximum applied voltage. There was no reason to doubt that the method
could be repeated as often as desired to obtain unlimited higher energies. In
1931 Sloan and Lawrence [6] built a Wideröe-type linac with 30 drift tubes, and
by applying 42 kV at a frequency of 10 MHz, they accelerated mercury ions to
an energy of 1.26 MeV at a beam current of 1 µA. By 1934 the output energy
had been raised to 2.85 MeV [7] using 36 drift tubes.

The original Wideröe linac concept was not suitable for acceleration to
high energies of beams of lighter protons and electrons, which was of
greater interest for fundamental physics research. These beam velocities
are much larger, approaching the speed of light, and the drift-tube lengths and
distances between accelerating gaps would be impractically large, resulting
in very small acceleration rates, unless the frequency could be increased to
near a gigahertz. In this frequency range, the wavelengths are comparable
to the ac circuit dimensions, and electromagnetic-wave propagation and
electromagnetic radiation effects must be included for a practical accelerator
system. For example, for an electron linac the lengths of the drift tubes and
supporting stems would equal nearly a half a wavelength, and instead of
isopotential electrodes they would function more like resonant antennas with
high power losses. Thus, linac development required higher-power microwave
generators, and accelerating structures better adapted for high frequencies
and for acceleration requirements of high-velocity beams. High-frequency
power generators, developed for radar applications, became available after
World War II. At this time, a new and more efficient high-frequency proton-
accelerating structure, based on a linear array of drift tubes enclosed in a
high-Q cylindrical cavity, was proposed by Luis Alvarez [8] and coworkers at
the University of California. The drift-tube linac (DTL) concept was to excite a
mode with a uniform electric field in the gaps and zero field inside the drift
tubes to avoid deceleration when the field was reversed. A 1-m diameter, 12-m
DTL with a resonant frequency of 200 MHz was built,[9] which accelerated
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protons from 4 to 32 MeV. At about the same time at Stanford a new, efficient
accelerating structure for relativistic electrons was proposed, consisting of
an array of pillbox-cavity resonators with a central hole in each end wall for
propagation of both the beam and the electromagnetic energy. The structure
was called the disk-loaded or iris-loaded waveguide,[10] and this development led
eventually to the 3-km Stanford Linear Accelerating Center (SLAC) linac. From
these two projects the first modern proton and electron linacs were born. [11]

The RF linear accelerator is classified as a resonance accelerator. Because
both ends of the structure are grounded, a linac can easily be constructed
as a modular array of accelerating structures. The modern linac typically
consists of sections of specially designed waveguides or high-Q resonant
cavities that are excited by RF electromagnetic fields, usually in the VHF
and UHF microwave frequency ranges. The accelerating structures are tuned
to resonance and are driven by external, high-power RF-power tubes, such
as klystrons, or various types of gridded vacuum tubes. The ac (wall plug)
to RF efficiencies of these tubes typically range from about 40 to 60%. The
output electromagnetic energy from the tubes is transported in conventional
transmission lines or waveguides to the linac structure. The accelerating
structures must efficiently transfer the electromagnetic energy to the beam,
and this is accomplished in two important ways. First, the resonant buildup of
the fields in the high-Q structure transforms the low field levels of the input
waveguide into high fields within the structure and produces a large ratio
of stored electromagnetic energy relative to the ohmic energy dissipated per
cycle. Second, through an optimized configuration of the internal geometry,
the structure can concentrate the electric field along the trajectory of the beam
promoting maximal energy transfer. The most useful figure of merit for high
field concentration on the beam axis and low ohmic power loss is the shunt
impedance.

One of the main advantages of the linear accelerator is its capability for
producing high-energy, and high-intensity charged-particle beams of high
beam quality, where high beam quality can be related to a capacity for
producing a small beam diameter and small energy spread. Other attractive
characteristics of the linac include the following: (1) strong focusing can be
easily provided to confine a high-intensity beam; (2) the beam traverses the
structure in a single pass, and therefore repetitive error conditions causing
destructive beam resonances are avoided; (3) because the beam travels in a
straight line, there is no power loss from synchrotron radiation, which is a
limitation for high-energy electron beams in circular accelerators; (4) injection
and extraction are simpler than in circular accelerators, since the natural orbit
of the linac is open at each end; special techniques for efficient beam injection
and extraction are unnecessary; (5) the linac can operate at any duty factor, all
the way to 100% duty or a continuous wave (CW), which results in acceleration
of beams with high average current.
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1.2
Linac Structures

A simplified block diagram of a linac in Fig. 1.2 shows a linac structure with
accelerating cavities and focusing magnets, and supplied with electromagnetic
energy by an RF-power system. Beam is injected from a dc injector system.
A vacuum system is required for good beam transmission. Electric power is
used primarily by the RF-power system. A cooling system (water for normal-
conducting linacs and liquid helium for superconducting linacs) removes the
heat generated by the resistive wall losses. Because the linac uses a sinusoidally
varying electric field for acceleration, particles can either gain or lose energy
depending on the beam phase relative to the crest of the wave. To provide
efficient acceleration for all the particles, the beam must be bunched as shown
in Fig. 1.3. The bunches may be separated longitudinally by one or more RF
periods.

Figure 1.4 shows the electric- and magnetic-field patterns in a simple
cylindrical cavity operated in a transverse-magnetic resonant mode. Such a
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Figure 1.2 Simplified block diagram of a linac.
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Figure 1.3 Beam bunches in an RF linac.
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Figure 1.4 Electric (E) and magnetic (B) fields for the transverse-magnetic resonant
mode in a cylindrical cavity.

mode is characterized by a longitudinal electric field on axis, which is ideal for
acceleration of a charged-particle beam. An important practical consideration
is how to construct an efficient linac using these cavities. There have been
several solutions. First, an array of independent cavities can be used, each
driven by its own RF generator, and each phased independently to provide
acceleration along the entire length. This solution is used for superconducting
linacs, where its main advantage is operational flexibility.

Another solution is to launch an electromagnetic traveling wave in a long
structure consisting of many electromagnetically coupled cells. The traveling-
wave structure was used for the 50-GeV electron linac at the SLAC. Although
the simplest accelerating structure might appear to be a uniform cylindrical
waveguide, it cannot provide continuous acceleration of electrons, because
the phase velocity of an electromagnetic wave in a uniform waveguide always
exceeds the velocity of light, so that synchronism with the beam is not possible.
A structure with modified geometry is required to lower the phase velocity
to that of the beam. At SLAC, the linac structure consists of a cylindrical
waveguide that contains a periodic array of conducting disks with axial holes,
as shown in Fig. 1.5. Each individual cell within a pair of disks is essentially
identical to the basic cavity of Fig. 1.4, and the whole structure is equivalent to
an array of coupled cylindrical cavities. It can be shown that for this structure
the phase velocity can be reduced below the speed of light, as required for
particle acceleration. The electrical characteristics of the disk-loaded waveguide
structure will be described in more detail in Chapter 3.

The other common method of producing acceleration in a linac is to excite a
standing wave in a multicell or coupled-cavity array. Several types of multicell
structures have been invented for optimum application over specific ranges of
beam velocity. One type of structure is the Alvarez DTL, discussed earlier and
shown in Fig. 1.6, which is used to accelerate protons and other ions in the
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Figure 1.5 The disk-loaded
traveling-wave structure, also
showing the input waveguide
through which the
electromagnetic wave is injected
into the structure at the end cell.
The beam propagates along the
central axis and is accelerated by
the electric field of the traveling
wave.
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Figure 1.6 Alvarez drift-tube linac structure
used for acceleration of medium-velocity
ions. The beam particles are bunched before
injection into the drift-tube linac. The beam
bunches being accelerated in the gaps G are
shown. They are shielded from the field by

the drift tubes, when the field has the wrong
polarity for acceleration. The drift tubes D
are supported by the stems S. The cavity is
excited by the RF current flowing on a
coaxial line into the loop coupler C.

velocity range from about 0.04 to about 0.4 times the speed of light. Unlike
the Wideröe structure, in the DTL the fields in adjacent gaps are in phase,
and the spacing of the accelerating gaps is nominally equal to the distance the
beam travels in one RF period. The DTL structure is not used for electrons,
because electrons are so light that their velocity is already above the applicable
velocity region at injection from the dc electron gun. Other coupled-cavity linac
structures are used for both electrons and protons in the velocity range above
about 0.4 times the speed of light. This velocity corresponds to kinetic energies
near 50 keV for electrons, the typical injection energy from an electron gun,
and near 100 MeV for protons. For example, a coupled-cavity structure called
the side-coupled linac (SCL) is used at the Los Alamos Neutron Science Center



1.2 Linac Structures 9

(LANSCE) linac at Los Alamos to accelerate the proton beam from 100 to
800 MeV. The transverse-focusing requirements are provided by magnetic-
quadrupole lenses mounted within the drift tubes of the DTL, and between
structures in a coupled-cavity linac.

The newest accelerating structure for the very-low-velocity range from about
0.01 to 0.06 times the velocity of light is the (RFQ), shown in Fig. 1.7. An
electric-quadrupole mode is excited in a cavity resonator loaded with four
conducting rods or vanes, placed symmetrically about the beam axis. The
RFQ electric field provides strong transverse electric focusing, which is an
important requirement for low-velocity protons and heavy ions. Acceleration
in the RFQ is obtained by machining a longitudinal-modulation pattern on
these four elements to create an array of effective accelerating cells and a
longitudinal accelerating field. The RFQ bunches and captures a dc beam
injected from the ion source, and then accelerates the beam to high-enough
energies for injection into the DTL . The overall result is a significant increase
in the focusing strength at low velocities, which enables acceleration of
higher-current beams in linacs.

In pulsed linacs, one must distinguish between micropulses and
macropulses. We will see later that, within each RF cycle, the longitudinal
electric field produces a stable region (the bucket) for the beam. Consequently,
the linac fields form a sequence of stable RF buckets separated by one RF
period. Each bucket may contain a stable bunch of particles called a micropulse.

Figure 1.7 The radio-frequency quadrupole
(RFQ), used for acceleration of low-velocity
ions, consists of four vanes mounted within
a cylindrical cavity. The cavity is excited in an
electric-quadrupole mode in which the RF
electric field is concentrated near the vane

tips to produce a transverse RF
electric-restoring force for particles that are
off-axis. The modulation of the vane tips
produces a longitudinal electric-field
component that accelerates the beam along
the axis.
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When the RF generator itself is pulsed, with a period that is generally very long
compared with the RF period, the generator pulses are called macropulses. The
linac may be operated continuously, which is called continuous-wave operation.
The choice to operate pulsed or continuously depends on several issues. One
important issue is the total RF efficiency. If the accelerated beam current is
small, most of the power in CW operation is not delivered to the beam, but is
dissipated in the structure walls. Instead, if the accelerator is operated pulsed,
and the current per RF bucket is increased while maintaining the same average
beam current, then a larger fractional power is delivered to the beam, and
the efficiency is improved. Another important advantage for pulsed operation
is that the peak surface electric field attainable is generally larger for shorter
pulses. Thus, if high accelerating fields are required, pulsed operation may
be preferred. The main advantage for either longer pulse or CW operation
is to reduce the space-charge forces or other beam-current-dependent effects
associated with acceleration of beam with high average currents. These effects
can be reduced by spreading the total beam charge over more RF buckets, as
is done in longer pulse or CW operation.

Because the linac is a single-pass device, the linac length and the ohmic
power consumption in the cavity walls may be large compared with circular
accelerators, which use the same accelerating cavities over and over. To shorten
the accelerator for a given energy gain, it is necessary to raise the longitudinal
electric field, but this increases the power dissipation and increases the risk
of RF electric breakdown. For high-duty-factor operation, the average power
density from RF losses on the cavity walls can produce challenging cooling
requirements for the conventional copper-cavity technology. Another approach
to these problems that has become increasingly successful in recent years is
the use of superconducting niobium cavities.

1.3
Linac Beam Dynamics

Multicell ion linacs are designed to produce a given velocity gain per cell.
Particles with the correct initial velocity will gain the right amount of energy
to maintain synchronism with the field. For a field amplitude above a certain
threshold, there will be two phases for which the velocity gain is equal to the
design value, one earlier and the other later than the crest, as shown in Fig. 1.8.

The earlier phase is called the synchronous phase and is the stable operating
point. It is a stable point because nearby particles that arrive earlier than the
synchronous phase experience a smaller accelerating field, and particles that
arrive later will experience a larger field. This provides a mechanism that keeps
the nearby particles oscillating about the stable phase, and therefore provides
phase focusing or phase stability. The particle with the correct velocity at
exactly the stable phase is called the synchronous particle, and it maintains exact
synchronism with the accelerating fields. As the particles approach relativistic
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Figure 1.8 Stable (S) and unstable (U) phases, early (E), and late (L) phases.

velocities, the phase oscillations slow down, and the particles maintain a nearly
constant phase relative to the traveling wave. After beam injection into electron
linacs, the velocities approach the speed of light so rapidly that hardly any
phase oscillations take place. With the electromagnetic wave traveling at the
speed of light, electrons initially slip relative to the wave and rapidly approach
a final phase, which is maintained all the way to high energy. The final energy
of each electron with a fixed phase depends on the accelerating field and the
value of the phase. In contrast, the final energy of an ion that undergoes phase
oscillations about a synchronous particle is approximately determined not by
the field, but by the geometry of the structure, which is tailored to produce a
specific final synchronous energy. For an ion linac built from an array of short
independent cavities, each capable of operating over a wide velocity range, the
final energy depends on the field and the phasing of the cavities, and can be
changed by changing the field, as in an electron linac.

Longitudinal focusing, obtained by injecting the beam on the leading edge
of the wave, is essential for nonrelativistic beams of high intensity. However,
RF transverse electric fields also act on the beam as shown by the radial field
lines near the edges of the gap in Fig. 1.9, and except for some special cases,
the particles that are focused longitudinally experience transverse defocusing
forces. Furthermore, additional defocusing effects arise because the injected

Figure 1.9 Electric-field lines
in an accelerating gap.
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beam particles always have finite transverse velocities, and the beam particles
also exert mutually repulsive Coulomb forces. Thus, provision for transverse
focusing must be provided. The most successful solutions for transverse
focusing have been either to include separate magnetic-quadrupole focusing
lenses or to invent accelerating structures that can provide focusing from the
RF transverse electric fields, such as the RFQ.

1.4
Multiparticle Effects

Some applications require beams of high quality that occupy a small volume
of phase space, called the emittance. Small beam phase volume is necessary
if a small output focal spot or small output energy spread is required. As the
beam intensity increases, several effects begin to increase the phase volume
occupied by the beam, and these may eventually lead to loss of the beam.
The most serious intensity limitation in ion linacs is caused by the repulsive
space-charge forces, which are usually the most important at lower velocities,
where the beam density is highest. The repulsive space-charge forces cause
additional defocusing, and because these forces are nonlinear, they distort
the particle distribution. Space-charge forces can also produce an extended
halo of large-amplitude particles surrounding the main core of the beam. The
halo particles can strike the walls and contribute to beam loss that causes
radioactivity along the accelerating structure. The radioactivity increases the
difficulty of providing routine maintenance of the linac, and thereby reduces
the overall operational availability of the linac. For applications requiring
high average beam current, control of the halo and beam losses through
strong focusing, adequate aperture radius, and proper matching of the beam
distribution to the focusing system becomes an important design requirement.

For relativistic electron linacs, the electric (space charge) and magnetic
self-fields from the beam tend to cancel, nearly eliminating the total effective
space-charge effect. But, short bunches of relativistic particles produce a
highly Lorentz-compressed field distribution, and these fields from the
beam interact with conducting-boundary discontinuities, producing scattered
radiation, called wakefields, that act on trailing charges in both the same and
later bunches. The wakefields can also increase the beam emittance. Wakefield
effects can be reduced by damping the higher-order modes that are the major
contributors and reducing discontinuities whenever possible. Certain cavity
modes, called deflecting modes, can be excited by an off-axis beam, and are the
most dangerous. These modes can cause further deflection of trailing particles
and under certain conditions lead to an instability known as the beam-breakup
instability, which results in loss of the beam.

Finally, beam loading occurs, as the beam itself excites the accelerating mode
in the cavities. The beam-induced field adds vectorially to the contribution
from the generator to produce a modified amplitude and phase. From another
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viewpoint, energy is transferred from the beam to each cavity, which unless
otherwise corrected, reduces the cavity field and may shift the phase. Beam-
loading compensation methods are used successfully to maintain the correct
amplitudes and phases in the presence of the beam. Solutions for controlling
all these high-intensity effects can significantly influence the design choices
for the main accelerator parameters, including frequency, aperture radius,
focusing characteristics, cavity tuning, and RF system operation.

1.5
Applications of Modern RF Linacs

For electron linacs, applications of recent interest include (1) electron-positron
colliders for elementary-particle-physics research, (2) high-quality electron
beams for free-electron lasers, (3) pulsed neutron sources for nuclear physics
and material sciences, and (4) X-ray sources for radiotherapy. Electron-positron
linear colliders are preferred over circular colliders because synchrotron
radiation losses, experienced by relativistic electrons in circular accelerators,
are avoided. Furthermore, because of the strong focusing in a linac, high beam
quality is achieved, which is required for high luminosity and a high collision
rate. Design studies, and research and development for linear colliders in the
tetraelectron volt range, are being carried out within the framework of an
international collaboration [12]. The most successful commercial application
of RF accelerators is the small 10–20-MeV electron linacs for cancer therapy.
A few thousand electron linacs are used worldwide for medical irradiations,
and this number is growing. Small electron linacs are also used for industrial
radiography and radiation processing, including radiation sterilization.

For proton linacs, modern applications include (1) injectors to high-energy
synchrotrons for elementary-particle-physics research; (2) high-energy linacs
for CW spallation neutron sources used for condensed matter and materials
research, production of nuclear fuel, transmutation of nuclear wastes,
and accelerator-driven fission-reactor concepts; (3) CW neutron sources for
materials irradiation studies related to fusion reactors; and (4) low-energy
neutron sources for medical applications such as boron–neutron capture
therapy. Design studies for large proton linacs have been carried out for the
Accelerator Production of Tritium (APT) project [13] and the neutron spallation
source projects in Europe, the European Spallation Source (ESS) [14] and in
the United States, where the Spallation Neutron Source (SNS) was recently
constructed [15]. There are also linac applications for heavy ions, including
(1) linacs for nuclear physics research, (2) ion implantation for semiconductor
fabrication, and (3) multigigaelectron volt linacs for heavy-ion-driven inertial-
confinement fusion. The most recently commissioned heavy-ion linac is the
lead-ion linac at CERN [16].

A recent worldwide compendium of existing and planned scientific
linacs [17] listed 174 linacs distributed over the Americas, Europe, and Asia.
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Historically, two significant large linac projects are the SLC electron–positron
linear collider at SLAC, shown in Fig. 1.10, and the LANSCE linac at Los
Alamos, shown in Fig. 1.11. The main parameters of these two linacs are
summarized in Table 1.1. The SLC at SLAC is the first linear collider, built to
produce the Z0 vector boson near a center-of-mass energy of 91 GeV. It used
the 2-mile SLAC electron linac, which was built in the 1960s [18]. Positrons
were produced by bombarding a target with a 30-GeV e− beam. More details
of this unique facility are summarized elsewhere [19].

The LANSCE linac,[21] formerly known as LAMPF, began operation in the
early 1970s as a pion factory for research in nuclear and high-energy physics.
It delivers the highest average proton beam power of any existing accelerator.
It can deliver 1-mA, 800-MeV proton beams to a fixed target, or an H beam for
multiturn injection into the proton storage ring, where the accumulated beam
is extracted in short pulses for neutron scattering research.
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Figure 1.10 The SLAC linear collider.
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Figure 1.11 The 800-MeV LANSCE proton linac.

Table 1.1 Parameters of SLC and LANSCE linacs [20].

Facility SLC at SLAC LANSCE at Los
Alamos (H− data)

Application e−/e+ collider for high-energy
physics research

Linac for high-intensity beams of H−
and H+

First beam 1967 1972
Species Electrons and positrons H+ and H−
Beam intensity 2–3.5 × 1010 particles per pulse 11 mA peak H− (average over 825 µs

macropulse)
Beam pulse 120 Hz, 0.06–3 µs 120 Hz, 825 µs
Output energy 46.6 GeV 800 MeV
Accelerating
structure data

960 3-m structures for
traveling-wave acceleration at
2856 MHz; 60–130 MW peak
power, 25 kW average power

201.25-MHz DTL from 0.75 to
100 MeV

805-MHz SCL from 100 to 800 MeV
Length 3000 m 62-m DTL, 731-m SCL

1.6
Accelerator-Physics Units, Unit Conversions, and Physical Constants

In this book we will use the SI or MKS units, with two notable exceptions. The
magnetic flux density will sometimes be expressed in gauss. The conversion
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factor between the SI unit tesla and gauss is 1 Gauss = 10−4 tesla. Beam-
particle energy will be given in electron volts or eV units, rather than joules.
The electron volt is defined as the energy acquired by a particle with charge
equal to the electron charge that has been accelerated through a potential
difference of 1 V. The conversion factor between electron volts and joules
is approximately 1.602 × 10−19 = 1 eV. Finally, instead of the particle mass,
we will usually give the rest energy, mc2 in megaelectron volt units. Some
frequently used physical constants are given in Table 1.2 [22].

1.7
Useful Relativistic Mechanics Relationships

We assume that the reader has a basic knowledge of classical and relativistic
mechanics. In this section we present a brief review of basic formulas from
relativistic mechanics that will be useful. Consider a particle of mass m and
speed v. If c is the speed of light, it is customary to define a normalized velocity
β as β = v/c, and a relativistic mass factor γ , defined as γ = 1/

√
1 − β2.

Some other important definitions include the relativistic momentum of a
particle, p = γ mv, the kinetic energy, W = (γ − 1)mc2, the rest energy, mc2,
and the total energy, U = W + mc2 = γ mc2. The nonrelativistic limit applies
when β � 1. It is often convenient to convert between velocity, energy, and
momentum, and the following relationships are helpful. The conversion from
velocity β to kinetic energy W is

γ = 1/
√

1 − β2, W = (γ − 1)mc2 (1.1)

The inverse conversion is

γ = (W + mc2)/mc2, β = √
1 − 1/γ 2 (1.2)

The following relationships between small differences are sometimes useful:
δγ = γ 3βδβ, δγ = βδ(βγ ), δW = mc2δγ , δp = mcδ(βγ ). Particle dynamics

Table 1.2 Physical constants.

Speed of light c 2.99792458 × 108 m/s
Elementary charge e 1.60217733 × 10−19 C
Electron mass me 0.510 999 06 MeV/c2

Proton mass mp 938.272 31 MeV/c2

Atomic mass unita mu 931.494 32 MeV/c2

Permeability of free space µ0 4π × 10−7 T-m/A
Permittivity of free space ε0 1/µ0c2 = 8.854187817 . . . × 10−12 F/m
DC resistivity of copper (293 K) 1/σ 1.7 × 10−8 �-m (nominal)

aMass of (12C)/12.
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is obtained from Newton’s law relating the force and the rate of change of
momentum:

F = dp
dt

= m
d(γ v)

dt
(1.3)

For a particle of charge q in an electromagnetic field, the Lorentz force on
particle with charge q and velocity v in an electric field E and a magnetic field
B, is given by

F = q(E + v × B) (1.4)

1.8
Maxwell’s Equations

The laws describing all classical electromagnetic phenomena are known as
Maxwell’s equations. These equations relate the electric and magnetic fields,
and the charge and current sources. Maxwell’s four equations in vacuum
(where D = ε0E and B = µ0H), expressed in differential form, are as follows:

∇ · E = ρ/ε0, Gauss’s law (1.5)

∇ · B = 0 (1.6)

∇ × E = −∂B/∂t, Faraday’s law (1.7)

∇ × B = µ0J + µ0ε0∂E/∂t, Ampére’s law (1.8)

where ρ is the charge density and J is the current density. A charge-continuity
equation ∇ · J = −∂ρ/∂t is derived from these equations. Maxwell’s equations
can also be expressed in what is often a more convenient integral form:∫

E · dS = 1

ε0

∫
ρdV, Gauss’s law (1.9)

∫
B · dS = 0 (1.10)

∫
© E · dl = −

∫
∂B
∂t

· dS, Faradays law (1.11)

∫
© B · dl = µ0

∫ (
J + ε0

∂E
∂t

)
· dS, Ampére’s law (1.12)

It can be shown that the electric and magnetic fields can propagate as
electromagnetic waves. When the charges and currents are zero, the wave
equations in Cartesian coordinates are as follows:

∇2E − 1

c2

∂2E
∂t2

= 0; ∇2B − 1

c2

∂2B
∂t2

= 0 (1.13)

where c = 1/
√

µ0ε0 is the speed of light in vacuum.
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Maxwell’s equations are composed of four coupled first-order partial
differential equations. Two of the equations, Eqs. (1.6) and (1.7), have no
charge or current source terms, and may be called the homogeneous equations.
The other two equations, Eqs. (1.5) and (1.8), do contain source terms and may
be called the inhomogeneous equations. Although in principle the four equations
may be solved for any given problem, it is often convenient to solve a problem
using potentials from which the fields may be derived. It is common to define
the scalar potential φ, and the vector potential A, which are functions of space
and time, such that

B = ∇ × A, E = −∇φ − ∂A
∂t

(1.14)

With these definitions it can be shown [23] that the two homogeneous
equations are automatically satisfied. The potentials are not uniquely specified
from Eq. (1.14), and uncoupled source equations may be obtained by
substituting Eq. (1.14) into Eqs. (1.5) to (1.8), and by imposing what is called
the Lorentz condition,[24]

∇ · A + 1

c2

∂φ

∂t
= 0 (1.15)

The resulting equations for the potentials have the symmetric, decoupled
form of inhomogeneous wave equations [25]

∇2φ − 1

c2

∂2φ

∂t2
= −ρ/ε0 (1.16)

and

∇2A − 1

c2

∂2A
∂t2

= −µ0J (1.17)

In the course of some of our discussions on RF cavities, we will consider
the solution of Eqs. (1.15) to (1.17) within a closed region of space containing
no free charges, surrounded by an equipotential surface. In this case Eq. (1.6)
can be satisfied by choosing φ = 0 [26]. Then, from Eq. (1.15) we have

∇ · A = 0 (1.18)

and Eq. (1.14) reduces to [27]

B = ∇ × A, E = −∂A
∂t

(1.19)

For this case, the electric and magnetic fields are obtained from the vector
potential alone, which must satisfy Eqs. (1.17) and (1.18).
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1.9
Conducting Walls

The boundary conditions at the interface between vacuum and an ideal
perfect conductor can be derived by applying the integral forms of Maxwell’s
equations to small pillbox-shaped volumes at the interface. One finds that
only the normal electric-field component and the tangential magnetic-field
component can be nonzero just outside the conductor surface. If n̂ is a vector
normal to the interface, � is the surface charge density on the conductor, and
K is the surface-current density, the boundary conditions that must be satisfied
by the fields just outside the conductor are

n̂ · E = �/ε0

n̂ × H = K

n̂ · B = 0

n̂ × E = 0 (1.20)

No perfect conductors exist, but certain metals are very good conductors.
Copper, with a room-temperature resistivity of ρ = 1/σ = 1.7 × 10−8 �-m,
is the most commonly used metal for accelerator applications. For a good
but not perfect conductor, fields and currents are not exactly zero inside the
conductor, but are confined to within a small finite layer at the surface, called
the skin depth. In a real conductor, the electric and magnetic fields, and the
current decay exponentially with distance from the surface of the conductor,
a phenomenon known as the skin effect. The skin depth is given by

δ =
√

2

σµ0ω
(1.21)

Because of the skin effect, the ac and dc resistances are not equal. It is
convenient to define the ac or RF surface resistance Rs = 1/σδ, and using
Eq. (1.21), we find Rs = √

µ0ω/2σ , which shows that the ac surface resistance
is proportional to the square root of the frequency. If dS is the area element on
the cavity walls, the average power dissipation per cycle is

P = Rs

2

∫
H2dS (1.22)

Physically, the skin effect is explained by the fact that RF electric and
magnetic fields applied at the surface of a conductor induce a current, which
shields the interior of the conductor from those fields. For frequencies in the
100 MHz range and for a good conductor like copper, the skin depth δ is of the
order 10−6 m, and Rs is in the milliohm range. The use of superconducting
materials dramatically reduces the surface resistance. For the RF surface
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resistance of superconducting niobium, we will use an approximate formula

Rs(�) = 9 × 10−5 f 2(GHz)

T(◦K)
exp

[
−α

Tc

T

]
+ Rres (1.23)

where α = 1.83, and Tc = 9.2 K is the critical temperature. Rres is known
as the residual resistance; it is determined by imperfections in the surface,
and typically is approximately 10−9 to 10−8 �. The superconducting surface
resistance is roughly 10−5 lower than that of copper.

1.10
Group Velocity and Energy Velocity

Linac technology requires the propagation of electromagnetic waves in trans-
mission lines, waveguides, and cavities. There are no truly monochromatic
waves in nature. A real wave exists in the form of a wave group, which consists
of a superposition of waves of different frequencies and wave numbers. If the
spread in the phase velocities of the individual waves is small, the envelope
of the wave pattern will tend to maintain its shape as it moves with a velocity
that is called the group velocity. The simplest example of a wave group, shown
in Fig. 1.12, consists of two equal-amplitude waves, propagating in the +z
direction, with frequencies ω1 and ω2, and wave numbers k1 and k2, which we
can express in complex exponential form as

V(z, t) = e j(ω1t−k1z) + e j(ω2t−k2z)

= 2 cos
[

(ω1 − ω2)t − (k1 − k2)z

2

]
e j[(ω1+ω2)t−(k1+k2)z]/2 (1.24)

The exponential factor describes a traveling wave with the mean frequency
and mean wave number, and the first factor represents a slowly varying

Figure 1.12 Wave composed of two components with different frequencies and wave
numbers.
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modulation of the wave amplitude. The phase velocities of component waves
are ω1/k1 and ω2/k2, and the mean phase velocity is

vp = ω1 + ω2

k1 + k2
= ω̄

k̄
(1.25)

The group velocity is defined as the velocity of the amplitude-modulation
envelope, which is

vg = ω1 − ω2

k1 − k2
→ dω

dk
(1.26)

Generally, the mean phase velocity and the group velocity are not necessarily
equal; they are equal when there is a linear relation between frequency and
wave number, as for the ideal transmission line. The waveguide dispersion
curve is a plot of ω versus k. Figure 1.13 shows an example of a dispersion
curve for a uniform waveguide. The phase velocity at any point on the curve is
the slope of the line from the origin to that point, and the group velocity is the
slope of the dispersion curve, or tangent at that point. For the uniform guide,
one finds vpvg = c2, where vg < c and vp > c.

A more general example of wave group is the wave packet, which describes
a spatially localized wave group, as shown in Fig. 1.14. Again, the group
velocity, rather than the phase velocity, must be used to characterize the
motion of a wave packet. For example, the transient filling of a waveguide with

w = –kzc w = kzc

w

kz

wc
p

Vg
Vp

Figure 1.13 Example of
dispersion curve for uniform
waveguide, ω2 = ω2

c + (kzc)2,
showing graphically the meaning
of phase and group velocity at
the point p on the curve. The
group velocity at point p is the
tangent to the curve at that
point. The phase velocity is the
slope of the line from the origin
to the point p.

Group velocity

Figure 1.14 Wave packet.
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electromagnetic energy must be described in terms of the motion of a wave
packet, which will have a leading edge that moves at approximately the group
velocity for practical cases where dispersion is not too large. The phase velocity
does not appear in the description, because it describes the speed of individual
waves that make up the wave packet, rather than the wave packet itself, which
really consists of an interference pattern of these waves.

The energy velocity is defined as the velocity of electromagnetic energy flow,
which, for a traveling wave moving in the +z direction, is

vE = P+
U�

(1.27)

where P+ is the wave power, the electromagnetic energy per unit time crossing
a transverse plane at fixed z, and U� is the stored electromagnetic energy
per unit length. For cases of practical interest, the energy velocity is equal to
the group velocity [28]. This result is useful for evaluating the energy velocity
because the group velocity at the operating point is easy to determine from the
slope of the dispersion curve.

1.11
Coaxial Resonator

Some accelerating cavities, especially for relatively low frequencies below about
100 MHz, are variants of the simple coaxial resonator. Without worrying now
about the specific modifications needed to produce a practical accelerating
cavity, we consider the properties of a coaxial resonator. A coaxial resonator,
shown in Fig. 1.15, is formed by placing conducting end walls on a section
of coaxial line formed by an inner conductor of radius a and an outer
conductor with radius b. When the enclosed length is an integer multiple of
half wavelengths, transverse electromagnetic (TEM) resonant standing-wave
modes exist, where both the electric and magnetic fields have only transverse
components. Resonance occurs when the boundary condition on the end
walls, Er = 0, is satisfied. This condition occurs when the conducting walls are
separated by a distance � = pλ/2, p = 1, 2, 3, . . . . To obtain the solution, first
imagine a current wave on the inner conductor traveling in the +z direction,
I0e j(ωt−kz). From the integral form of Ampere’s law, the current produces an
azimuthal magnetic field given by Bθ = I0e j(ωt−kz)µ0/2πr. Given the magnetic
field, the radial electric field can be obtained from the differential form of
Faraday’s law as Er = I0e j(ωt−kz)µ0c/2πr. Likewise, we find that a wave traveling
in the −z direction has components I0e j(ωt+kz), Bθ = I0e j(ωt+kz)µ0/2πr, and
Er = −I0e j(ωt+kz)µ0c/2πr. Adding these two waves produces a standing wave
satisfying the boundary condition that the tangential electric field Er vanishes
on the end walls at z = 0 and �. The nonzero field components are

Bθ = µ0I0

πr
cos(pπz/�) exp[jωt] (1.28)
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Er = −2j

√
µ0

ε0

I0

2πr
sin(pπz/�) exp[jωt] (1.29)

where ω = kzc = pπc

�
, p = 1, 2, 3, . . . . We note that the complex j factor in

Eq. (1.29) denotes a 90◦ phase shift in time between the left and right sides
of the equation, which can be obtained explicitly by substituting the identity
j = e jπ/2. The electromagnetic stored energy is

U = µ0�I2
0 ln(b/a)

2π
(1.30)

and the quality factor or Q , including the losses on the end walls, is

Q0 = pπ

Rs

√
µ0

ε0

ln(b/a)[
�

(
1

a
+ 1

b

)
+ 4 ln

b

a

] (1.31)

The lowest mode corresponds to p = 1, the half-wave resonator. Figure 1.15
shows the peak current and voltage distributions for p = 1, where the voltage
is V = ∫ b

a Erdr. The cavity in Fig. 1.15 could be modified to make it suitable
for acceleration by introducing beam holes in the inner and outer conductors
at z = �/2 where the voltage is maximum. The beam, moving along a radial
path, will see no field when it is within the inner conductor, and can see an
accelerating field in the region on both sides between the inner and outer
conductors. The injection phase could be chosen so that the beam travels
across the inner conductor while the field reverses sign, so that the beam can
be accelerated on both the entrance and exit sides of the inner conductor.
The conductor radii could be chosen so that the beam receives the maximum
energy gain on each side.

Another widely used type of resonator for accelerator applications is the
coaxial line terminated at one end by a short and at the other end by
a capacitance, as shown in Fig. 1.16. The capacitive termination can be

Current

Voltage

Figure 1.15 Coaxial resonator with voltage and current standing waves for p = 1.
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Gap

C

z = l

Z0

Z = 0

Figure 1.16 Coaxial resonator.

accomplished in practice with a coaxial line that has a gap at one end between
the center conductor and the conducting end wall. An electric field suitable for
acceleration may exist between the inner conductor and either the end wall or
the cylindrical wall. Thus, beam holes can be introduced near the gap, allowing
either a radial or an axial trajectory. Resonant modes correspond approximately
to the length λ equal to an odd multiple of a quarter wavelength, the lowest
mode being a quarter-wave resonator. Design formulas for the quarter-wave
resonator, including the contribution to the capacitance from fringe fields, are
given by Moreno [29].

1.12
Transverse-Magnetic Mode of a Circular Cylindrical Cavity

Most cavity resonators used in electron and proton linacs are derived from
the simple cylindrical or pillbox cavity. Fortunately, an analytic solution exists
for the fields in a pillbox cavity. Beginning with a cylinder of radius Rc, we
place conducting end plates at the axial coordinates z = 0 and �. In the pillbox
cavity, the holes on the end plates that must be provided for the beam are
ignored. We assume a simple azimuthally symmetric trial solution of the
form Ez(r, z, t) = R(r)e jωt. This solution must satisfy the wave equation with
the condition that Ez vanishes at the cylindrical boundary, r = Rc, where it is
tangential. The wave equation in cylindrical coordinates is

∂2Ez

∂z2
+ 1

r

∂Ez

∂r
+ ∂2Ez

∂r2
− 1

c2

∂2Ez

∂t2
= 0 (1.32)

Substituting the trial solution into Eq. (1.32), we obtain a differential equation
for the radial function R(r), which is the well-known Bessel’s equation of order
zero. The magnetic field is obtained from Ampére’s law from Section 1.8. The
nonzero field components of the complete solution are given by

Ez = E0J0(krr) cos(ωt)

Bθ = −E0

c
J1(krr) sin(ωt) (1.33)

The radial field distributions are shown graphically in Figures 1.4 and 1.17.
To satisfy the boundary condition, the resonant frequency of this mode must
be ωc = krc = 2.405c/Rc, which is independent of the cavity length. The mode
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is called a transverse-magnetic mode because the z component of the magnetic
field is zero, and in the conventional nomenclature the mode is called a TM010

mode for reasons that will be explained shortly. The total electromagnetic
stored energy can be calculated from the peak electric stored energy, and the
result is

U = πε0�R2
c

2
E2

0J2
1(2.405) (1.34)

The average power dissipated on the cylindrical walls and the end walls is

P = πRcRsE
2
0

(
ε0

µ0

)
J2

1(2.405)(� + Rc) (1.35)

The quality factor is

Q = ωcU

P
= 2.405

√
µ0/ε0

2Rs

1

1 + Rc/�
(1.36)

The electric field is maximum at r = 0, where J0 is maximum. Two useful
values of J1 are the maximum value, which is J1(1.841) = 0.5819, and the
value of J1 at the cylindrical wall, which is J1(2.405) = 0.5191. The magnetic
field is maximum at krR = 0.5819, where J1(krR) is maximum. Therefore,
Bmax/Emax = 0.5819/c = 19.4 G/MV/m.
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Figure 1.17 Fields for a
TM010 mode of a cylindrical
(pillbox) cavity resonator.
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1.13
Cylindrical Resonator Transverse-Magnetic Modes

There are other transverse-magnetic modes with the same radial Bessel-
function solution, corresponding to fitting a half-integer number of guide
wavelengths within the length �. We label the different longitudinal modes with
the index p, and adopt the conventional nomenclature TM01p, p = 1, 2, 3, . . . .

The dispersion relation is the same as for a uniform waveguide, except that
the longitudinal wave number is restricted to those discrete values required to
satisfy the boundary conditions at the two ends. The modes lie on the curve
given by ω2/c2 = k2

r + k2
z, where kr = 2.405/Rc and kz = 2π/λg = πp/�. Then,

the dispersion relation becomes a discrete spectrum of points that are sprinkled
on a hyperbolic curve, as shown in Fig. 1.18. The TM010 mode, discussed in
Section 1.12, is the lowest mode with p = 0. The dispersion relation gives the
resonant frequency of this mode as the cutoff frequency ωc = krc = 2.405c/Rc.

There exist additional transverse-magnetic modes of a cylindrical cavity,
corresponding to different radial and azimuthal solutions. The general
expressions for the field components are as follows:

Ez = E0Jm(kmnr) cos mθ cos(pπz/�) exp[jωt]

Er = −pπ

�

a

xmn
E0J′

m(kmnr) cos mθ sin(pπz/�) exp[jωt]

Eθ = −pπ

�

ma2

x2
mnr

E0Jm(kmnr) sin mθ sin(pπz/�) exp[jωt]

Bz = 0

Br = −jω
ma2

x2
mnrc2

E0Jm(kmnr) sin mθ cos(pπz/�) exp[jωt]

Bθ = −jω
a

xmnc2
E0J′

m(kmnr) cos mθ cos(pπz/�) exp[jωt] (1.37)

w
3
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1
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p

Figure 1.18 Dispersion
curve for the TM01p family of
modes of a circular cylindrical
cavity.
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The general dispersion relation is ω2/c2 = k2
mn + k2

z, where kmn = xmn/Rc and
kz = 2π/λguide = pπ/�, p = 0, 1, 2, . . .. Some values of the zeros of the Bessel
functions, xmn, are given in Table 1.3. The nomenclature of the TMmnp modes
is defined as follows. The subscript m (m = 0, 1, 2, . . .) is the number of full
period variations in θ of the field components. The subscript n (n = 1, 2, 3,
. . .) is the number of zeros of the axial field component in the radial direction
in the range 0 < r ≤ Rc, excluding r = 0. The subscript p (p = 0, 1, 2, . . .) is
the number of half period variations in z of the fields.

1.14
Cylindrical Resonator Transverse Electric Modes

Similarly, there exist additional transverse electric modes of a cylindrical cavity,
corresponding to solutions with the zero axial component of the electric field.
The general field-component expressions for the transverse electric modes are
as follows:

Bz = B0Jm(kmnr) cos mθ sin(pπz/�) exp[jωt]

Br = pπ

�

a

x′
mn

B0J′
m(kmnr) cos mθ cos(pπz/�) exp[jωt]

Bθ = −pπ

�

ma2

x′
mn

2r
B0Jm(kmnr) sin mθ cos(pπz/�) exp[jωt]

Ez = 0

Er = jω
ma2

x′
mn

2r
B0Jm(kmnr) sin mθ sin(pπz/�) exp[jωt]

Eθ = jω
a

x′
mn

B0J′
m(kmnr) cos mθ sin(pπz/�) exp[jωt] (1.38)

The general dispersion relation is ω2/c2 = k2
mn + k2

z, where kmn = x′
mn/Rc and

kz = 2π/λguide = pπ/�, p = 0, 1, 2, . . . . The x′
mn are the zeros of the derivatives

of the Bessel functions and are given in Table 1.4. The nomenclature of the
TEmnp modes is defined as follows. The subscript m (m = 0, 1, 2, . . .) is the
number of full period variations in θ of the field components. The subscript
n (n = 1, 2, 3, . . .) is the number of zeros of the axial field component in

Table 1.3 Zeros of Jm(x) or xmn.

m xm1 xm2 xm3

0 2.405 5.520 8.654
1 3.832 7.016 10.173
2 5.136 8.417 11.620
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Table 1.4 Zeros of J′m or x′
mn.

m x′
m1

x′
m2

x′
m3

0 3.832 7.016 10.174
1 1.841 5.331 8.536
2 3.054 6.706 9.970

the radial direction in the range 0 < r ≤ Rc, excluding r = 0. The subscript p
(p = 0, 1, 2, . . .) is the number of half period variations in z of the fields.

Problems

1.1. What is the kinetic energy in units of both joules and electron volts for
an electron accelerated through a dc potential of 1 MV?

1.2. Find an expression for the fractional error when the nonrelativistic
approximation for kinetic energy as a function of β is used. (a) At what
values of β and γ does the error in kinetic energy equal 1%? (b) To what
kinetic energy does this correspond, for electrons and for protons?

1.3. If the only nonzero components of the electromagnetic field in cylindrical
coordinates are Er, Ez, and Bθ , write the nonzero components of the
Lorentz force for a particle of mass m and charge q moving along the
z direction with velocity v.

1.4. The rate of work done by a force F acting on a particle with velocity v

is F · v. Using the definition of the Lorentz force and the appropriate
vector relationship, derive the expression for the rate of kinetic energy
gain for a particle of charge q, and show that the magnetic force does
not contribute.

1.5. A cylindrical resonator has a diameter of 1.5 in. (3.81 cm) and length � of
1 in. (2.54 cm). (a) Calculate the resonant frequency of the TM010, TM110,
TE011, TE111, and TE211 modes, and list in order of increasing frequency.
(b) For the two lowest-frequency modes, plot the dispersion relation,
f (= ω/2π ) versus kz(=pπ/�), both on the same graph. For simplicity,
label the abscissa with the longitudinal mode index p (i.e., units of π/�
for p = 0 to p = 5). (Recall that the TE modes have no resonance at
p = 0.)

1.6. Repeat the exercise of Problem 1.5 for the same diameter resonator but
with different lengths. (a) � = 7.725 cm. Note the frequency of the TE112

mode compared to the TM010 mode. How did it change relative to the
result of Problem 1.5? (b) � = 25.4 cm. Note that all of the first five TE11p

modes now lie below the TM010 frequency.
1.7. Calculate the RF surface resistance and skin depth of room-temperature

copper at 400 MHz. Use a dc resistivity σ−1 = 1.7 × 10−8 �-m.
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1.8. Calculate the RF surface resistance of superconducting niobium at
400 MHz. Assume a residual resistance Rresidual = 100 × 10−9 �. What
is the ratio of the RF surface resistance of superconducting niobium
to that of room-temperature copper? (a) Assume T = 4.2 K; (b) assume
T = 2.0 K.

1.9. Design a room-temperature cylindrical cavity that operates in the TM010

mode at 400 MHz with an axial electric field E0 = 1 MV/m, and a length
� = λ/2, where λ is the RF wavelength in free space. (a) Calculate the
length and diameter of the cavity. (b) Calculate the maximum B and H
fields on the cavity wall. Where does this occur? (c) Calculate the B and H
fields on the cylindrical wall. (d) Calculate the electromagnetic stored
energy in the cavity. (e) Use the value of Rs from Problem 1.7 for
a room-temperature copper surface to calculate the power loss P, the
quality factor Q0, and the decay time τ . (f) Repeat part (e) using Rs from
Problem 1.8 for a 4.2-K niobium surface.

1.10. Design a half-wave coaxial cavity to be used as a 100-kW resonant load at
400 MHz. To absorb the RF power, use a 20-cm-diameter stainless steel
pipe as the center conductor inside a 60-cm-diameter copper cylinder
with copper end walls. This type of cavity is easily cooled by flowing water
through the center conductor. (a) Ignoring any effects of the coupling
loop and probe, calculate the length of the cavity. (b) Assume that the
room-temperature surface resistance of stainless steel is 6.5 times that
of copper. (From Problem 1.7 the copper surface resistance at 400 MHz
is 0.0052 �.) Calculate the power dissipated on the center conductor,
end walls, and outer wall. (c) Calculate the cavity stored energy and the
unloaded Q . (d) What is the peak power density in watts per square
centimeter on the inner and outer conductors?

1.11. A 25-MHz quarter-wave coaxial-cavity resonator with characteristic
impedance 50 � is designed as a buncher for heavy-ion beams. (a)
If the impedance at the open end of the cavity (where the electric field
is maximum) could really be made infinite, what would be the length
of the inner conductor? (b) If we want to reduce the size by restricting
the length of the inner conductor to � = 1 m, what lumped capacitance
would be required at the open end?

1.12. Accelerator cavities require ports through the cavity walls, not only for
RF drive and RF pickup probes, but also for the beam and for vacuum
pumping. Cylindrical pipes are commonly used, and such pipes will
support waveguide modes. Consider a cylindrical cavity operating in a
TM010 mode with beam pipes connected at the center of each end wall.
Assume each beam pipe has the same inner radius b, which is much
less than the cavity radius. (a) Why do you expect the fields from the
cavity to attenuate in the pipes? (b) Show that if the cavity excites a TM01

waveguide mode in the beam pipes at a frequency well below cutoff,
the wave power and the E and B fields attenuate with distance x along
the pipe according to the approximate formula dB = −20.9x/b. Note
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that it is convenient to describe the attenuation of a wave with power P
and field E in decibels, or dB, where dB = 10 log10 P/P0 = 20 log10E/E0,
where P0 and E0 are the input reference values. (c) The TE11 mode has the
lowest cutoff frequency of the modes in a cylindrical pipe, and below the
cutoff frequency the attenuation will be the slowest. If this mode is excited
in the pipe, show that at a frequency well below cutoff, the attenuation
is described by the approximate formula dB = −16.0x/b. (d) Assuming
a pipe with radius b = 0.5 inches that is excited in a TE10 mode by the
cavity, calculate the total attenuation in decibels if the pipe length is 2 in.
Also express the answer as the fractional attenuation of the field. (e) The
attenuation in a waveguide below cutoff frequency was derived ignoring
ohmic losses. What do you think has happened to the energy in the wave?
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