Contents

Acronyms XXIII

1	Introduction 1
1.1	Main Concepts and Issues 2
1.2	Self-Organized Nanoworld, Commonsense Science of the Small
	and Socio-Economic Push 7
1.3	Nature's Plasma Nanofab and Nanotechnology Research
	Directions 21
1.4	Deterministic Nanofabrication and Plasma Nanoscience 28
1.5	Structure of the Monograph and Advice to the Reader 43
2	What Makes Low-Temperature Plasmas a Versatile Nanotool? 49
2.1	Basic Ideas and Major Issues 50
2.2	Plasma Nanofabrication Concept 55
2.3	Useful Plasma Features for Nanoscale Fabrication 66
2.4	Choice and Generation of Building and Working Units 72
2.5	Effect of the Plasma Sheath 81
2.6	How Plasmas Affect Elementary Surface Processes 97
2.7	Concluding Remarks 105
3	Specific Examples and Practical Framework 107
3.1	Semiconducting Nanofilms and Nanostructures 107
3.2	Carbon-Based Nanofilms and Nanostructures 117
3.3	Practical Framework – Bridging Nine Orders of Magnitude 133
3.4	Concluding Remarks 140
4	Generation of Building and Working Units 145
4.1	Species in Methane-Based Plasmas for Synthesis of Carbon
	Nanostructures 146

Plasma Nanoscience: Basic Concepts and Applications of Deterministic Nanofabrication Kostya (Ken) Ostrikov Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40740-8

4.1.1	Experimental Details 149
4.1.2	Basic Assumptions of the Model 152
4.1.3	Particle and Power Balance in Plasma Discharge 153
4.1.4	Densities of Neutral and Charged Species 155
4.1.4.1	Effect of RF Power 156
4.1.4.2	Effect of Argon and Methane Dilution 158
4.1.5	Deposited Neutral and Ion Fluxes 159
4.1.6	Most Important Points and Summary 162
4.2	Species in Acetylene-Based Plasmas for Synthesis of
	Carbon Nanostructures 164
4.2.1	Formulation of the Problem 165
4.2.2	Number Densities of the Main Discharge Species 167
4.2.3	Fluxes of Building and Working Units 171
4.3	Nanocluster and Nanoparticle Building Units 177
4.3.1	Nano-Sized Building Units from Reactive Plasmas 177
4.3.2	Nanoparticle Generation: Other Examples 182
4.4	Concluding Remarks 194
	O
5	Transport, Manipulation and Deposition of Building and
	Working Units 199
5.1	Microscopic Ion Fluxes During Nanoassembly Processes 200
5.1.1	Formulation and Model 202
5.1.2	Numerical Results 204
5.1.3	Interpretation of Numerical Results 209
5.2	Nanoparticle Manipulation in the Synthesis of Carbon
	Nanostructures 213
5.2.1	Nanoparticle Manipulation: Experimental Results 215
5.2.2	Nanoparticle Manipulation: Numerical Model 220
5.3	Selected-Area Nanoparticle Deposition Onto Microstructured
	Surfaces 227
5.3.1	Numerical Model and Simulation Parameters 228
5.3.2	Selected-Area Nanoparticle Deposition 231
5.3.3	Practical Implementation Framework 237
5.4	Electrostatic Nanoparticle Filter 239
5.5	Concluding Remarks 244
6	Surface Science of Plasma-Exposed Surfaces and
	Self-Organization Processes 249
	K. Ostrikov and I. Levchenko
6.1	Synthesis of Self-Organizing Arrays of Quantum Dots:
	Objectives and Approach 251

5.2	Initial Stage of Ge/Si Nanodot Formation Using Nanocluster Fluxes 272
5.2.1	Physical Model and Numerical Details 273
5.2.2	Physical Interpretation and Relevant Experimental Data 277
5.3	Binary Si _x C _{1-x} Quantum Dot Systems: Initial Growth Stage 282
5.3.1	Adatom Fluxes at Initial Growth Stages of Si_xC_{1-x} Quantum
	Dots 282
5.3.2	Control of Core-Shell Structure and Elemental Composition
	of Si _x C _{1-x} Quantum Dots 294
5.4	Self-Organization in Ge/Si Nanodot Arrays at Advanced
	Growth Stages 301
5.4.1	Model of Nanopattern Development 303
5.4.2	Ge/Si QD Size and Positional Uniformity 307
5.4.3	Self-Organization in Ge/Si QD Patterns: Driving Forces and
	Features 310
5.5	Self-Organized Nanodot Arrays: Plasma-Specific Effects 314
5.5.1	Matching Balance and Supply of BUs: a Requirement for
	Deterministic Nanoassembly 315
5.5.2	Other General Considerations 317
5.5.3	Plasma-Related Effects at Initial Growth Stages 319
5.5.4	Separate Growth of Individual Nanostructures 321
5.5.5	Self-Organization in Large Nanostructure Arrays 327
5.6	Concluding Remarks 332
7	Ion-Focusing Nanoscale Objects 341
7.1	General Considerations and Elementary Processes 343
7.2	Plasma-Specific Effects on the Growth of Carbon Nanotubes
	and Related Nanostructures 356
7.2.1	Plasma-Related Effects on Carbon Nanofibers 357
7.2.2	Effects of Ions and Atomic Hydrogen on the Growth of
	SWCNTs 364
7.3	Plasma-Controlled Reshaping of Carbon Nanostructures 373
7.3.1	Self-Sharpening of Platelet-Structured Nanocones 373
7.3.2	Plasma-Based Deterministic Shape Control in Nanotip
	Assembly 380
7.4	Self-Organization of Large Nanotip Arrays 385
7.5	From Non-Uniform Catalyst Islands to Uniform
	Nanoarrays 391
7.5.1	Experiment and Film Characterization 393
7.5.2	Growth Model and Numerical Simulations 397
7.6	Other Ion-Focusing Nanostructures 402
7.7	Concluding Remarks 407

8	Building and Working Units at Work: Applications 415
8.1	Plasma-Based Post-Processing of Nanoarrays 416
8.1.1	Post-Processing of Nanotube Arrays 418
8.1.2	Functional Monolayer Coating of Nanorod Arrays 422
8.2	i-PVD of Metal Nanodot Arrays Using Nanoporous
	Templates 427
8.3	Metal Oxide Nanostructures: Plasma-Generated BUs Create
	Other BUs on the Surface 434
8.4	Biocompatible TiO ₂ Films: How Building Units Work 440
8.4.1	TiO ₂ Film Deposition and Characterization 442
8.4.2	In Vitro Apatite Formation 446
8.4.3	Growth Kinetics: Building Units at Work 448
8.4.4	Building Units <i>In Vitro</i> : Inducing Biomimetic Response 453
8.5	Concluding Remarks 456
9	Conclusions and Outlook 461
9.1	
	Determinism and Higher Complexity 464
9.2	Plasma-Related Features and Areas of Competitive
9.3	Advantage 467 Outlook for the Future 470
9.4	Final Remarks 479
J. T	Tilial Remarks 4/3
10	Appendix A. Reactions and Rate Equations 483
10.1	Plasmas of Ar + H_2 + CH_4 Gas Mixtures (Section 4.1) 483
10.2	Plasmas of Ar + H_2 + C_2H_2 Gas Mixtures (Section 4.2) 486
11	Appendix B. Why Plasma-based Nanoassembly:
	Further Reasons 491
11.1	Carbon Nanotubes and Related Structures 491
11.2	Semiconductor Nanostructures and Nanomaterials 493
11.3	Other Nanostructures and Nanoscale Objects 494
11.4	Materials with Nanoscale Features 496
11.5	Plasma-Related Issues and Fabrication Techniques 497

References 499

Index 529