
7 Composite Systems

We turn now to composite systems, and begin by providing the necessary mathematical tools.
We then generalise the postulates and discuss the special case of measurements on subsystems
in detail. The consequences of entanglement will become clear in this discussion. We will
demonstrate a conjuring trick which cannot be explained by classical physics. The unitary
dynamics can once again be formulated with the aid of Liouville operators. The action of
simple quantum gates on multiple qubit systems will be introduced.

7.1 Subsystems

We are accustomed from classical physics to the fact that composite systems (or compound
systems) can be decomposed into their subsystems and that conversely, individual systems
can be combined to give overall composite systems. The classical total system is completely
describable in terms of the states of its subsystems and their mutual dynamic interactions. The
solar system with the sun, the planets and the gravitational field is an example. In quantum
physics, however, it is found that composite systems can have in addition completely different
and surprisingly unified properties. These come to light when the composite quantum systems
are in entangled states In such cases, it is indeed true in a certain sense that “the whole is
more than the sum of its parts”. We will present the details in a similar fashion as in Sect. 1.2
and begin with a discussion of preparation and measurements.

But first: what are composite systems? There are particular quantum systems which
exhibit an internal structure. One can distinguish in them two or more subsystems which
can be accessed separately. With this we mean that subsystems can be experimentally
identified on which individually (and in this sense locally) interventions can be carried out.
The corresponding operations are referred to as local operations These can be for example
preparations or measurements.

We list some bipartite systems consisting of two subsystems. One can prepare quantum
systems for which, in a measurement at two different locations, a photon can be registered at
each location. There are analogous systems involving electrons. There are systems in which at
one location a photon and at another an atom are detected. Subsystems are in general termed
local, but they need not in fact be spatially separated. A composite system can be composed
of e. g. an orbit (an external degree of freedom) and the polarisation (an internal degree of
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freedom) of a single quantum object. Of course two separate systems, which are completely
independent of one another, can also be considered formally as a total system.

It is essential not to assume e. g. for a 2-photon system that the photons involved are them-
selves distinguishable (which they are not, as is well-known). The locations at which for
example the photon polarisation is measured are distinguishable. We know that in measure-
ments on this system, always exactly two photons are prepared together and therefore the
overall system is a bipartite system. The corresponding subsystems SA and SB are in this
case associated with the locations of the detectors, A and B (a photon at the location A or
a photon at the location B). In general, apparatus which carry out operations are classical
objects and thus have an individual identity. In contrast, owing to the indistinguishability of
the photons, the question of which photon was detected in a particular measurement, e.g. by
the detector at the location A, makes no sense. We will return to this point in Sect. 7.9.

Alice and Bob In order to make it especially clear that measurements or manipulations are
carried out on different subsystems SA and SB of the composite system SAB , one often in-
troduces the experimentalists Alice and Bob, who carry out local operations on the subsystem
SA or SB (often, but not necessarily, at different locations). By referring to Alice and Bob,
we emphasize once more that many quantum-mechanical statements are to be understood op-
erationally (i. e. as instructions for carrying out an action); e.g. of the type: “If Alice does this
to subsystem SA, then Bob will measure that on subsystem SB”.

Existence We will once again assume, in agreement with the standard interpretation from
Sect. 1.2, that such subsystems are not just abstract auxiliary constructions like the quantum
systems in the minimal interpretation, but rather that they exist in reality. With this, we do not
mean to imply that a state can be ascribed to an individual subsystem which is independent
of the state of the other subsystem. In entangled systems, precisely this independence does
not exist. This is the cause of many startling quantum-physical effects. It is furthermore
not meant by our assumption of existence in reality that similar elementary particles of the
same type, such as two photons, have individual identities and are therefore distinguishable.
The assumption that the photons exist cannot lead us to such conclusions. The possibility of
separate manipulations, and not the individuality of quantum objects, defines the subsystem
(compare Sect. 7.9).

7.2 The Product Hilbert Space

We first wish to supply the mathematical formalism which we need to formulate the physics
of composite systems. We require for this purpose the product Hilbert space.

7.2.1 Vectors

The tensor product HAB of two Hilbert spaces HA and HB , whose dimensions need not be
the same,

HAB = HA ⊗HB (7.1)
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is itself a Hilbert space. We call HA and HB the factor spaces. For each pair of vectors
|ϕA〉 ∈ HA and |χB〉 ∈ HB , there is a product vector in HAB , which can be written in
different ways

|ϕA〉 ⊗ |χB〉 =: |ϕA〉|χB〉 =: |ϕA, χB〉 =: |ϕ, χ〉 . (7.2)

It is linear in each argument with respect to multiplication by complex numbers.
With λ, µ ∈ C

|ϕA〉 ⊗ (λ|χB1 〉+ µ|χB2 〉) = λ|ϕA〉 ⊗ |χB1 〉+ µ|ϕA〉 ⊗ |χB2 〉 , (7.3)

and

(λ|ϕA1 〉+ µ|ϕA2 〉)⊗ |χB〉 = λ|ϕA1 〉 ⊗ |χB〉+ µ|ϕA2 〉 ⊗ |χB〉 . (7.4)

Entangled vectors If {|nA〉} is a basis ofHA and {|iB〉} is a basis ofHB , then

{|nA〉 ⊗ |iB〉} (7.5)

is a basis of HAB . For the dimension of HAB , we have dimHAB = (dimHA)·(dimHB).
Every vector |ψAB〉 inHAB can be expanded in terms of the basis

|ψAB〉 =
∑

n,i

αni|nA, iB〉 . (7.6)

All the definitions and statements can be directly applied to the product of a finite number of
Hilbert spacesHAB...M = HA ⊗HB ⊗ · · · ⊗ HM . We introduce also the abbreviations:

H⊗n := H⊗H⊗ · · ·H, |φ〉⊗n := |φ〉|φ〉 · · · |φ〉 . (7.7)

Vectors in HAB which are not product vectors are called entangled. They can be written
only as a superposition of product vectors. We will represent entangled pure states with such
vectors; they will play an important role in the following sections. The superposition is an
important reason for this. It can usually not be read directly off the decomposition in terms of
the basis (7.6) whether or not a vector |ψAB〉 is entangled. Later, we will develop a criterion
(Sect. 8.3.1) and also extend the concept of entanglement to density operators (Sect. 8.1.1).

The scalar product The bra vector of the product vector |ϕA〉 ⊗ |χB〉 has the form

(|ϕA〉 ⊗ |χB〉)† = 〈ϕA| ⊗ 〈χB| =: 〈ϕA|〈χB| =: 〈ϕA, χB| =: 〈ϕ, χ| . (7.8)

It follows from this for the dual corresponding vector of |ψAB〉 as in Eq. (7.6)

〈ψAB| =
∑

n,i

α∗
ni〈nA, iB | . (7.9)

The scalar product is formed in a “space by space” manner:

〈ϕA, χB|ξA, ζB〉 = 〈ϕA|ξA〉〈χB|ζB〉 . (7.10)

A basis {|nA, iB〉} ofHAB is orthonormal if

〈nA, iB|n′A, i′B〉 = δnn′δii′ (7.11)

holds, i. e. when {|nA〉} and {|iB〉} are an ONB.
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The Bell basis As can readily be verified, the following four vectors make up a particular
ONB in the spaceHAB = HA2 ⊗HB2 of 2-qubit vectors:

|ΦAB± 〉 :=
1√
2
(|0A, 0B〉 ± |1A, 1B〉) , |ΨAB

± 〉 :=
1√
2
(|0A, 1B〉 ± |1A, 0B〉) . (7.12)

This basis plays a special role in many investigations. We shall show later that these
frequently-used Bell states are maximally entangled. With reference to an implementation
in terms of spin polarisation states, |ΨAB

− 〉 is often called a singlet state.

7.2.2 Operators

Product operators Let CA be a linear operator on the space HA and DB a linear operator
onHB . The tensor product

CA ⊗DB =: CADB (7.13)

refers to a product operator, which acts “space by space”,

[CA ⊗DB ]|ϕA, χB〉 = |CAϕA, DBχB〉 . (7.14)

The product operator is a linear operator onHAB

[CA ⊗DB ]
∑

n,i

αni|nA, iB〉 =
∑

n,i

αni|CAnA, DBiB〉 . (7.15)

The dyadic operator |ψAB〉〈θAB| formed from the product vectors |ψAB〉 = |ϕA, χB〉
and |θAB〉 = |ξA, ζB〉 is likewise a product operator

|ψAB〉〈θAB| = |ϕA, χB〉〈ξA, ζB| = (|ϕA〉〈ξA|)⊗ (|χB〉〈ζB|) . (7.16)

The round brackets can also be left off. The identity operator on HAB can be dyadically
expanded in terms of an ONB:

1AB =
∑

n,i

|nA, iB〉〈nA, iB | = 1A ⊗ 1B . (7.17)

With the identity operator of a factor space, product operators can be constructed which
are particularly important for the physical applications. The extended operators (subsystem
operators) which are indicated by a symbol with a hat

ĈA := ĈAB := CA ⊗ 1B; D̂B := D̂AB := 1A ⊗DB (7.18)

are defined withinHAB = HA⊗HB , but they act only in the individual factor Hilbert spaces
in a nontrivial way. They are also called local operators. ĈAB and D̂AB commute within
HAB and they obey the relations

ĈABD̂AB = D̂ABĈAB = CA ⊗DB . (7.19)
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Generalised operators Referring to the dyadic decomposition (7.17) of 1AB , we can write
the generalised operator ZAB onHAB in the form

ZAB = 1ABZAB1AB =
∑

n,m

∑

i,j

〈nA, iB|ZAB|mA, jB〉(|nA〉〈mA|⊗|iB〉〈jB|) . (7.20)

It is determined by its matrix elements in the orthonormal basis (7.5).

The trace and partial trace The trace is also defined in the usual way in terms of an or-
thonormal basis ofHAB

tr[ZAB] := trAB [ZAB] :=
∑

n,i

〈nA, iB|ZAB |nA, iB〉 . (7.21)

For product operators, it follows from this that

trAB[CA ⊗DB] =
∑

n,i

CAnnD
B
ii = trA[CA] trB [CB] (7.22)

with the matrix elements CAnn and DB
ii . The trace is constituted “space by space”.

The computation of the partial trace over one of the factor spaces, for example the space
HA, is particularly important for physical results. It is defined by

trA[ZAB ] :=
∑

n

〈nA|ZAB |nA〉 . (7.23)

We can read off from Eq. (7.20) that an operator on HB is generated in the process. For
product operators, it follows that

trA[CA ⊗DB] = trA[CA]DB . (7.24)

The overall trace is found to be a series of partial traces

trAB[ZAB] = trB [trA[ZAB ]] = trA[trB[ZAB ]] . (7.25)

Here, the order in which the partial traces are taken is irrelevant.

The operator basis This concept also, which we have already encountered in Sect. 1.2, can
be directly applied to the product spaceHAB . If {QAα , α = 1, . . . , (dimHA)2} represents an
operator basis of HA and {RBκ , κ = 1, . . . , (dimHB)2} an operator basis of HB , then the
product operators

TABακ := QAα ⊗ RBκ (7.26)

form an orthonormal basis of the product spaceHAB , owing to

trAB[TAB†
ακ TABβλ ] = δαβδκλ . (7.27)
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Every operator ZAB , which acts withinHAB , can be expanded in terms of this basis:

ZAB =
∑

α,κ

TABακ trAB[TAB†
ακ ZAB] . (7.28)

There are operators onHAB which cannot be written as products of two operators in the form
CA ⊗DB (cf. Sect. 7.8). But all the operators on HAB can be written as the sum of product
operators.

The product Liouville space We apply the concepts from Sect. 1.2 and form the product
Liouville space

LAB = LA ⊗ LB . (7.29)

Its elements are the operators

CAB =
∑

α,β

cαβQ
A
α ⊗RBβ (7.30)

on HAB . The Liouville operator is defined through a generalisation of Eq. (1.87) with the
Hamiltonian HAB onHAB:

LABZAB := LAB(ZAB) :=
1
�
[HAB , ZAB]− . (7.31)

7.3 The Fundamentals of the Physics of Composite
Quantum Systems

7.3.1 Postulates for Composite Systems and Outlook

We consider a composite quantum system, which itself is assumed to be isolated. There-
fore, we can take over all the postulates from Chaps. 2 and 4 directly. In particular, the state
of the composite system is described by a density operator in a Hilbert space. The oper-
ational interpretation of the concept “state” of a quantum system as “the system has been
generated by a particular preparation procedure” holds here as well. The composite system
SAB... is supposed to consist of subsystems SA, SB, . . .. Since we wish to consider subsys-
tems which are themselves quantum systems, it suggests itself that we associate each of them
with a particular Hilbert space HA,HB, . . . Then the only open question is what structure
has the Hilbert space of the composite system, i.e. how is it composed from the HA,HB, . . ..
Here, there are in principle many mathematical possibilities. One is for example the direct
sum HAB... = HA ⊕ HB ⊕ . . .. However, one in fact postulates the tensor product as de-
scribed in Sect. 7.2.1, in order to obtain agreement with experiments. This specification has
far-reaching consequences for all physical statements about composite quantum systems. We
shall be interested in precisely these statements in the following sections.
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The postulate The states of an isolated composite system SAB... which is composed of the
subsystems SA, SB, . . . are described by density operators ρAB... in the product Hilbert space

HAB... = HA ⊗HB ⊗ . . . (7.32)

The postulates for isolated systems from Sect. 2.1 and Sect. 4.2 can be applied to the overall
system SAB.... If a system is not isolated, it can be made into an isolated system by including
the “rest of the world”. It then becomes itself a subsystem.

Outlook We can immediately read off a series of special properties of composite systems
from this postulate. The mathematical product structure (7.32) defines an organisation scheme.
We demonstrate it using the example of a bipartite system SAB .

(i) States: a pure state can be a product state |ψAB〉 = |φA〉 ⊗ |χB〉 or an entangled state
|ψAB〉 �= |φA〉⊗ |χB〉 (compare Sect. 7.2.1). The unusual properties of entangled states,
in particular the appearance of non-classical correlations and their applications, will be
discussed in the rest of this chapter and in all the remaining chapters in detail. We con-
sider correlated density operators ρAB �= ρA ⊗ ρB in Sect. 8.1.

(ii) Observables: there is a special case of the extended observable operators, such as
ĈAB = CA ⊗ 1B , which is generated from an observable operator which acts on
only one of the product spaces. These describe local measurements which are car-
ried out on only one of the subsystems (e. g. a measurement of the observable CA on
the subsystem SA). There are however more general Hermitian operators on HAB
(e.g. ZAB = CA ⊗ DB + EA ⊗ FB), which cannot be expressed as extended oper-
ators. They also correspond to projective measurements of physical observables ZAB .
These latter observables are called non-local observables or collective observables. The
corresponding measurements are non-local measurements, which in general cannot be
carried out directly as local measurements on SA and SB . This holds also for the
special case of the observables which correspond mathematically to operator products
(e. g. ZAB = CA ⊗DB), but cannot be implemented physically as local measurements
of the extended observables (CA⊗1B and 1A⊗DB). Non-local measurements are im-
portant in connection with quantum correlations and non-local information storage. We
will therefore discuss them only in Sect. 9.2.

(iii) Unitary evolution: the unitary evolutions also need not have the structure UAB =
UA ⊗ UB . There can be for example an interaction between the systems SA and SB .
We discuss this in Sect. 7.6. Non-local unitary evolution can act to entangle and to dis-
entangle states. In order for a composite system to be in an entangled state, dynamic
interactions between the subsystems must not exist at the same time.

(iv) The postulate (7.32) provides the required possibility of separate interventions and there-
fore the resolution of the composite system into subsystems. Not only local observable
operators, but rather all local operators which act on a subsystem commute with all the
local operators which act on some other subsystem (cf. Eq. (7.19)). This does not de-
pend on the order in which the corresponding actions occur. Thus, in measurements on
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subsystems, the correlations between the measured values obtained become an impor-
tant quantity. They are characterised by the joint probabilities for the occurrence of the
measured values.

7.3.2 The State of a Subsystem, the Reduced Density Operator, and
General Mixtures

Via the postulate, the details of the projective measurement of an observable of the composite
systems are determined. This measurement on the composite system is described by an Her-
mitian operator onHAB.... The measurement of an observable on a subsystem, e. g. on SA, is
included as a special case. It is associated with an observable operator CA which acts onHA.
This local measurement corresponds inHAB... to a local observable

ĈAB...E = CA ⊗ 1B ⊗ . . .⊗ 1E . (7.33)

In this chapter, we shall restrict ourselves to composite systems which are composed of two
subsystems. The extension to a greater number of subsystems is straightforward.

Probability statements According to the postulate, the rules for the measurement dynamics
apply also to the states ρAB of the composite system SAB . We investigate the resulting con-
sequences for local measurements. To this end, it is expedient to associate to each subsystem
a reduced density operator by taking the partial trace over the other subsystem

ρA := trB
[
ρAB

]
, ρB := trA

[
ρAB

]
. (7.34)

Since ρAB is a density operator, ρA and ρB likewise fulfill the conditions for being density
operators. The eigenvalue equation of the observable CA,

CA|c(r)An 〉 = cn|c(r)An 〉, r = 1, . . . , gn (7.35)

leads to the ONB {|c(r)An 〉} of HA and the eigenvalues {cn} with the degeneracies gn. The
probability of obtaining the measured value cn from a measurement of C on the system SA is
then given by the local projection operator

P̂An = PAn ⊗ 1B, PAn :=
gn∑

r=1

|c(r)An 〉〈c(r)An | (7.36)

through the mean value

p(cn) = trAB [P̂An ρ
AB] = trA[trB{P̂An ρAB}] = trA[PAn ρ

A] . (7.37)

In a similar manner, for the expectation value of the observables C, we obtain

〈ĈA〉 = trAB[ρABĈA] = trA[ρACA] . (7.38)

To summarise, we can conclude that: all probability statements about local measurements on a
subsystem SA are obtained by associating the reduced density operator ρA from Eq. (7.34) to
the system SA and applying the rules postulated for the density operators of isolated systems.
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The state of a subsystem Since all probability statements for measurements on SA are
unambiguously determined by the reduced density operator ρA, it is tempting to say that the
subsystem SA is in the state ρA. Thus, in Chap. 2, we introduced the concept of a state. The
composite system SAB passes through a preparation procedure which leads to the state ρAB .
Together with it, the state ρA = trB

[
ρAB

]
is prepared.

General mixtures If the composite system SAB is in the product state |αAk , βBk 〉, then the
subsystem SA is in the pure state |αAk 〉. If the state of SAB is, in particular, a statistical mixture
(blend or proper mixture) of such product states (cf. Chap. 4),

ρAB =
∑

s

ps|αAs , βBs 〉〈αAs , βBs | =
∑

s

ps|αAs 〉〈αAs |⊗|βBs 〉〈βBs |,
∑

s

ps = 1 , (7.39)

then SA or SB are likewise statistical mixtures

ρA = trB [ρAB] =
∑

s

ps|αAs 〉〈αAs | , ρB =
∑

s

ps|βBs 〉〈βBs | (7.40)

of the states |αAk 〉 or |βBS 〉. They were produced by the preparation procedure and are present
as real states. An ignorance interpretation (compare Sect. 4.3) is possible. Equation (7.40) is
obtained from (7.24) and the dyadic decomposition of 1A or 1B .

In general, the state of a quantum systems SAB will not be a statistical mixture as in
Eq. (7.39). The state of the subsystem SA is then also not a statistical mixture. An ignorance
interpretation is not possible. Nevertheless, the state is described by a reduced density oper-
ator ρA. We therefore employ the concept mixture to this state ρA of SA also, although – as
already mentioned in Sect. 4.2 – no “mixing” has occurred; and we simply leave off the ad-
jective “statistical” for clarity. In this case, one also speaks of the state as an improper mixture
in contrast to a proper mixture. “Mixture” is thus the umbrella term.

To make this clear, we can consider for example a system SAB which is in a Bell state. In
this case, the states of the subsystems are maximally mixed as a result of the entanglement

ρA = trB [ΦAB± ] =
1
2
1A , ρA = trB[ΨAB

± ] =
1
2
1A . (7.41)

A corresponding relation holds for SB . However, SAB was prepared in a pure state.
In quantum systems, the states of subsystems can be mixtures which – with respect to their

preparation – are not statistical mixtures and therefore do not permit an ignorance interpreta-
tion. For their density operators, there are formally arbitrarily many ensemble decompositions.
There are therefore arbitrarily many statistical mixtures of an isolated individual system, with
which they can be indistinguishably simulated with respect to all probability statements for
local measurements. By means of local measurements, one cannot determine whether a den-
sity operator ρA belongs to an individual system SA or is rather a reduced density operator
of a subsystem SA which is part of a larger system. This again justifies the application of the
term “mixture” to all reduced density operators. We mention finally that mixtures in classical
physics are always statistical mixtures. We shall return to the connection with entanglement
later in Sect. 8.1.
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7.4 Manipulations on a Subsystem

7.4.1 Relative States and Local Unitary Transformations

Relative states Making use of the ONB {|cAn 〉} and {|dBi 〉} ofHA orHB , we can write the
pure state |ψAB〉 of the composite system SAB as a decomposition

|ψAB〉 =
∑

n,i

αni|cAn , dBi 〉 (7.42)

in terms of the basis vectors. It proves expedient to split up the double sum in the form

|ψAB〉 =
∑

n

|cAn , w̃Bn 〉 (7.43)

with

|w̃Bn 〉 :=
∑

i

αni|dBi 〉; |wBn 〉 =
|w̃Bn 〉√〈w̃Bn |w̃Bn 〉

. (7.44)

The vector |wBn 〉 describes the relative state belonging to |cAn 〉. Non-normalised states are
again denoted by a tilde. The relative vectors |wBn 〉 in general do not make up an orthonormal
system. Their number need not be the same as the dimension of the Hilbert state HB . |ψAB〉
can, in analogy to Eq. (7.43), also be decomposed in terms of the relative states |ṽAi 〉 belonging
to the |dBi 〉:

|ψAB〉 =
∑

i

|ṽAi , dBi 〉 . (7.45)

Local unitary manipulations We now allow a unitary dynamics to act upon the subsys-
tem SA

ÛAB = UA ⊗ 1 . (7.46)

It produces the transition

|ψAB〉 → |ψ′AB〉 =
∑

n

|UAcAn 〉|w̃Bn 〉 . (7.47)

Here, in general the state of SA is changed, and in particular that of SAB . The vectors |UAcAn 〉
again represent an ONB ofHA; thus, for the state of SB we have the unchanged result

ρB → ρ′B = ρB =
∑

n

|w̃Bn 〉〈w̃Bn | . (7.48)

We take as an example of this a transition between two vectors of the Bell basis
(cf. Eq. (7.12)) to which we shall return later:

(σA1 ⊗ 1B)|ΨAB
+ 〉 = |ΦAB+ 〉 . (7.49)
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In this special case, not only the reduced density operator of SB remains unchanged, but also
that of SA: ρ′A = ρ′B = ρA = ρB = 1

21.
A dynamic manipulation which effects a unitary transformation of the subsystem SA has

no influence on the state of the other subsystem SB (and vice versa). Even when an entangled
state is present, Bob can by no means determine via measurements on his subsystem SB

whether Alice has carried out a unitary manipulation on her subsystem. One can readily
convince oneself that this statement is still true if the state of SAB is a mixture.

7.4.2 Selective Local Measurements

The resulting state of the composite systems We again consider a quantum system SAB

which is composed of the (sub) systems SA and SB . We wish to measure the observable C
on the subsystem SA and the observable D on the subsystem SB (local measurements). The
associated observable operators ĈA = CA ⊗ 1B and D̂B = 1A ⊗DB commute

[ĈA, D̂B]− = 0 . (7.50)

We note also the corresponding eigenvalue equations

CA|cAn 〉 = cn|cAn 〉, DB|dBi 〉 = di|dBi 〉 . (7.51)

The vectors |cAn 〉 and |dBi 〉 make up an ONB of HA or HB . The possible measured values cn
and di resulting from the local measurements are assumed for simplicity not to be degenerate.

We first carry out measurements only on the subsystem SA and apply the postulate from
Sect. 7.3.1. A measurement of the observable C on the subsystem SA, in which a selection
among the results cn of the measurements is made, transforms the state ρAB of the composite
system SAB into the (non-normalised) state ρ̃′AB

ρAB → ρ̃′ABn = P̂An ρ
ABP̂An . (7.52)

The projection operator P̂An is defined in Eq. (7.36). One can read off from Eq. (7.37) that the
trace of the resulting non-normalised density operator ρ̃′ABn again gives directly the probability
p(n) that a measurement will lead to the value cn (cf. Eq. (4.23))

p(cn) = tr[ρ̃′ABn ] . (7.53)

If the composite system SAB was previously in the pure state |ψAB〉 of Eq. (7.42), then
the selective measurement causes the transition

|ψAB〉 → |ψ̃′AB
n 〉 = P̂An |ψAB〉 = |cAn 〉 ⊗

∑

i

αni|dBi 〉 = |cAn 〉 ⊗ |w̃Bn 〉 . (7.54)

The subsystem SB transforms into the relative state |wBn 〉 of Eq. (7.44). For an entangled state
|ψAB〉, a non-degenerate selective measurement on a subsystem breaks the entanglement.

Furthermore, we find as a special case of Eq. (7.53): the probability of obtaining the
measured value cn is, from Eq. (7.37), given by the square of the norm of the non-normalised
relative state vector |w̃Bn 〉:

p(cn) = 〈ψAB| (|cAn 〉〈cAn | ⊗ 1B
) |ψAB〉 = 〈w̃Bn |w̃Bn 〉 = ||w̃Bn ||2 . (7.55)
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p(cn) can also be written as a function of the expansion coefficients αni of Eq. 7.42:

p(cn) =
∑

i

|αni|2 . (7.56)

The resulting state of the subsystem The reduced density operator ρA of the subsystem
SA is transformed into ρ̃′An by a selective measurement:

ρA → ρ̃′An = trB[ρ̃′ABn ] = trB[P̂An ρ
ABP̂An ] . (7.57)

Insertion of P̂An and normalisation leads with Eqs. (7.36) and (7.37) to

ρA → ρ′n
A =

PAn ρ
APAn

trA[PAn ρA]
=
PAn ρ

APAn
p(cn)

. (7.58)

If the initial state is the pure state |ψAB〉, then we obtain

ρ′An = |cAn 〉〈cAn | . (7.59)

SA is in the state |cAn 〉 after the measurement. This also follows directly from Eq. (7.54).

Operational description It is helpful to make it clear on an operational level just how
a selective measurement of Eq. (7.54) is carried out in practice and how the state |ψ′AB〉
(cf. Eq. (7.54)) is produced. As we have seen in Sect. 2.1.2, state vectors are associated with
preparation procedures. How is the corresponding preparation procedure for |ψ′AB〉 carried
out? Many individual bipartite systems have passed through the preparation device for |ψAB〉.
The single system SAB can for example consist of a photon moving to the left and one moving
to the right in the state |ψAB〉. Alice measures (on the subsystem SA, left photon) the observ-
able C without annihilating the system. Those complete bipartite systems (photon pairs) from
which Alice has obtained the measured value cn are sorted out. Only they are used for further
manipulations. This is the significance of Eq. (7.54). All the remaining bipartite systems are
eliminated and no longer take part in future experiments.

To ensure that in fact complete bipartite systems (photon pairs) are sorted out, Bob must
also act and eliminate his subsystem (right photon) when Alice has eliminated hers. In the
example of the photons, he cannot simply let them all continue on their way. In order that
he allow the correct ones to continue, Alice must give him the information for each photon
pair as to whether she has sorted out her photon or not. Those photon pairs which then finally
are allowed to continue are all in the state |ψ′AB〉 = |cAn , wBn 〉. The overall procedure, which
also includes an exchange of information, then prepares the subsystem SB (photon at Bob’s
location) in the state |wBn 〉. Bob can also number his photons, store them and later, following
Alice’s instructions, he can sort them. A selective local measurement is a preparation proce-
dure for the overall system, which is based on a selective measurement on a subsystem and on
classical communication. It requires a selection process for both subsystems.
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7.4.3 A Non-Selective Local Measurement

The resulting state of the composite system Following a measurement of the observable
C on the system SA, in which no selection according to the measured values is carried out
(cf. Fig. 7.1), for the composite system SAB , the state ρ̃′ABn.s. is present:

ρAB
n.s.−−→ ρ′ABn.s. =

∑

n

p(cn)
ρ̃′ABn

tr[ρ̃′ABn ]
=
∑

n

ρ̃′ABn . (7.60)

This follows immediately from equations (7.52) and (7.53). For the pure initial state |ψAB〉,
we obtain, corresponding to Eq. (7.54)1:

|ψAB〉 n.s.−−→ ρ′ABn.s. =
∑

n

|cAn , w̃Bn 〉〈cAn , w̃Bn | =
∑

n

|cAn 〉〈cAn | ⊗ |w̃Bn 〉〈w̃Bn | . (7.61)

The superposition of Eq. (7.42) has been decomposed into the mixture of Eq. (7.61).

SA

t

n.s.
ci

SB

ρ′Bn.s.

no selection

composite system: |ψAB〉

composite system: ρ′AB
n.s.

Figure 7.1: A non-selective measurement on the subsystem SA.

The resulting states of the subsystems The state of the subsystem SA after the non-
selective measurement is given by the reduced density operator. With Eqs. (7.60) and (7.52),
we obtain

ρA
n.s.−−→ ρ′An.s. = trB[ρ′ABn.s. ] = trB [

∑

n

P̂An ρ
ABP̂An ] . (7.62)

Carrying out the trace with P̂An = PAn ⊗ 1B leads to

ρA
n.s.−−→ ρ′An.s. =

∑

n

PAn ρ
APAn . (7.63)

As we saw in Sect. 7.3.2, the state of a subsystem is represented by the corresponding
reduced density operator. Probability statements are obtained by following the rules for den-
sity operators in Chap. 4. The comparison of Eq. (7.58) with Eq. (4.19) and Eq. (7.63) with

1We shall see in Sect. 8.1 that the resulting state is not entangled.
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(4.25) shows that: for the transitions between the reduced density operators as produced by
selective or non-selective local measurements on a subsystem, the rules for density operators
from Chap. 4 can be applied.

What can we say about the other subsystem SB? All the measurements on Bob’s subsys-
tem SB in the case of non-selective measurements by Alice on SA can be described by the
reduced density operator

ρ′Bn.s. = trA[ρ′ABn.s.] . (7.64)

We reformulate it with the aid of Eqs. (7.60) and (7.52) and find by using
∑
n P̂

A
n = 1AB the

result:

ρ′Bn.s = trA[
∑

n

ρ̃′ABn ] = trA[
∑

n

P̂An ρ
AB] = trA[(

∑

n

P̂An )ρAB] = trAρ
AB = ρB .

(7.65)

The density operator ρ′Bn.s of the subsystem SB after the non-selective measurement on SA is
the same as the density operator ρB before the measurement.

This is a remarkable result. Let us consider the situation in which the system SA is at
Alice’s location and the system SB at Bob’s (spatially separated) location. In a preparation
procedure, bipartite systems are often produced in the state ρAB . It can be entangled. It is
then left open to Alice as to whether she carries our measurements of some observable C on
her system or not. Bob cannot determine in any manner by measurements on his subsystem
SB whether or not Alice has carried out measurements. The analogous statement for unitary
manipulations on the system SA has already been derived in Sect. 7.4.1.

7.5 Separate Manipulations on both Subsystems

7.5.1 Pairs of Selective Measurements

First, Alice carries out a measurement and obtains the result cn with the probability p(cn) =
〈w̃Bn |w̃Bn 〉. The system is transformed after the selection described above into the composite
state |cAn , wBn 〉 (compare Fig. 7.2). If Bob makes a measurement following this selection, he
obtains the value di with the conditional probability

p(di|cn) =
|αni|2
p(cn)

. (7.66)

This can be read off from Eqs. (7.44) and (7.55). The composite system is then transformed
into the product state |cAn , dBi 〉 after another selection for which Bob informs Alice of the result
he has obtained. If, in reverse, first Bob and then – after selection according to the measured
value di – Alice makes a measurement, we obtain analogously (see Fig. 7.2) after the second
selection the same final state for the pair of measured values (cn, di). For the probabilities,
we then have

p(cn|di) =
|αni|2
p(di)

. (7.67)
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to outcome

selection
according

to outcome

selection
according

t

SBSA SBSA

cn di

di cn

|cAn 〉|cAn 〉 |dB
i 〉

|cAn 〉 |wB
n 〉 |vA

i 〉 |dB
i 〉

|dB
i 〉

composite system: |ψAB〉

Figure 7.2: A selective measurement on the subsystems SA and SB . Left: the measurement is first
carried out on SA and then on SB ; right in the reverse order. A selection is carried out in each case
according to the measured values di and cn. The probability of obtaining the pair of measured values
(cn, di) and the corresponding final state |cAn , dB

i 〉 is the same in both cases.

The joint probability p(cn, di) with which the pair of measured values (cn, di) is obtained
from selective local measurements is independent of the order in which they are carried out.
One finds

p(cn, di) = p(cn|di)p(di) = p(di|cn)p(cn) = |αni|2 = 〈ψAB|PABni |ψAB〉 (7.68)

with the projection operator

PABni := |cAn , dBi 〉〈cAn , dBi | . (7.69)

The final state is PABni |ψAB〉 = |cAn , dBi 〉. Since the observables ĈA and D̂B of the local
measurements commute, this could have been expected. We add that all of the statements
made above for the pure initial state |ψAB〉 can be applied in the well-known manner when
the initial state is a mixture with the density operator ρAB .

Instead of selecting after each local measurement, Alice and Bob can also find the state
|cn, di〉 after a large number of measurements by referring to the result (cn, di). In this case,
also, an exchange of information in both directions is necessary. It is a part of the preparation
procedure for the state |cAn , dBi 〉. In many cases, one is interested in the probabilities p(cn, di)
with which the pairs of measured values (cn, di) occur. To find them, Alice and Bob meet after
carrying out measurements on many systems and determine the relative frequency of the com-
binations of measured values. These correlations of locally-obtained results are determined
by the preparation procedure of the initial state (7.42).
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Mean values The dyadic decomposition of the operators CA ⊗DB has the form (compare
Eq. (7.51))

CA⊗DB =
∑

n,i

cndi|cAn , dBi 〉〈cAn , dBi | . (7.70)

For its mean value in the state ρAB , we have
∑

n,i

trAB
[
PABni ρ

AB
]
cndi = trAB

[
(CA⊗DB) ρAB

]
. (7.71)

The trace on the left side is the probability that in local measurements of ĈA and D̂B on
the subsystems SA and SB , the pair of measured values (cn, di) will be obtained. The mean
value of the products of correlated local measured values is the same as the mean value of
the product operator. We will make use of this fact, especially in Sects. 9.2.2 and 10.1, in
connection with non-local measurements.

7.5.2 Non-Local Effects: “Spooky Action at a Distance”?

For an improved understanding, it is helpful to confront the results of the preceding sections
with a popular catchword. We consider the following situation: we carry out local measure-
ments of the same observable C on a system in the state

|ψAB〉 =
1√
2
(|cA1 , cB1 〉+ |cA2 , cB2 〉) (7.72)

(conventions as in Sect. 7.4.2). The possible results are c1 or c2. The probabilities of occur-
rence of the pairs of measured values are

p(c1, c1) = p(c2, c2) =
1
2

(7.73)

p(c1, c2) = p(c2, c1) = 0 . (7.74)

The measurements on SA yield, for example, the value c1. Then one often says, in an abbre-
viated and sometimes misleading manner of speech, that the measurement has transformed
the composite system SAB into the state |cA1 , cB2 〉 and thereby the subsystem SB into the state
|cB1 〉. This holds independently of the spatial separation between the system SA at Alice’s lo-
cation and SB at Bob’s. In popular-scientific descriptions, this is often referred to as “spooky
action at a distance”2. Is the situation of quantum physics correctly characterised by this term?

We have seen the the preparation of quantum objects in a state |cA1 , cB1 〉 requires a selection
by Alice, a communication at most at the velocity of light between Alice and Bob, and a
selection by Bob. This is most certainly not a case of instantaneous action at a distance.

2A. Einstein wrote concerning the quantum theory: “Ich kann aber deshalb nicht ernsthaft daran glauben, weil die
Theorie mit dem Grundsatz unvereinbar ist, dass die Physik eine Wirklichkeit in Zeit und Raum darstellen soll, ohne
spukhafte Fernwirkung”. (A. Einstein in a letter to M. Born dated 3.3.1947 [EB 69]). Born’s translation: “I cannot
seriously believe in it because the theory cannot be reconciled with the idea that physics should represent a reality in
time and space, free from spooky actions at a distance”. We shall return to what Einstein understood to be “reality”
in Chap. 10.
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Perhaps the catchword is not meant to refer to states, and thereby to preparation proce-
dures, but rather to measured values. If Alice obtains the value c1, then Bob, according to
Eq. (7.74), will with certainty find the value c1. This is also the case when the two measure-
ments are carried out simultaneously. For a system prepared in the state (7.72), measurements
of the observable C on SA and SB yield completely correlated results. However, the occur-
rence of the two results is not causally related. We are familiar with a similar situation in the
case of classical systems: as a preparation procedure, either a red or a blue ball is placed into
each of two boxes. If the preparation procedure is known, then after opening one of the boxes,
it can be predicted with certainty what the result of a simultaneous observation of the ball in
the other box will be. It is not necessary that the colour of the one ball be somehow connected
with the colour of the other via some interaction which propagates with more than the velocity
of light. Correlations are already determined by the preparation procedure.

By the comparison to the two-ball experiment, we wished to emphasize that in this situa-
tion, the correlations are decisive. Not all statements about composite quantum systems can
be simulated by classical systems such as e.g. coloured balls. We will discuss this in detail in
Chap. 10. The section after the next contains a first demonstration of this.

How Alice prepares Bob’s subsystem in a state of her choice For every given ONB
{|s〉, |t〉}, the state |ΦAB+ 〉 = 1√

2
(|0A, 1B〉 − |1A, 2B〉) can always be written in the form

|ΦAB+ 〉 =
1√
2
(|sA, tB〉 − |tA, sB〉) . (7.75)

Alice wants to transform the subsystem SB at Bob’s location into the state |sB〉. To do so,
she makes a measurement on her system SA in the ONB {|sA〉|tA〉} and informs Bob if her
measurement yields the result associated with |tA〉. Then Bob can select accordingly among
his subsystems. The result is a preparation procedure which leads Bob to quantum objects in
the state |sB〉. For this purpose, no quantum objects need be transmitted between Alice and
Bob. The entangled state serves as a tool (similar procedures are described in Sect. 11.2 and
in connection with quantum teleportation in Sect. 11.3).

7.6 The Unitary Dynamics of Composite Systems

We consider unitary transformations of the composite system. The von Neumann equation
(4.9) or (4.10) can be applied to composite systems according to the postulates

i�
dρAB

dt
= [HAB, ρAB(t)]− i

dρAB

dt
= LABρAB(t) . (7.76)

with the Liouville operator LAB ∈ LA ⊗ LB . We employ the Schrödinger representation. If
an interaction described by the Hamiltonian HAB

int �= 0 is present between the subsystems SA

and SB , then the individual subsystems are open quantum systems. The overall Hamiltonian
then has the form

HAB = HA ⊗ 1B + 1A ⊗HB +HAB
int . (7.77)
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The associated Liouville operator is found to be

LAB = LA + LB + LABint (7.78)

and it follows for the von Neumann equation:

i
dρAB

dt
= (LA + LB + LABint )ρAB(t) . (7.79)

This leads to a differential equation for the reduced density operator ρA

i
dρA

dt
= LAρA(t) + trB [LABint ρ

AB(t)] . (7.80)

To determine ρA(t), the complete equation (7.79) must be integrated. There are various ap-
proximation methods to accomplish this. In Sect. 13.1 and Chap. 14, we will encounter an
in-out approach to the dynamics of open systems, which is not based upon the differential
time dependence of ρA(t) described by Eq. (7.80). Instead, it relates the final state ρA(tout) to
the initial state ρA(tin) by means of a superoperator.

7.7 A First Application of Entanglement: a Conjuring
Trick

In the coming chapters, we will demonstrate repeatedly that entanglement is a central tool on
which the effects of quantum information theory are based. Entanglement and the quantum
correlations which arise from it can however also be a tool for the study of the fundamentals of
quantum theory. We wish to demonstrate this in answering the following underlying question:
can effects of quantum theory be explained by means of classical physics – possibly in the
framework of theories which have yet to be formulated? This will give us directly an example
of an application for the formalism introduced in the preceding sections. In a wider context,
we will come back to this question in Chap. 10.

7.7.1 The Conjuring Trick

A magician amazes his audience with the following trick: the audience sees the magician give
something to his two assistants Alice and Bob. Alice and Bob then each go into separate
rooms which are perfectly insulated against any exchange of information. In each room is an
audience. In each, a coin is tossed and, depending on the result of the toss, a question is asked
of Alice or Bob. If the result is “heads”, then the question concerns the favourite colour; it can
be answered with either “red” or “green”. If the tossed coin gives “tails”, then the audience is
to ask the question, “What is your favourite vegetable”, and the answer can be either “carrots”
or “peas”. The question and answer are written down; one round is then finished. Alice, Bob
and the magician meet again, enter the question-and-answer pair in a list with the audience as
witnesses, and repeat the whole procedure again from the beginning. A large number of such
rounds is completed. At the end, the combined audience analyses the question-and-answer
pairs, looking for correlations.
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There are four pairs of questions which can be divided into three cases: both are asked for
a colour, one for a colour and the other for a vegetable, or both are asked for vegetables. In
each performance, the following correlations are found:

Alice Bob

1st Case colour? colour?
green! green!

To the pair of questions (colour?, colour?), the pair of answers (green!, green!)
is given with a non-vanishing frequency.

2nd Case colour? vegetable?
green! peas!

vegetable? colour?
peas! green!

When one answers this combination of questions with “green!”, then the other
always gives the appropriate answer “peas”.

3rd Case vegetable? vegetable?

To this combination of questions, one of the two assistants with certainty gives
the answer “carrots!”.

This is what the audience records.

7.7.2 Classical Correlations can give no Explanation

The audience sees that pairs of answers are given with a certain regularity. How did the
magician arrange this? What was his trick? The audience presumes that Alice and Bob were
given slips of paper on which a colour and a vegetable were written. They then read off the
answers to the questions correspondingly. The magician had prepared pairs of paper slips with
different abundances, so that precisely the correlations between the answers as listed above
would be observed.

Assuming this were the case, then to produce the first case in the table, the magician
must have given out slips which both had the colour “green” written on them. In order that
the pairs of questions (colour?, vegetable?) and (vegetable?, colour?) would always be
answered correctly, the vegetable on both of these slips would have to be “peas” (second
case). However, this would contradict the requirement that in the case of the third possible
combination of questions (vegetable?, vegetable?) at least one of the assistants would answer
with “carrots”. The method with slips of paper thus does not yield the results observed. We
want to demonstrate that the magician nevertheless need not possess paranormal abilities in
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|r〉 ↔ red

|g〉 ↔ green

|P 〉 ↔ peas

|C〉 ↔ carrots

Figure 7.3: Bases in which the measurements are carried out for the conjuring trick. When pairs of
photons are used, these are the analyser devices.

order to cause the observed correlations of the answers. It suffices for him to have some
knowledge of entangled states.

7.7.3 The Trick

The magician’s trick consists of the fact that he does not use correlated classical systems such
as pairs of paper slips, but instead he makes use of entangled quantum systems. He gave to
Alice and Bob each a subsystem of a bipartite systems, which was prepared to be in the state

|χAB〉 = N(|rA, rB〉 − a2|PA, PB〉) (7.81)

with a ∈ R and a �= 0, a �= 1. N is a normalisation factor and {|r〉, |g〉} and {|C〉, |P 〉} are
orthonormal bases ofH2, which are rotated relative to one another (see Fig. 7.3).

|r〉 = a|P 〉+ b|C〉 (7.82)

|g〉 = b|P 〉 − a|C〉 (7.83)

with b ∈ R and a2 + b2 = 1. Resolution leads to

|P 〉 = a|r〉+ b|g〉 (7.84)

|C〉 = b|r〉 − a|g〉 . (7.85)

If Alice or Bob is asked for the colour, he or she carries our a measurement on the subsys-
tem in the {|P 〉, |C〉} basis and interprets the result with respect to the state to which the mea-
surement leads, according to the rule |P 〉 ↔ “peas!” and |C〉 ↔ “carrots!”. Correspondingly,
when the question is for the vegetable, the measurement is carried out in the rotated {|r〉, |g〉}
basis and the answer is given according to the rule |r〉 ↔ “red!” and |g〉 ↔ “green!”. We can
read off from the state |χAB〉 the probabilities with which particular pairs of answers will be
given.

To find the probabilities, we insert |P 〉 from Eq. (7.84) in various places into Eq. (7.81):

|χAB〉 = N(|rA, rB〉 − a2(a|rA〉+ b|gA〉)(a|rB〉+ b|gB〉)) (7.86)

|χAB〉 = N(|rA, rB〉 − a2(a|rA〉+ b|gA〉)|PB〉) (7.87)

|χAB〉 = N(|rA, rB〉 − a2|PA〉(a|rB〉+ b|gB〉)) . (7.88)
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|r〉 from Eq. (7.82) inserted into |χAB〉 leads to:

|χAB〉 = N [(a|PA〉+ b|CA〉)(a|PB〉+ b|CB〉)− a2|PA, PB〉]
= N(b2|CA, CB〉+ ab(|CA, PB〉+ |PA, CB〉)) . (7.89)

From Eqs. (7.86)–(7.89), we find the probabilities for the possible pairs of measurement re-
sults and thus for the pairs of answers (compare Eq. (7.68)). From Eq. (7.86), for the pair of
questions in the first case, the observed result is found:

p(gA, gB) = Na4b4 �= 0 . (7.90)

Eqs. (7.87) and (7.88) lead to

p(gA, CB) = 0, p(CA, gB) = 0 . (7.91)

Therefore, when the pair of questions (colour?, vegetable?) is asked, and Alice answers with
“green!”, then Bob always answers with “peas!” and vice versa. This reproduces the second
case. Finally, we verify the third case with Eq. (7.89):

p(PA, PB) = 0 . (7.92)

Entanglement is the tool with which quantum magicians can carry out the tricks which classi-
cal magicians cannot master.

Consequences The experimental implementations of the basic idea of the conjuring trick
are not so simple as we described in Sect. 7.7.1. The results however agree well with the
quantum theoretical predictions (compare Sect. 10.8).

The conjuring trick can be carried out in principle, but not with the means and methods of
classical physics. Systems for which the results of measurements (Alice’s and Bob’s answers)
are already predetermined before the measurement (Einstein’s reality) on the corresponding
subsystems (Einstein’s locality), such as is the case for the slips of paper, cannot be the cause
of the observed correlations. This shows that local-realistic theories and the quantum theory
can lead to differing predictions. In our example: “the conjuring trick cannot be carried out”
or “the conjuring trick can be carried out”; but only the predictions of quantum theory can
be experimentally verified. Thus, local-realistic alternative theories to the quantum theory
are refuted. We will describe additional experiments in Chap. 10 and then give more precise
definitions for the concepts of Einstein reality and Einstein locality.

7.8 Quantum Gates for Multiple Qubit Systems

7.8.1 Entanglement via a CNOT Gate

The processing of quantum information is often explained schematically without reference
to an experimental implementation with the aid of quantum circuits. The essential devices
which are needed are: quantum wires; these are special quantum channels through which
quantum systems can propagate without being modified; and quantum gates, which effect
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|x⊕ y〉

|x〉control qubit |x〉

target qubit |y〉

Figure 7.4: A CNOT gate.

unitary transformations of quantum systems. The systems are multi-qubits from the spaces
H2 ⊗ H2 ⊗ H2 . . . ⊗ H2. Measurements permit reading out of the information. Owing to
the unitarity of their operations, quantum gates represent reversible processes. Measurements
are, in contrast, irreversible. Quantum computers are a network of quantum gates. We have
already encountered quantum gates for quantum systems inH2 in Sect. 3.4. We now move on
to product spaces. In Chap. 12, we will assemble quantum circuits into quantum computers.

Entanglement via a CNOT gate A simple quantum gate which transforms a qubit product
state into an entangled state is the CNOT gate or controlled NOT gate, also called an XOR
gate. Its action on the computational basis ofHA2 ⊗HB2 is defined by

|x, y〉 → |x, y ⊕ x〉 (7.93)

with x, y, . . . ∈ {0, 1}. This determines the action on an arbitrary vector fromHA2 ⊗HB2 . The
symbol ⊕ denotes addition modulo 2, i. e. 1⊕ 1 = 0. In detail, this means that:

|0A, 0B〉 CNOT−→ |0A, 0B〉 (7.94)

|0A, 1B〉 CNOT−→ |0A, 1B〉 (7.95)

|1A, 0B〉 CNOT−→ |1A, 1B〉 (7.96)

|1A, 1B〉 CNOT−→ |1A, 0B〉 . (7.97)

From this, it follows that

(CNOT) · (CNOT) = 1 . (7.98)

Applying the matrix representation in the computational basis,

CNOT↔






1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




 , (7.99)

one can readily verify the unitarity property:

(CNOT)† = (CNOT)−1 . (7.100)

The qubits of the system A or B are called control qubits or target qubits (see Fig. 7.4).
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Figure 7.5: Two equivalent networks.

A simple example shows that the CNOT gate transforms superpositions of control qubits
into entanglements of control and target qubits:

(
α|0A〉 ± β|1A〉) |0B〉 CNOT−→ α|0A, 0B〉 ± β|1A, 1B〉 , (7.101)
(
α|0A〉 ± β|1A〉) |1B〉 CNOT−→ α|0A, 1B〉 ± β|1A, 0B〉 . (7.102)

For α = β = 1√
2

, in this manner four Bell states are formed. The reduced density operator

of the target qubit is in this case ρB = 1
21

B (and correspondingly for the control qubit).
Measurement in an arbitrary ONB ofHB2 yields the two measured values and states in perfect
randomness with the probabilities 1

2 .

U

control qubit |x〉

target qubit |y〉

Figure 7.6: A controlled U gate.

A CNOT gate and four Hadamard gates can be combined to give the inverse of a CNOT
gate (see Fig. 7.5). The CNOT gate is a special case of a controlled U gate (see Fig. 7.6).
It leaves |0, 0〉 and |0, 1〉 unchanged. |1, y〉 with y = 0, 1 goes over to |1〉 ⊗ U |y〉. CNOT
corresponds to U = σx.

7.8.2 Toffoli, SWAP, and Deutsch Gates

The Toffoli gate in Fig. 7.7 is also called a CCNOT gate (controlled-controlled NOT) or
doubly-controlled NOT gate. In this case, the NOT gate acts on the target qubit if and only if
both control qubits are in the state |1〉. The action of CCNOT is

|x, y, z〉 → |x, y, z ⊕ xy〉 . (7.103)

The SWAP gate exchanges qubit states

SWAP|xA, yB〉 = |yA, xB〉 . (7.104)

Analogously, one can construct a doubly-controlled U gate (see Fig. 7.8). It can be imple-
mented with three CNOT gates (cf. Fig. 7.9):

|x, y〉 → |x, x⊕ y〉 → |y, x⊕ y〉 → |y, x〉 . (7.105)
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|x〉

|y〉

|z ⊕ x y〉

control qubit |x〉

control qubit |y〉

target qubit |z〉

Figure 7.7: A Toffoli gate.

U|z〉

|x〉

|y〉

Figure 7.8: A doubly-controlled U gate.

|x〉

|y〉

|y〉

|x〉
Figure 7.9: Exchange of two qubits (a SWAP gate).

Universal quantum gates are a series of quantum gates with which one can carry out every
unitary transformation on H2 ⊗ H2 ⊗ . . . ⊗ H2. It can be shown that e. g. the Deutsch gate
suffices for this purpose ( [Deu 89]). In the case of this gate, the unitary transformation U in
Fig. 7.8 has the form

U = −i exp
(
i
θ

2
σx

)
. (7.106)

There are other universal gates (compare Sect. 7.10). We shall return at length to this topic in
Sect. 12.9.

7.9 Systems of Identical Particles∗

In connection with systems whose subsystems contain elementary particles of the same type –
we consider as an example two spin-1

2 particles – the following questions are frequently asked:

*The sections marked with an asterisk * can be skipped over in a first reading.
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The particles are Fermions and their composite states must be antisymmetric with respect to
exchange of the states of the individual particles. Therefore, they must take a form similar
to the Bell vectors |Φ−〉 or |Ψ−〉. Why can we not construct e.g. a teleportation procedure
based on this always-present “natural” entanglement? And conversely, how can we implement
teleportation with Fermions in a symmetrically-entangled state |Φ+〉?

Identical particles Identical particles have the same values of all their intrinsic properties
such as mass, charge, spin etc. Electrons for example can be distinguished from positrons
but not from each other. They cannot be marked and therefore have no individuality. An
identification is not possible.

To describe systems of identical particles, one can begin with enumerated distinguish-
able particles and then remove their distinguishability. We restrict our considerations to
2-particle systems. The generalisation to more particles is straightforward. The state vec-
tors of two distinguishable particles with the numbers (1) and (2) lie in the product space
H(1)(2) = H(1)⊗H(2). According to the postulates, the states of identical particles are either
completely symmetric in their particle numbers (Bosons, with integral spins), or completely
antisymmetric (Fermions, with half-integral spins). Their state vectors lie correspondingly in
subspaces of H(1)(2), which we denote by H(1)(2)

+ and H(1)(2)
− . These subspaces are them-

selves not product spaces. If {|u(1)〉} and {|v(2)〉} are ONB of H(1) or H(2), respectively,

then the bases of e.g. H(1)(2)
− are given by |n, i〉− := 1√

2
(|n(1), i(2)〉 − |i(1), n(2)〉) with

1 ≤ n ≤ dimH(1) and 1 ≤ i ≤ dimH(2). Without any interactions at all, the symmetry pos-
tulate leads to states which are formally entangled in terms of their non-observable particle
numbers.

Even with the aid of observables, no identification of the particles is allowed. Observables
must therefore be invariant under permutations of the particle numbers. The postulates for
projection measurements apply. They are formulated with respect to the spaces H(1)(2)

+ or

H(1)(2)
− . A consequence of this is that measurements or unitary dynamical evolutions cannot

produce transitions between Bosons and Fermions.

Particles in two different regions of space We clarify the essential points using the exam-
ple of two spin-1

2 particles with external degrees of freedom. H(1) and H(2) are thus already
assumed to be product spaces for the external degrees of freedom (vectors |α〉 and |β〉) and
for the spins (vectors |0〉 and |1〉). A possible state is then e.g.

|Λ(1)(2)〉 =
1√
2

(
|α, 0〉(1) ⊗ |β, 1〉(2) − |β, 1〉(1) ⊗ |α, 0〉(2)

)
. (7.107)

In order to make the connection to the preceding sections, we discuss a situation in which
〈α|β〉 = 0 holds. The states |α〉 and |β〉 are orthogonal. This is the case e.g. when the
particles have differing directions of their momenta or when the wavefunctions 〈�r|α〉 and 〈�r|β〉
are nonzero only in a restricted spatial region Gα or Gβ , where Gα and Gβ do not overlap
(Gα ∩Gβ = ∅). Then, one can register a Fermion only in Gα or in Gβ , but not outside them.
However, statements about the particle numbers (1) or (2) are not possible. Gα or Gβ can be
e.g. different locations at which Alice A or Bob B have set up their measurement apparatus
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which can carry out measurements in spin space. If Alice’s apparatus registers a signal, this at
the same time represents a measurement in configuration space, i.e. Gα is registered. For the
description of this situation, we can introduce an abbreviated form which reflects the fact that
in the case Gα ∩ Gβ = ∅, the state |α〉 (i.e. the location Gα, Alice) is always correlated with
|0〉 and the state |β〉 (i.e. the location Gβ , Bob) is always correlated with |1〉:

|Λ(1)(2)〉 ↔ |ΛAB〉 = |0A, 1B〉 . (7.108)

With respect to all the measurements which can be carried out by Alice and Bob, the product
state |ΛAB〉 is equivalent to the state |Λ(1)(2)〉. If Alice measures the observable σz , she always
finds the spin state |0〉. This is the content of Eq. (7.107).

If Alice measures the observable σx, the result of the measurement can yield e.g. the
eigenvalue |1x〉 and the 2-Fermion system is transformed after selection into the state

|ΛAB〉 → |Λ′AB〉 = |1Ax , 1B〉 . (7.109)

|Λ′AB〉 can again be written in the complete form |Λ′(1)(2)〉. To this end, we replace |0〉 on the
right-hand side of Eq. (7.107) by |1x〉. The probability of this result is |〈Λ(1)(2)|Λ′(1)(2)〉|2 =
|〈ΛAB |Λ′AB〉|2. As a result of the orthonormalisation 〈α|β〉 = 0, the vector |ΛAB〉 in
Eq. (7.108) is a product vector in HAB .

Utilisable and non-utilisable entanglement The state introduced above, |n, i〉−, is a su-
perposition, from which measurable interference effects can result in particular physical sit-
uations. The fact that the particles cannot be distinguished has physical consequences. The
energy spectrum of the helium atom is an example of this. In the following sections, how-
ever, we shall discuss other physical questions. The entanglement for example in the state
1√
2
(|0(1), 1(2)〉− |1(1), 0(2)〉) is related to the indistinguishable particle numbers. They do not

denote subsystems. Since this formal entanglement cannot be used, it cannot serve as a tool
for quantum-mechanical information processing. It is not utilisable for this purpose.

Only the entanglement with the states |α〉 and |β〉 with 〈α|β〉 = 0, as in the state |Λ(1)(2)〉
of Eq. (7.107), opens up the possibility of intercession via |α〉 and |β〉. As we have already
seen, then |Λ(1)(2)〉 becomes equivalent to a non-entangled product state |ΛAB〉. If we now
form e.g. by superposition with an additional state

|Ω(1)(2)〉 =
1√
2

(
|α, 1〉(1) ⊗ |β, 0〉2 − |β, 0〉(1) ⊗ |α, 1〉(2)

)
↔ |ΩAB〉 = |1A, 0B〉

(7.110)

the state vector

|Ψ(1)(2)
+ 〉 :=

1√
2

(
|Λ(1)(2)〉+ |Ω(1)(2)〉

)
, (7.111)

then we can read off from the abbreviated notation

|Ψ(1)(2)
+ 〉 ↔ |ΨAB

+ 〉 =
1√
2

(|0A, 1B〉+ |1A, 0B〉) (7.112)
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that the Bell state |ΨAB
+ 〉 has been formed. In spite of the addition in Eq. (7.112), it has the

symmetry properties required for the description of two identical Fermions. At the same time,
a utilisable entanglement has come about by the superposition described by Eq. (7.111).

If the condition 〈α|β〉 = 0 is not fulfilled in a physical situation, it can be expected that
additional effects will occur in the course of the information processing, which are due to the
indistinguishability of the particles. One can also switch on and off the coupling 〈α|β〉 �= 0 in
the form of a time-dependent exchange coupling and thereby produce an entanglement only at
certain times. We mention also that the symmetry or antisymmetry property is automatically
taken into account within the framework of the second quantisation.

7.10 Complementary Topics and Further Reading

• For “proper mixtures” and “improper mixtures”: [d’Es 95], [d’Es 99].

• Local measurements and the requirements of the theory of relativity: [PT 04].

• The idea that the whole is more than the sum of its parts is referred to in philosophy as
holism. There is a whole series of philosophical analyses in which the attempt is made
to give this idea a precise meaning in many different fields from sociology to physics,
and to investigate its consequences. For the natural-philosophical question as to whether
there is a holism in physics, quite new aspects have resulted from the study of entangled
states in composite systems (see [Pri 81, Sects. 3.7, 5.6, 6.3]). Two differing analyses of
this question are introduced in [Esf 04] and [See 04] (cf. [Esf 06]). There, more detailed
literature is also cited. See also [Hea 99].

• For the conjuring trick: [Har 93], [Har 98].

• Experiments on the conjuring trick: [Har 92], [TBM 95], [DMB 97], [BBD 97].

• An overview of quantum gates for qubits: [DiV 98], [Bra 02].

• In utilising coupled quantum dots or neutral atoms in microtraps as tools for quantum
information processing, effects occur which are based upon the indistinguishability of
particles. For details and further literature, see: [ESB 02].
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7.11 Problems for Chapter 7

Prob. 7.1 [for 7.3.2]: Show that ρA and ρB in Eq. (7.34) have the properties required of a
density operator.

Prob. 7.2 [for 7.4 and 7.5]: Confirm the results of Sects. 7.4 and 7.5 for the case that the
initial state was not a pure state |ψAB〉, but rather a mixture, ρAB .

Prob. 7.3 [for 7.5.2]: Prove Eq. (7.75).

Prob. 7.4 [for 7.8]: Show in each case the equivalence of the networks asserted in Figs. 7.5
and 7.10.

=

H

HH

H

Figure 7.10: Two equivalent networks.

Prob. 7.5 [for 7.8:] Show that the network in Fig. 7.11 converts pairs of Bell states into
pairs of Bell states.

Figure 7.11: Mapping of Bell states onto Bell states.

Prob. 7.6 [for 7.8]: Show that one can construct a quantum adder from a Toffoli gate and
a CNOT gate.

|x〉
|y〉
|0〉

|x〉
|x⊕ y〉
|x y〉

Figure 7.12: A quantum adder. The first two bits are added modulo 2. The circuitry is reversible.




