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Rocket Fundamentals

Many people have had, and still have, misconceptions about the basic prin-
ciple of a rocket. Here is a comment of the publisher of the renowned New
York Times from 1921 about the pioneer of US astronautics, Robert Goddard,
who at that time was carrying out the first experiments with liquid propulsion
engines:

“Professor Goddard . . . does not know the relation of action to
reaction, and of the need to have something better than a vacuum
against which to react – to say that would be absurd. Of course he
only seems to lack the knowledge ladled out daily in high schools.”

The publisher’s doubts whether rocket propulsion in vacuum could work
is based on our daily experience that you can only move forwards by pushing
backwards against an object or medium. Rowing is based on the same princi-
ple. You use the blades of the oars to push against the water. But this example
already shows that the medium you push against, which is water, does not
have to be at rest, it may move backwards. So basically it would suffice to
fill a blade with water and push against it by very quickly guiding the water
backwards with the movement of the oars. Of course, the forward thrust of
the boat gained thereby is much lower compared with rowing with the oars
in the water, as the large displacement resistance in the water means that you
push against a far bigger mass of water. But the principle is the same. Instead
of pushing water backwards with a blade, you could also use a pile of stones
in the rear of your boat, and hurl them backwards as fast as possible. With
this you would push ahead against the accelerating stone. And this is the ba-
sis of the propulsion principle of a rocket: it pushes against the gases it ejects
backwards with full brunt. So, with the propellant, the rocket carries the mass
against which it pushes to move forwards, and this is why it also works in
vacuum.

This repulsion principle, which is called the “rocket principle” in astro-
nautics, is based on the physical principle of conservation of momentum. It
states that the total (linear) momentum of a system remains constant with
time. If, at initial time t0 the boat (rocket) with mass m1 plus stone (propel-
lant) with mass m2 had velocity v0, implying that the initial total momentum
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was p0(t0) = (m1 + m2)v0, then, at some time t+ > t0, on hurling the stone
(propellant) away with velocity v2 the boat will have velocity v1 (neglecting
water friction) and the total momentum p (t+) = m1v1 + m2v2 must be the
same. That is

p (t0) = p (t+) principle of the conservation of (linear) momentum

from which follows

(m1 + m2) · v0 = m1v1 + m2v2

Note: The principle of conservation of momentum is only valid for the vector
form of the momentum equation, which is quite often ignored. A bomb that is
ignited generates a huge amount of momentum out of nothing, which apparently
would invalidate an absolute value form of the momentum equation. But if you
add up the vectorial momenta of the bomb’s fragments, it becomes obvious that
the vectorial linear momentum has been conserved.

Given m1, m2, v0 and velocity v2 of the stone (propellant) expelled, one is able
to calculate from this equation the increased boat (rocket) velocity v1. Doing
so, this equation affirms our daily experience that hurling the stone backwards
increases the speed of the boat, while doing it forwards decreases its speed.

1.1
The Rocket Principle

With a rocket, the situation is a bit more complicated, as it does not eject one
stone after another, but it emits a continuous gas jet. It can be shown (see
Ruppe (1966, p. 24ff)) that ejecting the same amount of mass continuously
rather than in chunks maximizes the achievable thrust. In order to describe
the gain of rocket speed by the continuous mass ejection stream adequately in
mathematical and physical terms, we have to consider the ejected mass and
time steps as infinitesimally small and in an external rest frame, a so-called
inertial (unaccelerated, see Section 13.1) reference system. This is depicted in
Fig. 1.1, where in an inertial reference system with its origin at the center of
the Earth a rocket with mass m in space experiences no external forces.

At a given time t the rocket may have velocity v and momentum p(t) = mv.
By ejecting the propellant mass dmp > 0 with effective exhaust velocity v∗
– the meaning of which will become clear in the next section – and hence with
propellant momentum pp (t + dt) = (v + v∗) · dmp, it will lose part of its mass
dm = −dmp < 0 and hence gain rocket speed dv by acquiring momentum
pr (t + dt) = (m + dm) (v + dv).
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Figure 1.1 A rocket in force-free space before (above) and after (be-
low) it ejected a propellant mass dmp with effective exhaust velocity
v∗, thereby gaining speed dv. Velocities relative to the external iner-
tial system (Earth) are dashed, and those with regard to the rocket are
solid.

Note: In the literature dm > 0 often denotes the positive mass flow rate of
the propellant, and m the mass of the rocket. This is inconsistent, and leads to
an erroneous mathematical description of the relationships, because if m is the
mass of the rocket, logically dm has to be the mass change of the rocket, and
thus it has to be negative. This is why in this book we will always discriminate
between rocket mass and propulsion mass using the consistent description dm =
−dmp < 0 implying ṁ = −ṁp < 0 for their flows.

For this line of events we can apply the principle of conservation of momen-
tum as follows:

p(t) = p (t + dt) = pp (t + dt) + pr (t + dt)

From this follows

mv = −dm (v + v∗) + (m + dm) (v + dv)

= mv − dm · v∗ + m · dv + dm · dv

As the double differential dm · dv mathematically vanishes with respect to the
single differentials dm and dv, we get with division by dt:

mv̇ = ṁv∗ (1.1.1)
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According to Newton’s second law (Eq. (7.1.12), F = mv̇, the term on the left
side corresponds to a force due to the repulsion of the propellant, which we
correspondingly indicate by

F∗ = ṁv∗ (1.1.2)

with ṁ = −ṁp < 0. This means that the thrust of a rocket is determined by
the product of propellant mass flow rate and exhaust velocity. Observe that
due to ṁ < 0 F∗ is exactly in opposite direction to the exhaust velocity v∗
(But depending on the steering angle of the engine, v∗ and hence F∗ does not
necessarily have to be in line of the flight direction v.). Therefore with regard
to the absolute values we can write

F∗ = −ṁv∗ = ṁpv∗ propellant force (thrust) (1.1.3)

Equation (1.1.2), or (1.1.3) respectively, is of vital importance for astronautics,
as it describes basic physical facts, just like every other physical relationship,
relating just three parameters, such as W = F · s or U = R · I. This is its state-
ment: thrust is the product of exhaust velocity times mass flow rate. Only the
two properties together make up a powerful thruster. The crux of the propel-
lant is not its “energy content” (in fact the energy to accelerate the propellant
might be provided externally, which is the case with ion propulsions), but the
fact that it possesses mass, which is ejected backwards, and thus accelerates
the rocket forwards by means of conservation of momentum. The higher the
mass flow rate, the larger the thrust. If “a lot of thrust” is an issue, for instance
during launch, when the thrust has to overcome the gravitational pull of the
Earth, and since the exhaust speed of engines is limited, you need thrusters
with a huge mass flow rate. The more the better. Each of the five first-stage
engines of a Saturn V rocket had a mass flow rate of about 2.5 metric tons per
second, in total 12.5 tons per second, to achieve the required thrust of 33 000 N
(corresponds to 3400 tons of thrust). This tremendous mass flow rate is ex-
actly why, for launch, chemical thrusters are matchless up to now, and they
will certainly continue to be so for quite some time.

1.2
Rocket Thrust

1.2.1
Pressure Becomes Thrust

If the masses dmp were stones, and if we hurled them backwards, then the
thrust would just be the repulsion of the stones. But generally we hurl gases
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with the engine. Gases are a loose accumulation of molecules, which, de-
pending on temperature, display internal molecular motion, and thus gener-
ate pressure. On the other hand, the rocket at launch moves in an atmosphere
whose gas molecules exert an external pressure. In order to understand the
impact of the propellant gas pressure and external ambient pressure on the
engine’s thrust, let’s have a look at the pressure conditions in an engine (see
Fig. 1.2).

Figure 1.2 Pressure conditions inside and outside an engine chamber.

Inside the combustion chamber, and depending on the location within the
chamber, we assume a variable pressure pint, which exerts the force dFint =
pint · dA on a wall segment dA. In the area surrounding the chamber we as-
sume an equal external ambient pressure p∞. The propellant force F∗ gener-
ated by the chamber must be the sum of all effective forces acting on the entire
engine wall with surface S

F∗ =
∫∫

S

dFe f f =
∫∫

S

(pint − p∞) · dA (1.2.1)

The surface vector can be split into two components: a radial component ur

and an axial component ux (Fig. 1.3),

dA = dAr + dAx = (sin θ · ur + cos θ · ux) · dA

where the wall angle θ is the angle between surface normal and chamber axis.
If the combustion chamber is axially symmetric, then we have

∫∫

S

(pint − p∞) · dAr = 0

and therefore we only get axial contributions

F∗ =
∫∫

S

(pint − p∞) · dAx = ux

∫∫

S

(pint − p∞) cos θ · dA (1.2.2)
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Figure 1.3 Definition of the wall angle with regard to the chamber
axis.

Maintaining the internal pressure conditions, and thus without a change in
thrust, we now deform the combustion chamber, so that we get a rectangular
combustion chamber (see Fig. 1.4). Now that all wall angles are only θ = 0◦,
90◦, 180◦, 270◦ the following is valid

F∗ = −
∫∫

Aφ

(pint − p∞) (−1) ·dA −
∫∫

Aφ−At

(pint − p∞) · dA (1.2.3)

where F∗ now expresses the propellant force of the combustion chamber in
forward direction, the direction in which the total force is effectively pushing.

Figure 1.4 Pressure conditions in the idealized combustion chamber.

As there is no wall at the throat with the surface At, no force can be exerted
on it, and thus on the chamber’s back side the integral is limited to the surface
Aφ − At. The maximum combustion chamber pressure pint = p0 is on the
front side of the chamber, where the gas is about at rest. Because the gas
flow increases in the direction of the throat where it exits the chamber, the
pressure at the rear of the chamber is reduced by a certain amount Δp: pint =
p0 − Δp(r), and due to the axial symmetry of the chamber this pressure drop
is also axially symmetrical, so that at the throat pint = p0 −Δp(r) = pt applies.
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So Eq. (1.2.3) reads as follows:

F∗ = (p0 − p∞) Aφ −
∫∫

Aφ−At

(p0 − p∞) · dA +
∫∫

Aφ−At

Δp · dA

As∫∫

Aφ−At

(p0 − p∞) · dA = (p0 − p∞)
(

Aφ − At
)

and∫∫

Aφ−At

Δp · dA =
∫∫

Aφ

Δp · dA −
∫∫

At

Δp · dA =
∫∫

Aφ

Δp · dA − (p0 − pt) At

we get

F∗ = (pt − p∞) At +
∫∫

Aφ

Δp · dA (1.2.4)

Let’s have a closer look at the integral of the last equation. It describes a force
which results from the pressure reduction along the rear combustion chamber
wall. This pressure reduction is due to the propellant flow through the throat.
This mass flow, of course, does not generate a sudden pressure drop at the
rear wall, but rather a pressure gradient along the chamber axis, i.e.

∫∫

Aφ

Δp · dA → −
∫∫∫

chamber

∇p · dV

The pressure gradient corresponds to an acceleration field dv/dt of the mass
flow. According to the Euler equation of hydrodynamics, they are intimately
connected with each other via the mass density ρ:

−∇p = ρ
dv
dt

Euler equation

This equation expresses Newton’s law in hydrodynamics. If we apply the
Euler equation to the volume integral, we obtain

∫∫∫

chamber

∇p · dV = −
∫∫∫

chamber

dv
dt

dmp

dV
dV = −

vt∫

0

ṁp · dv

The velocity integral now ranges from the velocity at the front part of the
chamber, where the pressure gradient (and hence the drift velocity of the pro-
pellant) is zero, to its throat, where the velocity takes on the exit value vt.
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According to the continuity equation (Eq. (1.2.9)), the mass flow rate ṁp is in-
variant along the combustion chamber and also in the subsequent nozzle, and
thus it is constant. So we find

∫∫

Aφ

Δp · dA = −
∫∫∫

chamber

∇p · dV = ṁp

vt∫

0

dv = ṁpvt (1.2.5)

If we apply this result to Eq. (1.2.4), we get

F∗ = ṁpvt + (pt − p∞) At

So far our considerations have been independent of the exact form of the
combustion chamber, as long as it is axially symmetric. So we can consider the
nozzle to be also a part of the combustion chamber. Then all the parameters
considered so far at the throat of the combustion chamber are also valid for
the nozzle exit, i.e.

F∗ = ṁpve + (pe − p∞) Ae =: Fe + Fp (1.2.6)

We recover its vectorial form by the direction information in Eq. (1.2.2)

F∗ = −ue
[
ṁpve + (pe − p∞) Ae

]
(1.2.7)

where ue is the unit vector of the exit surface in the direction of the exhaust
jet and ve the exhaust velocity. The first term on the right side of Eq. (1.2.6) is
called momentum thrust Fe, and the second term is called pressure thrust Fp.
The first name is well chosen, because if you integrate expression ṁpve with
regard to time, you get the momentum mpve, which is merely the recoil mo-
mentum of the ejected propellant. The second term is formally not quite cor-
rect, as according to Eq. (1.2.5), the momentum thrust is also generated by a
pressure on the chamber because of its internal pressure gradient. At the end
it’s all pressure which accelerates the engine, and with it the rocket.

Effective exhaust velocity

If we compare Eq. (1.2.6) with Eq. (1.1.3), we can see that the effective exhaust
velocity is made up of two contributions:

v∗ = ve + (pe − p∞)
Ae

ṁp
effective exhaust velocity (1.2.8)

The expression “effective exhaust velocity” makes it clear that it is not only
about exhaust velocity ve, but modified by the pressure thrust. However, for



1.2 Rocket Thrust 9

a real thruster the pressure thrust indeed is only a small contribution. For an
ideally adapted nozzle with pe ≈ p∞ (Section 4.1.6) it even is negligibly small.

1.2.2
Momentum Thrust and Pressure Thrust

Ultimately, if it is only pressure that drives a rocket, how does this fit together
with the rocket principle discussed in Section 1.1, which was based on re-
pulsion and not on pressure? And what is the physical meaning of “pressure
thrust”? You often find the statement that pressure thrust occurs when the
pressure at the exit (be it nozzle or chamber exit) hits the external pressure.
The pressure difference at this point times the surface is supposed to be the
pressure thrust. Though the result is right, the explanation is not. First, the
exit pressure does not abruptly meet the external pressure. There is rather a
smooth pressure transition from the exit pressure to the external pressure cov-
ering in principle an infinite volume behind the engine. Second, even if such a
pressure difference could be traced back mathematically to a specific surface,
this would not cause a thrust, because, as we will see later, the gas in the noz-
zle expands backwards with supersonic speed, and such a gas cannot have a
causal effect on the engine to exert a thrust on it.

Figure 1.5 Pressure conditions of the idealized combustion chamber if
it could be, hypothetically, fully closed.

For a true explanation let’s imagine for a moment, and purely hypotheti-
cally, a fully closed combustion chamber (see Fig. 1.5) with the same pressure
conditions as in the idealized combustion chamber with mass flow rate (see
Fig. 1.4). The surface force on the front side would be Ff ront = (p0 − p∞)Aφ

on the front side, and Frear = (p0 − Δp − p∞)Aφ on the rear side. Hence
the net forward thrust would be F∗ = Ff ront − Frear = Δp · Aφ. Because the
wall angle on the rear side is 0◦ and because of Eq. (1.2.5), this translates into
F∗ = Δp · Aφ = ṁpvt. Therefore, we can say the following:
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The momentum thrust Fe physically results from the fact that, in a
hypothetically closed engine chamber, due to the mass flow rate ṁp

there is a bigger chamber pressure on the front side compared to the
by Δp smaller pressure on the back side. This causes a net pressure
force Δp · Aφ.

Ultimately it is the Euler equation, which relates the mass flow rate ṁp with
the pressure differences in the pressure chamber. In order to have the hypo-
thetical gas flow indeed flowing, we need to make a hole with area At into
the rear side (see Fig. 1.4). Once this is done, the counterthrust at the rear side
decreases by

ΔFrear = −(p0 − Δp − p∞)At = −(pt − p∞)At

which in turn increases the forward thrust by the same amount. But this is
just the pressure thrust. Therefore:

The pressure thrust Fp is the additional thrust which originates from
the absence of the counter-pressure force at the exit opening of the
engine.

If the exit pressure happens to be equal to the external pressure, then the ex-
ternal pressure behaves like a wall, the pressure thrust vanishes, and we have
an ideally adapted nozzle (see Section 4.1.6).

1.2.3
Continuity Equation

The momentum thrust can also be described in a different mathematical form.
Let’s have a general look at the behavior of propellant gas perfusing an engine.
A propellant mass dmp perfuses a given cross section of the engine with area
A with velocity v (see Fig. 1.6). During the time interval dt, the volume of
amount dV = A · ds = Av · dt will have passed through it. Therefore

dmp = ρ · dV = ρAv · dt

where ρ is the mass density, which we assume to be constant. From this we
derive the mass flow rate equation

ṁp = ρvA continuity equation (conservation of mass) (1.2.9)

A constant mass density simply means that nowhere within the volume new
mass is generated or disappears. This is exactly what the word “continuity”
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Figure 1.6 The volume dV which a mass flow with velocity v passes
in time dt.

means. We could also call it “conservation of mass”. So the conservation of
mass directly implies Eq. (1.2.9).

At the engine exit, the continuity equation reads ṁp = ρeve Ae. Applying
this to Eq. (1.2.6) yields

Fe = ṁpve = ρe Aev2
e (1.2.10)

This equation begs the question whether the momentum thrust is linearly
or quadratically dependent on ve. The answer depends on the engine in ques-
tion. Depending on the type (e.g. electric or chemical engine) of engine, a
change of its design in general will vary all the parameters ve and ṁp, ρe, Ae

in a specific way. This is why the demanding goal of engine design is to tune
all the engine parameters, including ve, such that the total thrust is maximized.
Hence it is not only ve alone which is decisive for the momentum thrust of an
engine, but it is necessary to adjust all the relevant engine parameters in a
coordinated way.

1.3
Rocket Performance

The mechanical power of an exhaust jet, the so called jet power, is defined as
the change of the kinetic energy of the ejected gas (jet energy) per time unit,
i.e.

Pe :=
dEe

dt
=

d
dt

(
1
2

mpv2
e

)
=

1
2

ṁpv2
e =

1
2

Feve jet power (1.3.1)

It describes the time rate of expenditure of the jet energy. The thrust power of
an engine is the thrust energy generated per time unit, i.e.

P∗ :=
dE∗
dt

=
d
dt

(
1
2

mpv2∗
)

=
1
2

ṁpv2∗ =
1
2

F∗v∗ thrust power (1.3.2)
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where the latter parts in both equations occur because of Eqs. (1.1.3) and
(1.2.6). The power transmitted to a spacecraft (S/C) with velocity v is simply
calculated according to classic physics by the product of force times velocity,
i.e.

PS/C = F∗ · v transmitted spacecraft power (1.3.3)

Note that the forces (here Fe and F∗) are independent of the chosen reference
system, whereas the velocities ve and v∗ are only meant with respect to the
rocket. So jet and thrust power are properties with respect to the rocket, while the
transmitted spacecraft power is valid in the rocket system and the external inertial
reference system because v is the same in both of them. Note, however, that v
depends on the chosen external reference system.

The so-called total impulse Itot of an engine is the integral product of total
thrust and propulsion duration

Itot :=
t∫

0

F∗dt = v∗
t∫

0

ṁp · dt

= mpv∗ @ v∗(t) = const total impulse

(1.3.4)

The latter is only valid as long as the effective exhaust velocity is constant.
This is, in its strict sense, not the case during launch, where the external
pressure (and hence the effective exhaust velocity) varies due to the pressure
thrust.

The total impulse can be used to define the very important (weight-)specific
impulse which characterizes the general performance and therefore is a figure
of merit of an engine. The weight-specific impulse is defined as “the achievable
total impulse with respect to a given propellant weight mpg0”, i.e. with Eq. (1.3.4)

Isp :=
Itot

mpg0
=

v∗
g0

@ v∗(t) = const (weight-)specific impulse (1.3.5)

By this definition the specific impulse has the curious, but simple, dimension
“second.” Typical values are 300–400 seconds for chemical propulsions, 300–
1500 seconds for electrothermal propulsions (Resistojet, Arcjet), and approxi-
mately 2000–6000 seconds for electrostatic (ion engines) and electromagnetic
engines (see Fig. 1.7).

In Europe, in particular at ESA, the mass-specific impulse with definition
“Isp = the achievable total impulse with respect to a given propellant mass mp” is
more common. This leads to the simple identity Isp = v∗. However, the defi-
nition “Isp = weight-specific impulse” is more established worldwide, which
is why we also will use it throughout this book. In either case you should keep
in mind that quite generally:
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Figure 1.7 Specific impulse and specific thrust of different propulsion
systems.

The specific impulse is an important figure of merit of an engine, and
is in essence the effective exhaust velocity.

1.4
Rocket Equation of Motion

Apart from its own thrust, also external forces determine the trajectory of a
rocket. They are typically summarized to one external force Fext

Fext := FG + FD + FL . . . (1.4.1)

with FG = gravitational force, FD = aerodynamic drag, and FL = aerodynamic
lift (see Fig. 1.8). For each of these external forces, the rocket can be considered
as a point on which the external force acts. This point has a unique location
with regard to the geometry of the rocket, and it is in general different for ev-
ery type of force. The masses of the rocket can be treated as lumped together
at the center of mass where the gravitational force applies. The aerodynamic
drag and lift forces virtually apply at the so-called center of pressure. And
possible magnetic fields have still another imaginary point of impact. If the
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Figure 1.8 Effects of different external forces on a spacecraft.

latter do not coincide with the center of mass, which in general is the case, the
distance in between results in torques due to the inertial forces acting effec-
tively at the center of mass. Here, we disregard the resulting complex rota-
tional movements, and we just assume that all the points of impact coincide,
or that the torques are compensated by thrusters.

Newton’s second law, Eq. (7.1.12), gives us an answer to the question of
how the rocket will move under the influence of all the forces Fi including the
propellant force:

mv̇ = ∑
all i

Fi

We therefore find the following equation of motion for the rocket:

mv̇ = F∗ + Fext

and with Eq. (1.1.2), we finally obtain

mv̇ = ṁv∗ + Fext rocket equation of motion (1.4.2)

This is the key differential equation for the motion of the rocket. In principle
the speed can be obtained by a single integration step and its position by a
double integration. Note that this equation applies not only to rockets but
also to any type of spacecraft during launch, reentry or when flying in space
with or without propulsion.
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Problems

Problem 1.1 Balloon Propulsion
Consider a balloon, which is propelled by exhausting its air with density ρ =
1.29 g dm−3. The balloon has a volume of 2 dm3, the exit (throat) diameter is
At = 0.5 cm2. Let’s assume the balloon exhausts the gas with constant mass
flow rate within 2 s. Show that the momentum thrust is Fe = 0.026 N and
the pressure thrust is Fp = 0.013 N and hence that the momentum thrust is
roughly twice as big as the pressure thrust.

Hint: Observe that the exhaust velocity at the throat does not reach the
speed of sound. Make use of Bernoulli’s equation p + 1

2 ρv2 = const.

Problem 1.2 Nozzle Exit Area of an SSME
The thrust of a Space Shuttle main engine (SSME) at 100% power level is
1.817 × 106 N at sea level and 2.278 × 106 N in vacuum. By using only this
information, derive that the nozzle exit area is Ae = 4.55 m2.




