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Introduction

1.1
Overview of Nonlinear Wave Phenomena

Examples of nonlinear wave phenomena abound in the physical, biological, and
social sciences. One of the most striking instances is the solitary wave in shallow
water in a narrow channel. In 1844, the Scottish naval engineer, John Scott Rus-
sell recalled an event some 10 years prior in which he observed a single humped
wave (which he called a “wave of translation”) that preserved its shape over a great
distance as he followed it on horseback, arguably the first reported experimental
observation of a nonlinear solitary wave [1]. The wave he observed had a height
of about 0.3 m and a width of about 10 m, and was created by the sudden stop-
ping of a barge in a narrow canal. He was so clearly struck by this observation that
he described this experience as his “first chance interview with that singular and
beautiful phenomenon”. Initial attempts to explain this remarkable phenomena
using approaches based on the then well-known linear wave equation failed. While
Boussinesq and Lord Rayleigh made considerable theoretical progress in the 1870s,
it was not until 1895 (and some 50 years after Russell’s intitial experimental report)
with the treatment of the Korteweg–de Vries (KdV) nonlinear wave equation, that
the solitary shallow water wave received its conclusive explanation [2]. The KdV
equation can be written in the form:

2
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@t

C 3ψ
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@x
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3

@3ψ
@x3 D 0 , (1.1)

where ψ(x , t) denotes the height of the fluid surface at position x along a straight
narrow channel, and t denotes time. Take note of the presence of the quadratic
nonlinearity in the second term. This equation can be derived from basic laws of
fluid dynamics. One finds a family of single-humped solutions to this equation
that move without dispersing. Furthermore, one finds that the speed of the wave is
dependent on its amplitude. Both of these properties cannot be captured by using a
standard linear wave equation. For instance, an initial shape in the solitary wave
form is made up of several wavelengths and must, therefore, quickly disperse and
devolve into its constituent modes.
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2 1 Introduction

Another more recent example, and one with which many are familiar, is the
dynamics of traffic flow, including the causes of traffic jams. One can construct
a simple and remarkably descriptive nonlinear wave model with the following two
simple ingredients: 1) the law of “mass” conservation, in this case car conservation,
which can be written for one lane of traffic flow in the following one- dimensional
form as

@�

@t
C @ j

@x
D 0 , (1.2)

where �(x , t) denotes the number of cars per unit length at space-time point (x , t),
and j (x , t) denotes the rate at which the cars pass the point x per unit time at
time t, in other words, the vehicle “current”; and 2) a constitutive relationship
between j and �, which takes the form j D R

v (�) d� where v (�), denotes the
density-dependent velocity of the vehicles, which may be obtained by empirical ob-
servation [3]. Clearly, if the density is very high, everyone drives more slowly and
at some point of high enough density, the average velocity tends to zero. Incorpo-
rating this density-dependent velocity into the vehicle conservation equation gives
rise to a nonlinear wave equation of the following form:

@�

@t
C v (�)

@�

@x
D 0 . (1.3)

Among other things, this equation reveals shock wave solutions moving at a precise
speed and in which the density jumps discontinuously between relatively high and
low values for a wide class of functional forms for v (�). If a diffusive term is added
in the right hand side of Eq. (1.3), the discontinuity in the shock wave is somewhat
smoothed: the wave profile has a steep gradient in a narrow region whose width is
determined by the diffusion coefficient. This system illustrates yet another feature
of nonlinear wave systems that are not possible to find in solutions of a linear wave
equation, namely, shock-like boundary layers between well-defined values with a
shape that exhibits no dispersion as the shock moves through its medium.

A prominent example from biology concerns the propagation of nerve impulses
in humans and animals. The effective transmission line in this case is the axon
and the wave is of an electrochemical nature involving the lateral diffusion of ions
across the membrane boundary of the axon. This type of nonlinear wave can be
described by the following set of equations known as the FitzHugh–Nagumo mod-
el [4, 5]:

dU
dt

D f (U) � W C I C D
@2U
@x2 , (1.4)

d W
dt

D U � B W , (1.5)

where U(x , t) corresponds to the lateral electric potential across the axon mem-
brane, f (U) is a nonlinear function which describes regenerative self-excitation in
the system, W(x , t) corresponds to an outward-flowing ion current, I denotes a
stimulus current, D is an effective diffusion constant for the membrane potential,
and B is a constant. The solutions of this system exhibit several features associat-
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1.2 Nonlinear Waves and Electronic Transport in Materials 3

ed with nerve pulses, for example, a traveling solitary wave structure in which the
waves have a particular amplitude, time-dependence of the variables that typically
possess regions of rapid and then gradual change which suggests the role of mul-
tiple time scales, and refractory behavior in which there is a certain period of time
during which it is not possible to excite the medium. It should also be noted that
none of these features is captured by a linear wave equation approach.

Chemical reactions provide yet another example. There is a class of autocatalytic
chemical reactions (e. g., Belousov–Zhabotinsky reaction) which show temporal os-
cillatory behavior in the constituent molecular concentrations when they are well-
stirred in order to keep them spatially homogeneous [6]. When they are not stirred,
these same systems can show propagating spiral wave patterns of great complexity.
This behavior can be modeled by a reaction-diffusion system:

@ni

@t
D r � (Drni ) C Ri (fn j g) , (1.6)

where the ni (r, t) (with i D 1, 2, . . . , N ) denote the space and time-dependent con-
centrations of different molecular species in the reacting mixture, and Ri is the
reaction rate for the i-th species. Typically, Ri is a nonlinear function of the con-
centrations because the reactions involve two or more molecules per reaction. For
example, in a simple binary reaction of the form A C B ! C, the corresponding re-
action rate RC for species C includes a term that is proportional to nA nB according
to the mass action law. For specific reactions, this system exhibits nonlinear spiral
waves in two spatial dimensions. If one neglects the reaction term, one has the usu-
al linear diffusion equation and thus, the underlying parabolic partial differential
equation is very different than the wave equation. The reaction terms may give rise
to bistability of two different time-independent solutions, another common feature
that distinguishes nonlinear from linear wave phenomena.

In this book, we will focus on the development and application of nonlinear wave
methods for problems involving the transport of electric charge in solid materials.
The realization that nonlinear charge waves occur in condensed matter is relative-
ly young and is largely traceable back to the discovery of the Gunn effect in GaAs
in the early 1960s [7]. In a seminal paper, Gunn found that when doped GaAs
samples were subjected to sufficiently high voltage, they emitted strong microwave
radiation. He subsequently verified in a series of capacitive probe measurements
that the microwave radiation was due to periodically cycling domains of high elec-
tric field propagating along the samples in the direction of current flow. In the next
section, we review the basics of classical charge transport in solid media and point
out, in simple terms, where it is that the crucial nonlinearities may arise.

1.2
Nonlinear Waves and Electronic Transport in Materials

Here, we review the essentials of electronic transport in solids at a level similar to
that of a typical undergrad course in electricity and magnetism. We also introduce
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4 1 Introduction

the drift-diffusion form of electrical current. We start by recalling that conservation
of charge is expressed by the following well-known continuity equation

r � j C @�

@t
D 0 , (1.7)

where j now denotes the three-dimensional electrical current density (SI units are
A/m2) and �(r , t) denotes the three-dimensional charge density. We also have the
basic electrostatic relationship between electric field and charge density, one of the
Maxwell equations expressed as

r � E D �(r , t)
��0

. (1.8)

Finally, we have a constitutive relation between the electric field and current density
that flows in the material. The simplest and most common assumption is the local
version of Ohm’s law,

j D σE , (1.9)

that is, a linear proportionality between the applied electric field and the current
that flows, where σ denotes the electrical conductivity. Even though this is an em-
pirical relationship, it works quite well for many materials and applications. It can
be derived in a number of ways, from the elementary Drude argument to sophisti-
cated quantum mechanical calculations that take full account of energy band struc-
ture and scattering mechanisms [8, 9].

Let us briefly recall the Drude form of the dc conductivity,

σ D ne2τ
m�

, (1.10)

where n denotes the volume density of mobile charge carriers (e. g., electrons), e
is the electron charge, m� is the effective mass of the charge carrier in the mate-
rial of interest [8], and τ denotes the scattering time. In both semiconductors and
metals, the mobile charge carriers (electrons and/or holes) are compensated by a
background of fixed charge (associated with ionic constituent atoms of the under-
lying crystal lattice) of opposite sign. If we denote the density of these fixed charges
by N, then we have for total charge density the following relationship:

�(r , t) D e (n(r , t) � N ) , (1.11)

where we have assumed that n can vary in space, but that N is constant.
If we now combine Poisson’s Law and Ohm’s Law, Eqs. (1.8) and (1.9), respec-

tively, we have:

r � j D σr � E D σ
��0

�(r) . (1.12)

This equation can be brought into a form depending only on �(r , t) by using the
charge continuity equation (1.7)

@�

@t
D � σ

��0
�(r , t) � ��(r , t)

τd
, (1.13)
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1.2 Nonlinear Waves and Electronic Transport in Materials 5

where we have defined the dielectric relaxation time: τd � ��0/σ. Equation (1.13) is
often referred to as the dielectric relaxation equation. Imagine an initial condition
in which the charge density at a point r has a value �0 ¤ 0 which might occur
due to a thermal fluctuation or a rapid voltage pulse applied to the system. Then
at subsequent times, the charge density decays exponentially to zero as mobile
charges from other parts of the material flow into the region at point r to neutralize
the overall charge density

�(r, t) D �0 exp
�
� t

τd

�
. (1.14)

This result leads to the immediate conclusion that we do not expect to find non-
linear charge waves in transport systems that are well-described by Ohm’s Law; the
state in which � ! 0 in the interior of a homogeneous material is always stable.
However, Eq. (1.14) does yield an additional insight, namely, that instability might
occur if the conductivity σ were somehow negative. Referring back to the elemen-
tary dc conductivity expression, Eq. (1.10), we can see that this is unlikely since
the constituent’s parameters are all positive. However, if we allow for a nonlinear
constitutive relationship between current density and applied field, we can recog-
nize the possibility to achieve a differential conductivity that is negative for a certain
range of field values. This book is largely centered on such systems in nature.

Returning to Ohm’s Law, cf. Eq. (1.9), we note that it can be written in the form
j D env where v denotes the drift velocity, that is, the average velocity of all the
carriers in an applied electric field E. Regarding the Ohm’s Law case, it is stated
that v D eτE/m�, that is, a linear relationship between drift velocity and applied
field. We can generalize this to consider a nonlinear dependence of drift velocity
on field which we denote by v (E ). Additionally, a study of statistical transport the-
ories shows that, in general, the current will take the form of a gradient expansion
in the density of the mobile charges [10, 11]. If we restrict ourselves to only one
spatial dimension (call it the x-direction), j x can be expanded in a series of terms
proportional to @i n/@x i . For charge transport problems (even nonlinear ones), it
generally suffices to retain the first two terms of such an expansion (i. e., i D 0 and
1) which gives the drift-diffusion expression for current density:

j x D e
�

nv (E ) � D(E )
@n
@x

�
, (1.15)

where D(E ) denotes the (possibly field-dependent) diffusion constant for the
charge carriers. Let us now repeat the above steps that previously lead to the
dielectric relaxation equation, though now using the drift-diffusion form of the
current. Firstly, we note that we use the Poisson equation to write the charge
continuity equation in the form

@ j x

@x
C ��0

@2 E
@x@t

D 0 , (1.16)

which can be immediately integrated with respect to x to yield

j x C ��0
@E
@t

D J(t) . (1.17)
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6 1 Introduction

In this form of Ampère’s law, the total current density J(t) is the sum of the elec-
trical current density j x and the displacement current ��0@E/@t. Multiplied by the
cross section, it denotes the boundary current that flows into and out of the struc-
ture. At this point, we replace the current density j x by the drift-diffusion expres-
sion to write:

env (E ) � eD(E )
@n
@x

C ��0
@E
@t

D J(t) . (1.18)

However, this equation involves both variables n and E, and it is desirable to write
a dynamical equation entirely in terms of one of these. We can eliminate n in favor
of E using the Poisson Equation, cf. Eq. (1.8), and also recalling the relationship
between n and �, cf. Eq. (1.11):

@E
@t

C v (E )
@E
@x

� D(E )
@2E
@x2 D J(t) � eN v (E )

��0
. (1.19)

We can immediately see a qualitative analogy with the traffic flow equation, cf.
Eq. (1.3). The field-dependent drift velocity of carriers is analogous to the density-
dependent vehicle velocity. For appropriately shaped v (E ), one may also expect
the formation of shock waves. Additionally, we have diffusion and source terms to
consider that are similar in form to those in the first equation from the FitzHugh–
Nagumo model, cf. Eq. (1.4). Therefore, we may also expect to see oscillatory
and excitatory behavior that is reminiscent of nerve propagation. As we shall see,
Eq. (1.19) forms the basis of an effective model of the Gunn effect studied in
Chapter 6.

Another way in which nonlinearity may enter into the charge transport picture in
a very basic and widespread manner is through the inclusion of trapping dynamics,
whereby the mobile charge carriers may become trapped and liberated from trap-
ping sites. This will be discussed in detail in Chapter 7, and thus, we mention only
the simplest aspect of this behavior here. Let nt (r, t) denote the density of charge
carriers that are trapped on trapping sites. If the total density of traps is N, then
the local charge density should be written as �(r , t) D e (n(r , t) C nt (r, t) � N ).
Let us consider the form of local rate equation for the nt . Clearly, nt will be in-
creased when a free charge carrier is trapped on an available site, a process known
as capture. This process must be proportional to the density of free carriers and the
density of available sites, that is, proportional to the product n(N � nt ). Similarly,
we expect nt to decrease due to excitation of trapped charge carriers, for example,
by external illumination of an appropriate frequency or by the absorption of energy
from other excitations in the material, for example, phonons [8]. This process is
known as generation and is only proportional to the density of trapped charges nt .
Another process that decreases nt occurs when a sufficiently energetic free carrier
collides with a trap carrier and imparts sufficient energy to liberate it. This process
is known as impact ionization and is proportional to both n and nt . We can put
these ingredients together in order to write a rate equation of the form:

@nt

@t
D �G nt C R n(N � nt ) � K nnt , (1.20)
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1.3 Structural Outline of the Book 7

where the quantities G, R, and K are respectively called the coefficients of genera-
tion, capture, and impact ionization. We can immediately see that this rate equation
is nonlinear in a qualitatively similar form as is found in the chemical reactions
discussed in the previous section, cf. Eq. (1.6). It is also interesting to note that an
additional feature not found in the chemical reaction literature is that the kinet-
ic coefficients may have a strong dependence on electric field. As we shall see in
Chapter 7, on trap-controlled space-charge instabilities, this feature plays a central
role.

1.3
Structural Outline of the Book

We conclude this chapter by providing a road map of the presentation of materi-
al in this book. Chapters 2–4 are devoted to introducing key mathematical tech-
niques that are especially useful for analyzing nonlinear wave phenomena in elec-
tronic transport systems. We begin in Chapter 2 by reviewing basic concepts and
facts from nonlinear dynamics, including a summary of common bifurcations that
are often encountered. Much of this material will be familiar to those who have
previously studied nonlinear dynamics and, in this case, a fast reading is possi-
ble with the understanding that it can be referred to as necessary. In the second
half of Chapter 2, we analyze bifurcations using a multiple scales approach known
as the Chapman–Enskog method. This method has certain advantages in bifurca-
tion analysis over the well-known normal form approach, especially for models of
electronic transport. In Chapter 3, we introduce basic concepts of nonlinear waves
in spatially continuous excitable media, illustrated using the FitzHugh–Nagumo
and related models. Among the concepts presented are co-moving frame analysis,
nonlinear wave speed determination methods, and stability analysis. In Chapter 4,
we look at the application of these nonlinear wave methods to spatially discrete
systems, especially periodic arrays where the new phenomena of wave pinning is
expected to emerge.

Chapter 5 reviews the quantum mechanical underpinnings of the drift-diffusion
transport models that are the focus of this book. After a discussion of fundamen-
tal quantum transport, we apply these methods to derive drift-diffusion currents
for strongly-coupled semiconductor superlattices. Chapter 6 covers the theory of the
Gunn effect in GaAs in which space charge instability is due to the peculiar nonlin-
ear dependence of the drift velocity v (E ) on electric field. This chapter also begins
with a self-contained review of the essential semiconductor physics underlying the
Gunn effect. The concept of a greatly simplified asymptotic model for long samples
is also introduced. In Chapter 7, we turn to the case where the instability is a result
of field-dependent dynamics relative to trap states, also called trap-controlled insta-
bilities. The treatment is largely parallel to that of the Gunn effect, though there are
some striking differences between these two phenomena. In Chapter 8, we turn to
the nonlinear dynamics of weakly-coupled semiconductor superlattices which are
found moving as well as static (equivalently, pinned) electric field domains. It is
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8 1 Introduction

possible to understand many observed phenomena by applying singular pertur-
bation methods to the limit NSL ! 1, where NSL is the number of periods, or
sequential layers of quantum wells, in the superlattice. Finally, in Chapter 9, we
conclude with a brief and admittedly biased survey of some other systems in which
the methods and tools developed here also provide useful insight.

References

1 Russell, J.S. (1845) Report on Waves, in
Report of the 14th meeting of the British
Association for the Advancement of Sci-
ence, York, Sept. 1844, London 1845,
pp. 311–390.

2 Korteweg, D.J. and de Vries, G. (1895)
On the Change of Form of Long Waves
Advancing in a Rectangular Canal, and
on a New Type of Long Stationary Waves,
Philosophical Magazine, 39, 422–443.

3 Witham, G.B. (1974) Linear and Nonlinear
Waves, John Wiley & Sons, Inc, New York.

4 Keener, J. and Sneyd, J. (1998) Mathemat-
ical Physiology, Springer, New York.

5 FitzHugh, R. (1961) Impulses and phys-
iological states in theoretical models of
nerve membrane. Biophysical Journal, 1,
445–466.

6 Zhabotinsky, A.M. (1991) A history of
chemical oscillations and waves. Chaos, 1,
379–386.

7 Gunn, J.B. (1965) Instabilities of current
and of potential distribution in GaAs and
InP. Proceedings of Symposium on Plasma
Effects in Solids (ed. J. Bok), Dunod, Paris,
pp. 199–207.

8 Ashcroft, N.W. and Mermin, N.D. (1976)
Solid State Physics, Brooks-Cole, New
York.

9 Grahn, H.T. (1999) Introduction to Semi-
conductor Physics, World Scientific, Singa-
pore.

10 Chapman, S. and Cowling, T.G. (1970)
The Mathematical Theory of Non-uniform
Gases, 3rd edn, Cambridge University
Press, Cambridge.

11 Cercignani, C. (2000) Rarefied Gas Dy-
namics: From Basic Concepts to Actual
Calculations, Cambridge, New York.

12 Cercignani, C., Illner, R. and Pulviren-
ti, M. (1994) The Mathematical Theory of
Dilute Gases, Springer, New York.




