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1.1
Introduction

Quantum mechanics (QM), also called
wave mechanics, is the modern theory of
matter, of atoms, molecules, solids, and of
the interaction of electromagnetic fields
with matter. It supersedes the classical
mechanics embodied in Newton’s laws
and contains them as a limiting case (the
so-called classical limit of QM). Its develop-
ment was stimulated in the early part of the
twentieth century by the failure of classical
mechanics and classical electrodynamics to
explain important discoveries, such as the
photoelectric effect, the spectral density of
blackbody radiation, and the electromag-
netic absorption and emission spectra of
atoms. QM has proven to be an extremely
successful theory, tested and confirmed
to an outstanding degree of accuracy for
physical systems ranging in size from sub-
atomic particles to macroscopic samples
of matter, such as superconductors and
superfluids. Despite its undisputed success
in the description of physical phenomena,
QM has continued to raise many concep-
tual and philosophical questions, in part
due to its counterintuitive character, defy-
ing common-sense interpretation.

One distinguishes between nonrelativis-
tic quantum mechanics and relativistic
quantum mechanics depending on the

characteristic speed v of the constituents
of the system under study. The domain
of nonrelativistic QM is characterized by
speeds that are small compared with the
speed of light:

v � c (1)

where c = 3 × 108 m s−1 is the speed of
light. For v approaching c, relativistic exten-
sions are necessary. They are referred to
as relativistic wave equations. Because of the
possibility of production and destruction of
particles by conversion of relativistic energy
E into mass M (or vice versa) according to
the relation (see chapter 2)

E = Mc2 (2)

a satisfactory formulation of relativistic
quantum mechanics can only be devel-
oped within the framework of quantum
field theory. This chapter focuses primar-
ily on nonrelativistic quantum mechanics,
its formalism and techniques as well as
applications to atomic, molecular, optical,
and condensed-matter physics. A brief dis-
cussion of extensions to relativistic wave
equations is given at the end of the chapter.

The new ‘‘quantum world’’ will be
contrasted with the old world of classical
mechanics. The bridge between the latter
and the former is provided by the
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4 1 Quantum Mechanics

semiclassical mechanics, whose rigorous
formulation and application have only
recently been developed.

1.2
Particle-Wave Duality and the Uncertainty
Principle

The starting point of modern quantum
mechanics is the hypothesis of the particle-
wave duality put forward by de Broglie
(1924): the motion of each particle of mass
M is associated with a wave (‘‘matter wave’’)
of wavelength

λ = h

p
(3a)

where h = 6.63 × 10−34 J s is Planck’s con-
stant, discovered by M. Planck in 1900 in
his investigation of blackbody radiation,
and p = Mv is the classical momentum of
the particle. Similarly, the frequency ν of
the wave is associated with the mechan-
ical energy of the particle through the
expression

ν = E

h
(3b)

These relations, ascribing wave properties
to particles, are the logical complements
to postulates put forward 20 years earlier
by Einstein (1905), assigning the charac-
teristics of particles (‘‘photons,’’ particles
of zero rest mass) to electromagnetic radi-
ation. In fact, Einstein employed, in his
explanation of the ‘‘photoelectric effect,’’
the expression E = hν (Eq. 3b) to find the
energy E of each photon associated with
electromagnetic radiation of frequency ν.
Photons can eject electrons from the atoms
of a material provided that the energy
exceeds the binding energy of the elec-
tron. This particle-wave duality of QM

unifies the description of distinct entities
of classical physics: mechanics and elec-
tromagnetism. Particles, the fundamental
constituents of matter, possess, in addition
to mechanical properties such as momen-
tum and angular momentum, wave charac-
ter. Conversely, electromagnetic radiation,
successfully described by Maxwell’s the-
ory of electromagnetic waves, takes on,
under appropriate conditions, the prop-
erty of quasiparticles, the photons, carrying
mechanical energy and momentum. The
particle and wave character are comple-
mentary to each other. An object behaves
either like a particle or like a wave.

The hypothesis of particle-wave duality
has been experimentally verified in remark-
able detail. Interference of matter waves
due to the indistinguishability of paths
was demonstrated first for electrons (Davis-
son and Germer, 1927), later for neutrons,
and, most recently, for neutral atoms. The
particle-wave duality of electromagnetic
radiation and its complementarity have
been explored through modern versions
of Young’s double-slit experiment using
state-of-the-art laser technology and fast
switches. Hellmuth and colleagues (1987)
succeeded, for example, in switching from
particle to wave character and vice versa
even after the photon has passed through
the slit (in the experiment, a beam split-
ter) by activating a switch (a Pockels cell)
in one of the two optical paths of the
interferometer. By use of the switch, the
interference patterns are made to appear
or disappear, as expected for a wavelike or
particlelike behavior of the photon, respec-
tively. This ‘‘delayed choice’’ experiment
not only demonstrates the particle-wave
duality for photons but also elucidates
important conceptual aspects of the nonlo-
cality of quantum mechanics. The decision
as to whether the photon will behave
like a particle or a wave need not be
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made at the double slit itself but can be
spatially separated and temporarily post-
poned.

The consequences of the wave-particle
duality for the description of physical phe-
nomena are far reaching and multifaceted.
One immediate consequence that repre-
sents the most radical departure from
classical physics is the uncertainty princi-
ple (Heisenberg, 1927). One deeply rooted
notion of classical physics is that all dynam-
ical observables can be measured, at least
in principle, with arbitrary accuracy. Uncer-
tainties in the measurement are a matter
of experimental imperfection that, in prin-
ciple, can be overcome. The wave nature
of particles in QM imposes, however, fun-
damental limitations on the simultaneous
accuracy of measurements of dynamical
variables that cannot be overcome, no mat-
ter how much the measurement process
can be improved. This uncertainty princi-
ple is an immediate consequence of the
wave behavior of matter. Consider a wave
of the form

ψ(x) = Aei(kx−ωt) (4)

traveling along the x coordinate
(Figure 1.1). Equation (4) is called a
plane wave because the wave fronts form
planes perpendicular to the direction of

propagation. The physical interpretation of
the amplitude A was provided by Born
(1926) in terms of a probability density

P(x) = |ψ(x)|2 = |A|2 (5)

for finding the particle at the coordinate x.
The matter wave (Eq. 4) is further charac-
terized by the wave number k = 2π/λ= p/�
and the angular frequency ω = 2πv = E/�.
The ‘‘rationalized’’ Planck’s constant � =
h/2π = 1.05 × 10−34 J s is frequently used
in QM.

The uncertainty principle is inherent to
all wave phenomena. Piano tuners have
exploited it for centuries. They sound a
vibrating tuning fork of standard frequency
in unison with a piano note of the same
nominal frequency and listen to a beat tone
between the struck tune and the tuning
fork. For a fork frequency of ν = 440 Hz
and a string frequency of ν′ = 441 Hz,
one beat tone will be heard per second
(δν = ν′ − ν = 1 Hz). The goal of the tuner
is to reduce the number of beats as much
as possible. To achieve an accuracy of δν =
0.010.01 Hz, the tuner has to wait for at
least about δt = 100 s (in fact, only a fraction
of this time since the frequency mismatch
can be detected prior to completion of
one beat period) to be sure no beat had
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Traveling matter wave
Reψ(x, t)

t x Fig. 1.1 Matter wave traveling
along the x direction; the figure
shows the real part of ψ(x),
Eq. (4) (after Brandt and Dah-
men, 1989).
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occurred. Piano tuning therefore relies on
the frequency–time uncertainty

�ν �t � 1 (6)

Measurement of the frequency with infi-
nite accuracy (�ν → 0) requires an infinite
time period of measurement (�t → ∞), or
equivalently, it is impossible within any
finite period of time to determine the fre-
quency of the string exactly since time
and frequency are complementary variables.
Similarly, the variables characterizing the
matter wave (Eq. 4) are complementary:

�k �x ≥ 1

�ω �t ≥ 1 (7)

These relations, well known from classical
theory of waves and vibrations, have
unexpected and profound consequences
when combined with the de Broglie
hypothesis (Eq. 3) for quantum objects:

�p �x ≥ �

�E �t ≥ � (8)

The momentum and the position of
a particle, its energy and the time,
and more generally, any other pair of
complementary variables, such as angular
momentum and angle, are no longer
simultaneously measurable with infinite
precision. The challenge to the classical
laws of physics becomes obvious when
one contemplates the fact that Newton’s
equation of motion uses the simultaneous
knowledge of the position and of the
change of momentum.

Since � is extremely small, the uncer-
tainty principle went unnoticed during
the era of classical physics for hun-
dreds of years and is of little conse-
quence for everyday life. Its far-reaching

implications become obvious only in the
microscopic world of atoms, molecules,
electrons, nuclei, and elementary parti-
cles. More generally, whenever the size
of an object or mean distance between con-
stituents becomes comparable to the de
Broglie wavelength λ, the wave nature of
matter comes into play. The size of λ also
provides the key for quantum effects in
macroscopic systems such as superfluids,
superconductors, and solids.

1.3
Schrödinger Equation

The Schrödinger equation for matter waves
ψ describes the dynamics of quantum
particles. In the realm of quantum physics,
it plays a role of similar importance to that
which Newton’s equation of motion does
for classical particles. As with Newton’s
laws, the Schrödinger equation cannot be
rigorously derived from some underlying,
more fundamental principles. Its form can
be made plausible, however, by combining
the Hamiltonian function of classical
mechanics,

H = T + V = E (9)

which equals the mechanical energy, with
the de Broglie hypothesis of matter waves
(Eq. 4). The potential energy is denoted by
V and the kinetic energy by T = p2/2M.
Formally multiplying the wave function
ψ(x,t) by Eq. (9) yields

Hψ(x, t) = p2

2M
ψ(x, t) + Vψ(x, t) (10)

In order to connect the de Broglie relations
for energy and momentum appearing in
the arguments of the plane wave (Eq. 4)
with the energy and momentum in the
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Hamiltonian function, H and p in Eq. (10)
must be taken as differential operators,

H ←→ i�
∂

∂t

p ←→ �

i

∂

∂x
(11)

This substitution into Eq. (10) leads to the
time-dependent Schrödinger equation

i�
∂

∂t
ψ(x, t) = Hψ(x, t)

=
(

− �
2

2M

∂2

∂x2
+ V(x)

)
× ψ(x, t) (12)

which describes the time evolution of the
matter wave. For physical systems that
are not explicitly time dependent, i.e., that
have time-independent potentials V(x), the
energy is conserved and i� ∂/∂t can be
replaced by E, giving the time-independent
Schrödinger equation

Eψ(x) =
(

− �
2

2M

∂2

∂x2
+ V(x)

)
ψ(x) (13)

If no interaction potential is present
(V(x) = 0), Eq. (12) is referred to as the
free-particle Schrödinger equation. The plane
waves of Eq. (4) are solutions of the
free-particle Schrödinger equation with
eigenenergies E = (�k)2/2M.

The correspondence principle, first for-
mulated by Bohr, provides a guide to
quantizing a mechanical system. It states
that in the limit of large quantum num-
bers or small de Broglie wavelength, the
quantum-mechanical result should be the
same, or nearly the same, as the classi-
cal result. One consequence of this pos-
tulate is that the quantum-mechanical
Hamiltonian operator in the Schrödinger
equation (Eq. 12) should be derived from
its corresponding classical analog, the

classical Hamiltonian function (Eq. 9),
through the replacement of the classi-
cal observable by the operator equivalents
(Eq. 11).

The replacement of dynamical variables
by differential operators leads to the
noncommutativity of pairs of conjugate
variables in QM, for example,

[x, px ] ≡ x
�

i

∂

∂x
− �

i

∂

∂x
x = i� (14)

with similar relations for other comple-
mentary pairs, such as Cartesian coordi-
nates of position and momentum (y, py),
(z, pz), or energy and time. It is the noncom-
mutativity that provides the basis for a for-
mal proof of the uncertainty principle, Eq.
(8). The Schrödinger equation (Eqs. 12 and
13) is a linear, homogeneous, and (in gen-
eral) partial differential equation. One con-
sequence of this fact is that matter waves
ψ satisfy the superposition principle. If ψ1

and ψ2 are two acceptable solutions of the
Schrödinger equation, called states, a linear
combination

ψ = c1ψ1 + c2ψ2 (15)

is an acceptable solution, as well. The phys-
ical implication of Eq. (15) is that the quan-
tum particle can be in a ‘‘coherent superpo-
sition of states’’ or ‘‘coherent state,’’ a fact
that leads to many strange features of QM,
such as destructive and constructive inter-
ference, the collapse of the wave function,
and the revival of wave packets.

A solution of a linear, homogeneous
differential equation is determined only
up to an overall amplitude factor, which
is arbitrary. The probability interpreta-
tion of the matter wave (Eq. 5), however,
removes this arbitrariness. The probabil-
ity for finding the particle somewhere
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is unity,

∫
dxP(x) =

∫
dx|ψ(x)|2 = 1 (16)

Equation (16) and its generalization to
three dimensions are referred to as the
normalization condition on the wave func-
tion and eliminate the arbitrariness of the
modulus of the wave function. A wave
function that can be normalized according
to Eq. (16) is called square integrable. The
only arbitrariness remaining is the overall
‘‘phase factor’’ of the wave function, eiφ ,
i.e., a complex number of modulus 1.

1.4
Boundary Conditions and Quantization

In order to constitute a physically accept-
able solution of the Schrödinger equation,
i.e., to represent a state, ψ must satisfy
appropriate boundary conditions. While
their detailed forms depend on the coor-
dinates and symmetry of the problem
at hand, their choice is always dictated
by the requirement that the wave func-
tion be normalizable and unique and that
physical observables take on only real
values (more precisely, real expectation
values) despite the fact that the wave func-
tion itself can be complex. Take, as an
example, the Schrödinger equation for a
rotator with a moment of inertia I, con-
strained to rotate about the z axis. The
classical Hamiltonian function H = L2

z/2I,
with Lz the z component of the angular
momentum,

Lz = xpy − ypx = �

i

∂

∂φ
(17)

gives rise, according to the corre-
spondence principle, to the following

time-independent Schrödinger equation:

−�
2

2I

∂

∂φ2
ψ(φ) = Eψ(φ) (18)

where φ is the angle of rotation about the z
axis. Among all solutions of the form

ψ(φ) = Aei(mφ+φ0) (19)

only those satisfying the periodic boundary
conditions

ψ(φ + 2π ) = ψ(φ) (20)

are admissible in order to yield a uniquely
defined single-valued function ψ(φ). (The
implicit assumption is that the rotator
is spinless, as discussed below.) The
magnetic quantum number m therefore
takes only integer values m =−∞, . . . , −1,
0, 1, . . . ∞. Accordingly, the z component
of the angular momentum

Lzψ(φ) = m�ψ(φ) (21)

takes on only discrete values of multiples
of the rationalized Planck’s constant �.
The real number on the right-hand side
that results from the operation of a
differential operator on the wave function
is called the eigenvalue of the operator.
The wave functions satisfying equations
that are of the form of Eqs (18) or (21)
are called eigenfunctions. The eigenvalues
and eigenfunctions contain all relevant
information about the physical system; in
particular, the eigenvalues represent the
measurable quantities of the systems.

The amplitude of the eigenfunction
follows from the normalization condition

∫ 2π

0
dφ|ψ(φ)|2 = 1 (22)
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as A = (2π )−1/2. The eigenvalues of E in
Eq. (18) are Em = �

2m2/2I. Just like for
a vibrating string, it is the imposition
of boundary conditions (in this case,
periodic boundary conditions) that leads to
‘‘quantization,’’ that is, the selection of an
infinite but discrete set of modes of matter
waves, the eigenstates of matter, each of
which is characterized by certain quantum
numbers.

Different eigenstates may have the same
energy eigenvalues. One speaks then of
degeneracy. In the present case, eigenstates
with positive and negative quantum num-
bers ±m of Lz are degenerate since the
Hamiltonian depends only on the square
of Lz. Degeneracies reflect the underlying
symmetries of the Hamiltonian physical
system. Reflection of coordinates at the
x–z plane, (y →−y, py → −py and there-
fore Lz → −Lz) is a symmetry operation,
i.e., it leaves the Hamiltonian invariant. In
more general cases, the underlying symme-
try may be dynamical rather than geometric
in origin.

1.5
Angular Momentum in Quantum Mechanics

The quantization of the projection of the
angular momentum, Lz, is called directional
quantization. The Hamiltonian function
for the interaction of an atom having a
magnetic momentµ = γ L with an external
magnetic field B reads

H = −µ · B = −γ L · B (23)

The proportionality constant γ between
the magnetic moment and the angular
momentum is called the gyromagnetic ratio.
According to the correspondence principle,
the Schrödinger equation for the magnetic
moment in a field with field lines oriented

along the z axis becomes

−γ BLzψ(φ) = Emψ(φ) (24)

The eigenenergies

Em = −γ B�m (25)

are quantized and depend linearly on the
magnetic quantum number. Depending
on the sign of γ , states with positive m
for γ > 0, or negative m for γ < 0, corre-
spond to states of lower energy and are
preferentially occupied when the atomic
magnetic moment is in thermal equilib-
rium. This leads to an alignment of the
magnetic moments of the atoms along one
particular direction and to paramagnetism
of matter when its constituents carry a net
magnetic moment.

The force an atom experiences as
it passes through an inhomogeneous
magnetic field depends on the gradient
of the magnetic field, ∇B. Because of
the directional quantization of the angular
momentum, a beam of particles passing
through an inhomogeneous magnetic
field will be deflected into a set of
discrete directions determined by the
quantum number m. A deflection pattern
consisting of a few spots rather than
a continuous distribution of a beam
of silver atoms was observed by Stern
and Gerlach (1921, 1922) and provided
the first direct evidence of directional
quantization.

In addition to the projection of the angu-
lar momentum along one particular axis,
for example, the z axis, the total angu-
lar momentum L plays an important role
in QM. Here, one encounters a concep-
tual difficulty, the noncommutativity of
different angular momentum components.
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Application of Eq. (14) leads to

[
Lx , Ly

] = i�Lz,
[
Ly, Lz

] = i�Lx[
Lz, Lx

] = i�Ly (26)

As noncommutativity is the formal expres-
sion of the uncertainty principle, the
implication of Eq. (26) is that different
components of the angular momentum
cannot be simultaneously determined with
arbitrary accuracy. The maximum num-
ber of independent quantities formed by
components of the angular momentum
that have simultaneously ‘‘sharply’’ defined
eigenvalues is two. Specifically,

[L2, Lz] = 0 (27)

with L2 = L2
x + L2

y + L2
z being the square of

the total angular momentum. Therefore,
one projection of the angular momentum
vector (conventionally, one chooses the z
projection) and the L2 operator can have
simultaneously well-defined eigenvalues,
unaffected by the uncertainty principle.
The differential operator of L2 in spherical
coordinates gives rise to the following
eigenvalue equation:

L2Y(θ , φ) = −�
2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ 1

sin2 θ

∂2

∂φ2

]
Y(θ , φ)

= �
2l(l + 1)Y(θ , φ) (28)

The solutions of Eq. (28), Ym
l (θ , ψ), are

called spherical harmonics. The superscript
denotes the magnetic quantum number
of the z component, as above, while
the quantum number l = 0, 1, . . . ∞ is
called the angular momentum quantum
number. Since |Lz | ≤ | L|, we have the
restriction |m | ≤ l, that is, for given angular
momentum quantum number l, the z
component varies between −l and l : m =

− l, . . . , −1, 0, 1, . . . l. The total number of
quantized projections of Lz is 2l + 1. The
eigenvalue of the L2 operator is, however,
�

2l(l + 1) and not �
2l2. The latter can be

understood in terms of the uncertainty
principle and can be illustrated with the
help of a vector model (Figure 1.2). Because
of the uncertainty principle, the projections
Ly and Lx do not take a well-defined value
and cannot be made to be exactly zero,
when Lz possesses a well-defined quantum
number. Therefore, the z projection m�

will always be smaller than the magnitude
of L = �

√
l(l + 1) in order to accommodate

the nonzero fluctuations in the remaining
components.

The spherical harmonics are given in
terms of associated Legendre functions
Pm

l (cos θ ) by

Ym
l (θ , φ) = (−1)m

[
(2l + 1)

4π

(l − m)!

(l + m)!

]1/2

×Pm
l (cos θ )eimφ (29)

The eigenfunctions of Lz (Eq. 19) can be
recognized as one factor in the expression
for Ym

l . The probability densities |Ym
l |2 of

the first few eigenfunctions are represented
by the polar plots in Figure 1.3.

In addition to the orbital angular
momentum operator L, which is the
quantum-mechanical counterpart to the
classical angular momentum, another type
of angular momentum, the spin angu-
lar momentum, plays an important role
for which, however, no classical analog
exists. The spin is referred to as an inter-
nal degree of freedom. The Stern–Gerlach
experiment discussed above provided the
major clue for the existence of the electron
spin (Goudsmit and Uhlenbeck, 1925). The
orbital angular momentum quantization
allows only for an odd number of dis-
crete values of Lz (2l + 1 = 1, 3, 5, . . .)
and therefore an odd number of spots in
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Fig. 1.2 Vector model of angular momentum L
for quantum number l = 2 and |L| = √

6 �.

the deflection pattern. Stern and Gerlach
observed, however, two discrete directions
of deflection (see schematic illustration in
Figure 1.14). The spin hypothesis solved
this mystery. The outermost electron of
a silver atom has a total orbital angular
momentum of zero but has a spin angular
momentum of s = 1

2 . The number of dif-
ferent projections of the spin is therefore
2s + 1 = 2 in accordance with the num-
ber of components into which the beam
was magnetically split. Within nonrela-
tivistic quantum mechanics, the spin must
be introduced as an additional degree of
freedom on empirical grounds. A concep-
tually satisfactory description is provided

by relativistic quantum mechanics (see
Section 1.11). The identification of the spin
as an angular momentum rests on the
validity of the commutation rules (Eq. 26),

[
Sx, Sy

] = i�Sz,
[
Sy, Sz

] = i�Sx ,[
Sz, Sx

] = i�Sy (30)

identical to those of the orbital angular
momentum. Any set of the components
of a vector operator satisfying Eq. (26)
has a spectrum of eigenvalues (quantum
numbers) of an angular momentum with
quantum numbers j = 0, 1

2 , 1, . . . and m =
−j, −j + 1 . . . , + j. The quantum number
j is an integer in systems with an even
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θ

= 0

= 1

= 2

m = 0

m = 0 m = ±1

m = 0 m = ±1 m = ±2

Fig. 1.3 Polar plots of the probability
distributions |Ym

l (θ , φ)|2 of angular momentum
eigenfunctions.

number of spin 1
2 particles (including

zero) and half-integer in systems with
an odd number of spin 1

2 particles. The
Hamiltonian for the interaction of an
electron spin with an external magnetic
field is given in direct analogy to Eq. (23)
by

H = −γ gS · B (31)

The only difference is the ‘‘anomalous’’
gyromagnetic ratio represented by the
factor g. An approximate value of g can be
deduced from the relativistic wave equation
(Dirac’s equation) for the electron (see
Section 1.11).

1.6
Formalism of Quantum Mechanics

The quantum-mechanical description out-
lined in the previous section with the help
of specific examples can be expanded to
a general formalism of quantum mechan-
ics. The starting point is the identifica-
tion of wave functions with vectors in

an infinite-dimensional vector space, the
Hilbert space,

ψ −→ |ψ〉 (32)

with the vectors represented by a ‘‘ket.’’
The ket notation was first introduced by
Dirac (1930). The coherent superposition
illustrated by Eq. (15) can be recognized as
vector addition in Hilbert space. Physical
observables such as the Hamiltonian or the
angular momentum can be represented by
linear and Hermitian operators. Linearity
of an operator B means

B(c1|ψ1〉 + c2|ψ2〉) = c1B|ψ1〉 + c2B|ψ2〉
(33)

for all complex numbers c1, c2 and all
vectors |ψ1〉, |ψ2〉. Hermitian operators are
defined as those for which

B† = B (34)

that is, the operator is equal to its Hermi-
tian adjoint. The Hermiticity assures that
the eigenvalue equation

B|ψ〉 = λ|ψ〉 (35)
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possesses real eigenvalues λ, which can be
identified with measurable quantities. The
time-independent Schrödinger equation,
Eq. (13), is of the form in Eq. (35) with
B being the Hamiltonian operator H and
λ being the eigenenergy E. The result of
a measurement of a physical observable
yields an eigenvalue λ of the corresponding
operator, B.

The noncommutativity of operators (Eq.
14) corresponds to the well-known non-
commutativity of matrices in linear alge-
bra. The overlap of wave functions can be
identified with the scalar product in Hilbert
space:

〈φ|ψ〉 ≡
∫

d3r φ∗(r)ψ(r) (36)

The adjoint of a vector in Hilbert space
〈ψ | is called a bra and the scalar
product a bracket (Dirac, 1930). The
normalization requirement imposed on
the wave function can be expressed in
terms of the scalar product as 〈ψ | ψ 〉 = 1.
The requirement of normalizability (Eq.
22) implies that the Hilbert space is
spanned by square-integrable functions.
Since eigenstates of Hermitian operators
belonging to different eigenvalues are
orthogonal to each other, each physical
dynamical variable possesses a complete
orthonormal set of eigenstates:

〈ψi|ψj〉 = δij =
{

1 i = j

0 i �= j
(37)

The operator B is a diagonal matrix in
a basis consisting of its eigenstates, the
‘‘eigenbasis’’ |ψ i 〉 with i = 1, . . . , ∞. In its
eigenbasis, the operator B possesses the
following ‘‘spectral representation’’:

B =
∑

i

λi|ψi〉〈ψi| (38)

containing only its eigenstates {ψ i} and its
eigenvalues λi. Two operators possess the
same eigenbasis when they commute with
each other. Physical observables whose
operators commute with each other are
called compatible observables. A state of a
physical system is therefore specified to
the maximum extent possible, consistent
with the uncertainty principle, by one
common eigenstate of a maximum set
of compatible observables. For example,
the set {L2,Lz} is the maximum set of
compatible observables for the angular
momentum with the common eigenstate
|lm〉.

The probability amplitude for finding the
system in a particular state |ψ1〉 is given by
the projection of the state vector onto this
state, i.e., by the scalar product 〈ψ1 | ψ〉.
The corresponding probability is

P(ψ1) = |〈ψ1|ψ〉|2 (39)

Formally, Eq. (39) can be viewed as the
expectation value of the projection operator
P =|ψ1 〉 〈ψ1| in the state |ψ〉. The process
of a measurement is therefore associated
with a projection in Hilbert space. This
projection is sometimes referred to as
the collapse of the wave function. The
process of measurement thus influences
the quantum system to be measured.

The state of a physical system is often
not completely specified by a ‘‘pure’’
state described by a single Dirac ket
|ψ〉 or a coherent superposition of kets
∼c1 |ψ1 〉 +c2 | ψ2〉. The limited informa-
tion available may only allow us to specify a
statistical mixture of states. Such a mixture
is described by the statistical operator or
density operator

ρ =
∑

i

Pi|ψi〉〈ψi| (40)
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with Pi denoting the probability for the
system to be found in a particular state
|ψ i〉. The result of the measurement of an
observable B is then given by the statistical
expectation value

〈B〉 = Tr(ρB) =
∑

i

〈ψi|B|ψi〉Pi (41)

i.e., by the diagonal elements of the opera-
tor B, each weighted with the probability to
find the system in the corresponding state.
The preferred set of states, |ψ i〉, for which
the density matrix is ‘‘diagonal,’’ that is, of
the form in Eq. (40), is sometimes referred
to as the set of pointer states.

In light of the expression for the
probability as a projection, Eq. (39), we
can rewrite Eq. (5) as

P(r) = |ψ(r)|2 = |〈r|ψ〉|2 (42)

where |r〉 is formally treated as a vector
(‘‘ket’’) in Hilbert space. This definition
leads to the difficulty that |r〉 cannot be
defined as a square-integrable function.
Nevertheless, it can be consistently incor-
porated into the formalism by employing
the concept of generalized functions (‘‘dis-
tributions’’; see Lighthill, 1958; Schwartz,
1965). One defines a scalar product
through

〈r|r′〉 = δ(r − r′)

= δ(x − x′)δ(y − y′)δ(z − z′) (43)

where the right-hand side is called Dirac’s
δ function. The δ function is zero almost
everywhere:

δ(x) =
{

0, x �= 0

∞, x = 0
(44)

with the strength of the singularity such
that the area underneath the peak is∫

dxδ(x) = 1 (45)

While the δ function is not an ordinary
(Riemann integrable) function, it can be
approximated as a limit of Riemann
integrable functions, for example,

lim
ε−→0

1

π

ε

x2 + ε2
= δ(x) (46)

Equation (46) satisfies Eq. (45) provided
one evaluates the integral first and takes
the limit ε → 0 afterward. As the order of
the operations of integration and taking the
limit is not interchangeable, Eq. (46) is said
to converge ‘‘weakly’’ toward a δ function
in the limit ε → 0. δ functions play an
important role in the quantum theory of
scattering.

The time evolution of the Hilbert-space
vectors is given by Schrödinger’s equation
written in Dirac’s ket notation:

i�
∂

∂t
|ψ〉 = H|ψ〉 (47)

For systems with a classical analog, the
Hamiltonian operator is given, according
to the correspondence principle, by the
classical Hamiltonian function H(r, p)
upon treating the canonical variables (r, p)
as noncommuting operators (see Eq. 14).
There are, however, additional dynamical
variables in quantum mechanics, such as
spin, for which no classical counterparts
exist.

A vector in Hilbert space can be expanded
in terms of any basis (a ‘‘representation’’),

|ψ〉 =
∑

i

ci|φi〉 =
∑

i

〈φi|ψ〉|φi〉 (48)

where ci = 〈φi | ψ〉 are the expansion coef-
ficients of the ket |ψ〉 in the basis
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{|φi 〉}. Switching from one representation
to another |ψ 〉→ |ψ ′ 〉 = U | ψ〉 amounts
to a unitary transformation, U, since
the norm of a state vector must be
conserved,

〈ψ ′|ψ ′〉 = 〈ψ|U†U|ψ〉
= 〈ψ|ψ〉 (49)

or U†U = 1. Transformations among rep-
resentations play an important role in QM.
While the maximum number of compat-
ible observables is determined by com-
mutation rules, the choice of observables
that are taken to be diagonal or to have
‘‘good’’ quantum numbers depends on
the specific problem under consideration.
Unitary transformations provide the tool
to switch from a basis within which one
set of observables is diagonal to another.
The transformation law for state vectors
|ψ ′ 〉 = U | ψ〉 implies the transformation
law for operators

A′ = UAU† (50)

The latter follows from the invariance
of the expectation value 〈ψ ′ | A′ |ψ ′ 〉 =
〈ψ | U†A′U |ψ〉 under unitary transfor-
mations.

Classical Hamiltonian functions as
well as quantum-mechanical Hamiltonian
operators possess discrete symmetries. For
example, the Hamiltonian function of the
harmonic oscillator,

H(x, p) = p2

2M
+ 1

2 Mω2x2 (51)

is invariant under reflection of all spatial
coordinates (x →−x, p →−p) since H
depends only on the square of each
canonical variable. In classical mechanics,
this symmetry is of little consequence
since the solution of Newton’s equation of

motion depends on the initial conditions
x(t = t0), p(t = t0), which are not subject
to any symmetry constraint. They may
‘‘break’’ the symmetry and usually do so. In
quantum mechanics, however, the parity
of a state vector becomes a dynamical
observable.

We can define a parity operator p̂ through

p̂H(x, p)p̂† = H(−x, −p) (52)

Since p̂2 is the unit operator (two successive
reflections restore the original function),
we have p̂ = p̂† = p̂−1. Eigenfunctions of
p̂, ψ(x) = 〈x|ψ〉, can now be characterized
by their parity:

〈x|p̂|ψ〉 = 〈−x|ψ〉 = ±〈x|ψ〉 (53)

The ± sign in Eq. (53) is referred to
as indicating positive or negative parity. A
wave function cannot always be assigned a
well-defined parity quantum number ±1.
However, when p̂ commutes with H,

p̂H(x, p)p̂ = H(x, p) (54)

there exists a common eigenbasis in
which both the Hamiltonian operator
and the parity operator are diagonal and,
consequently, ψ is an eigenstate of p̂ with a
well-defined parity. A similar argument can
be developed for symmetry with respect
to the time-reversal operator T : t → −t,
p →−p, r → r.

An additional discrete symmetry, which
is of fundamental importance for the
quantum mechanics of identical particles,
is the permutation symmetry. Consider
a wave function describing the state
of two identical particles ψ(r1, r2). The
permutation operator p̂12 exchanges the
two particles in the wave function:

p̂12ψ(r1, r2) = ψ(r2, r1) (55)
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The spin-statistics postulate of quantum
mechanics makes a general statement
concerning the permutation symmetry. A
many-body system consisting of identical
particles of integer spin (‘‘bosons’’) pos-
sesses wave functions that are even under
all interchanges of two particles, whereas
the wave function is odd for half-integer
spin particles (‘‘fermions’’). The eigenvalue
of p̂ij, the operator of permutation for any
two particles of an N-body system, is +1 for
bosons and −1 for fermions. Wave func-
tions are totally symmetric under particle
exchange for bosons and totally antisym-
metric for fermions. An immediate con-
sequence is that two fermions cannot be
in identically the same state for which
all quantum numbers agree (the so-called
Pauli exclusion principle) since the anti-
symmetric wave function would vanish
identically.

1.7
Solution of the Schrödinger Equation

1.7.1
Methods for Solving the Time-Dependent
Schrödinger Equation

1.7.1.1 Time-Independent Hamiltonian
If the Hamilton operator is not explic-
itly time dependent, i.e., the total
energy is conserved, the time-dependent
Schrödinger equation can be reduced to the
time-independent Schrödinger equation.
Equation (47) can be formally solved by

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (56)

where U(t, t0) is called the time-evolution
operator, a unitary transformation describ-
ing the translation of the system in time.
Substitution of Eq. (56) into Eq. (47) shows

that

U(t, t0) = exp
[−iH(t − t0)

�

]
(57)

where the exponential function of the oper-
ator H is defined through its power-series
expansion

U(t, t0) = 1 − i
t − t0

�
H

−1

2

(
t − t0

�

)2

H · H + · · · (58)

If one is able to solve the time-independent
Schrödinger equation

H|ψn〉 = En|ψn〉 (59)

where n labels the eigenstate, one can cal-
culate the time evolution of the eigenstate:

U(t, t0)|ψn〉 = e−iH(t−t0)/�|ψn〉
= e−iEn(t−t0)/�|ψn〉 (60)

using the definition in Eq. (58). The phase
factor in Eq. (60) is called the dynamical
phase. The explicit solution for an arbitrary
state can then be found by expanding
|ψ(t0)〉 in terms of eigenstates of the
Hamilton operator:

|ψ(t0)〉 =
∑

n

|ψn〉〈ψn|ψ(t0)〉

|ψ(t)〉 = U(t, t0)|ψ(t0)〉
=

∑
n

e−iEn(t−t0)/�|ψn〉

×〈ψn|ψ(t0)〉 (61)

Hence, for time-independent systems, the
solution of the energy eigenvalue problem
(Eq. 59) is sufficient to determine the time
evolution for any initial state.
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1.7.1.2 Time-Dependent Hamiltonian
For a time-dependent Hamiltonian H(t),
the solution of the time-evolution operator
U in terms of the exponential function
Eq. (57) must be redefined in order to
take into account that the Hamiltonian
operator at different instances of time may
not commute, [H(t), H(t′)] �= 0. We have

U(t, t0) = 1 − i

�

∫ t

t0

dt′H(t′)

− 1
�2

∫ t

t0

dt′H(t′)

×
∫ t′

t0

dt′′H(t′′) · · ·

= T exp
(
− i

�

∫ t

t0

H(t′)dt′
)

(62)

Equation (62) is called the time-ordered
exponential function and T is called
the time-ordering operator. In two lim-
iting cases, the evolution operator for
time-dependent Hamiltonian systems can
be easily calculated by reducing the prob-
lem to the time-independent Hamiltonian.
One is the adiabatic limit. If the temporal
changes in H(t) are very slow compared
with the changes in the dynamical phases
of Eq. (60) for all t, the U matrix is diagonal
in the slowly changing eigenbasis of H(t)
at each instant t,

|ψn(t)〉= eiγn(t)exp
[
− i

�

∫ t

t0

dt′En(t′)
]

|φn,t〉
(63)

The dynamical phase factor is determined
by En(t′), the energy eigenvalue of the
stationary Schrödinger equation for the
Hamiltonian operator H(t′) at time t′. In Eq.
(63), the state |ψn(t)〉 denotes the evolved
state and the state |φn,t〉 represents the
stationary eigenstate for the Hamiltonian
H = H(t) at the time t, where the time plays
the role of a parameter.

The additional phase γ n(t) is called
Berry’s phase (Berry, 1984) or the geometric
phase, since it records the information on
the excursion of the Hamiltonian H(t′) in
parameter space in the case of adiabatic
evolution. The role of γ n(t) is to relate
the phases of the adiabatic wave function
|ψn(t)〉 at different points in time. Insertion
of Eq. (63) into Schrödinger’s equation
yields the equation that defines the real
phase function γ n(t),

γ̇n(t) − i

〈
φn,t

∣∣∣∣ d

dt
φn,t

〉
= 0 (64)

The analogy to the parallel transport of vec-
tors on a sphere (Figure 1.4) can give a
glimpse of the concept underlying Berry’s
phase. Consider a quantum-mechanical
state to be represented by a vector at point
A. By infinitely slowly (adiabatically) vary-
ing an external parameter, for example, the
direction of the magnetic field, one can
‘‘transport’’ state vectors successively from
point A to B, then to C, and finally back
to A. After completion of the closed loop,
the vector does not coincide with its orig-
inal orientation but is rotated by an angle
γ that is proportional to the solid angle
subtended by the loop. This angle gives
rise to a geometric phase, exp(iγ ), which
depends on the geometry of a loop, but
unlike the dynamical phase, Eq. (60), it is
independent of the time it takes to com-
plete the transport of the state along the
closed loop. If one is now able to form in a
physical system a coherent superposition of
two states, one accumulating the geomet-
ric phase along the adiabatic change of the
external field while the other is subject to a
constant field, an interference pattern will
arise. The Berry phase has been observed
in interference experiments involving neu-
tron spin rotation, in molecules, in light
transmission through twisted optical-fiber
cables, and in the quantum Hall effect.
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Fig. 1.4 Parallel transport of a vector on a sphere
along a closed loop leads to a rotation of the vector.
The vector’s orientation relative to its local environment
remains unchanged during parallel transport. The angle
of rotation is related to Berry’s phase.

In the opposite limit, where a sudden
change of the Hamiltonian from H(t) =
H0 for all t < 0 to another Hamiltonian
H(t) = H0 for all t > 0 occurs, no dynamical
or geometric phase can be accumulated
during the instantaneous change of the
Hamiltonian at t = 0. The initial eigenstate
of H0, ψn, in which the system is prepared
at t = 0, evolves for t > 0 as

|ψn(t)〉 =
∑

n′
exp

(
− i εn′ t

�

)
|ψn′ 〉〈ψn′ |ψn〉

(65)
In the sudden limit, the matrix U is non-
diagonal. The eigenstate belonging to the
‘‘old’’ Hamiltonian forms a coherent super-
position of eigenstates |ψn〉 of the new
Hamiltonian. The ‘‘sudden’’ formation of
coherent states causes ‘‘quantum beats,’’
observable oscillations in amplitudes and
probabilities.

Consider, for example, an atom that is
excited at the time t = 0 to a state that is a
coherent superposition of a state |ψ1〉, with
energy E1, and a state |ψ2〉, with energy E2,
that is, |ψ 〉 = c1 | ψ1 〉 + c2 | ψ2〉. At a later
point in time, t, the state acquires a phase
factor as a function of time according to
Eq. (65):

|ψ(t)〉 = c1e−iE1t/�|ψ1〉 + c2e−iE2t/�|ψ2〉
(66)

The projection onto a final state |f 〉
representing, for example, the atom in
the ground state and the emission of a
photon,

Pf (t) = |〈 f |ψ(t)〉|2
= |c1|2|〈 f |ψ1〉|2 + |c2|2|〈 f |ψ2〉|2

+ c1c∗
2exp

[
it

�
(E2 − E1)t

]
×〈 f |ψ1〉〈 f |ψ2〉∗
+ complex conjugate (67)

will display oscillations (‘‘quantum beats’’)
due to the time dependence of the relative
phases of the two states. These quantum
beats due to dynamical phases have been
observed, for example, in the Lyman-α (n =
2 → n = 1) radiation of hydrogen excited in
the n = 2 level subsequent to fast collisions
with a foil (Figure 1.5).

The standard computational method of
solving the time-dependent Schrödinger
equation for time-dependent interactions
consists of expanding a trial wave function
|ψ(t)〉 in terms of a conveniently chosen
truncated time-independent basis of finite
size:

|ψ(t)〉 =
N∑

n=1

an(t)|ψn〉 (68)
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Fig. 1.5 Quantum beats in the Lyman-α photon
intensity of hydrogen after collision with a carbon
foil: •, experimental data from Andrä (1974); – ,
theory from Burgdörfer (1981). The theory curve is
shifted relative to the data for clarity.

with unknown, time-dependent coeffi-
cients an(t). Insertion of Eq. (68) into Eq.
(47) leads to a system of coupled first-order
differential equations, which can be written
in matrix notation as

i�ȧ = H(t) a(t) (69)

using the vector notation a = (a1, . . . an)
with H the matrix of the Hamiltonian
in the basis {|ψn 〉}, Hn, n′ = 〈ψn | H | ψn′ 〉.
The solution of Eq. (69) is thereby reduced
to a standard problem of numerical mathe-
matics, the integration of a set of N coupled
first-order differential equations with vari-
able (time-dependent) coefficients.

1.7.2
Methods for Solving the Time-Independent
Schrödinger Equation

The solution of the stationary Schrödinger
equation, Eq. (59), proceeds mostly in
the {|r 〉} representation, i.e., using wave
functions ψ(r). Standard methods include
the method of separation of variables and
variational methods.

1.7.2.1 Separation of Variables
The energy eigenvalue problem, Eq. (59),
requires the solution of a second-order par-
tial differential equation. It can be reduced
to an ordinary second-order differential
equation if the method of separation of
variables can be applied, i.e., if the wave
function can be written in a suitable coor-
dinate system (q1, q2, q3) in factorized form

ψ(r) = f (q1)g(q2)h(q3) (70)

with obvious generalizations for an arbi-
trary number of degrees of freedom.
Equation (70) applies only to a very spe-
cial but important class of problems for
which the Hamiltonian possesses as many
constants of motion or compatible observ-
ables as there are degrees of freedom (in
our example, three). In this case, each fac-
tor function in Eq. (70) is associated with
one ‘‘good’’ quantum number belonging
to one compatible observable. This class
of Hamiltonians permits an exact solution
of the eigenvalue problem and is called
separable (or integrable).
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Consider the example of the isotropic
three-dimensional harmonic oscillator.
The Hamiltonian is

H = p2
x

2M
+ p2

y

2M
+ p2

z

2M
+ 1

2 Mω2(x2 + y2 + z2) (71)

In this case, one suitable set of coordinates
for the separation are the Cartesian
coordinates (q1 = x, q2 = y, q3 = z). Each
of the three factor functions of Eq. (70)
satisfies a one-dimensional Schrödinger
equation of the form

(
− �

2

2M

∂2

∂x2
+ 1

2 Mω2x2

)
f (x) = Exf (x)

(72)
and E = Ex + Ey + Ez. The simplest solu-
tion of Eq. (72) satisfying the boundary
conditions f (x →±∞) → 0 for a normal-
izable wave function is a Gaussian wave
function of the form

f (x) =
(

Mω

π�

)1/4

e−(Mω/2�)x2
(73)

It corresponds to the lowest possible energy
eigenstate, with Ex = 1

2 �ω. Ground-state
wave functions are, in general, node
free, i.e., without a zero at any finite x.
The Schrödinger equation possesses an
infinite number of admissible solutions
with an increasing number n = 0, 1, . . . of
nodes of the wave function and increasing
eigenenergies

Ex = �ω
(
n + 1

2

)
(74)

The fact that wave functions belonging to
higher states of excitation have an increas-
ing number of zeros can be understood as a
consequence of the orthogonality require-
ment, Eq. (37). Only through the additional
change of sign of the wave function can

all contributions in the orthogonality inte-
gral (Eq. 36) be made to cancel. The wave
functions for excited states of a harmonic
oscillator are given in terms of Hermite
polynomials Hn by

fn(x) = (2nn!)−1/2
(

Mω

�π

)1/4

× e−(Mω/2π )x2
Hn

(√
Mω

�
x

)
(75)

Examples of the first few eigenstates are
shown in Figure 1.6 With increasing n,
the probability density |f n(x) | 2 begins to
resemble the classical probability density
for finding the oscillating particle near the
coordinate x, Pcl(x) (Figure 1.7). The latter
is proportional to the time the particle
spends near x or inversely proportional
to its speed:

Pc1(x) =
(ω

π

) (
2Ex/M − ω2x2)−1/2

(76)

The increasing similarity between the clas-
sical and quantal probability densities as
n → ∞ is at the core of the correspon-
dence principle. This example highlights
the nonuniformity of the convergence to
the classical limit: the quantum probabil-
ity density oscillates increasingly rapidly
around the classical value with decreasing
de Broglie wavelengths λ (compared with
the size of the classically allowed region).
Furthermore, the wave function penetrates
the classically forbidden region (‘‘tunnel-
ing’’). While the amplitude decreases expo-
nentially, ψ(x) possesses significant non-
vanishing values outside the domain of
classically allowed trajectories of the same
energy over a distance of the order of the
de Broglie wavelength λ. Only upon aver-
aging over regions of the size of λ can
the classical–quantum correspondence be
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Fig. 1.6 Wave functions f n(x) for the first five
eigenstates of the harmonic oscillator.
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Fig. 1.7 Probability density
|f n(x)|2 of a harmonic oscillator
in n = 39 compared with the
classical probability density
Pcl(x) = (ω/π)(2E/M − ω2x2)−1/2

indicated by the dashed line.
Classical turning points are
denoted by a and b.

recovered. As λ tends to zero in the classi-
cal limit, classical dynamics emerges. It
is the smallness of λ that renders the
macroscopic world as being classical for
all practical purposes.

The complete wave function for the
three-dimensional isotropic oscillator (Eq.
71) consists of a product of three wave
functions each of which is of the form of
Eq. (75),

ψnxnynz (x, y, z) = fnx (x) fny (y) fnz (z) (77)

with eigenenergies

Enxnynz = �ω
(
nx + ny + nz + 3

2

)
(78)

The energy depends only on the sum of the
three quantum numbers,

n = nx + ny + nz (79)

but not on the individual quantum num-
bers nx , ny, and nz, separately. Different
combinations of quantum numbers yield
the same energy; the spectrum is therefore
degenerate. The degeneracy factor gn, the
number of different states having the same
energy En, is

gn = (n + 1)(n + 2)

2
(80)
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Only the ground state (n = 0) is nonde-
generate, a feature generic to quantum
systems and the origin of the third law
(Nernst’s theorem) of statistical mechan-
ics. The degeneracy signals that alternative
complete sets of commuting observables
(instead of the energies in each of the three
Cartesian coordinates Ex, Ey, and Ez) and
corresponding alternate sets of coordinates
should exist in which the problem is sep-
arable. One such set of coordinates is the
spherical coordinates.

Consider the example of the hydrogen
atom. One of the most profound early
successes of quantum mechanics was the
interpretation of the line spectrum emitted
from the simplest atom, the hydrogen
atom, consisting of an electron and a
proton. The Schrödinger equation (in the
center-of-mass frame) for the electron
interacting with the proton through a
Coulomb potential V(r) = −e2/4πε0r reads
as

[−�
2∇2

2me
− e2

4πε0r

]
ψ(r) = Eψ(r) (81)

where me = 9.1 × 10−31 kg is the reduced
mass of the electron, r is the vector that
points from the nucleus to the electron,
e = 1.6 × 10−19 C is the electric charge of
the nucleus, and −e is the charge of the
electron. If we express the Laplace operator
∇2 (defined as ∇2 = ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2) in polar spherical coordinates (r,
θ , φ), the Schrödinger equation becomes

[−�
2

2me

(
∂2

∂r2
+ 2

r

∂

∂r

)
+ L2

2mer2

− e2

4πε0r

]
ψ(r, θ , φ) = Eψ(r, θ , φ) (82)

Since the angular coordinates enter only
through the square of the angular momen-
tum operator (see Eq. 28), the Schrödinger

equation is separable in spherical coordi-
nates and the wave function can be writ-
ten as a product ψ(r, θ , φ) = Rnl(r)Ym

e (θ , φ)
with one factor being the spherical har-
monics Ym

l and the Rnl(r) being the radial
wave function satisfying the second-order
differential equation

[−�
2

2me

(
∂2

∂r2
+ 2

r

∂

∂r

)
+ �

2l(l + 1)

2mer2

− e2

4πε0r

]
Rnl(r) = ERnl(r) (83)

The negative-energy eigenvalues of bound
states can be found as

En = − mee4

2�2n2(4πε0)2
= − EH

2n2
(84)

where EH = mee4/�2(4πε0)2 is called a
Hartree or an atomic unit of energy. The
energy depends only on the ‘‘principal’’
quantum number n, being independent of
the angular momentum

l = 0, 1, . . . , n − 1 (85)

and of the magnetic quantum number m.
The m independence can be found for any
isotropic potential V(|r|) that depends only
on the distance of the interacting particles.
The degeneracy in l is a characteristic
feature of the Coulomb potential (and of the
isotropic oscillator), and it reflects the fact
that the Schrödinger equation is separable
not only in polar spherical coordinates but
also in parabolic coordinates. The Coulomb
problem possesses a dynamical symmetry
that allows the choice of alternative
complete sets of compatible observables.
The separability in spherical coordinates
is related to the set {H, L2, Lz} while
the separability in parabolic coordinates
is related to the set {H, Lz, Az} where
A is the Runge–Lenz (or perihelion)
vector, which, as is well known from
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Fig. 1.8 The Runge–Lenz vector A and the angular
momentum L for the classical orbit in an attractive
−1/r potential.

astronomy, is a constant of motion for a
1/r potential (Figure 1.8). The emission
spectrum follows from Eq. (84) as

ν = (En − En0 )

h

= EH

2h

(
1

n2
0

− 1

n2

)
(86)

with n0 = 1 and n = 2, 3, . . . giving rise to
the Lyman series of spectral lines, n0 = 2
and n = 3, 4, . . . giving rise to the Balmer
series, and so on. The radial probability
densities r2Rnl(r)2 are shown in Figure 1.9

1.7.2.2 Variational Methods
For all but the few separable Hamilto-
nians, the time-independent Schrödinger
equation is only approximately and numer-
ically solvable. The accuracy of approxi-
mation can, however, be high. It may
only be limited by the machine preci-
sion of modern computers. The most
successful and widely used method in
generating accurate numerical solutions
is the variational method. The solution
of the Schrödinger equation can be rec-
ognized as a solution to the variational
problem of finding an extremum (in prac-
tice, a minimum) of the energy functional
〈E 〉 = 〈ψ | H |ψ 〉 /〈ψ |ψ〉 by varying |ψ〉
until 〈E〉 reaches a stationary point at an
approximate eigenvalue. The wave function
at the minimum is an approximate solution
to the Schrödinger equation. In practice,
one chooses functional forms called trial
functions ψ(r) that depend linearly and/or

nonlinearly on parameters (c1, . . . ,ck). The
trial function is optimized by minimizing
the energy in the k-dimensional parameter
space according to

d

dci
〈E〉 = 0 (1≤i≤k) (87)

Provided the trial function is sufficiently
flexible to approximate a complete set of
states in Hilbert space, ψ becomes exact in
the limit as k →∞. The ground state of the
helium atom consisting of an α particle as
a nucleus (nuclear charge number Z = 2)
and two electrons provides one of the
most striking illustrations of the success of
the variational method. The Hamiltonian
(neglecting the motion of the nucleus)

H = − �
2

2me
(∇2

1 + ∇2
2 ) − Ze2

4πε0r1

− Ze2

4πε0r2
+ e2

4πε0|r1 − r2| (88)

is nonseparable, an analytic solution is
unknown, and no perturbation solution
is possible since all interactions are
of comparable strength. The variational
method pioneered by Hylleraas (1929)
and further developed by Pekeris (1958,
1959) achieves, however, a virtually exact
result for the ground-state energy, E =
2.903 724 377 03 . . . EH , for which the accu-
racy is no longer limited by the method
of solution but rather by the approxi-
mate nature of the Hamiltonian itself
(for example, the neglect of the finite
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size of the nucleus and of relativistic
effects).

1.7.3
Perturbation Theory

A less accurate method, which is, however,
easier to implement, is perturbation theory.
The starting point is the assumption that
the Hamiltonian H can be decomposed
into a ‘‘simple,’’ separable (or, at least,
numerically solvable) part H0 plus a

perturbation gV ,

H = H0 + gV (89)

which is nonseparable, but ‘‘small’’ such
that it causes only a small modification
of the spectrum and of the eigenstates of
H0. The control parameter g (0 ≤ g ≤ 1)
is used as a convenient formal device for
controlling the strength of the perturbation
and keeping track of the order of the
perturbation. At the end of the calculation,
g can be set equal to unity if V itself is small.
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Two cases can be distinguished: stationary
perturbation theory and time-dependent
perturbation theory.

1.7.3.1 Stationary Perturbation Theory
The Rayleigh–Schrödinger perturbation
theory involves the expansion of both the
perturbed energy eigenvalue E0(g) and the
perturbed eigenstate |ψ0(g)〉 in powers of
the order parameter g (or, equivalently, in
powers of V),

E0(g) = E0 + gE(1) + g2E(2) + · · ·
|ψ0(g)〉 = |ψ0〉 + g|ψ (1)〉 + g2|ψ (2)〉 + · · ·

(90)
Inserting Eq. (90) into the Schrödinger
equation

H(g)|ψ0(g)〉 = E0(g)|ψ0(g)〉 (91)

yields recursion relations ordered in
ascending powers of g for the successive
corrections to E0(g) and |ψ0(g)〉. In prac-
tice, the first few terms are most important:
Thus the first-order corrections for a non-
degenerate eigenvalue E0 are

E(1) = 〈ψ0|V |ψ0〉 (92)

and

|ψ (1)〉 =
∑
n �=0

|ψn〉 〈ψn|V |ψ0〉
E0 − En

(93)

where the sum over {|ψn 〉 n�=0} extends
over the complete set of eigenstates of
the unperturbed Hamiltonian excluding
the state |ψ0〉 for which the perturbation
expansion is performed. The second-order
correction to the eigenenergy is

E(2) = 〈ψ0|V |ψ (1)〉 =
∑
n �=0

|〈ψ0|V |ψn〉|2
E0 − En

(94)

Alternative perturbation series can be
devised. For example, in the Brillouin–
Wigner expansion, the perturbed E0(g),
rather than the unperturbed energy E0,
appears in the energy denominator of Eq.
(94). The energy is therefore only implicitly
given by this equation.

1.7.3.2 Time-Dependent Perturbation
Theory
Time-dependent perturbation theory deals
with the iterative solution of the system of
coupled equations, Eq. (69), representing
the time-dependent Schrödinger equation.
One assumes again that the Hamiltonian
consists of an unperturbed part H0

and a time-dependent perturbation V(t).
Expansion in the basis of eigenstates of the
unperturbed Hamiltonian (Eq. 68) yields a
matrix H consisting of a diagonal matrix
〈i | H0 | j 〉 = Ejδij and a time-dependent
perturbation matrix Vij = 〈i | V(t) | j〉.

The dynamical phases associated with
the unperturbed evolution can be easily
included in the perturbative solution of Eq.
(69) by making the phase transformation

aj(t) = cj(t)e
−iEjt/� (95)

This transformation, often referred to
as the transformation to the interaction
representation, removes the diagonal matrix
〈i | H0 | j〉 from Eq. (69), resulting in the
new system of equations

i�
d

dt
C(t) = VI(t) C(t) (96)

with matrix elements

〈i|VI(t)|j〉 = exp
(

i

�
t(Ei − Ej)

)
〈i|V(t)|j〉

(97)
and C = (c1,c2, . . . ,cN). The perturbative
solution of Eq. (96) proceeds now by
assuming that initially, say at t = 0, the
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Fig. 1.10 The function f (ω, t) as a
function of ω.

system is prepared in the unperturbed state
|j〉 with unit amplitude, cj(0) = 1. Since
the perturbation is assumed to be weak,
the system at a later time t will still be
approximately in this state. However, small
admixtures of other states will develop with
amplitudes

ci(t) = 1

i�

∫ t

0
dt′〈i|VI(t′)|j〉cj(t′)

≈ 1

i�

∫ t

0
dt′〈i|VI(t′)|j〉 (98)

Therefore, to first order, the time-
dependent perturbation induces during the
time interval [0, t] transitions |j 〉→ | i〉 with
probabilities

Pi(t) = |ci(t)|2 = 1

�2

∣∣∣∣
∫ t

0
dt′〈i|VI(t′)|j〉

∣∣∣∣
2

(99)
In the special case that V is time
independent, Eq. (99) gives

Pi(t) = 1

�2
|〈i|V |j〉|2 |eiωijt − 1|2

ω2
ij

= 1

�2
|〈i|V |j〉|2 4 sin2(ωijt/2)

ω2
ij

(100)

with ωij = (εi − εj)/�. Plotted as a function
of ω, the function f (ω,t) = 4 sin2(ωt/2)/ω2

(Figure 1.10) is strongly peaked around
ω = 0. The peak height is t2 and the
width of the central peak is given by
�ω � 2π/t. In other words, f describes
the energy–time uncertainty governing
the transition: The longer the available
time, the more narrowly peaked is the
transition probability around ωi − ωj = 0,
that is, for transition into states that are
almost degenerate with the initial state.
In the limit t →∞, the time derivative of
Eq. (100), that is, the transition probability
per unit time, or transition rate w, has the
well-defined limit

w = d

dt
Pi(t)t−→∞ = 2π

�
|〈i|V |j〉|2δ(εi − εj)

(101)
where the representation of the δ function,
πδ(ω) = limt→∞ (sinωt/ω), has been used.
Equation (101) is often called Fermi’s golden
rule and provides a simple, versatile tool
to calculate transition rates to first order.
The physical meaning of the δ function is
such that in the limit t → ∞ only those
transitions take place for which energy is
conserved, as we would have expected since
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the interaction in Eq. (100) was assumed to
be time-independent (after being switched
on at time t = 0). For example, in scattering
processes, many final states with energies
very close to that of the initial states are
accessible. The δ function is then evaluated
within the sum (or integral) over these final
states.

1.8
Quantum Scattering Theory

Scattering theory plays, within the frame-
work of quantum mechanics, a special
and important role. Its special role is
derived from the fact that scattering deals
with unbound physical systems: two (or
more) particles approach each other from
infinity, scatter each other, and finally
separate to an infinite distance. Obvi-
ously, one cannot impose upon the wave
function the boundary condition ψ(r =
|r2 − r2 | →∞) → 0 since the probability
of finding the scattered particles at large
interparticle distances r is, in fact, nonva-
nishing. This has profound consequences:
energies are not quantized since the corre-
sponding boundary condition is missing.
The energy spectrum consists of a con-
tinuum instead of a set of discrete states.
The states describing the unbound motion,
the ‘‘scattering states,’’ are not square
integrable and do not, strictly speaking,
belong to the Hilbert space. They can
only be orthonormalized in terms of a δ

function,

〈ψE |ψE′ 〉 = δ(E − E′) (102)

Mathematically, they belong to the space
of distributions and can be associated with
states in Hilbert space only upon form-
ing ‘‘wave packets,’’ that is, by convoluting
the scattering state with a well localized

function. Nevertheless, most of the time
one can manipulate scattering states using
the same rules valid for Hilbert-space vec-
tors (see Section 1.6) except for replacing
the ordinary orthonormalization condition,
Eq. (37), by the δ normalization condition,
Eq. (102).

The strategy for solving the Schrödinger
equation, which governs both bounded
and unbounded motion, is different for
scattering states. Rather than determining
the energy eigenvalues or the entire
wave function (which is, in many cases,
of no interest), one aims primarily at
determining the asymptotic behavior of
the wave function emerging from the
interaction region, which determines the
flux of scattered particles. The central
quantity of both classical and quantum
scattering is the cross section σ , defined as

σ =
number of scattered particles

per unit time
number of incident particles

per unit area and per unit time
(103)

A cross section σ has the dimension of
an area and can be visualized as an effec-
tive area that the target presents to the
incoming projectile. Using the probabilis-
tic description of quantum mechanics, one
can replace in the definition Eq. (103) all
particle currents by corresponding prob-
ability currents. Accordingly, σ can be
expressed in terms of the transition rate
w as

σ = w

j
(104)

where j = |ψ | 2v represents the incoming
probability current density. For an incom-
ing plane particle wave (Eq. 4), j = �k/M
(with M the reduced mass and the ampli-
tude A set equal to unity). Calculations of
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total cross sections σ proceed typically by
first calculating differential cross sections
for scattering into a particular group of final
states and then summing over all possible
final states. For elastic scattering of parti-
cles with incident wave vectors kin pointing
in the z direction, a group of final states
is represented by a wave vector kout of the
outgoing particles pointing in a solid angle
centered around the spherical angles (θ , φ),

dσ

d�
= M

�kin
wkin−→kout (105)

Equation (105) gives the differential cross
section per unit solid angle.

1.8.1
Born Approximation

The evaluation of dσ /d� is most straight-
forward in the Born approximation. The
first Born approximation is nothing but
the application of Fermi’s ‘‘golden rule,’’
Eq. (101), to scattering:

dσ

d�
= 2πM

�2kin

∫ ∞

0

k2
out

(2π )3
dkout (106)

|〈kout|V |kin〉|2 × δ(Ein − Eout)

where the integral is taken over the
magnitude of kout but not over the
solid angle and where k2

outdkout d�/(2π )3

represents the number of final states
available for the scattered particles in
the interval dkoutd�. Since k2

outdkout =
(M/�

2)koutdEout, we have

dσ

d�
= M2

�4(2π )2
|〈kout|V |kin〉|2 (107)

with |kout | = | kin|. The first Born approx-
imation to elastic scattering, Eq. (107), is
only valid if the potential V is sufficiently
weak to allow for a perturbative treatment

and vanishes sufficiently rapidly at large
distances for the matter wave to become a
plane wave. In such cases, the matrix ele-
ment in Eq. (107) can be expressed as the
Fourier component of the potential,

〈kout|V |kin〉 =
∫

d3r eir · (kout−kin)V(r)

(108)

For a Coulomb potential V(r) = Z1Z2e2/
4πε0r representing two charged particles
with charges Z1e or Z2e scattering each
other, Eq. (107) yields – coincidentally –
the Rutherford cross section(

dσ

d�

)
R

= Z2
1Z2

2e4

16E2(4πε0)2 sin4(θ/2)
(109)

This expression provided essential clues
as to an internal structure and charge
distribution of atoms. Two remarkable
features should be noted: Prior to the
advent of quantum theory, Rutherford
(1911) used classical mechanics instead of
quantum mechanics to derive Eq. (109). He
could do so since, for Coulomb scattering,
classical and quantum dynamics happen to
agree. Keeping in mind that the classical
limit entails the limit � → 0, the QM
and classical cross sections should agree,
since (dσ /d�)R does not depend on �.
The equivalence of the classical and the
QM Rutherford cross sections is due to
the long range (in fact, infinite range)
of the Coulomb potential. In this case,
the de Broglie wavelength of the particle
wave is negligibly small compared to the
‘‘size’’ of the target at all energies. A
second coincidence lies in the fact that
the first Born approximation yields the
exact quantum result even though the
Born approximation is, strictly speaking,
not even applicable in the case of a
Coulomb potential. The infinite range of
the Coulomb potential distorts the matter
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wave at arbitrarily large distances so that
it never becomes the plane wave that is
assumed in Eq. (108). It turns out that
all high-order corrections to the Born
approximation can be summed up to give
a phase factor that drops out from the
expression for the cross section.

1.8.2
Partial-Wave Method

For elastic scattering by a spherically sym-
metric potential, that is, a potential that
depends only on the distance between the
particles, V(r) = V(|r|), phase-shift analy-
sis provides a versatile nonperturbative
method for calculating differential and
integral cross sections. For each angular
momentum l (which is a good quantum
number for a spherically symmetric poten-
tial), the phase shift for a radial wave
function u(r) = rR(r) can be determined
from the radial Schrödinger equation

(
− �

2

2M

d2

dr2
+ �

2

2M

l(l + 1)

r2
+ V(r)

)
u(r)

= Eu(r) (110)

The idea underlying the phase-shift anal-
ysis can be best illustrated for the phase
shift δl for l = 0. In absence of the scat-
tering potential V(r), Eq. (110) represents
a one-dimensional Schrödinger equation
of a free particle in the radial coordinate,

− �
2

2M

d2

dr2
u(r) = Eu(r) (111)

whose solution is u(r) = sin(kr) with k2 =
2ME/�2. Since the matter wave cannot
reach the unphysical region of negative
r, we have to impose the boundary condi-
tion u(0) = 0, which excludes the alternative
solution ∼cos kr. In the presence of the

potential V(r), the wave function will be
modified within the region of the nonvan-
ishing potential. At large distances r → ∞,
however, when V(r) → 0, the wave func-
tion will again become u(r) = sin(kr+δ0)
since in this region it must satisfy Eq.
(111). The only effect that the potential
can have on the scattered wave function
at large distances is to introduce a phase
shift δ0 relative to the unperturbed
wave.

Simple arguments give a clue as to the
origin and the sign of the phase shift. For
an attractive potential (negative V), the
wave number k(r) = √

2M(E − V(r))/�2

increases locally and the de Broglie
wavelength λ(r) = 2π/k(r) becomes shorter
compared with that of a free particle of
the same energy. The phase of the matter
wave is therefore advanced compared with
the wave of a free particle and δ0 is
positive (Figure 1.11). Similarly, if V
is a repulsive potential, λ increases in
the interaction region causing a phase
delay and, hence, a negative phase shift
δ0. Including all angular momenta, or
all ‘‘partial waves,’’ the differential cross
section can be expressed in terms of the
partial-wave phase shifts δl as

dσ

d�
= 1

k2

∣∣∣∣∣
∞∑

l=0

(2l + 1)eiδl sin δlPl(cos θ )

∣∣∣∣∣
2

(112)
A particularly simple expression can be
found for the total cross section:

σ = 4π

k2

∞∑
l=0

(l + 1) sin2 δl (113)

For short-ranged potentials, δl decreases
with increasing l such that only a small
number of terms must be included in
this sum. The scattering phase shifts δl(E)
depend sensitively on the energy E of the
incident particle.
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Fig. 1.11 Comparison between
the scattered wave in an
attractive potential and a
free-particle wave (the scattering
phase δ0 is shown modulo π).

1.8.3
Resonances

Often, one phase shift δl(E) increases by
π within a narrow energy range. This
corresponds to a phase shift of one-half
of a wave length, or to the addition of
one node to the wave function. A sudden
increase of the scattering phase by π is
a signature of a ‘‘resonance’’ in the cross
section. A resonance is characterized by a
sharp maximum in the partial-wave cross
section at the energy Eres = �

2k2
res/2M:

(σl)max =
(

4π

k2
res

)
(2l + 1) (114)

where the phase shift passes through π/2
(or an odd multiple thereof). Resonances
appear when the scattering potential allows
for the existence of ‘‘virtual levels’’ or
quasi-bound states inside the potential
well, whose probability density can leak
out by tunneling through the potential
well. The additional node that the scattering
wave function acquires as the energy passes
through Eres reflects the presence of a
quasi-bound state. An isolated resonance
can be parametrized by a formula due
to Breit and Wigner. One assumes that

the rapid change of the scattering phase
near the resonance can be modeled by

δl(E) � tan−1 �

2(Eres − E)
(115)

and that the energy dependence of the non-
resonant (smooth part) of the phase shift
can be neglected. The term � denotes the
width over which the phase jump occurs.
Inserting Eq. (115) into the lth term of Eq.
(113) yields, for the shape of the resonant
cross section, the Breit–Wigner formula

σl(E) = (σl)res
�2/4

(Eres − E)2 + �2/4
(116)

The shapes of resonant cross sections
become more complicated when inter-
ferences between the resonant and the
nonresonant parts of the scattering ampli-
tude come into play. The cross section
can then exhibit a variety of shapes
(Beutler–Fano profile; Fano, 1961), includ-
ing asymmetric peaks or dips (‘‘win-
dow resonance’’) depending on the rel-
ative phases of the amplitudes. In the
limit that a large number of reso-
nances with energies Eres,i (i = 1, . . . ,N)
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are situated within the width � (‘‘over-
lapping resonances’’), the cross section
displays irregular fluctuations (‘‘Ericson
fluctuations’’) (see Chapter 10). These
play an important role in scattering
in complex systems, for example, in
nuclear compound resonances (Ericson
and Meyer-Kuckuk, 1966) as well as in
scattering in chaotic systems Burgdörfer et
al., 1995).

1.9
Semiclassical Mechanics

While the correspondence principle pos-
tulates that in the limit of large quan-
tum numbers (or, equivalently, � → 0),
quantum mechanics converges to classi-
cal mechanics, the approach to this limit
is highly nonuniform and complex. The
description of dynamical systems in the
limit of small but nonzero � is called
semiclassical mechanics. Its importance is
derived not only from conceptual but also
from practical aspects since a calculation
of highly excited states with large quan-
tum numbers involved becomes difficult
because of the rapid oscillations of the
wave function (see Figure 1.7). Semi-
classical mechanics has been developed
only recently. The old Bohr–Sommerfeld
quantization rules that preceded the devel-
opment of quantum mechanics are now
understood as an approximate form of
semiclassical mechanics applicable to sep-
arable (or integrable) systems.

The wave function of the time-indepen-
dent Schrödinger equation for a single
particle,

Eψ(r) = −
(

�
2

2M

)
∇2ψ(r) + V(r)ψ(r)

(117)

can be written as

ψ(r) = A exp
[

iS(r)

�

]
(118)

where the unknown function S(r) replaces
the exponent k · r of a plane wave (Eq.
4) for a free particle in the presence of
the potential. The idea underlying the
semiclassical approximation is that in the
limit � → 0, or likewise, in the limit of small
de Broglie wavelength λ→ 0 (compared
with the distance over which the potential
changes), ψ(r) should behave like a plane
wave with, however, a position-dependent
de Broglie wavelength. Inserting Eq. (118)
into Eq. (117) leads to

E = 1

2M
[∇S(r)]2 + V(r) − i�

2M
∇2S(r)

(119)
with p =∇S. Equation (119) is well
suited for taking the classical limit � → 0
and yields the classical Hamilton–Jacobi
equation. In this limit, S is the action or
Hamilton’s principal function. Quantum
corrections enter through the term linear
in �. Approximate solutions of Eq. (119)
can be found by expanding S in ascending
powers of �. The apparent simplicity of the
classical limit is deceiving: the principal
function S appears inside the exponent Eq.
(118) with the prefactor �

−1 and this causes
the wave function to oscillate infinitely
rapidly as � → 0.

1.9.1
The WKB Approximation

For problems that depend only on one
coordinate, retention of the first two terms
of the expansion of Eq. (119),

S(x) = S0(x) + �S1(x)
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with

S0(x) = ±
∫ x

p(x′)dx′

S1(x) = 1
2 i ln|p(x)| + c (120)

leads to the Wentzel–Kramers–Brillouin
(WKB) approximation where c is an
integration constant to be determined by
normalization of the wave function,

ψWKB(x) = A√|p(x)|exp
[±i

�

∫ x

p(x′)dx′
]

(121)
Several features of Eq. (121) are worth not-
ing: the WKB wave function is an asymp-
totic solution of Schrödinger’s equation in
the limit of small λ and satisfies all rules of
QM, including the superposition principle.
All quantities in Eq. (121) can be calculated,
however, purely from classical mechan-
ics. In particular, the quantum probability
density |ψWKB(x) | 2 can be directly associ-
ated with the inverse classical momentum
∼ | p(x) | −1 or, equivalently, the time the
particle spends near x. This result was
already anticipated for the highly excited
state of the harmonic oscillator (Figure 1.7).
Furthermore, S0(x) is a double-valued func-
tion of x corresponding to the particle
passing through a given point moving
either to the right or to the left with momen-
tum ±p(x). It is the multiple-valuedness of
p(x) or S(x) that is generic to semiclas-
sical mechanics and that poses a funda-
mental difficulty in generalizing the WKB
approximation to more than one degree of
freedom.

For describing bound states, a linear
combination of ψWKB with both signs of
the momentum in Eq. (121) is required
in order to form a standing rather than a

traveling wave:

ψWKB(x) = A√|p(x)| sin

×
(

1

�

∫ x

a
p(x′)dx′ + π

4

)
(122)

Here a is the left turning point, the
boundary of the classically allowed region
(Figure 1.7). The additional phase of π/4
is required to join ψ(x) smoothly with
the exponentially decaying solution in the
classically forbidden region where p(x)
becomes purely imaginary (‘‘tunneling’’).
With equal justification, we could have
started from the classically forbidden
region to the right of the turning point
b and would find

ψWKB(x) = A√|p(x)| sin

×
(

1

�

∫ b

x
p(x′)dx′ + π

4

)
(123)

The uniqueness of ψWKB(x) mandates the
equality of Eqs (122) and (123). The two are
equal if the integral over the whole period
of the trajectory (from a to b and back to a)
equals

(∫ b

a
+

∫ a

b

)
p(x)dx =

∮
p(x)dx

= (n + 1
2 )2π� (124)

Equation (124) can be recognized as the
Bohr–Sommerfeld quantization rule of the
‘‘old’’ quantum theory put forward prior
to the development of quantum mechan-
ics. Quantization rules were successful in
exploring the discrete spectrum of hydro-
gen, one of the great puzzles that classical
dynamics could not resolve. The additional
term 1

2 × 2π� in Eq. (124) was initially
introduced as an empirical correction. Only
within the semiclassical limit of QM does
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Path B

Path A

Fig. 1.12 Confinement of trajectories of an
integrable Hamiltonian for constant energy E
to the surface of a torus, shown here for a
system with two degrees of freedom (N = 2)
(after Noid and Marcus, 1977).

its meaning become transparent: it is the
phase loss in units of h = 2π� of a matter
wave upon reflection at the turning points
(in multidimensional systems, at caustics).
These phase corrections are of the form
α(π/4) with α = 2 in the present case. The
quantity α is called the Maslov index and it
is used to count the number of encounters
with the caustics (in general, the number
of conjugate points) during a full period of
the classical orbit.

1.9.2
The EBK Quantization

The generalization of the WKB approxi-
mation to multidimensional systems faces
fundamental difficulties: the momentum
vector p(r) is, in general, not smooth but it is
a highly irregular function of the coordinate
vector r and takes on an infinite number
of different values. Take, for example, a
billiard ball moving in two dimensions on
a stadium-shaped billiard table. A ball of
a fixed kinetic energy T = p2/2M can pass
through any given interior point r with
a momentum vector p pointing in every
possible direction. Consequently, the gen-
eralization of Eq. (121),

ψ(r) = √|D(r)| × exp
[

i

�

∫ r

r0

p(r′) · dr′
]

(125)

is well defined only under special circum-
stances, that is, when p(r) is smooth and
the action S(r0, r) = ∫ r

r0
p · dr′ is either sin-

gle valued or (finite-order) multiple valued
(called a Lagrangian manifold; Gutzwiller,
1990). Einstein pointed out, as early as
1917, that the smoothness applies only to
integrable systems, i.e., systems for which
the number of constants of motion equals
the number of degrees of freedom, N. For
such a system, classical trajectories are con-
fined to tori in phase space (as shown in
Figure 1.12 for N = 2) and give rise to
smooth vector fields p(r) (Figure 1.13). The
corresponding quantization conditions are

∮
Ci

p(r) · dr = 2π�

(
n + α

4

)
(i = 1, . . ., N)

(126)
where Ci (i = 1, . . . , N) denote N topolog-
ical distinct circuits on the torus, that is,
circuits that cannot be smoothly deformed
into each other without leaving the torus
(for example, the paths A and B in
Figure 1.12). The conditions of Eq. (126)
are called the Einstein–Brillouin–Keller
(EBK) quantization rules and are the gen-
eralization of the WKB approximation
(Eq. 124). The amplitude of Eq. (125) is
given by the projection of the point den-
sity of the torus in phase space onto the
coordinate space. Since the point density is
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Fig. 1.13 Regular trajectory in coordinate space for
an integrable system. The vector field p(r) is multiple
valued but smooth (after Noid and Marcus, 1977).

uniform in the classical angle variables θ i

conjugate to the action (Goldstein, 1959),
the amplitude is given by

|D(r)| ∝ det

∣∣∣∣∂θ1∂θ2∂θ3

∂x∂y∂z

∣∣∣∣ (127)

For a system with one degree of freedom
(N = 1), Eq. (125) reduces to Eq. (121) since

∣∣∣∣∂θ

∂x

∣∣∣∣
1/2

=
∣∣∣∣ ∂t

∂x

∂θ

∂t

∣∣∣∣
1/2

=
∣∣∣∣M

p
ω

∣∣∣∣
1/2

∝ 1
|p|1/2

(128)

1.9.3
Gutzwiller Trace Formula

As already anticipated by Einstein (1917),
tori do not exist in many cases of
practical interest – for example, for the
motion of an electron in a stadium-shaped
semiconductor heterostructure (Marcus et
al., 1992). WBK or EBK approximations are
not applicable since the classical motion
of such an electron is chaotic, destroying
the smooth vector field p(r) as in the
billiard discussed above. The semiclassical
mechanics for this class of problems was
developed only recently (Gutzwiller, 1967,
1970, 1971). The starting point is the

semiclassical Van Vleck propagator (Van
Vleck, 1928),

KSC(r1, r2, t2 − t1)

= √|D(r1, r2, t2 − t1)|

×exp
[

i

�

∫ t2

t1

L(r(t′))dt′ − iαπ

2

]
(129)

where L is the classical Lagrange function
for the particle traveling along the classi-
cally allowed path from r1 at time t1 to
r2 at time t2 and α counts the number of
singular points of the amplitude factor D
(similar to the Maslov index). If more than
one path connects r1(t1) with r2(t2), the
coherent sum of terms of the form in Eq.
(129) must be taken. The Van Vleck prop-
agator was recognized only 20 years later
(Feynman, 1948) as the semiclassical limit
of the full Feynman quantum propagator

K(r1, r2, t2 − t1)

=
∫

{Dr} exp
[

i

�

∫ t2

t1

L(r, t′)dt′
]

(130)

where {Dr} stands for the path integral,
that is the continuous sum over all
paths connecting r1 and r2 including all
those that are classically forbidden. In
the semiclassical limit � → 0, the rapid
oscillations in the phase integral cancel all
contributions except for those stemming
from the classically allowed paths for which
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the actions
∫

Ldt possess an extremum or,
equivalently, for which the phase in Eq.
(130) is stationary.

Equation (129) provides a method for
investigating the semiclassical time evo-
lution of wave packets in time-dependent
problems. The Fourier–Laplace transform
of Eq. (129) with respect to t yields the
semiclassical Green’s function G(r1, r2, E).
The spectral density of states of a quantum
system can be shown to be

n(E) =
∑

i

δ(E − Ei)

= − 1

π
Tr Im G(r1 = r2, E) (131)

where the trace implies integration over the
variables r1, r2 with constraint r1 = r2. Note
that each of these eigenenergies causes
a sharp peak (resembling the singularity
of the δ function) in n(E). Calculation of
n(E) therefore allows the determination of
eigenenergies of quantum systems. It is
possible to evaluate Eq. (131) in the semi-
classical limit by using the semiclassical
Green’s function and evaluating the trace
in the limit � → 0 by the stationary-phase
method. The result is the trace formula

n(E) = nav(E) + Im
1

i�π

×
∑

periodic
orbits

Ti

2 sinh(Tiλi/2)

× exp
[

i

(
Si

�
− αi

π

2

)]
(132)

The sum extends over all unstable classical
periodic orbits, each characterized by the
period Ti, the instability (or ‘‘Lyapunov’’)
exponent λi, and the action Si, all of which
are functions of the energy E. An orbit
is unstable if its Lyapunov exponent is
positive. The term λi measures the rate of
exponential growth of the distance from the

orbit when the initial condition is ever so
slightly displaced (Gutzwiller, 1990). The
smooth average density of states,

nav(E) = d

dE

(
V(E)

(2π�)N

)
(133)

is given by the rate of the change of the
classical phase-space volume with energy
in units of the volume of Planck’s unit
cell (2π�)N associated with each quantum
state. The derivation of Eq. (132) assumes
two degrees of freedom and makes explicit
use of the fact that the physical system is
completely chaotic and integrable regions
are absent. Only (hyperbolic) unstable
periodic orbits are assumed to exist,
each with a positive Lyapunov exponent
λi > 0 that measures the instability of
each periodic orbit. Equation (132) is
therefore complementary to the EBK
quantization formula (Eq. 126). This
formula of ‘‘periodic orbit quantization’’ is
an asymptotic series, that is, the sum over
all periodic orbits is, in general, divergent.
For several systems, the sum over the first
few orbits has been shown to reproduce
the position of energy levels quite well.
The mathematical and physical properties
of the Gutzwiller trace formula are still
a topic of active research in quantum
mechanics.

1.10
Conceptual Aspects of Quantum Mechanics

QM has proved to be an extraordinarily
successful theory and, so far, has never
been in contradiction to experimental
observation. The Schrödinger equation
has cleared every test carried out so far,
including a precision test of its linearity:
the upper bound for corrections due to
nonlinear terms in the wave functions,
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ψ(x)n (n > 1), in the Schrödinger equation
stands currently at one part in 1027

(Majumder et al., 1990). Even so, the
conceptual and philosophical aspects of
QM have remained a topic of lively
discussion stimulated, to a large part,
by the counterintuitive consequences of
QM that apparently defy common-sense
interpretation. The debate, which can be
traced to the origins of QM and Einstein’s
objections summarized in his famous
quote ‘‘Gott würfelt nicht’’ (‘‘God does not
play dice’’), is centered around two aspects:
the superposition principle, Eq. (15), and
the probability interpretation of the wave
function, Eq. (39).

1.10.1
Quantum Mechanics and Physical Reality

The counterintuitive aspects of the super-
position principle are highlighted by the
thought experiment of ‘‘Schrödinger’s cat.’’
The coherent superposition of two states,
each of which is presumably an eigen-
state of an extremely complex many-body
Schrödinger equation, describes the state
of the cat, being either dead, |d〉, or alive,
|a〉:

|ψcat〉 = cd|d〉 + ca|a〉 (134)

with |cd | 2+|ca | 2 = 1. Only by way of
measurement, that is, by projection onto
the states |a〉 or |d〉,

Pa = |〈a|ψcat〉|2, Pd = |〈d|ψcat〉|2 (135)

can we find out about the fate of the cat.
While the meaning of two sharply different
outcomes of Eq. (135), ‘‘dead’’ or ‘‘alive,’’ is
deeply engraved in our classical intuition,
the quantum state of a coherent super-
position, Eq. (134), defies any classical
interpretation. Yet it is an accessible state

of the system. The point to be emphasized
is that it is not our incomplete knowledge
of an independently existing objective real-
ity, but the fate of the cat itself, that can
only be resolved by the measurement. Such
a measurement is therefore, quite literally,
a ‘‘demolition’’ measurement leading to
the ‘‘collapse’’ of the wave function to one
of the two possible states. In hypotheti-
cal thought experiments for macroscopic
systems such as Schrödinger’s cat prob-
lem, the average over a huge number
(∼1023) of uncontrolled degrees of free-
dom will, for all practical purposes, destroy
any well-definded phase relation or coher-
ence between the ‘‘states’’ dead and alive.
In contrast, the axioms of QM can be put to
a rigorous test for microscopic systems, for
example, by performing correlation mea-
surements on two particles emitted from
the same source. Examples along these
lines were, for example, put forward by
Einstein, Podolsky and Rosen (1935) to
challenge the purely probabilistic interpre-
tation of QM.

Consider the emission of two elec-
trons from, for example, a helium atom
(Figure 1.14). The spin of each electron
i = 1,2 can be in a coherent superposition
state of spin up |+〉 and spin down |−〉,

|ψi〉 = αi|+〉 + βi|−〉 (136)

relative to one particular Cartesian axis,
for example, the z axis. One possible
spin state of the electron pair (ignoring
here the antisymmetrization requirement
for fermions) would be an uncorrelated
product state,

|ψ〉 = |+〉1|−〉2 (137)

Already Schrödinger pointed out that
quantum theory allows to be alternatively
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Fig. 1.14 Two-electron emission from helium with the
electrons being spin-analyzed in two Stern–Gerlach-type
filters with different orientations (along the x and z axis,
respectively). The difference in length, L1 < L2, makes the
spin selection in the left detector happen first (inducing a
‘‘wave function collapse’’) and in the right detector later.

in an entangled (or quantum-correlated)
superposition state,

|ψ〉 = α|+〉1|−〉2 + β|−〉1|+〉2 (138)

In fact, the electron pair in the (singlet)
ground state of helium with total spin S = 0
forms such an entangled pair with α =
−β = 1/

√
2. The hallmark of entangled

states of the form Eq. (138) is that they
cannot be represented as a factorized
product in the form of Eq. (137).

The consequences of such quantum cor-
relations are profound: when measuring
the spin of particle 1 to be up (+), we
know with certainty that particle 2 has
its spin down (−). The ‘‘collapse’’ of the
entangled wave function when measur-
ing particle 1 forces particle 2 to switch
its spin from a completely undetermined
state to a well-defined value. We therefore
obtain information about the orientation
of spin 2 without actually performing a
measurement on this particle. This corre-
lation, often referred to as the nonlocality
of QM, is a consequence of the probabilis-
tic description and superposition of wave
functions in QM. The emergence of a defi-
nite physical property or physical reality by
‘‘postselection’’ through the measurement
of an entangled state goes even further. For
example, the entangled state Eq. (138) with

α = −β = 1/
√

2,

|ψ〉 = 1√
2

(|+〉1|−〉2 − |−〉1|+〉2) (139)

is rotationally symmetric and equally
applies when we inquire about the spin
orientation along the x rather than along
the z axis. If we postselect the spin-up
direction (+) along the x axis for the first
particle, the second particle will have spin
down (−) along the same axis. If we,
instead, measured for the second parti-
cle the polarization relative to the z axis
as before (Figure 1.14), we would find
both spin up and down with 50% prob-
ability, and thus a vanishing average spin.
Different projection protocols for the first
spin imply entirely different results for
the second. The emergence of a specific
‘‘physical reality’’ out of a specific mea-
surement context is often referred to as
quantum contextuality and is unknown in
classical physics. It has therefore been
questioned whether the quantum mechan-
ical description of a state such as in Eq.
(138) can be considered a complete pic-
ture of physical reality (Einstein, Podolsky
and Rosen, 1935). In particular, it was
conjectured that particles may have addi-
tional properties that are underlying the
quantum-mechanical picture but which are
hidden from our view. Such ‘‘hidden vari-
ables’’ would ensure that physical systems



38 1 Quantum Mechanics

have only properties that are ‘‘real,’’ that
is, independent of a measurement and
that the result of any measurement is
only dependent on ‘‘local’’ system prop-
erties rather than on a remote detection
of another observable. The knowledge of
‘‘hidden variables’’ would allow one to
remove the probabilistic aspects of QM.
The role of probability in QM could then
be the same as in statistical mechanics:
a convenient way to quantify our incom-
plete knowledge of the state of a system.
The hidden-variable hypothesis, or alterna-
tively, the quantum correlation built into
entangled states, Eq. (138), has been probed
by testing the violation of Bell’s inequality
(Bell, 1969; Clauser et al., 1969). Experi-
ments with correlated pairs of particles, in
particular photon pairs – for example, by
Aspect and coworkers (1982) – have fal-
sified the hidden-variable hypothesis by
showing that entangled states can violate
Bell’s inequality while being in full agree-
ment with the predictions of QM. More
recent experiments have succeeded in mea-
suring entangled photons at a distance of
several hundred meters apart and with
light polarizers (used as photon analyz-
ers), which switch their axes so rapidly
that during the photons’ time of flight
the polarizers have no chance to exchange
information on their respective orientation.
(The ‘‘collapse’’ of the wave function by
measuring one of the two photons occurs
instantaneously for both photons, but can-
not be used to transmit any information
and therefore does not violate the relativis-
tic causality relations.) Even under such
stringent conditions, a violation of Bell’s
inequality by more than 30 standard devia-
tions was observed experimentally (Weihs
et al., 1998). Also so-called noncontex-
tual hidden-variable theories and realis-
tic models that assume a certain type

of ‘‘nonlocality’’ are untenable (Hasegawa
et al., 2006; Gröblacher et al., 2007).

1.10.2
Quantum Information

The most fundamental unit of informa-
tion in classical information theory is the
so-called bit, which can take on only one
of two mutually exclusive values (typically
labeled as ‘‘0’’ and ‘‘1’’). In conventional
computers, all numbers and operations
with them are encoded in this binary sys-
tem. The corresponding quantum analog
of the bit – named qubit – is given by a
two-state system with the two states |+〉
and |−〉 from Eq. (136), now labeled as |0〉
and |1〉. What sets the qubit apart from the
conventional classical bit is precisely the
ability to be in a coherent superposition of
both basis states,

|Q〉 = α|0〉 + β|1〉 (140)

with |α | 2+|β | 2 = 1. In quantum informa-
tion theory, the intrinsic indeterminacy of
the qubit’s value before a measurement is
exploited as a resource rather than treated
as a deficiency.

One potential application of qubits is
subsumed under the name ‘‘quantum
computation’’. The basic building block
of a so-called quantum computer would
be a number of N entangled qubits
that can be in any superposition of
2N basis states. An example for N =
2 is just the maximally entangled pair
in Eq. (139). While a collection of N
classical bits can only be in a single
one of the 2N possible states at a
given time, N qubits can be in any
superposition state and thus can clearly
have a much higher information content.
Owing to the superposition principle, any
of the (unitary) logic operations of the
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quantum computer performed on the
initial state could process all the involved
2N basis states simultaneously. Several
algorithms have been suggested (Shor,
1994; Grover, 1996) for how this inherently
quantum feature of ‘‘parallel processing’’
could be used to solve fundamental
computational problems much faster, i.e.,
with much fewer operations than with the
corresponding classical computations.

The manipulation of quantum states
within the framework of quantum com-
putation and quantum information pro-
cessing involves a set of rules as, for
example, the so-called no cloning theorem
(Wootters and Zurek, 1982), which states
the impossibility to create identical copies
of an arbitrary unknown quantum state.
Although only imperfect ‘‘clones’’ of a
quantum state are possible, a transfer of
a quantum state from one system to a
second, possibly distant, system is allowed
according to QM. Such a ‘‘teleportation’’ of
a quantum state involves the destruction
of the original state during the teleporta-
tion procedure and is typically performed
through an intermediate entangled state
of three particles (Bennett et al., 1993;
Bouwmeester et al., 1997).

The laws of QM can also be used for
secure information transfer. In classical
cryptography, secret messages are enci-
phered by way of a code that the recipient of
a message must know in order to decipher
a message’s content. To prevent the break-
ing of the code by a third unauthorized
party, the key for the encoding algorithm is
preferably defined as a random sequence
of numbers, which is generated anew for
each message transmitted.

Challenges to classical cryptography are
the need of a truly random key and the risk
of key corruption through the interception
by a third party. Both of theses challenges
can be met by intrinsic quantum features.

A truly random sequence of numbers can
be generated, for example, by repeatedly
measuring the spin orientation (or photon
polarization) of an unpolarized spin, a
situation that may be realized by first
projecting the first spin of an entangled
pair along a perpendicular direction (see
the example of Fig. 1.14 above).

Interception of a message shared with
the recipient through an entangled pair
by a third party would require a mea-
surement, which leads to a wave function
collapse and to a detectable reduction in
quantum correlations. Using the princi-
ples of QM for the generation and trans-
mission of a secure encryption key – a
technique that is referred to as quantum
cryptography – has been successfully imple-
mented for setups involving very large
distances (144 km) between the sender and
recipient (Ursin et al., 2007).

1.10.3
Decoherence and Measurement Process

One fundamental obstacle in practically
implementing quantum computation and
quantum information protocols is the chal-
lenge to keep the coherent superposition
of a quantum state, in particular of entan-
gled pairs, ‘‘alive’’ for extended periods
of time. Any unintentional or intentional
interaction of the system inevitably and
irreversibly converts the quantum super-
position into a classical probability distri-
bution and destroys the operating principle
of a quantum information device. The
measurement process and the destruction
of coherence, frequently called decoher-
ence, are closely intertwined. In the early
days of quantum theory, the measure-
ment device that caused the ‘‘collapse’’
of the wave function was considered to
be a ‘‘classical’’ apparatus decoupled from
the quantum dynamics to be observed
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(Bohr, 1928). The notion of open quan-
tum systems has superseded this view
and provides a widely accepted unified
description of measurement and decoher-
ence within the realm of quantum theory.
The starting point here is the fundamental
insight that the quantum system (S) to be
observed is never completely isolated from
the environment (E), which itself is quan-
tum rather than classical. The Hamiltonian
describing both system and environment
is given by H = HS+HE+HS−E, contain-
ing the Hamiltonian of the system (HS)
and its environment (HE), as well as the
interaction between the two (HS−E). A
state describing both system and envi-
ronment, |ψ〉, even when at the initial
time t = 0 prepared in a factorizable state,
|ψ(t = 0)〉 = |ψ i

S〉|ψ j
E〉, will evolve in the

course of time under the influence of the
interaction HS−E into an entangled, non-
factorizeable state

|ψ(t)〉 =
∑

i,j

aij|ψ i
S〉|ψ j

E〉(t) (141)

Here, |ψ i
S〉 (and |ψ j

E〉) are basis states of
the system (of the environment), which
often, but not always, are eigenstates of
the Hamilton operator of the system HS

(of the environment HE). ‘‘Tracing out’’
the (unobserved) environment degrees of
freedom of the entangled state by taking
expectation values leads to decoherence
in the (observed) system and mimics
the effect of a classical measurement
device.

Consider, as an illustrative example,
a situation in which the system and
the environment are each represented
by a two-dimensional Hilbert space and
described by the following entangled state:

|ψ(t)〉 = α|+〉S|−〉E + β|−〉S|+〉E (142)

The expectation value of any physical
observable represented by an operator AS

acting only on the states in the Hilbert
space of the system S gives in the presence
of entangled environmental degrees of
freedom,

〈AS〉 = 〈ψ|AS|ψ〉
= |α|2S〈+|AS|+〉S

+|β|2S〈−|AS|−〉S

= Tr(ρAS) (143)

with ρ = |α|2| +〉S S〈+ | + |β|2|−〉S S〈−|.
It is the coherent entanglement with the
environment, Eq. (142), that leads to (par-
tial) decoherence within the system (S) and
to a statistical mixture described by the
density operator introduced above (Eq. 40)
with probabilities P+ = |α|2 and P− = |β|2.
The ubiquitous coupling of a physical
system to the environment provides the
natural setting for the transition from
the quantum indeterminism of superpo-
sitions to the definiteness of the classical
measurement. The classical limit induced
by decoherence is conceptually different
from the classical limit of quantum sys-
tems of large quantum numbers, which is
the focus of semiclassical mechanics (see
Section 1.9). In spite of recent progress, it
is generally still considered an open ques-
tion if decoherence concepts alone can fully
explain the quantum-to-classical transition
and provide definite answers to the widely
discussed questions regarding the ‘‘quan-
tum measurement problem.’’

The above considerations demonstrate
that it is very unlikely for a macroscopic
object such as Schrödinger’s cat to ever be
in a superposition state ‘‘dead and alive’’ as
in Eq. (134) because it is extremely difficult
to isolate the cat from its environment.
For all practical purposes, an exchange of
particles and heat between the cat and
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its environment will prevent the cat, for
itself, to be in a pure quantum state.
It will rather be described by a density
matrix with strongly reduced quantum
correlations. As both the cat and the
environment are macroscopic objects with
many degrees of freedom, decoherence
sets in at an extremely short timescale.
Recent experiments have been able to
sufficiently decouple ‘‘mesoscopic’’ objects
as superconducting rings (Friedman et al.,
2000) from their environment to observe
these systems in superposition states.

1.11
Relativistic Wave Equations

When the characteristic speed v of particles
in a physical system becomes comparable
to the speed of light, v ≤ c, the Schrödinger
equation, which incorporates nonrelativis-
tic quantum dynamics, fails. Generaliza-
tions to relativistic wave equations face,
however, fundamental difficulties due to
the possibility of particle creation and
destruction in relativistic dynamics (see

Chapter 2). For example, if photons have
energies in excess of twice the relativis-
tic rest energy of electrons, Eγ > 2mec2,
a pair consisting of an electron and its
antiparticle, a positron, can be created.
Therefore, the interpretation of |ψ(r)|2 as
a single-particle probability density is no
longer possible. A consistent resolution of
the difficulties can be accomplished within
the framework of quantum field theory,
which is outside the scope of this chapter.
The relativistic analogs to the Schrödinger
equation discussed in the following section
are only applicable to relativistic systems in
which particle production and destruction
are not yet important.

1.11.1
The Klein–Gordon Equation

We use the same recipe that led us in
Section 1.3 to the Schrödinger equation,
i.e., we replace the quantities H and p by
differential operators (Eq. 11), motivated
by the de Broglie hypothesis. In this
case, however, we use the relativistic
relation between energy and momentum
(see Chapter 2) instead of the nonrelativistic
one, Eq. (9):

E − V(r) =
√

M2c4 + p2c2 (144)

Following this recipe, we are led to

i�
d

dt
ψ(r, t) =

[√
−�2∇2c2 + M2c4

+V(r)
]
ψ(r, t) (145)

Equation (145) has a major drawback:
it treats the space and time derivatives
asymmetrically. The Lorentz invariance
of relativistic dynamics requires, however,
that space and time coordinates be treated
on equal footing. We thus start with the
square of Eq. (144) and arrive at

[
i�

∂

∂t
− V(r)

]2

ψ(r, t)

= (−�
2∇2c2 + M2c4)ψ(r, t) (146)

This is the time-dependent Klein–
Gordon equation, applicable to particles
with integer spin. The corresponding sta-
tionary Klein–Gordon equation follows by
replacing i�∂/∂t by E. Equation (146) gives
an eigenvalue equation in E2 rather than
in E itself. Consequently, upon taking
the square root of the eigenvalue, solu-
tions with both signs, ±√

p2c2 + M2c4,
will appear. The physical meaning of
negative-energy solutions is discussed
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below. For a charged particle with charge q
in the presence of an electromagnetic field,
both the scalar potential φ(V = qφ) and the
electromagnetic vector potential A must be
included by ‘‘minimum coupling’’:

p −→ p − qA =
(

�

i

)
∇ − qA (147)

With this coupling, the Klein–Gordon
equation is invariant under gauge trans-
formations of the electromagnetic field as
well as under Lorentz transformations.

1.11.2
The Dirac Equation

Instead of taking the square of Eq. (144),
Dirac pursued a different approach in
developing a Lorentz-invariant relativistic
wave equation. He ‘‘linearized’’ the square
root

√
c2p2 + M2c4 −→ (

cα · p + βMc2)
(148)

with the subsidiary condition that the
square of the linearized operator satisfies

(
cα · p + βMc2)2 = c2p2 + M2c4 (149)

It turned out that solutions to this equation
can be found only if all αi (i = x, y, z)
and β are taken as matrices of minimum
dimension 4 × 4. Equation (149) is satisfied
if the matrices αi, β satisfy the relations

αiαk + αkαi = 2δik

αiβ + βαi = 0 (150)

Accordingly, ψ is now a four-component
entity (called a spinor), ψ = {ψ i, i =
1, . . . , 4}. The resulting Dirac equation
describes spin 1

2 particles. When a charged

spin 1
2 particle interacts with an electro-

magnetic field as described by minimal
coupling, the stationary Dirac equation
becomes

[E − qφ(r)]ψ(r)

=
[

cα

(
�

i
∇ − qA

)
+ βMc2

]
ψ(r) (151)

Dirac spinors permit the probability-
density interpretation, that is, |ψ(x)|2 =∑4

i=1 |ψi(x)|2. The physical meaning of the
four components can be easily understood
by considering a free particle. The energy
eigenvalues are E = ±√

p2c2 + M2c4. In
addition to the positive energies we find
negative eigenenergies, which are a feature
of relativistic quantum mechanics and
which result from the fact that the
square-root operator permits both the
positive and negative sign of E. The
four-spinor can be decomposed into two
2-spinors ψ = (φ1, φ2) one of which
represents the positive-energy solution and
the other the negative-energy solution.
Each component of the two-spinor wave
function can be understood as a product
of a configuration-space wave function
eikr and a spin 1/2 eigenstate |ms =
±1/2〉. A major success of the Dirac
theory was that the intrinsic degree of
an electron spin, which was a mere
add-on within the Schrödinger theory,
is incorporated into the Dirac equation
from the outset. Furthermore, the g
factor for the magnetic moment of the
electron as well as the spectrum of the
hydrogen atom can be derived from the
Dirac equation to a very high degree of
approximation. The pieces still missing
are the quantum electrodynamic (QED)
corrections that lead to small energy
shifts of atomic levels (‘‘Lamb shift’’)
and the deviations of the g factor for
the anomalous magnetic moment from
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E = 2mec2

E
Fig. 1.15 Particle–antiparticle production visualized as the excitation of a
negative-energy particle to positive energies leaving behind a hole.

2, g = 2 × 1.001 16. These corrections can
be determined only within quantum field
theory, the theory of the interactions
of charged particles with the quantized
electromagnetic field.

The negative-energy states, according
to Dirac, can be interpreted in terms of
antiparticle states. The vacuum state of
empty space is represented by a fully
occupied ‘‘sea’’ of negative-energy states.
While this ‘‘sea’’ itself is not observ-
able, ‘‘holes’’ created in the sea by excit-
ing negative-energy electrons to posi-
tive energies (Figure 1.15) are observ-
able and appear as antiparticles. For
example, a missing electron with charge
−e, energy −E, and momentum p repre-
sents a positron with charge e, energy E,
and momentum −p. The negative-energy
states of electrons therefore offer a sim-
ple explanation of particle–antiparticle
pair production in terms of the excita-
tion of a negative-energy particle to a
positive-energy state (the particle) leaving
a hole in the negative-energy ‘‘sea’’ (the
antiparticle) behind.

Glossary

Coherence and Decoherence: In QM,
the term coherence stands for the abil-
ity of a particle’s state to interfere.
Perfectly coherent states (‘‘pure states’’)
are subject to the superposition principle of

QM, whereas imperfections in the coher-
ence are described by a density matrix with
(partially) classical correlations. Decoher-
ence stands for the loss of coherence as
induced, for example, by coupling an iso-
lated quantum system to its environment.

Correspondence Principle: The princi-
ple that quantum-mechanical and classical
description of physical phenomena should
become equivalent in the limit of vanishing
de Broglie wavelength λ → 0, or equiva-
lently, of large quantum numbers.

de Broglie Wave: According to de Broglie,
the motion of a particle of mass M and
velocity v is associated with a matter wave
with wavelength λ = h/(Mv). h is Planck’s
quantum.

Delta (δ) Function: A particular case of a
distribution, frequently used in quantum
mechanics to formulate the orthogonality
and normalization conditions of states with
a continuous spectrum of eigenvalues.

Distributions: Also called generalized func-
tions. Linear-continuous functionals oper-
ating on a metric vector space. They form
the dual space of the metric vector space.
In the context of quantum mechanics, the
space is a Hilbert space and the operation of
the functional on an element of the Hilbert
space is called formation of a wave packet.

Eigenvalue Problem: The solution of
the eigenvalue equation for the matrix
A, Aψ =λψ where λ is a number called
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an eigenvalue and ψ is the eigenvector.
In quantum mechanics, ψ is a vector in
Hilbert space.

Entanglement: An intrinsic feature of QM,
occurring when particles or subsystems (in
either case more than one), are correlated
beyond a degree allowed by classical
physics. Entangled systems, even when far
apart, cannot be described independently
of each other.

Hamilton–Jacobi Equation: A particu-
lar canonical transformation in classical
dynamics that leads to the vanishing of the
Hamiltonian function in the new coordi-
nates. The transformation equation for the
original Hamiltonian function is called the
Hamilton–Jacobi equation and is equivalent
to equations of motion.

Hilbert Space: Infinite-dimensional com-
plete vector space over the complex num-
bers endowed with a metric induced by
a scalar product that satisfies Schwartz’s
inequality.

Laser: Light amplication by stimulated
emission of radiation. Modern source for
high-intensity coherent electromagnetic
radiation in the infrared, visible, and
ultraviolet spectral region.

Schrödinger Equation: Fundamental
equation governing the dynamics of a
nonrelativistic quantum system, playing a
similar role in quantum mechanics as do
Newton’s equations of motion in classical
dynamics.

State: A mechanical system is at any given
time completely characterized in quantum
mechanics by the state ψ . The projection
onto coordinate space, ψ(r), is called a wave
function. States are vectors in Hilbert space.

Superposition Principle: Any superposi-
tion in Hilbert space, ψ = aψ1 + bψ2, of
two states ψ1 and ψ2 forms another physi-
cally realizable state of a physical system.

Uncertainty Principle: Two canonically
conjugate variables, such as position x and
momentum p, can be simultaneously mea-
sured only with an intrinsic uncertainty of
at least �x�p � �/2.

Wave Function: The representation of the
state |ψ〉 in coordinate space, ψ(r) = 〈r |ψ〉.
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