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The Quantum Theory of Optical Coherence1

1.1
Introduction

Correlation, it has long been recognized, plays a fundamental role in the concept of
optical coherence. Techniques for both the generation and detection of various types
of correlations in optical fields have advanced rapidly in recent years. The devel-
opment of the optical maser, in particular, has led to the generation of fields with a
range of correlation unprecedented at optical frequencies. The use of techniques of
coincidence detection of photons[1,2] has, in the same period, shown the existence of
unanticipated correlations in the arrival times of light quanta. The new approaches
to optics, which such developments will allow us to explore, suggest the need for a
fundamental discussion of the meaning of coherence.

The present paper, which is the first of a series on fundamental problems of optics,
is devoted largely to defining the concept of coherence. We do this by constructing
a sequence of correlation functions for the field vectors, and by discussing the con-
sequences of certain assumptions about their properties. The definition of coherence
which we reach differs from earlier ones in several significant ways. The most impor-
tant difference, perhaps, is that complete coherence, as we define it, requires that the
field correlation functions satisfy an infinite succession of coherence conditions. We
are led then to distinguish among various orders of incomplete coherence, according
to the number of conditions satisfied. The fields traditionally described as coherent
in optics are shown to have only first-order coherence. The fields, generated by the
optical maser, on the other hand, may have a considerably higher order of coherence.
A further difference between our approach and previous ones is that it is constructed
to apply to fields of arbitrary time dependence, rather than just to those which are, on
the average, stationary in time. We have also attempted to develop the discussion in a
fully quantum theoretical way.

It would hardly seem that any justification is necessary for discussing the theory
of light quanta in quantum theoretical terms. Yet, as we all know, the successes of
classical theory in dealing with optical experiments have been so great that we feel no
hesitation in introducing optics as a sophomore course. The quantum theory, in other

1) Reprinted with permission from R. J. Glauber, Phys. Rev. 130, 2529–2539
(1963). Copyright 2006 by the American Physical Society.
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words, has had only a fraction of the influence upon optics that optics has historically
had upon quantum theory. The explanation, no doubt, lies in the fact that optical
experiments to date have paid very little attention to individual photons. To the extent
that observations in optics have been confined to the measurement of ordinary light
intensities, it is not surprising that classical theory has offered simple and essentially
correct insights.

Experiments such as those on quantum correlations suggest, on the other hand, the
growing importance of studies of photon statistics. Such studies lie largely outside the
grasp of classical theory. To observe that the quantum theory is fundamentally neces-
sary to the treatment of these problems is not to say that the semi-classical approach
always yields incorrect results. On the contrary, correct answers to certain classes of
problems of photon statistics[3] may be found through adaptations of classical meth-
ods. There are, however, distinct virtues to knowing where such methods succeed
and where they do not. For that reason, as well as for its intrinsic interest, we shall
formulate the theory in quantum theoretical terms from the outset. Quite a few of our
arguments can easily be paraphrased in classical terms. Several seem to be new in the
context of classical theory.

We shall try to construct this paper so that it can be followed with little more than
a knowledge of elementary quantum mechanics. Since its subject matter is, in the
deepest sense, quantum electrodynamics, we begin with a section which describes the
few simple aspects of that subject which are referred to later.

1.2
Elements of Field Theory

The observable quantities of the electromagnetic field will be taken to be the electric
and magnetic fields which are represented by a pair of Hermitian operators, EEE(rrrt) and
BBB(rrrt). The state of the field will be described by means of a state vector, | 〉, on which
the fields operate from the left, or by means of its adjoint, 〈 |, on which they operate
from the right. Since we shall use the Heisenberg representation, the choice of a fixed
state vector specifies the properties of the field at all times. The theory is constructed,
by whatever formal means, so that in a vacuum the field operators EEE(rrrt) and BBB(rrrt)
satisfy the Maxwell equations

∇ .EEE = 0 ,

∇×EEE = −1
c

∂BBB
∂ t

,

∇×BBB =
1
c

∂EEE
∂ t

,

∇ .BBB = 0 .

(1.1)
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We omit the source terms in the equations since, for the present, we are more interested
in the fields themselves than the explicit way in which they are generated or detected.
It follows from the Maxwell equations that the electric field operator obeys the wave
equation(

∇
2− 1

c2
∂2

∂ t2

)
EEE(rrrt) = 0 , (1.2)

and the magnetic field operator does likewise.
One of the essential respects in which quantum field theory differs from classical

theory is that two values of the field operators taken at different space-time points
do not, in general, commute with one another. The components of the electric field,
which is the only field we shall discuss at length, obey a commutation relation of the
general form

[Eµ(rrrt),Eν(rrr′t ′)] = Dµν(rrr−rrr′, t− t ′) . (1.3)

That the tensor function Dµν has as arguments the coordinate differences rrr− rrr′ and
t− t ′ follows from the invariance of the theory under translations in space and time.
We shall not need any further details of the function Dµν , but may mention that
it vanishes when the four-vector (rrr− rrr′, t − t ′) lies outside the light cone, i.e., for
(rrr− rrr′)2 > c2(t − t ′)2. The vanishing of the commutator, for points with spacelike
separations, corresponds to the fact that measurements of the stated field components
at such points can be carried out to arbitrary accuracy. Such accuracy is attainable
since no disturbances can propagate through the field enough to reach one point from
the other.

An important element of the discussion in this paper will be the separation of the
electric field operator EEE(rrrt) into its positive and negative frequency parts. The sepa-
ration is most easily accomplished when the time dependence of the operator is repre-
sented by a Fourier integral. If, for example, the field operator has a representation

EEE(rrrt) =
Z

∞

−∞

eee(ω,rrr) e−iωt dω , (1.4)

where the Hermitian property is secured by the relation eee(−ω,rrr) = eee†(ω,rrr), then we
define the positive frequency part of EEE as

EEE(+)(rrrt) =
Z

∞

0
eee(ω,rrr) e−iωt dω , (1.5)

and the negative frequency part as

EEE(−)(rrrt) =
Z 0

−∞

eee(ω,rrr) e−iωt dω , (1.6)

=
Z

∞

0
eee†(ω,rrr) e−iωt dω . (1.7)
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It is evident from these definitions that the field is the sum of its positive and negative
frequency parts,

EEE(rrrt) = EEE(+)(rrrt)+EEE(−)(rrrt) . (1.8)

The two parts, regarded separately, are not Hermitian operators; the fields they repre-
sent are intrinsically complex, and mutually adjoint,

EEE(−)(rrrt) = EEE(+)†(rrrt) . (1.9)

In the absence of a Fourier integral representation of EEE(rrrt), the positive and negative
frequency parts of the field may be defined more formally as the limits of the integrals,

EEE(+)(rrrt) = lim
η→+0

1
2πi

Z
∞

−∞

EEE(rrr, t− τ )
τ − iη

dτ , (1.10)

EEE(−)(rrrt) = − lim
η→+0

1
2πi

Z
∞

−∞

EEE(rrr, t− τ )
τ + iη

dτ . (1.11)

It follows from the intrinsically different time dependences of EEE(+)(rrrt) and EEE(−)(rrrt)
that they act to change the state of the field in altogether different ways, one associ-
ated with photon absorption, the other with photon emission. In particular, the positive
frequency part, EEE(+)(rrrt), may be shown[4] to be a photon annihilation operator. Ap-
plied to an n-photon state it produces an (n−1)-photon state. Further applications of
EEE(+)(rrrt) reduce the number of photons present still further, but the regression must
end with the state in which the field is empty of all photons. It is part of the definition
of this state, which we represent as |vac〉, that

EEE(+)(rrrt) |vac〉= 0 . (1.12)

The adjoint relation is

〈vac|EEE(−)(rrrt) = 0 . (1.13)

Since the operator EEE(+)(rrrt) annihilates photons, its Hermitian adjoint, EEE(−)(rrrt),
must create them; applied to an n-photon state it produces an (n + 1)-photon state. In
particular, the state

E(−)(rrrt) |vac〉

is a one-photon state.
It has become customary, in discussions of classical theory, to regard the electric

field EEE(rrrt) as the quantity one measures experimentally, and to think of the complex
fields EEE(±)(rrrt) as convenient, but fictitious, mathematical constructions. Such an at-
titude can only be held in the classical domain, where quantum phenomena play no
essential role. The frequency ω of a classical field must be so low that the quantum
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energy h̄ω is negligible. In such a case, we can not tell whether a classical test charge
emits or absorbs quanta. In measuring a classical field strength, EEE(rrrt), we implicitly
sum the effects of photon absorption and emission which are described individually
by the fields EEE(+)(rrrt) and EEE(−)(rrrt).

Where quantum phenomena are important the situation is usually quite different.
Experiments which detect photons ordinarily do so by absorbing them in one or an-
other way. The use of any absorption process, such as photoionization, means in
effect that the field we are measuring is the one associated with photon annihilation,
the complex field EEE(+)(rrrt). We need not discuss the details of the photoabsorption
process to find the appropriate matrix element of the field operator. If the field makes
a transition from the initial state |i〉 to a final state | f 〉 in which one photon, polarized
in the µ direction, has been absorbed, the matrix element takes the form〈

f
∣∣∣E(+)
µ (rrrt)

∣∣∣ i〉 . (1.14)

We shall define an ideal photon detector as a system of negligible size (e.g., of
atomic or subatomic dimensions) which has a frequency-independent photoabsorp-
tion probability. The advantage of imagining such a detector, as we shall show more
explicitly in a later paper, is that the rate at which it records photons is proportional to
the sum over all final states | f 〉 of the squared absolute values of the matrix elements
(1.14). In other words, the probability per unit time that a photon be absorbed by an
ideal detector at point rrr at time t is proportional to

∑
f

∣∣∣〈 f
∣∣∣E(+)
µ (rrrt)

∣∣∣ i〉∣∣∣2 = ∑
f

〈
i
∣∣∣E(−)
µ (rrrt)

∣∣∣ f
〉〈

f
∣∣∣E(+)
µ (rrrt)

∣∣∣ i〉
=
〈

i
∣∣∣E(−)
µ (rrrt)E(+)

µ (rrrt)
∣∣∣ i〉 .

(1.15)

We may verify immediately from Eq. (1.12) that the rate at which photons are detected
in the empty, or vacuum, state vanishes.

The photodetector we have described is the quantum-mechanical analog of what,
in classical experiments, has been called a square-law detector. It is important to bear
in mind that such a detector for quanta measures the average value of the product
E(−)
µ E(+)

µ , and not that of the square of the real field Eµ(rrrt). Indeed, it is easily
seen from the foregoing work that the average value of E2

µ(rrrt) does not vanish in the
vacuum state;〈

vac
∣∣E2
µ(rrrt)

∣∣vac
〉
> 0 .

The electric field in the vacuum undergoes zero-point oscillations which, in the cor-
rectly formulated theory, have nothing to do with the detection of photons.

Recording photon intensities with a single detector does not exhaust the measure-
ments we can make upon the field, though it does characterize, in principle, virtually
all the classic experiments of optics. A second type of measurement we may make
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consists of the use of two detectors situated at different points rrr and rrr′ to detect pho-
ton coincidences or, more generally, delayed coincidences. The field matrix element
for such transitions takes the form〈

f
∣∣∣E(+)
µ (rrr′t ′)E(+)

µ (rrrt)
∣∣∣ i〉 , (1.16)

if both photons are required to be polarized along the µ axis. The total rate at which
such transitions occur is proportional to

∑
f

∣∣∣〈 f
∣∣∣E(+)
µ (rrr′t ′)E(+)

µ (rrrt)
∣∣∣ i〉∣∣∣2= 〈i

∣∣∣E(−)
µ (rrrt)E(−)

µ (rrr′t ′)E(+)
µ (rrr′t ′)E(+)

µ (rrrt)
∣∣∣ i〉 .

(1.17)

Such a total rate is to be interpreted as a probability per unit (time)2 that one photon is
recorded at rrr at time t and another at rrr′ at time t ′. Photon correlation experiments of
essentially the type we are describing were performed by Hanbury Brown and Twiss[1]

in 1955 and have, subsequently, been performed by others[2].
Whatever may be the practical difficulties of more elaborate experiments, we may

at least imagine the possibility of detecting n-fold delayed coincidences of photons for
arbitrary n. The total rate per unit (time)n for such coincidences will be proportional
to 〈

i
∣∣∣E(−)
µ (rrr1t1) . . .E(−)

µ (rrrntn)E(+)
µ (rrrntn) . . .E(+)

µ (rrr1t1)
∣∣∣ i〉 , n = 1,2,3 . . . (1.18)

The entire succession of such expectation values, therefore, possesses a simple physi-
cal interpretation.

In closing this survey we add a note on the commutation rules obeyed by the fields
EEE(+) and EEE(−). It is easy to find these rules from the relation (1.3) for the real field EEE,
by decomposing its dependence on the two variables t and t ′ into positive and negative
frequency parts. If the function Dµν has the Fourier transform

Dµν(rrr−rrr′, t− t ′) =
Z

∞

−∞

Dµν(ω,rrr−rrr′) e−iω(t−t ′) dω , (1.19)

we see immediately that the commutator Eq. (1.3) has no part which is of positive
frequency in both its t and t ′ dependences. Neither does it have any part of negative
frequency in both its time dependences. It follows that all values of the field EEE(+)(rrrt)
commute with one another, and so too do those of EEE(−)(rrrt), i.e., we have[

E(+)
µ (rrrt),E(+)

ν (rrr′t ′)
]

= 0 , (1.20)[
E(−)
µ (rrrt),E(−)

ν (rrr′t ′)
]

= 0 , (1.21)

for all points rrrt and rrr′t ′, and all µ and ν. Products of the EEE(+) operators or products
of the EEE(−) operators such as occur in Eq. (1.18) may, therefore, be freely rearranged,
but the operators EEE(+) and EEE(−) do not, in general, commute.
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1.3
Field Correlations

The electromagnetic field may be regarded as a dynamical system with an infinite
number of degrees of freedom. Our knowledge of the condition of such a system is
virtually never so complete or so precise in practice as to justify the use of a particular
quantum state | 〉 in its description. In the most accurate preparation of the state of a
field which we can actually accomplish some parameters, usually an indefinitely large
number of them, must be regarded as random variables. Since there is no possibility
in practice of controlling these parameters, we can only hope ultimately to compare
with experiment quantities which are averages over the distributions of the unknown
parameters.

Our actual knowledge of the state of the field is specified fully by means of a den-
sity operator ρ which is constructed as an average, over the uncontrollable parameters,
of an expression bilinear in the state vector. If | 〉 is a precisely defined state of the
field corresponding to a particular set of random parameters, the density operator is
defined as the averaged outer product of state vectors

ρ=
{
| 〉 〈 |

}
av . (1.22)

The weightings to be used in the averaging are the ones which best describe the
actual preparation of the fields. It is clear from the definition that ρ is Hermitian,
ρ† = ρ.

The average of an observable O in the quantum state | 〉 is the expectation value,
〈 |O| 〉. It is the average of this quantity over the randomly prepared states which
we compare with experiment. The average taken in this twofold sense may be
written as{

〈 |O| 〉
}

av = Tr{ρO} , (1.23)

where the symbol Tr stands for the trace, or the sum of the diagonal matrix elements.
Since we require the average of the unit operator to be one, we must have Trρ = 1.
These considerations show that the average counting rate of an ideal photodetector,
which is proportional to Eq. (1.15) in a completely specified quantum state of the
field, is more generally proportional to

Tr{ρE(−)
µ (rrrt)E(+)

µ (rrrt)} (1.24)

when the state is less completely specified.
It is convenient at this point, as a simplification of notation, to confine our attention

to a single vector component of the electric field. We suppose, for the present, that all
of our detectors are fitted with polarizers and record only photons polarized parallel
to an arbitrary unit vector eee. (If eee is chosen as a complex unit vector, eee∗ .eee = 1, the
photons detected may have arbitrary elliptical polarization.) We then introduce the
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symbols E(+) and E(−) for the projections of the complex fields in the direction eee and
eee∗,

E(+)(rrrt) = eee∗ .EEE(+)(rrrt) , (1.25)

E(−)(rrrt) = eee .EEE(−)(rrrt) . (1.26)

We resume a fully general treatment of photon polarizations in Sect. 1.5.
The field average Eq. (1.24) which determines the counting rate of an ideal pho-

todetector is a particular form of a more general type of expression whose properties
are of considerable interest. In the more general expression, the fields E(−) and E(+)

are evaluated at different space-time points. Statistical averages of the latter type fur-
nish a measure of the correlations of the complex fields at separated positions and
times. We shall define such a correlation function, G(1) for the eee components of the
complex fields as

G(1)(rrrt,rrr′t ′) = Tr{ρE(−)(rrrt)E(+)(rrr′t ′)} . (1.27)

Only the values of this function at rrr = rrr′ and t = t ′ are needed to predict the counting
rate of an ideal photodetector. However, other values of the function become nec-
essary, quite generally, when we use as detectors less ideal systems such as actual
photo-ionizable atoms. In actual photodetectors the absorption of photons can not be
localized too closely, either in space or in time. Atomic photoionization rates must be
written, in general, as double integrals, over a microscopic range, of all the variables
in G(1)(rrrt,rrr′t ′). Our interest in the function G(1) extends to widely spaced values of
its variables as well. That field correlations may extend over considerable intervals of
distance and time is essential to the idea of coherence, which we shall shortly discuss.

As we have noted earlier, our interest in averages of the field operators extends
beyond quadratic ones. Just as we generalized the expression for the photon detection
rate to define G(1), we may generalize the expression (1.17) for the photon coincidence
rate and thereby define a second-order correlation function,

G(2)(rrr1t1rrr2t2rrr3t3rrr4t4) = Tr{ρE(−)(rrr1t1)E(−)(rrr2t2)E(+)(rrr3t3)E(+)(rrr4t4)} . (1.28)

This too is a function whose values, even at widely separated arguments, interest us.
In view of the possibility of discussing n-photon coincidence experiments for ar-

bitrary n it is natural to define an infinite succession of correlation functions G(n).
It is convenient in writing these to abbreviate a set of coordinates (rrrj, tj) by a single
symbol, xj. We then define the n-th-order correlation function as

G(n)(x1 . . .xn,xn+1 . . .x2n) =

Tr{ρE(−)(x1) . . .E(−)(xn)E(+)(xn+1) . . .E(+)(x2n)} . (1.29)

The correlation functions have a number of simple properties. It is easily verified
that interchanging the arguments in G(1) leads to the complex conjugate function

G(1)(rrr′t ′,rrrt) = {G(1)(rrrt,rrr′t ′)}∗ . (1.30)
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The same type of relation holds for all of the higher order functions

G(n)(x2n . . .x1) = {G(n)(x1 . . .x2n}∗ . (1.31)

Furthermore, the commutation relations (1.20) and (1.21) show us that G(n) is un-
changed by any permutation of its arguments (x1 . . .xn), or its arguments (xn+1 . . .x2n).
The fact that the complex fields E(±) individually satisfy the wave equation (1.2) leads
to another useful property of the G(n). The n-th-order function satisfies 2n different
wave equations, one for each of its arguments xj, ( j = 1, . . . ,2n).

A large number of inequalities satisfied by the functions G(n) may be derived from
the positive definite character of the density operator ρ. Derivations of several classes
of these are presented in the Appendix. We confine ourselves, in this section, to men-
tioning some of the simpler and more useful inequalities, those which are linear or
quadratic in the correlation functions. It is clear from Eq. (1.31) that all of the func-
tions G(n)(x1 . . .xn,xn . . .x1) are real. The linear inequalities assert that these functions
are positive definite as well. We have then, in particular for n = 1, the self-evident re-
lation

G(1)(x1,x1)≥ 0 , (1.32)

and for arbitrary n

G(n)(x1 . . .xn,xn . . .x1) ≥ 0 . (1.33)

These relations simply affirm that the average photon intensity of a field and the aver-
age coincidence counting rates are all intrinsically positive.

The simplest of the quadratic inequalities takes the form

G(1)(x1,x1) G(1)(x2,x2)≥
∣∣∣G(1)(x1,x2)

∣∣∣2 . (1.34)

Higher order inequalities of this type are given by

G(n)(x1 . . .xn,xn . . .x1) G(n)(xn+1 . . .x2n,x2n . . .xn+1)≥∣∣∣G(n)(x1 . . .xn,xn+1 . . .x2n)
∣∣∣2 , (1.35)

which holds for arbitrary n. Different forms of these relations are obtained by per-
muting or equating coordinates. Various other inequalities are proved in the Appendix
along with those noted.

It is interesting to note that when the number of quanta present in the field is
bounded, the sequence of functions G(n) terminates. If the density operator restricts
the number of photons present to be smaller than or equal to some value M, the prop-
erties of E(±) as annihilation and creation operators show that G(n) = 0 for n>M.

Classical correlation functions bearing some analogy to G(1) have received a great
deal of discussion in recent years, mainly in connection with the theory of noise in



10 1 The Quantum Theory of Optical Coherence

radio waves. A detailed application of the classical correlation theory to optics has
been made by Wolf[5]. At the core of Wolf’s analysis is a single correlation function
Γ , defined as an average over an infinite time span of the product of two fields, eval-
uated at times separated by a fixed interval. The procedure of time averaging restricts
the application of such an approach to the treatment of field distributions which are
statistically stationary in time.

If we were to restrict the character of our density operator ρ to describe only sta-
tionary field distributions (e.g., by choosing ρ to commute with the field Hamiltonian)
our function G(1)(rrrt,rrr′t ′) would depend only on the difference of the two times, t− t ′.
In that case the function G(1) would, in the classical limit (strong, low-frequency
fields), agree numerically2 with Wolf’s function Γ . It should be clear, however, that
the concepts of correlation and ultimately of coherence are quite useful in the dis-
cussion of nonstationary field distributions. The correlation functions G(n) which we
have defined are ensemble averages rather than time averages and hence remain well-
defined in fields of arbitrary time dependence.

1.4
Coherence

The term “coherence” has had long if somewhat varied use in areas of physics con-
cerned with the electromagnetic field. In physical optics the term is used to denote a
tendency of two values of the field at distantly separated points or at greatly separated
times to take on correlated values. When optical means are used to superpose the
fields at such points (e.g., as in Young’s two-slit experiment) intensity fringes result.
The possibility of producing such fringes in hypothetical superposition experiments
epitomizes the optical definition of coherence. The definition has remained a satis-
factorily explicit one only as long as optical experiments were confined to measuring
field intensities, or more generally quantities quadratic in the field strengths. We have
already noted that the photon correlation experiment of Hanbury Brown and Twiss[1],
performed in 1955, is of an altogether new type and measures the average of a quartic
expression[6]. The study of quantities of fourth and higher powers in the field strengths
is the basis of all work in the recently developed area of nonlinear optics. It appears
safe to assume that the number of such experiments will increase in the future, and
that the concept of coherence should be extended to apply to them.

Another pressing reason for sharpening the meaning of coherence is provided by
the recent development of the optical maser. The maser produces light beams of nar-
row spectral bandwidth which are characterized by field correlations extending over
quite long ranges. Such light is inevitably described as coherent, but the sense in which
the term is used has not been made adequately clear. If the sense is simply the optical
one then, as we shall see, it may scarcely do justice to the potentialities of the device.

2) This is true provided Wolf’s “disturbance” field V behaves ergodically and
is identified with E(+).
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The optical definition does not at all distinguish among the many ways in which fields
may vary while remaining equally correlated at all pairs of points. That much greater
regularities may exist in the field variations of a maser beam than are required by the
optical definition of coherence may be seen by comparing the maser beam with the
carrier wave of a radio transmitter. The latter type of wave ideally possesses a sta-
bility of amplitude which optically coherent fields need not have[7]. Furthermore, the
field values of such a wave possess correlations of a much more detailed sort than the
optical definition requires. These are properties best expressed in terms of the higher
order correlation functions G(n), for n> 1.

To discuss coherence in quantitative terms it is convenient to introduce normalized
forms of the correlation functions. Corresponding to the first-order function G(1) we
define

g(1)(rrrt,rrr′t ′) =
G(1)(rrrt,rrr′t ′)

{G(1)(rrrt,rrrt) G(1)(rrr′t ′,rrr′t ′)}1/2
. (1.36)

It is immediately seen from Eq. (1.34) that g(1) obeys the inequality∣∣g(1)(rrrt,rrr′t ′)
∣∣≤ 1 . (1.37)

For rrr = rrr′, t = t ′ we have, of course, g(1) ≡ 1.
The normalized forms of the higher order correlation functions are defined as

g(n)(x1 . . .x2n) =
G(n)(x1 . . .x2n)

∏
2n
j=1{G(1)(xj,xj)}1/2

. (1.38)

These functions, for n> 1, are not, in general, restricted in absolute value as is g(1).
We shall try in this paper to give the concept of coherence as precise a definition

as is both realizable in physical terms, and useful as well[8]. We, therefore, begin
by stating an infinite sequence of conditions on the functions g(n) which are to be
satisfied by a fully coherent field. These necessary conditions for coherence are that
the normalized correlation functions all have unit absolute magnitude,∣∣g(n)(x1 . . .x2n)

∣∣= 1 , n = 1,2, . . . (1.39)

That there exist at least some states which meet these conditions at all points of space
and time is immediately clear from the example of a classical plane wave, E(+) ∝

exp[i(kkk .rrr−ωt)]. We shall presently show that the class of coherent fields is vastly
larger than that of individual plane waves.

The conditions (1.39) on the functions g(n) are stated only as necessary ones and
need not be construed as defining coherence completely. We shall shortly, in fact,
sharpen the definition somewhat further. It is worth noting at this point, however,
that not all of the fields which have been described as “coherent” in the past meet the
set of conditions (1.39) even approximately. There may be some virtue, therefore, in
constructing a hierarchy of orders of coherence to discuss fields which do not have
that property in its fullest sense. We shall state as a condition necessary for first-order
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coherence that
∣∣g(1)(rrrt,rrr′t ′)

∣∣ = 1. More generally, for a field to be characterized by
n-th order coherence we shall require

∣∣g( j)
∣∣= 1 for j ≤ n. For fields which occur in

practice, one can not expect relations such as these to hold exactly for all points in
space and time. We shall, therefore, often employ the term n-th order coherence more
loosely to mean that the first n coherence conditions are fairly accurately satisfied over
appreciable intervals of the variables surrounding all points x1 = x2 = · · ·= x2n.

The definition of coherence which has been used to date in all studies of physical
optics corresponds only to first-order coherence. The most coherent fields which have
been generated by optical means prior to the development of the maser, in fact, lack
second and higher order coherence. On the other hand, the optical maser, functioning
with ideal stability, may produce fields which are coherent to all orders.

The various orders of coherence may, in principle, be distinguished fairly directly
in experimental terms. The inequality (1.33), which states that the n-fold coincidence
counting rate is positive, requires that g(n)(x1 . . .xn,xn . . .x1) be positive. If the field in
question possesses n-th-order coherence, it must, therefore, have

g( j)(x1 . . .xj,xj . . .x1) = 1 , (1.40)

for j ≤ n. It follows from the definitions of the g( j) that the corresponding values of
the correlation functions G( j) factorize, i.e.,

G( j)(x1 . . .xj,xj . . .x1) =
j

∏
i=1

G(1)(xi,xi) , (1.41)

for j ≤ n. These relations mean, in observational terms, that the rate at which j-fold
delayed coincidences are detected by our ideal photon counters, reduces to a product
of the detection rates of the individual counters[6]. In photon coincidence experiments
of multiplicity up to and including n, the photon counts registered by the individual
counters may then be regarded as statistically independent events. No tendency of
photon counts to be statistically correlated will be evident in j-fold coincidence ex-
periments for j ≤ n.

The experiments of Hanbury Brown and Twiss[1] were designed to detect cor-
relations in the fluctuating outputs of two photomultipliers. These detectors were
placed in fields made coherent with one another (in the optical sense) through the
use of monochromatic, pinhole illumination and a semitransparent mirror. The photo-
currents of the two detectors were observed to show a positive correlation for small
delay times, rather than independent fluctuations. A similar experiment has been per-
formed by Rebka and Pound[2], using coincidence counting equipment. Their experi-
ment, performed with a more monochromatic beam and better geometrical definition,
shows an explicit correlation in the counting probabilities of the two detectors. These
observations verify that light beams from ordinary sources such as discharge tubes,
when made optimally coherent in the first-order sense, still lack second-order coher-
ence.
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The coherence conditions (1.39) can also be stated as a requirement that the func-
tions

∣∣G(n)(x1 . . .x2n)
∣∣ factorize into a product of 2n functions of the same form, each

dependent on a single space-time variable,∣∣G(n)(x1 . . .x2n)
∣∣= 2n

∏
j=1

{
G(1)(xj,xj)

}1/2
. (1.42)

This statement of the necessary conditions for coherence suggests that it may be con-
venient to give a stronger definition to coherence by regarding it as a factorization
property of the correlation functions,

Let us suppose that there exists a function E(x), independent of n, such that the
correlation functions for all n may be expressed as the products

G(n)(x1 . . .xn,xn+1 . . .x2n) = E∗(x1) . . .E∗(xn)E(xn+1) . . .E(x2n) . (1.43)

It is immediately clear that these functions satisfy the conditions (1.39) and (1.42). To
show that fields with such correlations exist we need only refer again to the case of a
classical plane wave. In fact, any classical field of predetermined (i.e., nonrandom)
behavior has correlation functions which fall into this form, and such fields are at times
called coherent in communication theory. We shall, therefore, adopt the factorization
conditions (1.43) as the definition of a coherent field and turn next to the question of
how they may be satisfied in the quantum domain.

If it were possible for the field to be in an eigenstate of the operators E(+) and
E(−) the correlation functions for such states would factorize immediately to the de-
sired form. The operators E(+)(rrrt) and E(−)(rrr′t ′) do not commute, however, so no
state can be an eigenstate of both in the usual sense. Not only are these operators
non-Hermitian, but the failure of each to commute with its adjoint shows that E(+)

and E(−) are non-normal as well. Operators of this type can not, as a rule, be diago-
nalized at all, but may nonetheless have eigenstates. In general, we must distinguish
between their left and right eigenstates; the two types need not occur in mutually ad-
joint pairs. The operator E(+)(rrrt), in particular, has no left eigenstates, but does have
right eigenstates3 corresponding to complex eigenvalues for the field, which are func-
tions of position and time. We shall suppose that | 〉 is a right eigenstate of E(+) and
that the equation it satisfies takes the form

E(+)(rrrt) | 〉= E(rrrt) | 〉 , (1.44)

in which the function E(rrrt) is to be interpreted as the complex eigenvalue. The Her-
mitian adjoint of this relation shows us that the conjugate state, 〈 |, is a left eigenstate
of E(−)(rrrt),

〈 |E(−)(rrrt) = 〈 |E∗(rrrt) . (1.45)
3) States of the harmonic oscillator which have an analogous property were

introduced in a slightly different but related connection by E. Schrödinger,
Naturwiss. 14, 664 (1926). The electromagnetic field, as is well known,
may be treated as an assembly of oscillators.
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The density operator for such states is simply the projection operator, ρ = | 〉 〈 |. It
follows immediately from these relations that the correlation functions G(n) all fac-
torize into the form of Eq. (1.43). In other words, the state of the field defined by
Eqns. (1.44) or (1.45) meets our definition precisely and is fully coherent. We shall
discuss the properties of such states4 at length in the paper to follow. For the present it
may suffice to say that we can find an eigenstate | 〉 which corresponds to the choice,
as an eigenvalue, of any function E(rrrt) which satisfies certain conditions. One condi-
tion, which is clear from Eq. (1.44), is that E(rrrt) must satisfy the wave equation. The
other, which corresponds to the positive frequency character of E(+), is that E(rrrt),
when regarded as a function of a complex time variable, be analytic in the lower half-
plane. The eigenstates which correspond to different fields E(rrrt) are not mutually
orthogonal, but nonetheless form a natural basis for the discussion of photon detec-
tion problems. We have introduced them here only to demonstrate the possibility of
satisfying the coherence conditions in quantum theory. Such quantum states do not
exhaust the possibility of describing coherent fields. Statistical mixtures, for example,
of the states for which the eigenvalues E(rrrt) differ by constant phase factors satisfy
the coherence conditions equally well.

The fields which have been described as most coherent in optical contexts have
tended to be those of the narrowest spectral bandwidth. If coherent fields in optics
have necessarily been chosen as monochromatic ones, it is because that has been
virtually the only means of securing appreciably correlated fields from intrinsically
chaotic sources. For this reason, perhaps, there has been a natural tendency to asso-
ciate the concept of coherence with monochromaticity. The association was, in fact,
made an implicitly rigid one by earlier discussions[5] of optical (i.e., first-order) co-
herence which were applicable only to statistically stationary fields. By extending the
definition of coherence to nonstationary fields we see that it places no constraint on the
frequency spectrum. Coherent fields exist corresponding to eigenvalues E(rrrt) with ar-
bitrary spectra. The coherence conditions restrict randomness of the fields rather than
their bandwidth.

Having defined full coherence by means of the factorization conditions (1.43), we
may now use them in defining the various orders of coherence. We shall speak of m-
th-order coherent fields when the conditions (1.43) are satisfied for n≤m, a definition
which accords with our earlier conditions on

∣∣g( j)
∣∣.

Photon correlation experiments have shown the importance of distinguishing be-
tween the first two orders of coherence. At the other end of the scale, we have shown
that there exist, in principle at least, states which are fully coherent. We are entitled to
ask, therefore, whether the intermediate orders of coherence will also be useful classi-
fications. In the absence of any experimental information, we can only guess that they
may be useful, though perhaps not in the sharp sense in which we we have defined
them. One may easily imagine the possibility that, for light sources such as the maser,

4) Some of the properties of these states have already been noted in Refs.[6]

and[8].
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the correlation functions G(n) show gradually increasing departure from the factored
forms (1.43) as n increases, even when the variables x1 . . .x2n are not too widely sep-
arated. In such contexts the order of coherence can only be defined approximately.5

Something of the same approximate character must be present in all applications of
the definitions we have given. The field correlations we have discussed can extend
over great intervals of distance and time, though never infinite ones in practice. Co-
herence conditions, such as

∣∣g(n)
∣∣= 1, can only be met within a finite range of relative

values of the coordinates x1 . . .x2n. It is only within such ranges, and therefore as an
approximation, that we can speak of coherence at all.

1.5
Coherence and Polarization

We have to this point, in the interest of simplicity, dealt only with the projections
of the fields along a single (possibly complex) unit vector eee. To take fuller account
of the vector nature of the fields we must define tensor rather than scalar correlation
functions. The first-order function is taken to be

G(1)
µν (x,x′) = Tr

{
ρE(−)

µ (x)E(+)
ν (x′)

}
, (1.46)

in which the indices µ and ν label Cartesian components. This function satisfies the
symmetry relation

G(1)
νµ (x′,x) = {G(1)

µν (x,x′)}∗ , (1.47)

and is shown in the appendix to obey the inequalities,

G(1)
µµ(x,x) ≥ 0 (1.48)

and

G(1)
µµ(x,x) G(1)

νν (x′,x′)≥
∣∣∣G(1)
µν (x,x′)

∣∣∣2 . (1.49)

The photon intensities which can be detected at the space-time point x are found from
G(1)
µν (x,x′) for x′ = x. We shall abbreviate this 3×3 matrix as G(1)(x), and use it as the

basis of a brief discussion of polarization correlations in three dimensions, a subject
which seems to have received little attention in comparison to plane polarizations.
The symmetry relation (1.47) for x′ = x shows that the intensity matrix G(1)(x) is

5) The characterization we have given the n-th-
order coherent fields is, in principle, an accur-
ately realizable one, however. States with such
properties may be constructed in a variety of
ways. The factorization conditions can be met
for j ≤ n, for example, by suitably chosen sta-
tes in which the number of photons present

may take on any value up to n. The correlation
functions of order j > n then vanish, as we have
noted earlier. The vanishing of these correlation
functions for states with bounded numbers of
quanta shows, incidentally, that no bound can
be placed on the photon number in a fully cohe-
rent field.
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Hermitian; an argument given in the Appendix shows it to be a positive definite matrix
as well. It follows that G(1)(x) has positive real eigenvalues, λp(x), (p = 1,2,3),
which correspond to a set of (generally, complex) eigenvectors. The eigenvectors,
which we write as eee(p) satisfy

G(1)(x) .eee(p)∗ = λpeee(p)∗ ,
eee(p) .G(1)(x) = λpeee(p) .

(1.50)

If the three eigenvalues λp(x) are all different, it is clear that the three eigenvectors
must be orthogonal; if not they may be chosen so. If the eigenvectors are normalized
to obey the relations

eee(p) .eee(q)∗ = δpq , (1.51)

their components form the unitary matrix which diagonalizes G(1)(x). The eigenvec-
tors, or equivalently the unitary matrix, are determined by a set of eight independent
real parameters. A tensor product, such as

eee(p) .G(1)(x) .eee(q)∗ = λpδpq , (1.52)

expresses the correlation, at the point x, of the field components in the eee(p) and eee(q)

directions. It is clear, then, that there always exist a set of three (complex) orthogonal
polarization vectors such that the field components in these directions are statistically
uncorrelated. The eigenvalues λp correspond to the intensities for these polarizations.
For quantitative discussions of polarization it is convenient to define the normalized
intensities Ip = λp/∑qλq (p = 1,2,3), which sum to unity, ∑p Ip = 1. When the
normalized intensities are all equal to 1

3 we have the case of an isotropic field, as in a
hohlraum filled with thermal radiation.

The triad of eigenvectors at a point in an arbitrary field depends, in general, on
time as well as position. If the density operator, ρ, represents a stationary ensemble,
however, the triad becomes fixed. A particular example which has been studied in
minute detail in optics is that of a beam of plane waves[5,9]. In that case, since the
fields are transverse, one of the eigenvectors may be chosen as the beam direction
and obviously corresponds to the eigenvalue zero. The net polarization of the beam
is usually defined as the magnitude of the difference of the normalized intensities,
|I1− I2|, which correspond to the remaining two eigenvalues.

We next define the higher order correlation functions as

G(n)
µ1...µ2n

(x1 . . .xn,xn+1 . . .x2n) =

Tr
{
ρE(−)

µ1
(x1) . . .E(−)

µn (xn)E(+)
µn+1

(xn+1) . . .E(+)
µ2n

(x2n)
}

. (1.53)

These functions are unchanged by simultaneous permutations of the coordinates
(x1 . . .xn) and the indices (µ1 . . .µn); they are likewise invariant under permutations
of the (xn+1 . . .x2n) and (µn+1 . . .µ2n). They satisfy the symmetry relation

G(n)
µ2n...µ1

(x2n . . .x1) =
{

G(n)
µ1...µ2n

(x1 . . .x2n)
}∗

(1.54)



1.5 Coherence and Polarization 17

and are shown, in the Appendix, to obey the inequalities

G(n)
µ1...µnµn...µ1

(x1 . . .xnxn . . .x1)≥ 0 (1.55)

and

G(n)
µ1...µnµn...µ1

(x1 . . .xn,xn . . .x1)×G(n)
µn+1...µ2nµ2n...µn+1

(xn+1 . . .x2n,x2n . . .xn+1)≥∣∣∣G(n)
µ1...µnµn+1...µ2n

(x1 . . .xn,xn+1 . . .x2n)
∣∣∣2 . (1.56)

As in our earlier discussion of coherence, it is convenient to make use of the nor-
malized correlation functions

g(n)
µ1...µ2n

(x1 . . .x2n) =
G(n)
µ1...µ2n(x1 . . .x2n)

∏
2n
j=1

{
G(1)
µ jµ j (x j,x j)

}1/2 (1.57)

The necessary conditions for full coherence are∣∣∣g(n)
µ1...µ2n

(x1 . . .x2n)
∣∣∣= 1 , (1.58)

which must hold for all components µ1 . . .µ2n, as well as all n. It is clear, however,
that these conditions do not constitute an adequate definition of coherence, since they
are not, in general, invariant under rotations of the coordinate axes. We therefore turn
once again to a definition of coherence as a factorization property of the correlation
functions.

We define full coherence to hold when the set of correlation functions G(n) may be
expressed as products of the components of a vector field Eµ(x), (µ= 1,2,3), i.e.,

G(n)
µ1...µ2n

(x1 . . .xn,xn+1 . . .x2n) =
n

∏
j=1

E∗µj
(xj)

2n

∏
l=n+1

Eµl (xl) , (1.59)

where it is understood that the vector field Eµ(x) is independent of n. It is immediately
clear, from the transformation properties of the definition, that a field coherent in one
coordinate frame is equally coherent in any rotated frame. Furthermore, all of the
normalized correlation functions g(n), which follow from the definition, satisfy the
conditions (1.58).

The coherence conditions (1.59) imply that the field is fully polarized in the direc-
tion of the vector EEE(x) at each point x. The formal way of seeing this is to note that
the intensity matrix G(1)

µν (x,x), which we discussed earlier in general terms, reduces
for a coherent field to,

G(1)
µν (x,x) = E∗µ(x) Eν(x) . (1.60)

Such a matrix represents an unnormalized projection operator for the direction of
EEE(x). It obviously has, as an eigenvector in the sense of Eq. (1.50), the vector Eµ(x)
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itself. The corresponding eigenvalue is the full intensity ∑µ |Eµ(x)|2. The two re-
maining eigenvalues, which correspond to orthogonal directions, clearly vanish.

It is interesting to note that for coherent fields many of the inequalities stated ear-
lier, e.g., Eqns. (1.34), (1.35), (1.49), (1.56), reduce to statements of equality. This
reduction holds quite generally, as is shown in the Appendix, for those inequalities of
quadratic and higher degree in the correlation functions.

The arguments by which we exhibit fields satisfying the coherence conditions, are
essentially unchanged from the previous section. In particular, as we shall discuss in
the next paper, there exist states which are simultaneously right eigenstates of all three
components of E(+)

µ (rrrt) and correspond to a set of three complex eigenvalues Eµ(rrrt).
Such states satisfy the coherence conditions (1.59) precisely.

If we have chosen to discuss only the correlations of the electric field in this paper,
it is because that field plays the dominant role in all detection mechanisms for photons
of lower frequency than x rays. It is not difficult to construct correlation functions
which involve the magnetic field as well as the electric field, and perhaps these too
will someday prove useful. One method is to use the relativistic field tensor, Fµν , in
precisely the way we have used the field Eµ. The field tensor may be written as a 4×4
antisymmetric matrix, made up of the components of both tie electric and magnetic
fields. The n-th-order correlation function for the complex components of those fields
would have 4n four-valued indices. Coherence may then be defined as a requirement
that the correlation functions all be separable into the the products of 4× 4 antisym-
metric fields, just as Eq. (1.59) requires a separation into products of three-vector field
components. The advantage of such a definition is to make it clear that coherence is
a relativistically invariant concept; that a field which is coherent in any one Lorentz
frame is coherent in any other. Fields which are coherent in this relativistic sense are
automatically coherent in the more limited senses we have described earlier.

Appendix

In this section we derive a number of inequalities obeyed by the correlation functions
defined in the paper. Fundamentally, these relations are all consequences of a single
inequality

Tr
{
ρA†A

}
> 0 , (1.A1)

which holds for arbitrary choice of the operator A. To prove this inequality, we note
that the density operator ρ is Hermitian and can always be diagonalized, i.e., we can
find a set of basis states such that the matrix representation of ρ is

〈k |ρ| l〉= δkl pk . (1.A2)

The numbers pk may be interpreted as probabilities associated with the states |k〉.
They are, therefore, non-negative, pk ≥ 0; which is to say that ρ is a positive definite
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operator. The normalization condition on the density operator, Trρ= ∑ pk = 1, shows
that not all the pk vanish. The trace Eq. (1.A1) may be reduced, in the representation
defined by Eq. (1.A2), to the form

Tr
{
ρA†A

}
= ∑

k
pk 〈k |A†A|k〉 . (1.A3)

The diagonal matrix elements on the right of Eq. (1.A3) are all non-negative since
they may be expressed as a sum of squared absolute values,〈

k
∣∣A†A

∣∣k〉 = ∑
l
〈k |A†| l〉〈l |A|k〉

= ∑
l
|〈l |A|k〉|2 .

(1.A4)

This statement completes the proof of Eq. (1.A1), since the trace is invariant under
unitary transformations of the basis states.

The trace which occurs in the inequality (1.A1) has the same basic structure as all
of the correlation functions G(n). Various inequalities relating the correlation functions
follow, more or less directly, from different choices of the operator A. If, for example,
we choose A to be E(+)(x), as defined by Eq. (1.25), we find the inequality (1.32),

G(1)(x,x)≥ 0 . (1.A5)

If we choose A to be the n-fold product E(+)(x1) . . .E(+)(xn) we find the inequality
(1.33),

G(n)(x1 . . .xn,xn . . .x1) ≥ 0 . (1.A6)

The proofs are no different if the components of the three-dimensional field are used
in place of E(+), i.e., if a component index µj is associated with each coordinate xj.
Hence, we have also derived Eqns. (1.48) and (1.55).

The remaining inequalities are of second and higher degree in the correlation func-
tions. Those obeyed by the first-order function, G(1), may be found as follows: We
choose at random a set of m space-time points x1 . . .xm, and consider as the operator
A,

A =
m

∑
j=1

λjE(+)(xj) , (1.A7)

where the superposition coefficients λ1 . . .λm are an arbitrary set of complex numbers.
When we substitute Eq. (1.A7) into the basic inequality, Eq. (1.A1), we find

∑
i, j
λ∗i λjG(1)(xi,xj)≥ 0 . (1.A8)
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In other words, the set of correlation functions G(1)(xi,xj) for i, j = 1, . . . ,m forms the
matrix of coefficients of a positive definite quadratic form. It follows, in particular,
that the determinant of the matrix is non-negative,

det[G(1)(xi,xj] ≥ 0 i, j = 1, . . . ,m . (1.A9)

For m = 1 this inequality is simply Eq. (1.A5). For m = 2 it becomes the one noted in
the text as Eq. (1.34),

G(1)(x1,x1) G(1)(x2,x2)≥
∣∣G(1)(x1,x2)

∣∣2 . (1.A10)

For larger values of m the inequalities are perhaps best left in the form Eq. (1.A9).
When tensor components are introduced, we have only to replace the coordinate xj in
the proofs by the combination of xj and a tensor index µj. The relation (1.49) thereby
follows from the form of Eq. (1.A10). If, in particular for m = 3, we choose the three
coordinates to be the same and the tensor indices all different, i.e., we choose

A =
3

∑
ν=1

λνE(+)
ν (x) , (1.A11)

we find that the 3×3 matrix G(1)
µν (x,x) is positive definite, a property used in the text

in the discussion of polarizations.
Since the succession of inequalities which follows from Eq. (1.A1) is endless, we

only mention the quadratic ones for the higher order functions. To find these, we
choose a set of 2n coordinates at random and let A be any operator of the form

A = λ1E(+)(x1) . . .E(+)(xn)+λ2E(+)(xn+1) . . .E(+)(x2n) . (1.A12)

The positive definiteness of the quadratic form which results from substituting this
expression in Eq. (1.A1) shows that the inequality (1.35) must hold. When vector
indices are attached to the operators E(+), the same proof leads to Eq. (1.56).

We have noted in the text that, for the particular case of coherent fields, the inequal-
ities of second degree in the correlation functions reduce to equalities. The reason for
the reduction lies in the way the correlation functions factorize. The factorization
causes all of the second and higher order determinants involved in the statement of
positive definiteness conditions [e.g., Eq. (1.A9)] to vanish.
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