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1
Introduction

1.1
The Motivations

Coherent states were first studied by Schrödinger in 1926 [1] and were rediscovered
by Klauder [2–4], Glauber [5–7], and Sudarshan [8] at the beginning of the 1960s.
The term “coherent” itself originates in the terminology in use in quantum optics
(e.g., coherent radiation, sources emitting coherently). Since then, coherent states
and their various generalizations have disseminated throughout quantum physics
and related mathematical methods, for example, nuclear, atomic, and condensed
matter physics, quantum field theory, quantization and dequantization problems,
path integrals approaches, and, more recently, quantum information through the
questions of entanglement or quantum measurement.

The purpose of this book is to explain the notion of coherent states and of their
various generalizations, since Schrödinger up to the most recent conceptual ad-
vances and applications in different domains of physics, with some incursions into
signal analysis. This presentation, illustrated by various selected examples, does
not have the pretension to be exhaustive, of course. Its main feature is a unifying
method of construction of coherent states, of minimal complexity and of proba-
bilistic nature. The procedure followed allows one to establish a simple and nat-
ural link between practically all families of coherent states proposed until now. It
embodies the originality of the book in regard to well-established constructions de-
rived essentially from group theory (e.g., coherent state family viewed as the orbit
under the action of a group representation) or algebraic constraints (e.g., coher-
ent states viewed as eigenvectors of some lowering operator), and comprehensively
presented in previous treatises [10, 11], reviews [9, 12–14], an extensive collection
of important papers [15], and proceedings [16].

As early as 1926, at the very beginning of quantum mechanics, Schrödinger [1]
was interested in studying quantum states, which mimic their classical counter-
parts through the time evolution of the position operator:

Q (t) = e
i
� Ht Q e– i

� Ht . (1.1)

In this relation, H = P 2/2m + V (Q ) is the quantum Hamiltonian of the system.
Schrödinger understood classical behavior to mean that the average or expected
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4 1 Introduction

value of the position operator,

q(t) = 〈coherent state|Q (t)|coherent state〉 ,

in the desired state, would obey the classical equation of motion:

mq̈(t) +
∂V
∂q

= 0 . (1.2)

Schrödinger was originally concerned with the harmonic oscillator, V (q) =
1
2 m2ω2q2. The states parameterized by the complex number z = |z|eiϕ , and de-
noted by |z〉, are defined in a way such that one recovers the familiar sinusoidal
solution

〈z|Q (t)|z〉 = 2Qo |z| cos(ωt – ϕ) , (1.3)

where Qo = (�/2mω)1/2 is a fundamental quantum length built from the univer-
sal constant � and the constants m and ω characterizing the quantum harmonic
oscillator under consideration.

In this way, states |z〉 mediate a “smooth” transition from classical to quantum
mechanics. But one should not be misled: coherent states are rigorously quantum
states (witness the constant � appearing in the definition of Qo), yet they allow
for a classical “reading” in a host of quantum situations. This unique qualification
results from a set of properties satisfied by these Schrödinger–Klauder–Glauber
coherent states, also called canonical coherent states or standard coherent states.

The most important among them are the following:

(CS1) The states |z〉 saturate the Heisenberg inequality:

〈ΔQ〉z 〈ΔP 〉z = 1
2 � , (1.4)

where 〈ΔQ〉z := [〈z|Q2|z〉 – 〈z|Q |z〉2]1/2.
(CS2) The states |z〉 are eigenvectors of the annihilation operator, with eigen-

value z:

a|z〉 = z|z〉, z ∈ C , (1.5)

where a = (2m�ω)–1/2 (mωQ + iP ).
(CS3) The states |z〉 are obtained from the ground state |0〉 of the harmonic oscilla-

tor by a unitary action of the Weyl–Heisenberg group. The latter is a key Lie
group in quantum mechanics, whose Lie algebra is generated by {Q , P , I},
with [Q , P ] = i�Id (which implies [a, a†] = I ):

|z〉 = e(za† – za)|0〉. (1.6)

(CS4) The coherent states {|z〉} constitute an overcomplete family of vectors in
the Hilbert space of the states of the harmonic oscillator. This property is
encoded in the following resolution of the identity or unity:

Id =
1
π

∫
C

d Re z d Im z |z〉〈z| . (1.7)
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1.1 The Motivations 5

These four properties are, to various extents, the basis of the many generaliza-
tions of the canonical notion of coherent states, illustrated by the family {|z〉}.
Property (CS4) is in fact, both historically and conceptually, the one that survives.
As far as physical applications are concerned, this property has gradually emerged
as the one most fundamental for the analysis, or decomposition, of states in the
Hilbert space of the problem, or of operators acting on this space. Thus, property
(CS4) will be a sort of motto for the present volume, like it was in the previous,
more mathematically oriented, book by Ali, Antoine, and the author [11]. We shall
explain in much detail this point of view in the following pages, but we can say very
schematically, that given a measure space (X , ν) and a Hilbert space H, a family of
coherent states {|x〉 | x ∈ X }must satisfy the operator identity∫

X
|x〉〈x | ν(dx) = Id . (1.8)

Here, the integration is carried out on projectors and has to be interpreted in a
weak sense, that is, in terms of expectation values in arbitrary states |ψ〉. Hence, the
equation in (1.8) is understood as

〈ψ|
∫

X
x〉〈x | ν(dx) |ψ〉 =

∫
X
|〈x |ψ〉|2 ν(dx) = |ψ|2 . (1.9)

In the ultimate analysis, what is desired is to make the family {|x〉} operational
through the identity (1.8). This means being able to use it as a “frame”, through
which one reads the information contained in an arbitrary state in H, or in an op-
erator onH, or in a setup involving both operators and states, such as an evolution
equation on H. At this point one can say that (1.8) realizes a “quantization” of the
“classical” space (X , ν) and the measurable functions on it through the operator-
valued maps:

x �→ |x〉〈x | , (1.10)

f �→ A f
def=

∫
X

f (x) |x〉〈x | ν(dx) . (1.11)

The second part of this volume contains a series of examples of this quantization
procedure.

As already stressed in [11], the family {|x〉} allows a “classical reading” of op-
erators A acting on H through their expected values in coherent states, 〈x |A|x〉
(“lower symbols”). In this sense, a family of coherent states provides the oppor-
tunity to study quantum reality through a framework formally similar to classical
reality. It was precisely this symbolic formulation that enabled Glauber and oth-
ers to treat a quantized boson or fermion field like a classical field, particularly for
computing correlation functions or other quantities of statistical physics, such as
partition functions and derived quantities. In particular, one can follow the dynam-
ical evolution of a system in a “classical” way, elegantly going back to the study of
classical “trajectories” in the space X.
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6 1 Introduction

The formalisms of quantum mechanics and signal analysis are similar in many
aspects, particularly if one considers the identities (1.8) and (1.9). In signal anal-
ysis, H is a Hilbert space of finite energy signals, (X , ν) a space of parameters,
suitably chosen for emphasizing certain aspects of the signal that may interest us
in particular situations, and (1.8) and (1.9) bear the name of “conservation of en-
ergy”. Every signal contains “noise”, but the nature and the amount of noise is
different for different signals. In this context, choosing (X , ν, {|x〉}) amounts to
selecting a part of the signal that we wish to isolate and interpret, while eliminat-
ing or, at least, strongly damping a noise that has (once and for all) been regarded
as unessential . Here too we have in effect chosen a frame. Perfect illustrations
of the deep analogy between quantum mechanics and signal processing are Gabor
analysis and wavelet analysis. These analyses yield a time–frequency (“Gaboret”) or
a time-scale (wavelet) representation of the signal. The built-in scaling operation
makes it a very efficient tool for analyzing singularities in a signal, a function, an
image, and so on – that is, the portion of the signal that contains the most signif-
icant information. Now, not surprisingly, Gaborets and wavelets can be viewed as
coherent states from a group-theoretical viewpoint. The first ones are associated
with the Weyl–Heisenberg group, whereas the latter are associated with the affine
group of the appropriate dimension, consisting of translations, dilations, and also
rotations if we deal with dimensions higher than one.

Let us now give an overview of the content and organization of the book.

Part One. Coherent States

The first part of the book is devoted to the construction and the description of
different families of coherent states, with the chapters organized as follows.

Chapter 2. The Standard Coherent States: the Basics
In the second chapter, we present the basics of the Schrödinger–Glauber–Klauder–
Sudarshan or “standard” coherent states |z〉 == |q, p〉 introduced as a specific super-
position of all energy eigenstates of the one-dimensional harmonic oscillator. We
do this through four representations of this system, namely, “position”, “momen-
tum”, “Fock” or “number”, and “analytical” or “Fock–Bargmann”. We then describe
the specific role coherent states play in quantum mechanics and in quantum op-
tics, for which those objects are precisely the coherent states of a radiation quantum
field.

Chapter 3. The Standard Coherent States: the (Elementary) Mathematics
In the third chapter, we focus on the main elementary mathematical features of
the standard coherent states, particularly that essential property of being a continu-
ous frame, resolving the unit operator in an “overcomplete” fashion in the space of
quantum states, and also their relation to the Weyl–Heisenberg group. Appendix B
is devoted to Lie algebra, Lie groups, and their representations on a very basic lev-
el to help the nonspecialist become familiar with such notions. Next, we state the
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1.1 The Motivations 7

probabilistic content of the coherent states and describe their links with three im-
portant quantum distributions, namely, the “P”, “Q” distribution and the Wigner
distribution. Appendix A is devoted to probabilities and will also help the reader
grasp these essential aspects. Finally, we indicate the way in which coherent states
naturally occur in the Feynman path integral formulation of quantum mechan-
ics. In more mathematical language, we tentatively explain in intelligible terms the
coherent state properties such as (CS1)–(CS4) and others characterizing on a math-
ematical level the standard coherent states.

Chapter 4. Coherent States in Quantum Information
Chapter 4 gives an account of a recent experimental evidence of a feedback-mediat-
ed quantum measurement aimed at discriminating between optical coherent states
under photodetection. The description of the experiment and of its theoretical mo-
tivations is aimed at counterbalancing the abstract character of the mathematical
formalism presented in the previous two chapters.

Chapter 5. Coherent States: a General Construction
In Chapter 5 we go back to the formalism by presenting a general method of con-
struction of coherent states, starting from some observations on the structure of
coherent states as superpositions of number states. Given a set X, equipped with
a measure ν and the resulting Hilbert space L2(X , ν) of square-integrable func-
tions on X, we explain how the choice of an orthonormal system of functions in
L2(X , ν), precisely {φ j (x) | j ∈ index set J },

∫
X φ j (x)φ j ′ (x) ν(dx) = δ j j ′ , carry-

ing a probabilistic content,
∑

j∈J |φ j (x)|2 = 1, determines the family of coherent
states |x〉 =

∑
j φ j (x)|φ j〉. The relation to the underlying existence of a reproduc-

ing kernel space will be clarified.
This coherent state construction is the main guideline ruling the content of the

subsequent chapters concerning each family of coherent states examined (in a gen-
eralized sense). As an elementary illustration of the method, we present the coher-
ent states for the quantum motion of a particle on the circle.

Chapter 6. Spin Coherent States
Chapter 6 is devoted to the second most known family of coherent states, namely,
the so-called spin or Bloch or atomic coherent states. The way of obtaining them
follows the previous construction. Once they have been made explicit, we describe
their main properties: that is, we depict and comment on the sequence of prop-
erties like we did in the third chapter, the link with SU (2) representations, their
classical aspects, and so on.

Chapter 7. Selected Pieces of Applications of Standard and Bloch Coherent States
In Chapter 7 we proceed to a (small, but instructive) panorama of applications of
the standard coherent states and spin coherent states in some problems encoun-
tered in physics, quantum physics, statistical physics, and so on. The selected pa-



�
� Jean-Pierre Gazeau: Coherent States in Quantum Physics —

Chap. gazeau7095c01 — 2009/7/30 — 12:59 — page 8 — le-tex �
�

�
�

�
�

8 1 Introduction

pers that are presented as examples, despite their ancient publication, were chosen
by virtue of their high pedagogical and illustrative content.

Application to the Driven Oscillator This is a simple and very pedagogical model
for which the Weyl–Heisenberg displacement operator defining standard coherent
states is identified with the S matrix connecting ingoing and outgoing states of
a driven oscillator.

Application in Statistical Physics: Superradiance This is another nice example of ap-
plication of the coherent state formalism. The object pertains to atomic physics:
two-level atoms in resonant interaction with a radiation field (Dicke model and
superradiance).

Application to Quantum Magnetism We explain how the spin coherent states can be
used to solve exactly or approximately the Schrödinger equation for some systems,
such as a spin interacting with a variable magnetic field.

Classical and Thermodynamical Limits Coherent states are useful in thermodynam-
ics. For instance, we establish a representation of the partition function for sys-
tems of quantum spins in terms of coherent states. After introducing the so-called
Berezin–Lieb inequalities, we show how that coherent state representation makes
crossed studies of classical and thermodynamical limits easier.

Chapter 8. SU(1, 1), SL(2, R), and Sp(2, R) Coherent States
Chapter 8 is devoted to the third most known family of coherent states, namely,
the SU (1, 1) Perelomov and Barut–Girardello coherent states. Again, the way of
obtaining them follows the construction presented in Chapter 5. We then describe
the main properties of these coherent states: probabilistic interpretation, link with
SU (1, 1) representations, classical aspects, and so on. We also show the relation-
ship between wavelet analysis and the coherent states that emerge from the unitary
irreducible representations of the affine group of the real line viewed as a subgroup
of SL(2, R) ~ SU (1, 1).

Chapter 9. SU(1, 1) Coherent States and the Infinite Square Well
In Chapter 9 we describe a direct illustration of the SU (1, 1) Barut–Girardello co-
herent states, namely, the example of a particle trapped in an infinite square well
and also in Pöschl–Teller potentials of the trigonometric type.

Chapter 10. SU(1, 1) Coherent States and Squeezed States in Quantum Optics
Chapter 10 is an introduction to the squeezed coherent states by insisting on their
relations with the unitary irreducible representations of the symplectic groups
S p(2, R) � SU (1, 1) and their importance in quantum optics (reduction of the
uncertainty on one of the two noncommuting observables present in the measure-
ments of the electromagnetic field).
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1.1 The Motivations 9

Chapter 11. Fermionic Coherent States
In Chapter 11 we present the so-called fermionic coherent states and their uti-
lization in the study of many-fermion systems (e.g., the Hartree–Fock–Bogoliubov
approach).

Part Two. Coherent State Quantization

This second part is devoted to what we call “coherent state quantization”. This pro-
cedure of quantization of a measure space is quite straightforward and can be ap-
plied to many physical situations, such as motions in different geometries (line,
circle, interval, torus, etc.) as well as to various geometries themselves (interval,
circle, sphere, hyperboloid, etc.), to give a noncommutative or “fuzzy” version for
them.

Chapter 12. Coherent State Quantization: The Klauder–Berezin Approach
We explain in Chapter 12 the way in which standard coherent states allow a natural
quantization of a large class of functions and distributions, including tempered dis-
tributions, on the complex plane viewed as the phase space of the particle motion
on the line. We show how they offer a classical-like representation of the evolution
of quantum observables. They also help to set Heisenberg inequalities concerning
the “phase operator” and the number operator for the oscillator Fock states. By re-
stricting the formalism to the finite dimension, we present new quantum inequali-
ties concerning the respective spectra of “position” and “momentum” matrices that
result from such a coherent state quantization scheme for the motion on the line.

Chapter 13. Coherent State or Frame Quantization
In Chapter 13 we extend the procedure of standard coherent state quantization to
any measure space labeling a total family of vectors solving the identity in some
Hilbert space. We thus advocate the idea that, to a certain extent, quantization per-
tains to a larger discipline than just being restricted to specific domains of physics
such as mechanics or field theory. We also develop the notion of lower and upper
symbols resulting from such a quantization scheme, and we discuss the probabilis-
tic content of the construction.

Chapter 14. Elementary Examples of Coherent State Quantization
The examples which are presented in Chapter 14 are, although elementary, rather
unusual. In particular, we start with measure sets that are not necessarily phase
spaces. Such sets are far from having any physical meaning in the common sense.

Finite Set We first consider a two-dimensional quantization of a N-element set
that leads, for N v 4, to a Pauli algebra of observables.

Unit Interval We study two-dimensional (and higher-dimensional) quantizations
of the unit segment.
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Unit Circle We apply the same quantization procedure to the unit circle in the
plane. As an interesting byproduct of this “fuzzy circle”, we give an expression
for the phase or angle operator, and we discuss its relevance in comparison with
various phase operators proposed by many authors.

Chapter 15. Motions on Simple Geometries
Two examples of coherent state quantization of classical motions taking place in
simple geometries are presented in Chapter 15.

Motion on the Circle Quantization of the motion of a particle on the circle (like
the quantization of polar coordinates in a plane) is an old question with so far
no really satisfactory answers. Many questions concerning this subject have been
addressed, more specifically devoted to the problem of angular localization and re-
lated Heisenberg inequalities. We apply our scheme of coherent state quantization
to this particular problem.

Motion on the Hyperboloid Viewed as a 1 + 1 de Sitter Space-Time To a certain extent,
the motion of a massive particle on a 1 + 1 de Sitter background, which means
a one-sheeted hyperboloid embedded in a 2+1 Minkowski space, has characteristics
similar to those of the phase space for the motion on the circle. Hence, the same
type of coherent state is used to perform the quantization.

Motion in an Interval We revisit the quantum motion in an infinite square well
with our coherent state approach by exploiting the fact that the quantization prob-
lem is similar, to a certain extent, to the quantization of the motion on the circle
S1. However, the boundary conditions are different, and this leads us to introduce
vector coherent states to carry out the quantization.

Motion on a Discrete Set of Points We end this series of examples by the consid-
eration of a problem inspired by modern quantum geometry, where geometrical
entities are treated as quantum observables, as they have to be in order for them to
be promoted to the status of objects and not to be simply considered as a substantial
arena in which physical objects “live”.

Chapter 16. Motion on the Torus
Chapter 16 is devoted to the coherent states associated with the discrete Weyl–
Heisenberg group and to their utilization for the quantization of the chaotic motion
on the torus.

Chapter 17. Fuzzy Geometries: Sphere and Hyperboloid
In Chapter 17, we end this series of examples of coherent state quantization with
the application of the procedure to familiar geometries, yielding a noncommutative
or “fuzzy” structure for these objects.
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Fuzzy Sphere This is an extension to the sphere S2 of the quantization of the unit
circle. It is a nice illustration of noncommutative geometry (approached in a rather
pedestrian way). We show explicitly how the coherent state quantization of the or-
dinary sphere leads to its fuzzy geometry. The continuous limit at infinite spins
restores commutativity.

Fuzzy Hyperboloid We then describe the construction of the two-dimensional fuzzy
de Sitter hyperboloids by using a coherent state quantization.

Chapter 18. Conclusion and Outlook
In this last chapter we give some final remarks and suggestions for future develop-
ments of the formalism presented.
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