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1
Review of Classical Mechanics and String Field Theory

1.1
Preview and Rationale

This introductory chapter has two main purposes. The first is to review La-
grangian mechanics. Some of this material takes the form of worked exam-
ples, chosen both to be appropriate as examples and to serve as bases for top-
ics in later chapters.

The second purpose is to introduce the mechanics of classical strings. This
topic is timely, being introductory to the modern subject of (quantum field
theoretical) string theory. But, also, the Lagrangian theory of strings is an ap-
propriate area in which to practice using supposedly well-known concepts
and methods in a context that is encountered (if at all) toward the end of
a traditional course in intermediate mechanics. This introduces the topic of
Lagrangian field theory in a well-motivated and elementary way. Classical
strings have the happy properties of being the simplest system for which La-
grangian field theory is appropriate.

The motivation for emphasizing strings from the start comes from the dar-
ing, and apparently successful, introduction by Barton Zwiebach, of string
theory into the M.I.T. undergraduate curriculum. This program is fleshed out
in his book A First Course in String Theory. The present chapter, and especially
Chapter 12 on relativistic strings, borrows extensively from that text. Unlike
Zwiebach though, the present text stops well short of quantum field theory.

An eventual aim of this text is to unify “all” of classical physics within suit-
ably generalized Lagrangian mechanics. Here “all” will be taken to be ade-
quately represented by the following topics: mechanics of particles, special
relativity, electromagnetic theory, classical (and, eventually, relativistic) string
theory, and general relativity. This list, which is to be regarded as defining
by example what constitutes “classical physics,” is indeed ambitious, though
it leaves out many other important fields of classical physics, such as elastic-
ity and fluid dynamics.1 The list also includes enough varieties of geometry

1) By referring to a text such as Theoretical Mechanics of Particles and
Continua, by Fetter and Walecka, which covers fluids and elastic
solids in very much the same spirit as in the present text, it should
be clear that these two topics can also be included in the list of fields
unified by Lagrangian mechanics.
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to support another aim of the text, which is to illuminate the important role
played by geometry in physics.

An introductory textbook on Lagrangian mechanics (which this is not)
might be expected to begin by announcing that the reader is assumed to be
familiar with Newtonian mechanics – kinematics, force, momentum and en-
ergy and their conservation, simple harmonic motion, moments of inertia, and
so on. In all likelihood such a text would then proceed to review these very
same topics before advancing to its main topic of Lagrangian mechanics. This
would not, of course, contradict the original assumption since, apart from the
simple pedagogical value of review, it makes no sense to study Lagrangian
mechanics without anchoring it firmly in a Newtonian foundation. The stu-
dent who had not learned this material previously would be well advised to
start by studying a less advanced, purely Newtonian mechanics textbook. So
many of the most important problems of physics can be solved cleanly with-
out the power of Lagrangian mechanics; it is uneconomical to begin with an
abstract formulation of mechanics before developing intuition better acquired
from a concrete treatment. One might say that Newtonian methods give better
“value” than Lagrangian mechanics because, though ultimately less powerful,
Newtonian methods can solve the most important problems and are easier to
learn. Of course this would only be true in the sort of foolish system of ac-
counting that might attempt to rate the relative contributions of Newton and
Einstein. One (but not the only) purpose of this textbook, is to go beyond La-
grange’s equations. By the same foolish system of accounting just mentioned,
these methods could be rated less valuable than Lagrangian methods since,
though more powerful, they are more abstract and harder to learn.

It is assumed the reader has had some (not necessarily much) experience
with Lagrangian mechanics.2 Naturally this presupposes familiarity with the
above-mentioned elementary concepts of Newtonian mechanics. Neverthe-
less, for the same reasons as were described in the previous paragraph, we
start by reviewing material that is, in principle, already known. It is assumed
the reader can define a Lagrangian, can write it down for a simple mechanical
system, can write down (or copy knowledgeably) the Euler–Lagrange equa-
tions and from them derive the equations of motion of the system, and finally
(and most important of all) trust these equations to the same extent that she
or he trusts Newton’s law itself. A certain (even if grudging) acknowledge-
ment of the method’s power to make complicated systems appear simple is
also helpful. Any reader unfamiliar with these ideas would be well advised

2) Though “prerequisites” have been men-
tioned, this text still attempts to be “not
too advanced.” Though the subject matter
deviates greatly from the traditional cur-
riculum at this level (as represented, say,

by Goldstein, Classical Mechanics) it is my
intention that the level of difficulty and the
anticipated level of preparation be much
the same as is appropriate for Goldstein.



1.2 Review of Lagrangians and Hamiltonians 13

to begin by repairing the defect with the aid of one of the numerous excellent
textbooks explaining Lagrangian mechanics.

Since a systematic review of Newtonian and Lagrangian mechanics would
be too lengthy, this chapter starts with worked examples that illustrate the im-
portant concepts. To the extent possible, examples in later chapters are based
on these examples. This is especially appropriate for describing the evolution
of systems that are close to solvable systems.

1.2
Review of Lagrangians and Hamiltonians

Recall the formulas of Lagrangian mechanics. For the next few equations, for
mnemonic purposes, each equation will be specialized (sometimes in paren-
thesis) to the simplest prototype, mass and spring. The kinetic and potential
energies for this system are given by

T =
1
2

mẋ2, V =
1
2

kx2, (1.1)

where ẋ ≡ dx/dt ≡ v. The Lagrangian, a function of x and ẋ (and, in general
though not in this special case, t) is given by

L(x, ẋ, t) = T − V
(

=
1
2

mẋ2 − 1
2

kx2
)

. (1.2)

The Lagrange equation is

d
dt

∂L
∂ẋ

=
∂L
∂x

,
(

or mẍ = −kx
)

. (1.3)

The momentum p, “canonically conjugate to x,” is defined by

p =
∂L
∂ẋ

(= mẋ). (1.4)

The Hamiltonian is derived from the Lagrangian by a transformation in which
both independent and dependent variables are changed. This transformation
is known as a “Legendre transformation.” Such a transformation has a geo-
metric interpretation,3 but there is no harm in thinking of it as purely a formal
calculus manipulation. Similar manipulations are common in thermodynam-
ics to define quantities that are constant under special circumstances. For a
function L(x, v, t), one defines a new independent variable p = ∂L/∂v and a
new function H(x, p, t) = vp − L(x, v, t), in which v has to be expressed in

3) The geometric interpretation of a Legendre transformation is dis-
cussed in Arnold, Mathematical Methods of Classical Mechanics, and
Lanczos, The Variational Principles of Mechanics.
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terms of x and p by inverting p = ∂L/∂v. The motivation behind this defini-
tion is to produce cancellation of second and fourth terms in the differential

dH = v dp + p dv − ∂L
∂x

dx − ∂L
∂v

dv

= v dp − ∂L
∂x

dx. (1.5)

Applying these substitutions to our Lagrangian, with v being ẋ, one obtains
the “Hamiltonian” function,

H(x, p, t) = p ẋ(x, p)− L(x, ẋ(x, p), t). (1.6)

With (1.5) being the differential of this function, using Eq. (1.4), one obtains
Hamilton’s equations;

ẋ =
∂H
∂p

, ṗ = − ∂H
∂x

,
∂H
∂t

= − ∂L
∂t

. (1.7)

The third equation here, obvious from Eq. (1.6), has been included for con-
venience, especially in light of the following argument. As well as its formal
role, as a function to be differentiated to obtain the equations of motion, the
Hamiltonian H(x, p, t) can be evaluated for the actually evolving values of its
arguments. This evolution of H is governed by

Ḣ =
∂H
∂x

ẋ +
∂H
∂p

ṗ +
∂H
∂t

=
∂H
∂t

, (1.8)

where Eqs. (1.7) were used in the final step. This equation implies that the
absence of explicit dependence on t implies the constancy of H.

To be able to apply Hamiltonian mechanics it is necessary to be able to ex-
press ẋ as a function of p – trivial in our example;

ẋ =
p
m

, (1.9)

and to express the combination ẋp− L(x, ẋ) in terms of x and p, thereby defin-
ing the Hamiltonian;

H(x, p) =
p2

m
− L =

p2

2m
+

1
2

kx2 = E . (1.10)

Since H(x, p) does not depend explicitly on time (in this example) H(x, p) is a
constant of the motion, equal to the “energy” E .

1.2.1
Hamilton’s Equations in Multiple Dimensions

Given coordinates q and Lagrangian L, “canonical momenta” are defined by

pj =
∂L(q, q̇, t)

∂q̇j ; (1.11)
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pj is said to be “conjugate” to qj. To make partial differentiation like this mean-
ingful it is necessary to specify what variables are being held fixed. We mean
implicitly that variables qi for all i, q̇i for i �= j, and t are being held fixed. Hav-
ing established variables p it is required in all that follows that velocities q̇ be
explicitly expressible in terms of the q and p, as in

q̇i = f i(q, p, t), or q̇ = f(q, p, t). (1.12)

Hamilton’s equations can be derived using the properties of differentials. De-
fine the “Hamiltonian” by

H(q, p, t) = pi f i(q, p, t) − L
(
q, f(q, p, t), t

)
, (1.13)

where the functions f i were defined in Eq. (1.12). If these functions are, for
any reason, unavailable, the procedure cannot continue; the velocity variables
must be eliminated in this way. Furthermore, as indicated on the left-hand
side of Eq. (1.13), it is essential for the formal arguments of H to be q, p and t.
Then, when writing partial derivatives of H, it will be implicit that the vari-
ables being held constant are all but one of the q, p, and t. If all independent
variables of the Lagrangian are varied independently the result is

dL =
∂L
∂qi dqi +

∂L
∂q̇i dq̇i +

∂L
∂t

dt. (1.14)

(It is important to appreciate that the qi and the q̇i are being treated as formally
independent at this point. Any temptation toward thinking of q̇i as some sort
of derivative of qi must be fought off.) The purpose of the additive term pi f i

in the definition of H is to cancel terms proportional to dq̇i in the expression
for dH;

dH = f idpi + pid f i − ∂L
∂qi dqi − ∂L

∂q̇i dq̇i − ∂L
∂t

dt

= − ∂L
∂qi dqi + f idpi −

∂L
∂t

dt (1.15)

= − ṗidqi + q̇idpi −
∂L
∂t

dt,

where the Lagrange equations as well as Eq. (1.12) have been used. Hamilton’s
first-order equations follow from Eq. (1.15);

ṗi = − ∂H
∂qi , q̇i =

∂H
∂pi

,
∂H
∂t

= − ∂L
∂t

. (1.16)

Remember that in the partial derivatives of H the variables p are held constant
but in ∂L/∂t the variables q̇ are held constant.
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Example 1.2.1. Charged Particle in Electromagnetic Field. To exercise the
Hamiltonian formalism consider a nonrelativistic particle in an electromagnetic field.
In Chapter 11 it is shown that the Lagrangian is

L =
1
2

m(ẋ2 + ẏ2 + ż2) + e(Axẋ + Ayẏ + Azż) − eΦ(x, y, z), (1.17)

where A(x) is the vector potential and Φ(x) is the electric potential. The middle
terms, linear in velocities, cannot be regarded naturally as either kinetic or potential
energies. Nevertheless, their presence does not impede the formalism. In fact, consider
an even more general situation,

L =
1
2

Ars(q) q̇r q̇s + Ar(q) q̇r − V(q). (1.18)

Then

pr = Arsq̇s + Ar, and q̇r = Brs(ps − Ar). (1.19)

It can be seen in this case that the momentum and velocity components are inhomoge-
neously, though still linearly, related. The Hamiltonian is

H =
1
2

Brs(pr − Ar)(ps − As) + V, (1.20)

and Hamilton’s equations follow easily.

1.3
Derivation of the Lagrange Equation from Hamilton’s Principle

The Lagrange equation is derivable from the “principle of least action” (or
Hamilton’s principle) according to which the actual trajectory taken by a par-
ticle as it moves from point P0 to P between times t0 and t, is that trajectory
that minimizes the “action” function S defined by

S =
∫ t

t0

L(x, ẋ, t) dt. (1.21)

As shown in Fig. 1.1, a possible small deviation from the true orbit x(t) is
symbolized by δx(t). Except for being infinitesimal and vanishing at the end
points, the function δx(t) is an arbitrary function of time. Note that the expres-

sions (d/dt)δx(t), δẋ(t), and

.︷ ︸︸ ︷
δx(t) all mean the same thing. The second form

might be considered ambiguous but, for the sake of brevity, it is the symbol
we will use.
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t0

x(t)+ x(t)δ

x(t)δ

t
t

x

x(t)

P0

P

Fig. 1.1 Graph showing the extremal trajectory x(t) and a nearby
nontrajectory x(t) + δx(t).

Using elementary calculus, the variation in S that accompanies the replace-
ment x(t) ⇒ x(t) + δx(t) is

δS =
∫ t

t0

dt
(

∂L
∂x

δx(t) +
∂L
∂ẋ

δẋ(t)
)

. (1.22)

Preparing for integration by parts, one substitutes

d
dt

(
∂L
∂ẋ

δx
)

=
(

d
dt

∂L
∂ẋ

)
δx +

∂L
∂ẋ

δẋ(t), (1.23)

to obtain

δS =
∫ t

t0

dt

(
d
dt

(
∂L
∂ẋ

δx
)
−
(

d
dt

∂L
∂ẋ

− ∂L
∂x

)
δx

)
. (1.24)

The first term, being a total derivative, can be integrated directly, and then be
expressed in terms of initial and final values. For now we require δx to vanish
in both cases. The motivation for performing this manipulation was to make
δx be a common factor of the remaining integrand.

Since δx is an arbitrary function, the vanishing of δS implies the vanishing
of the other factor in the integrand. The result is the Lagrange equation,

d
dt

∂L
∂ẋ

=
∂L
∂x

. (1.25)

The very meaning of the Lagrange equations requires a clear understanding
of the difference between d/dt and ∂/∂t. The former refers to the time rate of
change along the actual particle trajectory, while the latter refers to a formal
derivative with respect to time with the other independent variables (called
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out in the argument list of the function being differentiated) held constant.
When operating on an arbitrary function F(x(t), t) these derivatives are re-
lated by

d
dt

F =
∂

∂t
F + (v · ∇)F. (1.26)

The first term gives the change in F at a fixed point, while the second gives the
change due to the particle’s motion.

This derivation has been restricted to a single Cartesian coordinate x, and
the corresponding velocity ẋ, but the same derivation also applies to y and z
and, for that matter to any generalized coordinates and their corresponding
velocities. With this greater generality the Lagrange equations can be written
as

d
dt

∂L
∂v

=
∂L
∂r

≡ ∇L. (1.27)

Figure 1.1 shows the dependence of just one of the coordinates, x, on time t.
Similar figures for other independent variables need not be drawn since we
need only one variable, say x(t), to obtain its Lagrange equation.

Problem 1.3.1. The action S in mechanics is the analog of the optical path length,
O.P.L., of physical optics. The basic integral like (1.21) in optics has the form

1
c

O.P.L. =
1
c

∫ z2

z1

L
(

x, y,
dx
dz

,
dy
dz

, z
)

dz =
1
c

∫ z2

z1

n(r)
√

x′2 + y′2 + 1 dz. (1.28)

Here x, y, and z are Cartesian coordinates with x and y “transverse” and z defining
a longitudinal axis relative to which x and y are measured. The optical path length
is the path length weighted by the local index of refraction n. O.P.L./c, is the “time”
in “principle of least time.” Though it is not entirely valid in physical optics to say
that the “speed of light” in a medium is c/n, acting as if it were, the formula gives the
time of flight of a particle (photon) following the given trajectory with this velocity.

The calculus of variations can be used to minimize O.P.L. Show that the differential
equation

(
which will reappear as Eq. (7.18)

)
satisfied by an optical ray is

d
ds

(
n

dr
ds

)
= ∇∇∇n, (1.29)

where n(r) is index of refraction, r is a radius vector from an arbitrary origin to a
point on a ray, and s is arc length s along the ray.

1.4
Linear, Multiparticle Systems

The approximate Lagrangian for an n-dimensional system with coordinates
(q1, q2, . . . , qn), valid in the vicinity of a stable equilibrium point (that can be
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taken to be (0, 0, . . . , 0)), has the form

L(q, q̇) = T − V, where T =
1
2

n

∑
r,s=1

m(rs)q̇(r)q̇(s),

V =
1
2

n

∑
r,s=1

k(rs)q(r)q(s).
(1.30)

It is common to use the summation convention for summations like this, but in
this text the summation convention is reserved for tensor summations. When
subscripts are placed in parenthesis (as here) it indicates they refer to different
variables or parameters (as here) rather than different components of the same
vector or tensor. Not to be obsessive about it however, for the rest of this
discussion the parentheses will be left off, but the summation signs will be left
explicit. It is known from algebra that a linear transformation qi → yj can be
found such that T takes the form

T =
1
2

n

∑
r=1

mrẏ2
r , (1.31)

where, in this case each “mass” mr is necessarily positive because T is positive
definite. By judicious choice of the scale of the yr each “mass” can be adjusted
to 1. We will assume this has already been done.

T =
1
2

n

∑
=1

ẏ2
r . (1.32)

For these coordinates yr the equation

n

∑
r=1

y2
r = 1 (1.33)

defines a surface (to be called a hypersphere). From now on we will consider
only points y = (y1, . . . , yn) lying on this sphere. Also two points u and v will
be said to be “orthogonal” if the “quadratic form” I(u, v) defined by

I(u, v) ≡
n

∑
r=1

urvr (1.34)

vanishes. Being linear in both arguments I(u, v) is said to be “bilinear.” We
also define a bilinear form V(u, v) by

V(u, v) ≡
n

∑
r,s=1

krsurvs, (1.35)
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where coefficients krs have been redefined from the values given above to cor-
respond to the new coordinates yr so that

V(y) =
1
2
V(y, y). (1.36)

The following series of problems (adapted from Courant and Hilbert, Vol. 1,
p. 37) will lead to the conclusion that a further linear transformation yi → zj
can be found that, on the one hand, enables the equation for the sphere in
Eq. (1.33) to retain the same form,

n

∑
r=1

z2
r = 1, (1.37)

and, on the other, enables V to be expressible as a sum of squares with positive
coefficients;

V =
1
2

n

∑
r=1

κrz2
r , where 0 < κn ≤ κn−1 ≤ · · · ≤ κ1 < ∞. (1.38)

Pictorially the strategy is, having deformed the scales so that surfaces of con-
stant T are spherical and surfaces of constant V ellipsoidal, to orient the axes to
make these ellipsoids erect. In the jargon of mechanics this process is known
as “normal mode” analysis.

The “minimax” properties of the “eigenvalues” to be found have important
physical implications, but we will not go into them here.

Problem 1.4.1.

(a) Argue, for small oscillations to be stable, that V must also be positive definite.

(b) Let z1 be the point on sphere (1.33) for which V
( def.= 1

2 κ1
)

is maximum. (If
there is more than one such point pick any one arbitrarily.) Then argue that

0 < κ1 < ∞. (1.39)

(c) Among all the points that are both on sphere (1.33) and orthogonal to z1, let z2

be the one for which V
( def.= 1

2 κ2
)

is maximum. Continuing in this way, show
that a series of points z1, z2, . . . zn, each maximizing V consistent with being
orthogonal to its predecessors, is determined, and that the sequence of values,
V(zr) = 1

2 κr, r = 1, 2, . . . , n, is monotonically nonincreasing.

(d) Consider a point z1 + εζζζ which is assumed to lie on surface (1.33) but with ζζζ

otherwise arbitrary. Next assume this point is “close to” z1 in the sense that
ε is arbitrarily small (and not necessarily positive). Since z1 maximizes V it
follows that

V(z1 + εζζζ, z1 + εζζζ) ≤ 0. (1.40)
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Show therefore that

V(z1, ζζζ) = 0. (1.41)

This implies that

V(z1, zr) = 0 for r > 1, (1.42)

because, other than being orthogonal to z1, ζζζ is arbitrary.

Finally, extend the argument to show that

V(zr, zs) = κrδrs, (1.43)

where the coefficients κr have been shown to satisfy the monotonic conditions of
Eq. (1.38) and δrs is the usual Kronecker-δ symbol.

(e) Taking these zr as basis vectors, an arbitrary vector z can be expressed as

z =
n

∑
r=1

zrzr. (1.44)

In these new coordinates, show that Eqs. (1.30) become

L(z, ż) = T − V, T =
1
2

n

∑
r=1

ż2
r , V =

1
2

n

∑
r=1

κrz2
r . (1.45)

Write and solve the Lagrange equations for coordinates zr.

Problem 1.4.2. Proceeding from the previous formula, the Lagrange equations re-
sulting from Eq. (1.30) are

n

∑
s=1

mrsq̈s +
n

∑
s=1

krsqs = 0. (1.46)

These equations can be expressed compactly in matrix form;

Mq̈ + Kq = 0; (1.47)

or, assuming the existence of M−1, as

q̈ + M−1Kq = 0. (1.48)

Seeking a solution of the form

qr = Areiωt r = 1, 2, . . . , n, (1.49)

the result of substitution into Eq. (1.46) is

(M−1K − ω21)A = 0. (1.50)
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3

Fig. 1.2 Three beads on a stretched string. The transverse displace-
ments are much exaggerated. Gravity and string mass are negligible.

These equations have nontrivial solutions for values of ω that cause the determinant
of the coefficients to vanish;

|M−1K − ω21| = 0. (1.51)

Correlate these ω “eigenvalues” with the constants κr defined in the previous problem.

Problem 1.4.3. As shown in Fig. 1.2, particles of mass 3m, 4m, and 3m, are spaced
at uniform intervals λ along a light string of total length 4λ, stretched with tension T ,
and rigidly fixed at both ends. To legitimize ignoring gravity, the system is assumed
to lie on a smooth horizontal table so the masses can oscillate only horizontally. Let
the transverse displacements be x1, x2, and x3. Find the normal modes frequencies
and find and sketch the corresponding normal mode oscillation “shapes.” Discuss the
“symmetry” of the shapes, their “wavelengths,” and the (monotonic) relation between
mode frequency and number of nodes (axis crossings) in each mode.

Already with just three degrees of freedom the eigenmode calculations are
sufficiently tedious to make some efforts at simplifying the work worthwhile.
In this problem, with the system symmetric about its midpoint it is clear
that the modes will be either symmetric or antisymmetric and, since the an-
tisymmetric mode vanishes at the center point, it is characterized by a single
amplitude, say y = x1 = −x3. Introducing “effective mass” and “effective
strength coefficient” the kinetic energy of the mode, necessarily proportional
to ẏ, can be written as T2 = 1

2 meffẏ2 and the potential energy can be written
as V2 = 1

2 keffy2. The frequency of this mode is then given by ω2 =
√

keff/meff

which, by dimensional analysis, has to be proportional to η =
√
T /(mλ).

(The quantities T2, V2, and ω2 have been given subscript 2 because this mode
has the second highest frequency.) Factoring this expression out of Eq. (1.51),
the dimensionless eigenvalues are the eigenfrequencies in units of η.

Problem 1.4.4. Complete the analysis to show that the normal mode frequencies
are (ω1, ω2, ω3) = (1,

√
2/3,

√
1/6), and find the corresponding normal mode

“shapes.”
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1.4.1
The Laplace Transform Method

Though the eigenmode/eigenvalue solution method employed in solving the
previous problem is the traditional method used in classical mechanics, equa-
tions of the same form, when they arise in circuit analysis and other engineer-
ing fields, are traditionally solved using Laplace transforms – a more robust
method, it seems to me. Let us continue the solution of the previous prob-
lem using this method. Individuals already familiar with this method or not
wishing to become so should skip this section. Here we use the notation

x(s) =
∫ ∞

0
e−stx(t) dt, (1.52)

as the formula giving the Laplace transform x(s), of the function of time x(t).
x(s) is a function of the “transform variable” s (which is a complex number
with positive real part.) With this definition the Laplace transform satisfies
many formulas but, for present purposes we use only

dx
dt

= sx − x(0), (1.53)

which is easily demonstrated. Repeated application of this formula converts
time derivatives into functions of s and therefore converts (linear) differential
equations into (linear) algebraic equations. This will now be applied to the
system described in the previous problem.

The Lagrange equations for the beaded string shown in Fig. 1.2 are

3ẍ1 + η2(2x1 − x2) = 0,

4ẍ2 + η2(2x2 − x1 − x3) = 0,

3ẍ3 + η2(2x3 − x2) = 0. (1.54)

Suppose the string is initially at rest but that a transverse impulse I is ad-
ministered to the first mass at t = 0; as a consequence it acquires initial ve-
locity v10 ≡ ẋ(0) = I/(3m). Transforming all three equations and applying
the initial conditions (the only nonvanishing initial quantity, v10, enters via
Eq. (1.53))

(3s2 + 2η2)x1 − η2x2 = I/m,

−η2x1 + (4s2 + 2η2)x2 − η2x3 = 0,

−η2x2 + (3s2 + 2η2)x3 = 0. (1.55)
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Solving these equations yields

x1 =
I

10m

(
2/3

s2 + η2/6
+

1
s2 + η2 +

5/3
s2 + 2η2/3

)
,

x2 =
I

10m

(
1

s2 + η2/6
− 1

s2 + η2

)
,

x3 =
I

10m

(
2/3

s2 + η2/6
+

1
s2 + η2 − 5/3

s2 + 2η2/3

)
. (1.56)

It can be seen, except for factors ±i, that the poles (as a function of s) of the
transforms of the variables, are the normal mode frequencies. This is not
surprising since the determinant of the coefficients in Eq. (1.55) is the same
as the determinant entering the normal mode solution, but with ω2 replaced
with −s2. Remember then, from Cramer’s rule for the solution of linear equa-
tions, that this determinant appears in the denominators of the solutions. For
“inverting” Eq. (1.56) it is sufficient to know just one inverse Laplace transfor-
mation,

L−1 1
s − α

= eαt, (1.57)

but it is easier to look in a table of inverse transforms to find that the terms
in Eq. (1.56) yield sinusoids that oscillate with the normal mode frequencies.
Furthermore, the “shapes” asked for in the previous problem can be read off
directly from (1.56) to be (2:3:2), (1:0:1), and (1:-1:1).

When the first mass is struck at t = 0, all three modes are excited and they
proceed to oscillate at their own natural frequencies, so the motion of each
individual particle is a superposition of these frequencies. Since there is no
damping the system will continue to oscillate in this superficially complicated
way forever. In practice there is always some damping and, in general, it
is different for the different modes; commonly damping increases with fre-
quency. In this case, after a while, the motion will be primarily in the lowest
frequency mode; if the vibrating string emits audible sound, an increasingly
pure, low-pitched tone will be heard as time goes on.

1.4.2
Damped and Driven Simple Harmonic Motion

The equation of motion of mass m, subject to restoring force −ω2
0mx, damping

force −2λmẋ, and external drive force f cos γt is

ẍ + 2λẋ + ω2
0 =

f
m

cos γt. (1.58)
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Problem 1.4.5.

(a) Show that the general solution of this equation when f = 0 is

x(t) = ae−λt cos(ωt + φ), (1.59)

where a and φ depend on initial conditions and ω =
√

ω2 − λ2. This “solu-
tion of the homogeneous equation” is also known as “transient” since when it
is superimposed on the “driven” or “steady state” motion caused by f it will
eventually become negligible.

(b) Correlate the stability or instability of the transient solution with the sign of λ.
Equivalently, after writing the solution (1.59) as the sum of two complex expo-
nential terms, Laplace transform them, and correlate the stability or instability
of the transient with the locations in the complex s-plane of the poles of the
Laplace transform.

(c) Assuming x(0) = ẋ(0) = 0, show that Laplace transforming equation (1.58)
yields

x(s) = f
s

s2 + γ2
1

s2 + 2λs + ω2
0

. (1.60)

This expression has four poles, each of which leads to a complex exponential
term in the time response. To neglect transients we need to only drop the terms
for which the poles are off the imaginary axis. (By part (b) they must be in
the left half-plane for stability.) To “drop” these terms it is necessary first to
isolate them by partial fraction decomposition of Eq. (1.60). Performing these
operations, show that the steady-state solution of Eq. (1.58), is

x(t) =
f
m

√
1

(ω2
0 − γ2)2 + 4λ2γ2

cos(γt + δ), ) (1.61)

where

ω2
0 − γ2 − 2λγi =

√
(ω2

0 − γ2)2 + 4λ2γ2 eiδ. (1.62)

(d) The response is large only for γ close to ω0. To exploit this, defining the “small”
“frequency deviation from the natural frequency”

ε = γ − ω0, (1.63)

show that γ2 − ω2 ≈ 2εω and that the approximate response is

x(t) =
f

2mω0

√
1

ε2 + λ2 cos(γt + δ). (1.64)

Find the value of ε for which the amplitude of the response is reduced from its
maximum value by the factor 1/

√
2.
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1.4.3
Conservation of Momentum and Energy

It has been shown previously that the application of energy conservation in
one-dimensional problems permits the system evolution to be expressed in
terms of a single integral – this is “reduction to quadrature.” The follow-
ing problem exhibits the use of momentum conservation to reduce a two-
dimensional problem to quadratures, or rather, because of the simplicity of
the configuration in this case, to a closed-form solution.

Problem 1.4.6. A point mass m with total energy E, starting in the left half-plane,
moves in the (x, y) plane subject to potential energy function

U(x, y) =

{
U1, for x < 0,

U2, for 0 < x.
(1.65)

The “angle of incidence” to the interface at x = 0 is θi and the outgoing angle is θ.
Specify the qualitatively different cases that are possible, depending on the relative
values of the energies, and in each case find θ in terms of θi. Show that all results
can be cast in the form of “Snell’s law” of geometric optics if one introduces a factor√

E − U(r), analogous to index of refraction.

1.5
Effective Potential and the Kepler Problem

Since one-dimensional motion is subject to such simple and satisfactory anal-
ysis, anything that can reduce the dimensionality from two to one has great
value. The “effective potential” is one such device. No physics problem has
received more attention over the centuries than the problem of planetary or-
bits. In later chapters of this text the analytic solution of this so-called “Kepler
problem” will be the foundation on which perturbative solution of more com-
plicated problems will be based. Though this problem is now regarded as
“elementary” one is well-advised to stick to traditional manipulations as the
problem can otherwise get seriously messy.

The problem of two masses m1 and m2 moving in each other’s gravitational
field is easily converted into the problem of a single particle of mass m moving
in the gravitational field of a mass m0 assumed very large compared to m;
that is F = −Kr̂/r2, where K = Gm0m and r is the distance to m from m0.
Anticipating that the orbit lies in a plane (as it must) let χ be the angle of the
radius vector from a line through the center of m0; this line will be later taken
as the major axis of the elliptical orbit. The potential energy function is given
by

U(r) = −K
r

, (1.66)
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a εa

ru

χ

Fig. 1.3 Geometric construction defining the “true anomaly” χ and
“eccentric anomaly” u in terms of other orbit parameters.

and the orbit geometry is illustrated in Fig. 1.3. Two conserved quantities can
be identified immediately: energy E and angular momentum M. Show that
they are given by

E =
1
2

m(ṙ2 + r2χ̇2)− K
r

,

M =mr2χ̇. (1.67)

One can exploit the constancy of M to eliminate χ̇ from the expression for E,

E =
1
2

mṙ2 + Ueff.(r), where Ueff.(r) =
M2

2mr2 − K
r

. (1.68)

The function Ueff.(r), known as the “effective potential,” is plotted in Fig. 1.4.
Solving the expressions for E and M individually for differential dt

dt =
mr2

M
dχ, dt =

(
2
m

(
E +

K
r

)
− M2

m2r2

)−1/2

dr. (1.69)

M 2

mK

mK 2

2M
2

r

Ueff

Fig. 1.4 The effective potential Ueff. for the Kepler problem.



28 1 Review of Classical Mechanics and String Field Theory

Equating the two expressions yields a differential equation that can be solved
by “separation of variables.” This has permitted the problem to be “reduced
to quadratures,”

χ(r) =
∫ r Mdr′/r′2√

2m(E + K/r′) − M2/r′2
. (1.70)

Note that this procedure yields only an “orbit equation,” the dependence of
χ on r (which is equivalent to, if less convenient than, the dependence of r
on χ.) Though a priori one should have had the more ambitious goal of finding
a solution in the form r(t) and χ(t), no information whatsoever is given yet
about time dependence by Eq. (1.70).

Problem 1.5.1.

(a) Show that all computations so far can be carried out for any central force – that
is radially directed with magnitude dependent only on r. At worst the integral
analogous to (1.70) can be performed numerically.

(b) Specializing again to the Kepler problem, perform the integral (1.70) and show
that the orbit equation can be written as

ε cos χ + 1 =
M2

mK
1
r

. (1.71)

where ε ≡
√

1 + 2EM2

m2K2 .

(c) Show that (1.71) is the equation of an ellipse if ε < 1 and that this condition is
equivalent to E < 0.

(d) It is traditional to write the orbit equation purely in terms of “orbit elements”
which can be identified as the “eccentricity” ε, and the “semimajor axis” a;

a =
rmax + rmin

2
=

M2

mK
1

1 − ε2 . (1.72)

The reason a and ε are special is that they are intrinsic properties of the orbit
unlike, for example, the orientations of the semimajor axis and the direction of
the perpendicular to the orbit plane, both of which can be altered at will and still
leave a “congruent” system. Derive the relations

E = − K
2a

, M2 = (1 − ε2) mKa, (1.73)

so the orbit equation is

a
r

=
1 + ε cos χ

1 − ε2 . (1.74)
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(e) Finally derive the relation between r and t;

t(r) =
√

ma
K

∫ r r′dr′√
a2ε2 − (r′ − a)2

. (1.75)

An “intermediate” variable u that leads to worthwhile simplification is defined by

r = a(1 − ε cos u). (1.76)

The geometric interpretation of u is indicated in Fig. 1.3. If (x, z) are Cartesian co-
ordinates of the planet along the major and an axis parallel to the minor axis through
the central mass, they are given in terms of u by

x = a cos u − aε, z = a
√

1 − ε2 sin u, (1.77)

since the semimajor axis is a
√

1 − ε2 and the circumscribed circle is related to the
ellipse by a z-axis scale factor

√
1 − ε2. The coordinate u, known as the “eccentric

anomaly” is a kind of distorted angular coordinate of the planet, and is related fairly
simply to t;

t =

√
ma3

K
(u − ε sin u). (1.78)

This is especially useful for nearly circular orbits, since then u is nearly proportional
to t. Because the second term is periodic, the full secular time accumulation is de-
scribed by the first term.

Analysis of this Keplerian system is continued using Hamilton–Jacobi the-
ory in Section 8.3, and then again in Section 14.6.3 to illustrate action/angle
variables, and then again as a system subject to perturbation and analyzed by
“variation of constants” in Section 16.1.1.

Problem 1.5.2. The effective potential formalism has reduced the dimensionality of
the Kepler problem from two to one. In one dimension, the linearization (to simple
harmonic motion) procedure, can then be used to describe motion that remains close
to the minimum of the effective potential (see Fig. 1.4). The radius r0 = M2/(mK)
is the radius of the circular orbit with angular momentum M. Consider an initial
situation for which M has this same value and ṙ(0) = 0, but r(0) �= r0, though r(0)
is in the region of good parabolic fit to Ueff. Find the frequency of small oscillations and
express r(t) by its appropriate simple harmonic motion. Then find the orbit elements
a and ε, as defined in Problem 1.5.1, that give the matching two-dimensional orbit.

1.6
Multiparticle Systems

Solving multiparticle problems in mechanics is notoriously difficult; for more
than two particles it is usually impossible to get solutions in closed form. But
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the equations of motion can be made simpler by the appropriate choice of
coordinates as the next problem illustrates. Such coordinate choices exploit
exact relations such as momentum conservation and thereby simplify subse-
quent approximate solutions. For example, this is a good pre-quantum start-
ing point for molecular spectroscopy.

Problem 1.6.1. The position vectors of three point masses, m1, m2, and m3, are r1,
r2, and r3. Express these vectors in terms of the alternative configuration vectors sC,
s3

′, and s12 shown in the figure. Define “reduced masses” by

m12 = m1 + m2, M = m1 + m2 + m3, µ12 =
m1m2

m12
, µ3 =

m3m12

M
. (1.79)

Calculate the total kinetic energy in terms of ṡ, ṡ3
′, and ṡ12 and interpret the result.

Defining corresponding partial angular momenta l, l3
′, and l12, show that the total

angular momentum of the system is the sum of three analogous terms.

m

m

m

1

2

3

s

s’

12

3

O

s
C

12C

C

Fig. 1.5 Coordinates describing three particles. C is the center of
mass and sC its position vector relative to origin O. C12 is the center of
mass of m1 and m2 and s3

′ is the position of m3 relative to C12.

In Fig. 1.5, relative to origin O, the center of mass C is located by radius
vector sC. Relative to particle 1, particle 2 is located by vector s12. Relative
to the center of mass at C12 mass 3 is located by vector s3

′. In terms of these
quantities the position vectors of the three masses are

r1 = sC − m3

M
s3

′ +
m2

m12
s12, (1.80)

r2 = sC − m3

M
s3

′ +
m1

m12
s12, (1.81)

r3 = sC +
m12

M
s3

′. (1.82)

Substituting these into the kinetic energy of the system

T =
1
2

m1ṙ2
1 +

1
2

m2ṙ2
2 +

1
2

m3ṙ2
3, (1.83)
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the “cross terms” proportional to sC · s3
′, sC · s12, and s3

′ · s12 all cancel out,
leaving the result

T =
1
2

M v2
C +

1
2

µ3 v3
′2 +

1
2

µ12 v2
12, (1.84)

where vC = |ṡC|, v′3 = |ṡ′3|, and v12 = |ṡ12|. The angular momentum (about O)
is given by

L = r1 × (m1ṙ1) + r2 × (m2ṙ2) + r3 × (m3ṙ3). (1.85)

Upon expansion the same simplifications occur, yielding

L =
1
2

M rC × vC +
1
2

µ3 r3
′ × v3

′ +
1
2

µ12 r12 × v12. (1.86)

Problem 1.6.2. Determine the moment of inertia tensor about center of mass C for
the system described in the previous problem. Choose axes to simplify the problem
initially and give a formula for transforming from these axes to arbitrary (orthonor-
mal) axes. For the case m3 = 0 find the principal axes and the principal moments of
inertia.

Setting sC = 0, the particle positions are given by

r1 = −m3

M
s3

′ +
m2

m12
s12, r2 = −m3

M
s3

′ +
m1

m12
s12, r3 =

m12

M
s3

′. (1.87)

Since the masses lie in a single plane it is convenient to take the z-axis normal
to that plane. Let us orient the axes such that the unit vectors satisfy

s3
′ = x̂, s12 = ax̂ + bŷ, (1.88)

and hence a = s3
′ · s12. So the particle coordinates are

x1 = −m3

M
+

m2

m12
a, y1 =

m2

m12
b, (1.89)

x2 = −m3

M
+

m1

m12
a, y2 =

m1

m12
b, (1.90)

x3 =
m12

M
, y3 = 0. (1.91)

In terms of these, the moment of inertia tensor I is given by



∑ miy2
i − ∑ mixiyi 0

− ∑ mixiyi ∑ mix2
i 0

0 0 ∑ mi(x2
i + y2

i )


 . (1.92)

For the special case m3 = 0 these formulas reduce to

I = µ12




b2 −ab 0
−ab a2 0

0 0 a2 + b2


 . (1.93)
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Problem 1.6.3. A uniform solid cube can be supported by a thread from the center
of a face, from the center of an edge, or from a corner. In each of the three cases the
system acts as a torsional pendulum, with the thread providing all the restoring torque
and the cube providing all the inertia. In which configuration is the oscillation period
the longest? [If your answer involves complicated integrals you are not utilizing
properties of the inertia tensor in the intended way.]

1.7
Longitudinal Oscillation of a Beaded String

A short length of a stretched string, modeled as point “beads” joined by light
stretched springs, is shown in Fig. 1.6. With a being the distance between
beads in the stretched, but undisturbed, condition and, using the fact that the
spring constant of a section of a uniform spring is inversely proportional to
the length of the section, the parameters of this system are:

unstretched string length = L0,

stretched string length = L0 + ∆L,

extension, ∆L × string constant of full string, K = tension, τ0 ,

number of springs, N =
L0 + ∆L

a
spring constant of each spring, k = NK,

mass per unit length, µ0 = m/a. (1.94)

The kinetic energy of this system is

T =
m
2
(
· · ·+ η̇2

i−1 + η̇2
i + η̇2

i+1 + · · ·
)
, (1.95)

a a a

ηi−1
η

i ηi+1 ηi+2

L0

L∆0L    +

k k k k
m m m m

i−1 i i+1 i+2

x

Fig. 1.6 A string under tension modeled as point “beads” joined by
light stretched springs.
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and the potential energy is

V =
k
2
(
· · ·+ (ηi − ηi−1)2 + (ηi+1 − ηi)2 + · · ·

)
. (1.96)

The Lagrangian being L = T − V, the momentum conjugate to ηi is pi =
∂L/∂η̇i = mη̇i, and the Lagrange equations are

mη̈i =
∂L
∂η̇i

= k(ηi−1 − 2ηi + ηi+1), i = 1, 2, . . . , N. (1.97)

1.7.1
Monofrequency Excitation

Suppose that the beads of the spring are jiggling in response to sinusoidal
excitation at frequency ω. Let us conjecture that the response can be expressed
in the form

ηi(t) =
(

sin
cos

)
(ωt + ∆ψ i), (1.98)

where ∆ψ is a phase advance per section that remains to be determined, and
where “in phase” and “out of phase” responses are shown as the two rows of
a matrix – their possibly different amplitudes are not yet shown. For substitu-
tion into Eq. (1.97) one needs

ηi+1 =
(

sin(ωt + ∆ψ i) cos ∆ψ + cos(ωt + ∆ψ i) sin ∆ψ

cos(ωt + ∆ψ i) cos ∆ψ + − sin(ωt + ∆ψ i) sin ∆ψ

)
, (1.99)

along with a similar equation for ηi−1. Then one obtains

ηi−1 − 2ηi + ηi+1 = (2 cos ∆ψ − 2)ηi, (1.100)

and then, from the Lagrange equation,

−mω2 = 2 cos ∆ψ − 2. (1.101)

Solving this, one obtains

∆ψ(ω) = ± cos−1
(

1 − mω2

2k

)
, (1.102)

as the phase shift per cell of a wave having frequency ω. The sign ambiguity
corresponds to the possibility of waves traveling in either direction, and the
absence of real solution ∆ψ above a “cut-off” frequency ωco =

√
4k/m cor-

responds to the absence of propagating waves above that frequency. At low
frequencies,

mω2/k 
 1, (1.103)
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which we assume from here on, Eq. (1.102) reduces to

∆ψ ≈ ±
√

m
k

ω. (1.104)

Our assumed solution (1.98) also depends sinusoidally on the longitudinal
coordinate x, which is related to the index i by x = ia. At fixed time, after the
phase i∆ψ has increases by 2π, the wave returns to its initial value. In other
words, the wavelength of a wave on the string is given by

λ =
2π

∆ψ
a ≈ 2π

ω

√
k
m

a, (1.105)

and the wave speed is given by

v = λ
ω

2π
=

√
k
m

a. (1.106)

(In this low frequency approximation) since this speed is independent of ω,
low frequency pulses will propagate undistorted on the beaded string. Re-
placing the index i by a continuous variable x = ia, our conjectured solution
therefore takes the form

η(x, t) =
(

sin
cos

)
ω

(
t ± x

v

)
. (1.107)

These equations form the basis for the so-called “lumped constant delay line,”
especially when masses and springs are replaced by inductors and capacitors.

1.7.2
The Continuum Limit

Propagation on a continuous string can be described by appropriately tak-
ing a limit N → ∞, a → 0, while holding Na = L0 + ∆L. Clearly, in this
limit, the low frequency approximations just described become progressively
more accurate and, eventually, exact. One can approximate the terms in the
Lagrangian by the relations

ηi+1 − ηi

a
≈ ∂η

∂x

∣∣∣∣
i+1/2

,

ηi − ηi−1/2

a
≈ ∂η

∂x

∣∣∣∣
i−1/2

,

ηi+1 − 2ηi + ηi−1

a2 ≈ ∂2η

∂x2

∣∣∣∣
i
, (1.108)
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and, substituting from Eqs. (1.94), the Lagrange equation (1.97) becomes

∂2η

∂t2 =
k
m

a2 ∂2η

∂x2 =
Nτ0/∆L

µ0(L + ∆L)/N
(L0 + ∆L)2

N2
∂2η

∂x2

=
τ0

µ0

L0 + ∆L
∆L

∂2η

∂x2 . (1.109)

In this form there is no longer any reference to the (artificially introduced)
beads and springs, and the wave speed is given by

v2 =
τ0

µ0

L0 + ∆L
∆L

. (1.110)

Though no physically realistic string could behave this way, it is convenient
to imagine that the string is ideal, in the sense that with zero tension its length
vanishes, L0 = 0, in which case the wave equation becomes

∂2η

∂t2 =
τ0

µ0

∂2η

∂x2 . (1.111)

1.7.2.1 Sound Waves in a Long Solid Rod

It is a bit of a digression, but a similar setup can be used to describe sound
waves in a long solid rod. Superficially, Eq. (1.110) seems to give the troubling
result that the wave speed is infinite since, the rod not being stretched at all,
∆L = 0. A reason for this “paradox” is that the dependence of string length
on tension is nonlinear at the point where the tension vanishes. (You can’t
“push on a string.”) The formulation in the previous section only makes sense
for motions per bead small compared to the extension per bead ∆L/N. Stated
differently, the instantaneous tension τ must remain small compared to the
standing tension τ0.

A solid, on the other hand, resists both stretching and compression and,
if there is no standing tension, the previously assumed approximations are
invalid. To repair the analysis one has to bring in Young’s modulus Y, in
terms of which the length change ∆L of a rod of length L0 and cross sectional
area A, subject to tension τ, is given by

∆L = L0
τ/A

Y
. (1.112)

This relation can be used to eliminate ∆L from Eq. (1.109). Also neglecting ∆L
relative to L0, and using the relation µ0 = ρ0 A between mass density and line
density, the wave speed is given by

v2 =
τ

µ0

L0

L0
1
Y

τ
A

=
Y
ρ0

. (1.113)
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This formula for the speed of sound meets the natural requirement of depend-
ing only on intrinsic properties of the solid.

Prescription (1.112) can also be applied to evaluate the coefficient in
Eq. (1.109) in the (realistic) stretched string case;

ka = YA, and
a
m

=
1
µ

, give v2 =
YA
µ

. (1.114)

Here Y is the “effective Young’s modulus” in the particular stretched condi-
tion.

1.8
Field Theoretical Treatment and Lagrangian Density

It was somewhat artificial to treat a continuous string as a limiting case of a
beaded string. The fact is that the string configuration can be better described
by a continuous function η(x, t) rather than by a finite number of discrete gen-
eralized coordinates ηi(t). It is then natural to express the kinetic and potential
energies by the integrals

T =
µ

2

∫ L

0

(
∂η

∂t

)2

dx, V =
τ

2

∫ L

0

(
∂η

∂x

)2

dx. (1.115)

In working out V here, the string has been taken to be ideal and Eq. (1.96) was
expressed in continuous terms. The Lagrangian L = T − V can therefore be
expressed as

L =
∫ L

0
L dx, (1.116)

where the “Lagrangian density” L is given by

L =
µ

2

(
∂η

∂t

)2

− τ

2

(
∂η

∂x

)2

. (1.117)

Then the action S is given by

S =
∫ t1

t0

∫ L

0
L(η, η,x, η,t, x, t) dx dt. (1.118)

For L as given by Eq. (1.117) not all the Lagrangian arguments shown in
Eq. (1.118) are, in fact, present. Only the partial derivative of η with respect
to x, which is indicated by η,x and η,t, which similarly stands for ∂η/∂t, are
present. In general, L could also depend on η, because of nonlinear restor-
ing force, or on x, for example because the string is nonuniform, or on t, for
example because the string tension is changing (slowly) with time.
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t 0

t1

x

0 L

dt

t

t

Fig. 1.7 Appropriate slicing of the integration domain for integrating
the term ∂/∂x

(
δη (∂L/∂η,x)

)
in Eq. (1.119).

The variation of L needed as the integrand of δS is given by

δL = L(η,x + δη,x, η,t + δη,t) −L(η,x)

≈ ∂L
∂η,x

δη,x +
∂L
∂η,t

δη,t

=
∂

∂x

(
∂L
∂η,x

δη

)
+

∂

∂t

(
∂L
∂η,t

δη

)
− δη

(
∂

∂x

(
∂L
∂η,x

)
+

∂

∂t

(
∂L
∂η,t

))
.

(1.119)

This is expressed as an approximation but, in the limit in which Hamilton’s
principle applies, the approximation will have become exact. The purpose
of the final manipulation, as always in the calculus of variations, has been to
re-express the integrand of δS as the sum of two terms, one of which is pro-
portional to δη and the other of which depends only on values of the functions
on the boundaries.

In the present case the boundary is a rectangle bounded by t = t0, t = t,
x = 0, and x = L, as shown in Fig. 1.7. The region can, if one wishes, be broken
into strips parallel to the x-axis, as shown. When integrated over any one of
these strips, the first term on the right-hand side in the final form of Eq. (1.119)
can be written immediately as the difference of the function in parenthesis
evaluated at the end points of the strip. The integral over the second term
can be evaluated similarly, working with strips parallel to the t-axis. In this
way the integral over the first two terms can be evaluated as a line integral
around the boundary. There is a form of Green’s theorem that permits this line
integral to be expressed explicitly but, for simplicity, we simply assume that
this boundary integral vanishes, for example because δη vanishes everywhere
on the boundary.

Finally δS can be expressed as an integral over the remaining term of
Eq. (1.119) and required to be zero. Because δη is arbitrary, the quantity in
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parenthesis must therefore vanish;

∂

∂x

(
∂L
∂η,x

)
+

∂

∂t

(
∂L
∂η,t

)
= 0. (1.120)

This is the form taken by the Lagrange equations in this (simplest possible)
continuum example. When applied to Lagrangian density (1.117), the result
is a wave equation identical to Eq. (1.111).

For comparison with relativistic string theory in Chapter 12, one can intro-
duce generalized momentum densities

P (x) =
∂L
∂η,x

= −τ
∂η

∂x
, (1.121)

P (t) =
∂L
∂η,t

= µ
∂η

∂t
. (1.122)

In terms of these quantities the wave equation is

∂P (x)

∂x
+

∂P (t)

∂t
= 0. (1.123)

Boundary conditions at the ends of the string are referred to as Dirichlet (fixed
ends) or Neumann (free ends). The Dirichlet end condition can be expressed
by P (t)(t, x = 0, L) = 0; the Neumann end condition by P (x)(t, x = 0, L) = 0.

A closer analogy with relativistic string theory is produced by generalizing
the disturbance η → ηµ in order to represent the disturbance as just one of the
three components of a vector – transverse-horizontal, or transverse-vertical,
or longitudinal. Also we introduce the abbreviations of overhead dot for ∂/∂t
and prime for ∂/∂x. With these changes the momentum densities become

P (t)
µ =

∂L
∂η̇µ , P (x)

µ =
∂L

∂ηµ′ . (1.124)

An unattractive aspect of the dot and prime notation is that the indices on the
two sides of these equations seem not to match. The parentheses on (t) and
(x) are intended to mask this defect. In this case the Lagrange equation (1.123)
also acquires an index µ, one value for each possible component of displace-
ment;

∂P (x)
µ

∂x
+

∂P (t)
µ

∂t
= 0, µ = x, y, z. (1.125)

If η corresponds to, say, y-displacement, in Eq. (1.123), then that equation is
reproduced by Eq. (1.125) by setting µ to y.
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1.9
Hamiltonian Density for Transverse String Motion

The generalization from discrete to continuous mass distributions is less
straightforward for Hamiltonian analysis than for Lagrangian analysis. In
defining the Lagrangian density the spatial and time coordinates were treated
symmetrically, but the Hamiltonian density has to single out time for special
treatment. Nevertheless, starting from Eq. (1.122), suppressing the (t) su-
perscript, and mimicking the discrete treatment, the Hamiltonian density is
defined by

H = P η̇ −L
(
η̇(x,P), η′). (1.126)

In terms of this equation the arguments are shown only for L, and only to
make the points that L is independent of η and t and that, as usual, η̇ has to
be eliminated. Exploiting these features, ∂H/∂t is given by

∂H
∂t

=
∂P
∂t

η̇ − ∂L
∂η′ η̇′ = − ∂

∂x

(
∂L
∂η′

)
η̇ − ∂L

∂η′ η̇′. (1.127)

In the first form here, the usual cancellation on which the Hamiltonian formal-
ism is based has been performed and, in the second the Lagrange equation has
been used. The equation can be further simplified to

∂H
∂t

= − ∂

∂x

(
∂L
∂η′ η̇

)
. (1.128)

The Hamiltonian for the total system is defined by

H =
∫ L

0
H dx. (1.129)

Because energy can “slosh around” internally, one cannot expect H to be con-
served, but one can reasonably evaluate

dH
dt

=
∫ L

0

∂H
∂t

dx = −
∫ L

0

∂

∂x

(
∂L
∂η′ η̇

)
dx = −

[
∂L
∂η′ η̇

]L

0
. (1.130)

where, under the integral, because x is fixed, only the partial derivative of H
is needed. In this form one sees that any change in total energy H is ascribable
to external influence exerted on the string at its ends.

Problem 1.9.1. For a string the Lagrangian density can be expressed in terms of T
and V given in Eq. (1.115). Define kinetic energy density T and potential energy
density V and show that

H = T + V . (1.131)
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Problem 1.9.2. Show that, for a string with passive (fixed or free) connections at
its ends, the total energy is conserved.

Problem 1.9.3. For a nonuniform string the mass density µ(x) depends on posi-
tion x, though not on time. The tension τ(x) may also depend on x, perhaps because
its own weight causes tension as the string hangs vertically. Repeat the steps in the
discussion of Hamiltonian density and show how all equations can be generalized so
that the same conclusions can be drawn.

1.10
String Motion Expressed as Propagating and Reflecting Waves

(Following Zwiebach) the general motion of a string can be represented as a
superposition of traveling waves, with reflections at the ends dependent on
the boundary conditions there. For simplicity here, let us assume the bound-
aries are free – so-called Neumann boundary conditions. Such boundary con-
ditions can be achieved, in principle, by attaching the ends of the string to
rings that are free to ride frictionlessly on rigid, transverse posts. The slope of
the string at a free end has to vanish since there can be no transverse external
force capable of balancing a transverse component of the force of tension.

The general solution for transverse displacement of a string stretched on the
range 0 ≤ x ≤ L, for which the wave speed is v =

√
T/µ, is

y =
1
2

(
f (vt + x) + g(vt − x)

)
. (1.132)

Here f and g are arbitrary functions. Because of the free end at x = 0, one has

0 =
∂y
∂x

∣∣∣∣
x=0

=
1
2

(
f ′(vt) − g′(vt)

)
. (1.133)

As time evolves, since the argument vt takes on all possible values, this equa-
tion can be expressed as

f ′(u) = g′(u), (1.134)

for arbitrary argument u. One therefore has

f (u) = g(u) + constant. (1.135)

Since the “constant” can be suppressed by redefinition of f , this can be ex-
pressed, without loss of generality, by f (u) = g(u) and the general solution
written as

y =
1
2

(
f (vt + x) + f (vt − x)

)
. (1.136)
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Fig. 1.8 The shape of a 2L-periodic function f (u) which can produce
general string motion as a superposition of the form (1.136).

Because there is also a free end at x = L we have

0 =
∂y
∂x

∣∣∣∣
x=L

=
1
2

(
f ′(vt + L) − f ′(vt − L)

)
. (1.137)

Again using the variable u to express a general argument, it follows that f ′(u)
is a periodic function of u with period 2L;

f ′(u + 2L) = f ′(u). (1.138)

This relation is consistent with a term in f (u) proportional to u, but if one
or both of the string ends are fixed such an inexorable growth would be ex-
cluded and f (u) would be a function such as shown in Fig. 1.8. Any function
satisfying Eq. (1.138) can be expressed as a Fourier series;

f ′(u) = f1 +
∞

∑
n=1

(
an cos

π

L
nu + bn sin

π

L
nu
)

. (1.139)

This can be integrated and, for simplicity, new coefficients introduced to swal-
low the multiplicative factors;

f (u) = f0 + f1u +
∞

∑
n=1

(
An cos

π

L
nu + Bn sin

π

L
nu
)

. (1.140)

The general solution can then be written by inserting this sum into Eq. (1.136).
Restoring the explicit dependences on x and t, and using well-known trigono-
metric identities yields

y = f0 + f1vt +
∞

∑
n=1

(
An cos n

πvt
L

+ Bn sin n
πvt

L

)
cos n

πx
L

. (1.141)

Stated as an initial value problem, the initial displacements and velocities
would be given functions y|0 and ∂y/∂t|0, which are necessarily expressible
as

y|0(x) = f0 +
∞

∑
n=1

(
An cos n

πx
L

)
,

∂y
∂t

∣∣∣
0
(x) = f1v +

πv
L

∞

∑
n=1

(
n Bn cos n

πx
L

)
. (1.142)
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This permits the coefficients to be determined:

∫ L

0
y|0(x) dx = f0L,

∫ L

0
cos

(mπx
L

)
y|0(x) dx = Am

L
2

, (1.143)
∫ L

0
sin
(mπx

L

)∂y
∂t

∣∣∣
0
(x) dx =

mπv
L

Bm
L
2

.

Motion always “back and forth” between two limits, say a and b, in one
dimension, due to a force derivable from a potential energy function V(x), is
known as “libration.” Conservation of energy then requires the dependence
of velocity on position to have the form

ẋ2 = (x − a)(b − x) ψ(x), or ẋ = ±
√

(x − a)(b − x) ψ(x), (1.144)

where ψ(x) > 0 through the range a ≤ x ≤ b, but is otherwise an arbitrary
function of x (derived, of course, from the actual potential function). It is
necessary to toggle between the two ± choices depending on whether the
particle is moving to the right or to the left. Consider the change of variable
x → θ defined by

x = α − β cos θ, where α − β = a, α + β = b. (1.145)

1.11
Problems

Problem 1.11.1. Show that (x − a)(b − x) = β2 sin2 θ and that energy conserva-
tion is expressed by

θ̇ =
√

ψ(α − β cos θ), (1.146)

where there is no longer a sign ambiguity because θ̇ is always positive. The variable
θ is known as an “angle variable.” One-dimensional libration motion can always
be expressed in terms of an angle variable in this way, and then can be “reduced to
quadrature” as

t =
∫ θ dθ′√

ψ(α − β cos θ′)
. (1.147)

This type of motion is especially important in the conditionally periodic
motion of multidimensional oscillatory systems. This topic is studied in Sec-
tion 14.6.
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Problem 1.11.2. The Lagrangian

L =
1
2
(ẋ2 + ẏ2) − 1

2
(ω2x2 + ω2

2y2) + αxy, (1.148)

with |α| 
 ω2 and |α| 
 ω2
2 , describes two oscillators that are weakly coupled.

(a) Find normal coordinates and normal mode frequencies Ω1 and Ω2.

(b) For the case ω = ω2, describe free motion of the oscillator.

(c) Holding α and ω2 fixed, make a plot of Ω versus ω showing a branch for each
of Ω1 and Ω2. Do it numerically or with a programming language if you wish.
Describe the essential qualitative features exhibited? Note that the branches do
not cross each other.

Problem 1.11.3. In integral calculus the vanishing of a definite integral does not, in
general, imply the vanishing of the integrand; there can be cancellation of negative and
positive contributions to the integral. Yet, in deriving Eqs. (1.25) and (1.120), just
such an inference was drawn. Without aspiring to mathematical rigor, explain why
the presence of an arbitrary multiplicative factor in the integrand makes the inference
valid.

Problem 1.11.4. Transverse oscillations on a string with just three beads, shown
in Fig. 1.2, has been analyzed in Problem 1.4.3. The infinite beaded string shown
in Fig. 1.6 is similarly capable of transverse oscillation, with transverse bead loca-
tions being . . . , yi−1, yi, yi+1, . . . . Using the parameters k and m of the longitudinal
model, replicate, for transverse oscillations, all the steps that have been made in ana-
lyzing longitudinal oscillations of the beaded string. Start by finding the kinetic and
potential energies and the Lagrangian and deriving the Lagrange equations of the dis-
crete system, and finding the propagation speed. Then proceed to the continuum limit,
deriving the wave equation and the Lagrangian density.

Problem 1.11.5. Struck string. To obtain a short pulse on a stretched string it is
realistic to visualize the string being struck with a hammer, as in a piano, rather
than being released from rest in a distorted configuration. Consider an infinite string
with tension T0 and mass density µ0. An impulse I (which is force times time) is
administered at position x = x0 to a short length ∆x of the string. Immediately after
being struck, while the string is still purely horizontal, the string’s transverse velocity
can be expressed (in terms of unit step function U) by a square pulse

∂y
∂t

(0+, x) = K
(

U(x − x0)− U
(

x − (x0 + ∆x)
))

. (1.149)

(a) Express the constant K in terms of the impulse I and establish initial traveling
waves on the string which match the given initial excitation. Sketch the shape
of the string for a few later times.
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(b) Consider a length of the same string stretched between smooth posts at x = 0
and x = a. (i.e., Neumann boundary conditions). Describe (by words or
sketches) the subsequent motion of the string. Does the motion satisfy the con-
servation of momentum?

Problem 1.11.6. In the same configuration as in Problem 1.11.5, with the string
stretched between smooth posts, let the initial transverse velocity distribution be given
by

y(0+, x) = 0,
1
v0

∂y
∂t

(0+, x) =
x − a/2

a
− 4
(

x − a/2
a

)3

. (1.150)

Find the subsequent motion of the string.

Problem 1.11.7. On a graph having x as abscissa and vt as ordinate the physical
condition at t = 0 of a string with wave speed v stretched between 0 and a can
be specified by values of the string displacement at all points on the horizontal axis
between 0 and a. An “area of influence” on this graph can be specified by a condition
such as “the area containing points at which a positive-traveling wave could have been
launched that affects the t = 0 condition of the string.” Other areas of influence can
be specified by replacing “positive-traveling” by “negative-traveling” or by reversing
cause and effect. From these areas find the region on the plot containing points at
which the nature of the end connection cannot be inferred from observation of the
string.
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