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1.1
Introduction

The study of nuclear structure today
encompasses a vast territory from the study
of simple, few-particle systems to systems
with close to 300 particles, from stable
nuclei to the short-lived exotic nuclei, from
ground-state properties to excitations of
such energy that the nucleus disintegrates
into substructures and individual con-
stituents, from the strong force that hold
the atomic nucleus together to the effec-
tive interactions that describe the collective
behavior observed in many heavy nuclei.

After the discovery of different kinds of
radioactive decays, the discovery of the
structure of the atomic nucleus begins
with the fundamental paper by Ernest
Rutherford [1], in which he explained
the large-angle alpha (α)-particle scattering
from gold that had been discovered earlier
by Hans W. Geiger and Ernest Marsden.
Indeed, Rutherford shows that the atom
holds in its center a very tiny, positively
charged nucleus that contains 99.98%
of the atomic mass. In 1914, Henry
Moseley [2, 3] showed that the nuclear
charge number Z equaled the atomic
number. Using the first mass separators,
Soddy [4] was able to show that one
chemical element could contain atomic
nuclei with different masses, forming

different isotopes. With the availability of
α-sources, due to the works of the Curies in
Paris, Rutherford [5] was able to perform
the first nuclear reactions on nitrogen.
The first attempt at understanding the
relative stability of nuclear systems was
made by Harkins and Majorsky [6]. This
model, like many others of the time,
consisted of protons and electrons. In
1924, Wolfgang Pauli [7] suggested that
the optical hyperfine structure might be
explained if the nucleus had a magnetic
dipole moment, while later Giulio Racah
[8] investigated the effect on the hyperfine
structure if the nuclear charge were not
spherically symmetric – that is, if it had an
electric quadrupole moment.

All of these structure suggestions
occurred before James Chadwick [9] discov-
ered the neutron, which not only explained
certain difficulties of previous models (e.g.,
the problems of the confinement of the
electron or the spins of light nuclei), but
opened the way to a very rapid expan-
sion of our knowledge of the structure of
the nucleus. Shortly after the discovery of
the neutron, Heisenberg [10] proposed that
the proton and neutron are two states of the
nucleon classified by a new spin quantum
number, the isospin. It may be difficult
to believe today, 60 years after Chadwick’s
discovery, just how rapidly our knowledge
of the nucleus increased in the mid-1930s.
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6 1 Nuclear Structure

Hans A. Bethe’s review articles [11, 12], one
of the earliest and certainly the best known,
discuss many of the areas that not only
form the basis of our current knowledge
but that are still being investigated, albeit
with much more sophisticated methods.

The organization here will begin with
general nuclear properties, such as size,
charge, and mass for the stable nuclei,
as well as half-lives and decay modes
(α, β, γ, and fission) for unstable systems.
Binding energies and the mass defect
lead to a discussion of the stability of
systems and the possibility of nuclear
fusion and fission. Then follow details
of the charge and current distributions,
which, in turn, lead to an understanding of
static electromagnetic moments (magnetic
dipole and octupole, electric quadrupole,
etc.) and transitions. Next follows the
discussion of single-particle and collective
levels for the three classes of nuclei:
even–even, odd-A, and odd–odd (i.e.,
odd Z and odd N). With these mainly
experimental details in hand, a discussion
of various major nuclear models follows.
These discussions attempt, in their own
way, to categorize and explain the mass of
experimental data.

1.2
General Nuclear Properties

1.2.1
Properties of Stable Nuclei

The discovery of the neutron allowed each
nucleus to be assigned a number, A, the
mass number, which is the sum of the
number of protons (Z) and neutrons (N)
in the particular nucleus. The atomic
number of chemistry is identical to the
proton number Z. The mass number A is
the integer closest to the ratio between the

mass of a nucleus and the fundamental
mass unit. This mass unit, the unified
atomic mass unit, has the value 1 u =
1.660538921(73) ×10−27 kg = 931.494061
(21) MeV c−2. It has been picked so that
the atomic mass of a 12C6 atom is exactly
equal to 12 u. The notation here is AXN,
where X is the chemical symbol for the
given element, which fixes the number of
electrons and hence the number of protons
Z. This commonly used notation contains
some redundancy because A = Z + N
but avoids the need for one to look up
the Z-value for each chemical element.
From this last expression, one can see
that there may be several combinations
of Z and N to yield the same A. These
nuclides are called isobars. An example
might be the pair 196Pt118 and 196Au117.
Furthermore, an examination of a table of
nuclides shows many examples of nuclei
with the same Z-value but different A-
and N-values. Such nuclei are said to
be isotopes of the element. For example,
oxygen (O) has three stable isotopes: 16O8,
17O9, and 18O10. A group of nuclei that
have the same number of neutrons, N, but
different numbers of protons, Z (and, of
course, A), are called isotones. An example
might be 38Ar20, 39K20, and 40Ca20. Some
elements have but one stable isotope (e.g.,
9Be5, 19F10, and 197Au118), others, two,
three, or more. Tin (Z = 50) has the most
at 10. Finally, the element technetium has
no stable isotope at all. A final definition
of use for light nuclei is a mirror pair,
which is a pair of nuclei with N and Z
interchanged. An example of such a pair
would be 23Na12 and 23Mg11.

The nuclear masses of stable isotopes
are determined with a mass spectrometer,
and we shall return to this fundamental
property when we discuss the nuclear
binding energy and the mass defect in
Section 1.3. After mass, the next property
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of interest is the size of a nucleus. The
simplest assumption here is that the mass
and charge form a uniform sphere whose
size is determined by the radius. While
not all nuclei are spherical or of uniform
density, the assumption of a uniform
mass/charge density and spherical shape
is an adequate starting assumption (more
complicated charge distributions are
discussed in Section 1.4 and beyond). The
nuclear radius and, therefore, the nuclear
volume or size is usually determined by
electron-scattering experiments; the radius
is given by the relation

R = r0A
1/3 (1.1)

which, with r0 = 1.25 fm, gives an adequate
fit over the entire range of nuclei near
stability. An expression such as Eq. (1.1)
implies that nuclei have a density indepen-
dent of A, that is, they are incompressible.
A somewhat better fit to the nuclear
sizes can be obtained from the Coulomb
energy difference of mirror nuclei, which
covers but a fifth of the total range of
A. This yields r0 = 1.22 fm. Even if the
charge and/or mass distribution is neither
spherical nor uniform, one can still define
an equivalent radius as a size parameter.

Two important properties of a nuclide are
the spin J and the parity π , often expressed
jointly as Jπ , of its ground state. These are
usually listed in a table of isotopes and give
important information about the structure
of the nuclide of interest. An examination
of such a table will show that the ground
state and parity of all even–even nuclei
is 0+. The spin and parity assignments
of the odd-A and odd–odd nuclei tell a
great deal about the nature of the principal
parts of their ground-state wave functions.
A final property of a given element is the
relative abundance of its stable isotopes.
These are determined again with a mass

spectrograph and listed in various tables of
the nuclides.

1.2.2
Properties of Radioactive Nuclei

A nucleus that is unstable, that is, it can
decay to a different or daughter nucleus,
is characterized not only by its mass, size,
spin, and parity but also by its lifetime τ

and decay mode or modes. (In fact, each
level of a nucleus is characterized by its
spin, parity, lifetime, and decay modes.)
The law of radioactive decay is simply

N(t) = N(0)e−λt = N(0)e−t/τ (1.2)

where N(0) is the number of nuclei initially
present, λ is the decay constant, and its
reciprocal τ is the lifetime. Instead of the
lifetime, often the half-life T1/2 is used.
It is the time in which half of the nuclei
decay. By setting N(T1/2) = N(0)/2 in Eq.
(1.2), one obtains the relation

T1/2 = ln(2)τ = 0.693τ (1.3)

The decay mode of ground states can be
α, β, or spontaneous fission. Excited states
mostly decay by γ-emission. More exotic
decays are observed in unstable nuclei far
from stability where nuclei decay takes
place by emission of a proton or neutron.

In α-decay, the parent nucleus emits
an α-particle (a nucleus of 4He2), leaving
the daughter with two fewer neutrons and
protons:

AXN → A−4YN−2 + 4He2 (1.4)

The α-particle has zero spin, but it can
carry off angular momentum. In β-decay
the weak interaction converts neutrons
into protons (β−-decay) or protons into
neutrons (β+-decay). Which of the two
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decays takes place depends strongly on
the masses of the initial and final nuclei.
Because a neutron is heavier than a
proton, the free neutron is unstable against
β−-decay and has a lifetime of 878.5(10) s.
The mass excess in β−-decay is released
as kinetic energy of the final particles.
In the case of the free neutron, the final
particles are a proton, an electron, and an
antineutrino, denoted by ν. All of these
particles have spin 1/2 and can also carry
off angular momentum. In the case of
β+-decay, the final particles are a bound
proton, an antielectron or positron, and
a neutrino. Finally, as an alternative to
β+-decay the initial nucleus can capture
an inner electron. In this so-called electron
capture decay, only a neutrino, ν, is emitted
by the final nucleus. In general, the decays
can be written as

β−-decay : AXN → AYN−1 + e−+ν (1.5a)

β+ -decay : AXN → AYN+1 + e++ ν

(1.5b)

β+-decay (ec) : AXN + e−→AYN−1 + ν

(1.5c)
One very rare mode of decay is double

β-decay, in which a nucleus is unable to
β-decay to a Z + 1 daughter for energy
reasons but can emit two electrons and
make a transition to a Z + 2 daughter. An
example is 82Se48 → 82Kr46 with a half-life
of (1.7 ± 0.3) × 1020 years. Double β-decay
is observed under the emission of two
neutrinos. Neutrinoless double β-decay is
intensively searched for in 76Ge because it
is forbidden for massless neutrinos with
definite helicities. Enriched Ge is hence
used as it allows the use of a large single
crystal as source and detector (for a review
see [13]).

In spontaneous fission, a very heavy
nucleus simply breaks into two heavy
pieces. For a given nuclide, the decay mode
is not necessarily unique. If more than
one mode occurs, then the branching ratio
is also a characteristic of the radioactive
nucleus in question.

An interesting example of a multi-
mode radioactive nucleus is 242Am147. Its
ground state (Jπ = 1−, T1/2 = 16.01 h) can
decay either by electron capture (17.3%
of the time) to 242Pu148 or by β− decay
(82.7% of the time) to 242Cm146. On
the other hand, a low-lying excited state
at 0.04863 MeV (Jπ = 5−, T1/2 = 152 years)
can decay either by emitting a γ-ray (99.52%
of the time) and going to the ground state
or by emitting an α-particle (0.48% of the
time) and going to 238Np145. There is an
excited state at 2.3 MeV with a half-life
of 14.0 ms that undergoes spontaneous
fission [14]. The overall measured half-
life of 242Am147 is then determined by
that of the 0.04863 MeV state. Such long-
lived excited states are known as isomeric
states. From this information on branch-
ing ratios, one easily finds the several
partial decay constants for 242Am147. For
the ground state, λec = 2.080 × 10−6 s−1

and λβ− = 9.944 × 10−6 s−1, while for the
excited state at 0.04863 MeV, λγ = 1.439 ×
10−10 s−1 and λα = 6.639 × 10−13 s−1 and
for the excited state at 2.3 MeV, λSF =
49.5 s−1.

1.3
Nuclear Binding Energies and the
Semiempirical Mass Formula

1.3.1
Nuclear Binding Energies

One of the more important properties of
any compound system, whether molecular,
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atomic, or nuclear, is the amount of energy
needed to pull it apart, or, alternatively, the
energy released in assembling it from it
constituent parts. In the case of nuclei,
these are protons and neutrons. The
binding energy of a nucleus AXN can be
defined as

B(A, Z) = ZMH + NMn − MX(Z, A) (1.6)

where MH is the mass of a hydrogen
atom, Mn the mass of a neutron, and
MX(Z,A) the mass of a neutral atom of
isotope A. Because the binding energy of
atomic electrons is very much less than
nuclear binding energies, they have been
neglected in Eq. (1.6). The usual units are
atomic mass units, u. Another quantity that
contains essentially the same information
as the binding energy is the mass excess or
the mass defect, 	 = M(A) − A. (Another
useful quantity is the packing fraction
P = [M(A) − A]/A =	/A.) The most inter-
esting experimental quantity B(A,Z)/A
is the binding energy per nucleon,
which varies from somewhat more than
1 MeV nucleon−1 (1.112 MeV nucleon−1)
for deuterium (2H1) to a peak near 56Fe30 of
8.790 MeV nucleon−1 and then falls slowly
until, at 235U143, it is 7.591 MeV nucleon−1.
Except for the very light nuclei, this
quantity is roughly (within about 10%)
8 MeV nucleon−1. A strongly bound light
nucleus is the α-particle, as for 4He2 the
binding energy is 7.074 MeV nucleon−1. It
is instructive to plot, for a given mass
number, the packing fraction as a func-
tion of Z. These plots are quite accurately
parabolas with the most β-stable nuclide
at the bottom. The β− emitters will occur
on one side of the parabola (the left or
lower two side) and the β+ emitters on the
other side. For odd-A nuclei, there is but
one parabola, the β-unstable nuclei pro-
ceeding down each side of the parabola

until the bottom or most stable nucleus
is reached. For the even-A nuclei, there
are two parabolas, with the odd–odd one
lying above the even–even parabola. The
fact that the odd–odd parabola is above
the even–even one indicates that a pair-
ing force exists that tends to increase the
binding energy of the even–even nuclei.
See Figure 1.1 for the A = 100 mass chain.
Other indications of the importance of this
pairing force are the before-mentioned 0+

ground states of all even–even nuclei and
the fact that only four stable odd–odd
nuclei exist: 2H1, 6Li3, 10B5, and 14N7.
For even-A nuclei, the β-unstable nuclei
zig-zag between the odd–odd parabola
and the even–even parabola until arriv-
ing at the most β-stable nuclide, usually
an even–even one. If the masses for each
A are assembled into a three-dimensional
plot (with N running along one long axis,
Z along a perpendicular axis, and M(A,Z)
mutually perpendicular to these two), one
finds a ‘‘landscape’’ with a deep valley run-
ning from one end to the other. This valley
is known as the valley of stability.

The immediate consequence of the
behavior of B(A,Z)/A is that a very large
amount of energy per nucleon is to be
gained from combining two neutrons and
two protons to form a helium nucleus.
This process is called fusion. The release of
energy in the fission process follows from
the fact that B(A,Z)/A for uranium is less
than for nuclei with more or less half the
number of protons. Finally, the fact that the
binding energy per nucleon peaks near iron
is important to the understanding of those
stellar explosions known as supernovae. In
Figure 1.2, the packing fraction, P =	/A,
is plotted against A for the most stable
nuclei for a given mass number. Note
that P has a broad minimum near iron
(A = 56) and rises slowly until lawrencium
(A = 260). This shows most clearly the
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Figure 1.1 The packing fraction 	/A plotted against the
nuclear charge Z for nuclei with mass number A = 100.
Note that the odd–odd nuclei lie above the even–even
ones. The β− transitions are indicated by - • -, the β+

transitions by ---, while the double β-decay 100
42 Mo58 →100

44
Ru56 is denoted by • • •. Data from [14]. The double β-decay
from [15].

energy gain from the fission of very heavy
elements.

1.3.2
The Semiempirical Mass Formula

The semiempirical mass formula may be
looked upon as simply the expansion of
B(A,Z) in terms of the mass number.
Because B(A,Z)/A is nearly constant, the
most important term in this expansion
must be the term in A. From Eq. (1.1)
relating the nuclear radius to A1/3, we see
that a term proportional to A is a volume
term. However, this term overbinds the sys-
tem because it assumes that each nucleon

is surrounded by the same number of
neighbors. Clearly, this is not true for
surface nucleons, and so a surface term
proportional to A2/3 must be subtracted
from the volume term. (One might iden-
tify this with the surface tension found in a
liquid drop.) Next, the repulsive Coulomb
forces between protons must be included.
As this force is between pairs of protons,
this term will be of the form Z{Z − l)/2, the
number of pairs of Z protons, divided by a
characteristic nuclear length or A1/3. Two
other terms are necessary in this simple
model. One term takes into account that,
in general, Z ∼ A/2, clearly true for stable
light nuclei, and less so for heavier stable
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Figure 1.2 The packing fraction 	/A plotted against the
mass number A for all nuclei from 2

1D1 to 260
103Lr157. Data

from [14].

nuclei where more neutrons are needed
to overcome the mutual repulsion of the
protons. This term is generally taken to
be of the form asym (N − Z)2/A. The other
term takes into account the fact, noted in
Section 1.3.1, that even–even nuclei are
more tightly bound than odd–odd nuclei
because all of the nucleons of the former
are paired off. This is done by adding a
term δ/2 that is positive for even–even
systems and negative for odd–odd sys-
tems and zero for odd-A nuclei. Thus, the
two parabolas for even A are separated
by δ. From Eq. (1.6), the semiempiri-
cal Bethe–Weisäcker mass formula then
becomes M(A,Z) = ZMH + NMn − B(A,Z)
with

B(A, Z) = avA − asA2/3 − acZ(Z − 1)A−1/3

− asym(N − Z)2A−1 + δ

2
(1.7)

Originally, the constants were fixed
by the measured binding energies and
adjusted to give appropriate behavior with
the mass number [16]. Myers and Swiatecki
[17] (see also [18]) have included other
terms to account for regions of nuclear
deformation, as well as an exponential
term of the form −aaAexp(−γ A1/3), for
which they provide no physical explanation
beyond the fact that it reduces the
deviation from experiment. Their model
evolved into the macroscopic-microscopic
global mass formula, called the finite-
range droplet model (see [19]) and the
DZ-model proposed by Duflo and Zuker
[20], and more microscopic models, called
HFB [21]. The many adjustable parameters
of the available mass formulas are then
fitted to masses of 1760 atomic nuclei
[22]. The formulas fit binding energies
quite well with errors below 1%, but still



12 1 Nuclear Structure

have problems to predict masses far from
stability. As those are important for nuclear
astrophysics, the measurement of masses
of exotic nuclei is an important field today.

A number of consequences flow from
even a superficial examination of Eq. (1.7).
The fact that the binding energy per
nucleon, B/A, is essentially constant with A
implies that the nuclear density is constant
and, thus, the nuclear force saturates.
That is, nucleons interact only with a
small number of their neighbors. This
is a consequence of the very short range
of the strong force. If this were not so,
then each nucleon would interact with all
others in the given nucleus (just as the
protons interact with all other protons),
and the leading term in B(A,Z) would be
proportional to the number of pairs of
nucleons, which is A(A − l)/2 or roughly
A2. This would imply that B/A would go
as A. Thus, not only does the nuclear force
saturate (the Coulomb force does not) but
it is also of very short range (that of the
Coulomb force is infinite) as the sizes of
nuclei are of the order of 3.0 fm (recall
Eq. (1.1)).

1.4
Nuclear Charge and Mass Distributions

1.4.1
General Comments

In his 1911 paper, Rutherford was able to
conclude that the positive charge of the
atom was concentrated within a sphere of
radius <10−14 m (10 fm). This result came
from α-particle scattering. However, for
energetic enough α-particles, the scattering
result will contain a component due to
nuclear interactions of the α-particle, as
well as the Coulomb interaction. For
probing the structure of nuclei, electrons

have the advantage that their scattering is
purely Coulombic; however, to determine
details of the internal nuclear structure,
electron energies must be well over
100 MeV for their de Broglie wavelengths
to be less than nuclear dimensions.
Well before the existence of such high-
energy electron beams, nuclear structure
effects were extracted from information
provided by optical hyperfine spectra. In
particular, nuclear charge distributions
(electric quadrupole moments) and current
distributions (magnetic dipole moments)
were deduced from very accurate optical
measurements (see the following section).
A result involving the innermost electrons
of heavy atoms is the isotope shift, which can
be observed in atomic X-rays. This arises
because the nuclear radii for two different
isotopes of the same atom will produce
slightly different binding energies of their
K-shell electrons. Thus, the K X-rays of
these isotopes will be very slightly different
in energy. As an example, the isotopic pair
203T1122 and 205T1124 have an isotope shift
of about 0.05 eV. Another early method to
determine the charge radius is to take the
difference between the binding energies of
two mirror nuclei (cf. Section 1.2.1). This
leads to an expression that only involves
ac and, thus, the nuclear radius. This is
useful for light nuclei for which mirror
pairs occur.

With the advent of copious beams of
negative muons, much more accurate
optical-type hyperfine spectrum studies
could be made. The process is quite simple,
and the advantages obvious. By stopping
negative muons in a target, an exotic atom
is formed in which the muon replaces
an orbital electron and transitions to the
muonic K-shell follow. These transitions of
the muon to the ls1/2 state emit photons of
the appropriate (but high) energies. (As the
muon is more than 200 times as massive as
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the electron, the radii of the muon orbits are
reduced by that amount, so that electron-
shielding problems are much reduced.)
The energies of the photons are such that
the 2pl/2 –23/2 splitting is easily measured
(in 116Sn66, it is 45.666 keV). Thus, both
nuclear charge radii and isotope shifts
are quite accurately determined. In some
recent experiments, root mean square
(RMS) charge radii have been measured
with a precision of 2 × 10−18 m. As electron
scattering and muonic atoms are the two
methods of measuring characteristics of
the nuclear charge radius most susceptible
of the greatest accuracy, they will be
discussed in turn.

1.4.2
Nuclear Charge Distributions from Electron
Scattering

In any scattering experiment, what is
measured is the differential cross section
(dσ /d�). Rutherford developed an expres-
sion for α-particle scattering that can be
used for low-energy, spinless particles inci-
dent on a spinless target. Both incident and
target particles are assumed to be point
particles. The differential cross section for
scattering relativistic electrons off point-
charged particles leads to the expression for
Mott scattering, while, if the target particle
has nonzero spin (there is then a mag-
netic contribution), one obtains the Dirac
scattering formula for (dσ /d�). However,
real nuclei are not point particles, so one
needs to make use of the charge form factor
F(−→q ) with −→q the transferred momentum.
The form factor F(−→q ) is then the Fourier
transform of the charge density ρch(−→r ):

F(−→q ) =
∫

ρch(−→r )ei−→q •−→r dτ (1.8)

If one restricts the problem to spheri-
cally symmetric distributions, the angular

integration of the Fourier integral follows
at once, so that

F(q) = 4π

q

∫
ρch(r) sin(qr)rdr (1.9)

If the target nucleus has zero spin
(applicable to all even–even nuclei), then
the differential cross sections for a point
target and a finite-sized target are related
by

dσ

d�
=

(
dσ

d�

)
Ruth.

F(q)2 (1.10)

With the charge form factor deter-
mined experimentally, the inverse trans-
form yields the radial charge density

ρch(r) = 1

2π2r

∫
F(q) sin(qr)qdq

(1.11)

If the target nucleus is not of spin
zero, then an additional term containing
the so-called transverse form factor, FT(q),
is needed. (The form factor defined
in Eq. (1.9) is sometimes called the
longitudinal form factor.) In any event, the
charge distribution must be normalized to
the number of protons (Z) in the target
nucleus.

At this point, there are two ways to
proceed. The first is a model-independent
analysis of the form factor, or, second,
one can assume a model with several
parameters and fit these to the data.
Limiting oneself to small momentum
transfers, one can obtain the form factor as
a power series in q2 by expanding sin(qr) in
Eq. (1.9) in a power series of its argument.
Keeping only the lowest term of order q2,
one obtains

F(q) = Z

(
1 − 1

6
q2 〈

r2〉) (1.12)
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with 〈
r2〉 =

∫
r2ρch(r)4πr2dr (1.13)

the RMS radius of the charge distribution.
It should be noted that this is not the
nuclear radius R, which is usually taken as
the radius of the constant-density sphere.
This yields〈

r2〉 = 3

5
R2 (1.14)

Data compilations [23] show that for
most stable nuclei,

R ≈ 1.25A
1/3 (1.15)

As was stated in Section 1.2.1, a better
way to describe the charge distribution is
to use a Fermi distribution which takes
account of the constant charge density,
ρ0, at the center of the nucleus and the
gradual decrease near the surface. This is
achieved by

ρch(r) = ρ0
1

1 + e
r−R1/2

a

(1.16)

with R1/2 the radius at half density and
a the diffuseness parameter indicating
the distance at which the density falls
from 90 to 10% of the constant density
ρ0. For heavy nuclei, the following
parameterization holds:

ρ0 = 0.17
Ze

A
fm−3

a = 2.4 fm

R1/2 = 1.128A1/3 − 0.89A−1/3 fm

(1.17)
There are enough experimental electron-

scattering data available throughout all
regions of the stable nuclei that quite
accurate charge parameters exist for almost
all of the systems. The compendium by
de Vries et al. [23] lists these parameters
fitted to the data for several distribution

functions in addition to the two-parameter
Fermi functions.

1.4.3
Nuclear Charge Distributions from Atomic
Transitions

During the last decades, tremendous
progress was obtained in the study of
atomic transitions using high-precision
laser spectroscopy. This allows the
measurement of nuclear charge radii and
also of nuclear moments for stable and
even unstable isotopes. This is because
the difference between a point nucleus
and a finite-size nucleus causes a very
small change in the Coulomb potential
the atomic electrons feel. A small energy
difference on the atomic levels results
when we assume that the nucleus is a
sphere with constant charge density. For
1s electrons one obtains

	E1s = 2

5

Z4e2

4πε0

R2

a3
0

(1.18)

with a0 the Bohr radius. Because no point
nucleus exists and the theoretical calcula-
tions are not accurate enough to calculate
the small shift exactly, one generally
measures isotope shifts as the frequency
difference of atomic transitions measured
in two isotopes of a given element. This
then yield the differences in the nuclear
radius. Starting from known radii of stable
isotopes, it is then possible to determine
the radii of unstable nuclei on which one
cannot perform electron scattering. It is
also possible to measure isotope shifts
using optical transitions. Because these
are caused by the outermost electrons, the
shifts are very small in the order of parts per
million. As indicated above, they are still
within reach of modern laser techniques.

The small shift for 1s binding energies
is related to the large difference between
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the Bohr radius and the nuclear radius.
On replacing one electron by a muon,
the muonic orbits shrink by a factor of
207, the mass difference between the
heavy muon and the light electron. At
the same time, the muon binding energy
is increased by a similar factor, making
the transition energies in the mega elec-
tron volt region. The energies are so high
(in 238U146, the measured 2p–1s transition
is about 6.1 MeV) that one must generate
Dirac solutions for the muon moving in
a Coulomb potential generated by a non-
point-charge distribution. To these initial
Dirac solutions, one must add corrections,
which, in order of size, are vacuum polar-
ization, nuclear polarization, the Lamb
shift, and relativistic recoil. Electronscreen-
ing corrections are often included, but they
are very tiny (for the ls muonic state in
238U146, this correction has the value of
11 eV).

As many nuclei are not spherical, several
studies have used as the appropriate
charge distribution a slightly modified
form of Eq. (1.16), which includes the
deformations

ρch(r) = ρ0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1 + exp

⎛⎜⎜⎜⎜⎝
r − R1/2

(
1 +

∑
n=1

βnYn0 (θ , φ)

)
a

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

−1

(1.19)

Here the βn are deformation parameters
that determine the nuclear shape. As an
example, the nuclear mean square radius
may be expressed as

〈
r2〉

deformed

≈ 〈
r2〉

sph

(
1 + 5

4π

(
β2

2 + β2
4 + · · ·)) (1.20)

Experiments to fit a, c, and, in deformed
regions, βn have been made throughout the
periodic table with results consistent with
the electron data. However, to combine the
results of electron-scattering experiments
with those from muonic atoms, it is
necessary to use the so-called Barrett
moment

〈
rke−αr

〉
= 4π

Z

∫ ∞

0
ρ(r)e−αr rk+2dr

(1.21)
where k and α are fitted to the experimental
data. The muonic data are equivalent to
data from electron-scattering experiments
at low momentum transfer. The inclusion
of the muonic Barrett moment improves
the overall fit by reducing normalization
errors. This then reduces the uncertainties
over what would be obtained by fitting
either the electron-scattering or the muonic
atom data alone. Extensive tables of data
fitted by various charge distribution models
as well as model independent analyzes can
be found in de Vries et al. [23].

1.4.4
Nuclear Mass Distributions

While the measurement of the charge
distribution can be made using electro-
magnetic probes, this is not possible
for the mass distribution because of the
uncharged neutron. Instead, the nuclear
strong force has to be used. This is more
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complicated as mostly both Coulomb force
and strong force are present. Nevertheless,
from α-scattering experiments, informa-
tion of the mass distribution is obtained.
There are also indirect ways in which one
can get information on nuclear mass radii.
One example is the dependence of α-decay
rate on the nuclear radius that defines the
Coulomb barrier. In deformed nuclei, this
causes an anisotropy because the Coulomb
barrier is lower in the direction of the
longest axis, making the tunnel probability
enhanced. A second way is to use pions
instead of muons. These interact with the
nucleus through both the Coulomb force
and strong force, which, in comparison
to muonic atoms, causes an extra shift
that allows the determination of the mass
radius. The result of these experiments
on stable nuclei finds that the charge and
mass radii are equal to within about 0.1 fm.
This somewhat surprising result can be
understood as a balance between the proton
Coulomb repulsion that tends to push the
protons to the outside and a strongly attrac-
tive neutron–proton strong force that tends
to pull the extra neutrons to the inward.

Recently, the common opinion that the
radii scale with A1/3 was found to be heavily
violated in more exotic nuclei.

Especially in light nuclei with a large
neutron number, so-called halo-nuclei,
strong deviations were observed (an early
review is given in [24]). Using the
radioactive beam techniques, very neutron-
rich He, Li, and Be isotopes can be created
and studied in the laboratory. It turned
out that these loosely bound nuclei show
very extended neutron radii whereby two
neutrons are moving at radii similar to the
radii of Pb isotopes. Moreover, as is the case
of 11Li8, the bound system consists of three
entities: two neutrons and a 9Li6 that cannot
exist two by two, as the dineutron and
10Li7 are unbound. The research on exotic

nuclei is still in its infancy and more exotic
features such as proton halos or neutron
skins are expected. They are of importance
as they may influence the creation of the
elements under astrophysical conditions.

1.5
Electromagnetic Transitions and Static
Moments

1.5.1
General Comments

Static electromagnetic nuclear moments
played an important role in the unscram-
bling of the detailed measurements of
atomic optical hyperfine structure well
before the gross components of atomic
nuclei were in hand. Almost a decade
before the discovery of the neutron, Pauli
[7] suggested that the optical hyperfine
splitting might be due, in part, to the inter-
action with a nuclear magnetic moment
(μ). This suggestion lay fallow until 1930,
when Goudsmit and Young, using the
spectroscopic data of Schiller and of
Granath, deduced the nuclear magnetic
moment of 7Li to be μ = 3.29μN, where
the nuclear magneton equals

μN = eh̄

2Mp
= 5.050789 × 10−27 J

T

(1.22)
This value is quite close to the currently

accepted value (μ = 2.327μN). Because of
the existence, by then, of extensive hyper-
fine optical spectroscopic data, Goudsmit,
in 1933, was able to publish a table of
some 20 nuclear magnetic moments rang-
ing from 7Li to 209Bi. In 1937, Schmidt
published a simple, single-particle model
of nuclear magnetic moments and sup-
ported it with the experimental moments
of 32 odd-proton nuclei and 15 odd-neutron
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nuclei. This simple model yields what
is now known as the Schmidt limits,
within which almost all nuclear magnetic
moments lie (see the following).

The suggestion that the nuclear electric
quadrupole moments (Q) might also play
an important role in optical hyperfine
structure was again made before the
discovery of the neutron. Racah [8] was
the first to work out the theory associated
with ‘‘nuclear charge asymmetry’’ and
the interaction with the atomic electrons.
Casimir [25], sometime later, developed
the theory of nuclear electric quadrupole
hyperfine interaction and applied it to
151Eu and 153Eu. In this paper, Casimir
mentions work by Schiller and Schmidt,
who determined Q for 175Lu. A short
time later, Gollnow [26] obtained Q = 5.9
b for this nucleus, quite close to the
currently accepted value of 5.68 b. This
very large quadrupole moment (very much
larger than can be accounted for by the
single-particle shell model) was to provide,
20 years later, strong impetus for the
development of the collective model of the
nucleus. In 1954, Schwartz [27] extended
the theory of nuclear hyperfine structure to
examine the magnetic octupole hyperfine
interaction and calculated the first four
nuclear magnetic octupole moments (O)
from data of the hyperfine structure
of the nuclear ground states. The next
nuclear moment is the hexadecapole (H);
however, no direct measurements of such
static moments exist. What is known
about these moments comes mainly from
electromagnetic transitions of electrons
and negative muons. For an in-depth
theoretical study of all of these moments
and how they can be used to test various
nuclear models see, in particular, the text
by Castel and Towner [28].

Nowadays, the measurement of
moments is still very important to assess

the single-particle structure of exotic
nuclei and several powerful techniques
have been developed in this domain [29].
Most information is, however, gathered
via the determination of electromagnetic
transitions by γ-ray spectroscopy. This is
to a large extent due to the availability of
large-volume semiconductor detectors for
γ-ray detection and the high computing
power that allows one to analyze more
and more complex measured spectra
using coincidence conditions. The recent
development of γ-ray tracking detectors out
of segmented Ge-detectors offers very high
perspectives in the field of exotic nuclei [30].

1.5.2
Electromagnetic Transitions and Selection
Rules

Without going into a detailed discussion
on how matrix elements are calculated, we
review here the calculation of electromag-
netic transitions. The interested reader can
find more details in Heyde [31]. The cal-
culation of transitions and also moments
involves the wavefunctions of nuclear
states and forms a very sensitive probe
for nuclear structure research. On the
other hand these transitions and moments
are electromagnetic in nature making
the interaction very well understood.
Using the long-wavelength approximation
λ� R and a multipole expansion of the
electromagnetic operators, the transition
rates per unit of time can be expressed as

T(L) = 2

ε0h̄

L + 1

(L[(2L + 1)!!]2)

(ω

c

)2L+1
B(L)

(1.23)
with L the multipolarity, ω the angular fre-
quency of the radiation such that h̄ω ∼= Ei −
Ef up to a small nuclear recoil correction,
and B(L) the reduced transition probability
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B(Ji → Jf ; L)

=
∑

Mi ,Mf

∣∣∣〈αf ; Jf Mf

∣∣∣ O(LM)
∣∣αi; JiMi

〉∣∣∣2

(1.24)
in units of e2bL and μNbL−2 for electric
and magnetic B(LM) values. The labels
α identify the initial and final states and
O(LM) is the electric or magnetic multipole
operator of rank LM. As all states have
good angular momentum, one can now use
for the transition rates the Wigner–Eckart
theorem to remove all reference to the M
projections. This yields

B(Ji → Jf ; L)

= 1

2Ji + 1

∣∣∣〈αf ; Jf ‖O (L)‖αi; Ji

〉∣∣∣2
(1.25)

The electric multipole operator for a
number of point charges becomes

O(E; LM) =
∑

i

eeff (i)ri
LYL,M(θi, φi)

(1.26)
with eeff(i) the effective charge of the ith
nucleon. Here it is anticipated that owing to
core polarization effects and truncations of
the model space, other values than the free
charges +e(0) for proton (neutron) need to
be used. Instead of the operator (Eq. (1.25)),
one can also use a similar operator but
using the nuclear electric charge density
ρch and an integration over the nuclear
volume. These are used as several models
describe the nucleus as a droplet (Section
1.7). For the magnetic multipole operator,
we have

O(M; LM) = √
L(2L + 1)μN

∑
i

ri
L−1

×
{

eeff (i)

e

2

L + 1
[YL−1 ⊗ ji]

(L)

+
(

gs (i) − eeff (i)

e

1

L + 1

)
× [

YL−1 ⊗ si

](L)
}

(1.27)

with the effective gyromagnetic ratio gs

which also may differ from the free ones.
The multipole expansion and the

fact that states in atomic nuclei have
good angular momentum and parity
leads to several selection rules. The first
one is related to the vector coupling
of the angular momentum and states
|Ji − Jf | ≤ L ≤ Ji + Jf . The second is due to
the parity of the operators, which clearly is
(−1)L for the electric and (−1)L−1 for the
magnetic operator. Owing to this, electric
and magnetic transitions of order L cannot
take place at the same time between states,
and moments such as the electric dipole
moment are forbidden. While the selection
rules allow the determination of the spin
and parities of nuclear excited states, they
are also (at a higher level) invaluable to test
nuclear models (Section 1.7).

Weisskopf has estimated the so-called
single-particle values or Weisskopf units
(W.u.) by assuming that a single-particle
makes a transition with multipole L from
a state with spin L + 1/2 toward a state
with spin 1/2, that the radial part of the
wavefunction can be approximated by a
constant value up to the radius R, and that
certain values for the effective charges hold.
This leads to the following estimates for
the half-lives corresponding to the single-
particle values:

T1/2(E1) = 6.764 × 10−6

E3
γ A2/3

(s)

T1/2(M1) = 2.202 × 10−5

E3
γ

(s)

T1/2(E2) = 9.527 × 106

E5
γ A4/3

(s)

T1/2(M2) = 3.102 × 107

E5
γ A2/3

(s)

T1/2(E3) = 2.045 × 1019

E7
γ A2

(s)
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T1/2(M3) = 6.659 × 1019

E7
γ A4/3

(s) (1.28)

One notices that transition rates of the
lower multipolarities are faster than the
higher by orders of magnitude and that
for a given multipolarity, the electric ones
are about 100–1000 faster as the magnetic
ones. Owing to the selection rules and
enhanced quadrupole collectivity, only E2
and M1 transitions happen on similar
timescales. In this case, one has a transition
of mixed multipolarity.

The Weisskopf estimates are very crucial
to determine whether a transition is
caused by a single nucleon changing orbits
or by several nucleons acting in a collective
way. The measurement of transition rates
of excited states delivers very important
information on nuclear structure, but is
also quite involved. One needs to measure
the lifetime of a state, the (mixed) multi-
polarity, and the energy and intensities of
the transitions deexiting a given state. To
this end, γ-ray arrays consisting of several
Ge-detectors are appropriate. Besides this,
electromagnetic decay can also take place
with the emission of conversion electrons.
These electrons allow one to determine the
multipolarity as well as to observe the by
γ-emission forbidden E0 transitions (due
to the fact that the photon has spin 1 with
projection +1 and −1).

1.5.3
Static Moments

In contrast to the transition rates, the
multipole moments are generally defined
as the matrix element of the M = 0
component of the moment operator for
a single state with magnetic projection

M =+J. Of the moments, the two lowest
are the most important.

1.5.3.1 Magnetic Dipole Moments
If one assumes that the magnetic prop-
erties are associated with the individual
nucleons, then the magnetic moment is
defined as

μ = 〈
α, JJ

∣∣∑
i

gl(i)lz,i + gs(i)sz,i

∣∣α; JJ
〉

(1.29)
where the sum extends over all of the
A nucleons. Generally, this will not be
needed; for instance, the magnetic moment
of an odd-A nucleus will be generated by
the last neutron and proton as the adjacent
even–even ground state has no magnetic
moment. In Eq. (1.29), g l and gs are the
orbital and spin gyromagnetic ratios. They
are often chosen as 0.7gfree where the free-
particle values are g l = l, gs = 5.587 for
protons and g l = 0, gs = −3.826 for neu-
trons (all in μN). It is instructive to calculate
the magnetic moment for a single nucleon
(which, as explained earlier, is a good
approximation for the ground state of odd-
A nuclei). Using the total angular momen-
tum and the Wigner–Eckart theorem,
one deduces the single-particle magnetic
moments for aligned and antialigned
orbital momentum and spin:

μ(j = l + 1/2) = j

(
gl +

(
gs − gl

)
2

)
(1.30a)

μ(j = l − 1/2) =
(

jgl − j

j + 1

(
gs − gl

)
2

)
(1.30b)

The magnetic moments plotted as a
function of spin form the so-called Schmidt
lines. It is interesting that, when plotted,
almost all of these moments lie between
the Schmidt lines. The moments that
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lie outside these limits occur mainly
for some very light nuclei. One may
conclude that the single-particle model
does possess some validity. Another set
of limits, the Margenau–Wigner (M-W)
limits, is obtained by replacing the free-
particle values for the orbital gyromagnetic
ratios, g l, by the uniform value Z/A. The
justification for this is that one is in
effect averaging over all states that lead to
the correct nuclear spin. This calculation
represents an early attempt to account for
core contributions to the dipole-moment
operator. Figure 1.3 and Figure 1.4 show
plots of a number of the ground-state
magnetic moments for odd-Z (Figure 1.3)
and odd-N (Figure 1.4) nuclei.

Besides the ground state, excited states
can have magnetic moment and their

measurement is often used to extract
information on the underlying single-
particle structure. Common in nuclear
structure physics is the use of g-factors
that are analogous to the single-particle
gyromagnetic ratios, except that they are
dimensionless. They are defined as

μ = gIμN (1.31)

One way to determine the g-factor is
to measure the Lamor frequency when
excited nuclei are placed in an external
magnetic field B. Then,

ωL = gBμN

h̄
(1.32)

The main problem hereby is to align
the spins of an ensemble of atomic nuclei.
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Figure 1.3 Nuclear magnetic moments in units of the
nuclear magneton (μ/μN) plotted against the nuclear spin
(I) for a number of odd-Z nuclei. The Schmidt limits, as
well as the Margenau–Wigner (M-W) limits, are shown as
solid lines. Data from [14].
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Figure 1.4 Nuclear magnetic moments in units of the
nuclear magneton (μ/μN) plotted against the nuclear spin
(I) for a number of odd-N nuclei. The Schmidt limits, as
well as the Margenau–Wigner (M-W) limits, are shown as
solid lines. Data from [14].

This has to be done by the nuclear reaction
used, cooling in an external magnetic field,
or via the observation of changes in angular
correlations.

1.5.3.2 Electric Quadrupole Moments
As a general definition of the quadrupole
moment, we have the expectation value of
(3z2 − r2). Using the proportionality of the
quantity with Y20(θ ,φ) one gets

Q(J) =
√

16π

5

×
〈
α; JJ

∣∣∣∣∣∑
i

eeff (i)

e
ri

2Y2,0(θi, φi)

∣∣∣∣∣α; JJ

〉
(1.33)

or, using the Wigner–Eckart theorem,

Q(J) =
√

16π

5

√
J(2J − 1)

(2J + 1)(2J + 3)(J + 1)

×
〈
α;J

∥∥∥∥∥∑
i

eeff (i)

e
ri

2Y2(θi, φi)

∥∥∥∥∥α; J

〉
(1.34)

The quadrupole moment can also be
calculated for a single nucleon in an orbit
j = J. This yields

Q(j) = − (2j − 1)

(2j + 2)

eeff (i)

e

〈
r2〉 (1.35)

One thus obtains a negative quadrupole
moment for a single nucleon. If the orbit
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is filled up to a single hole, a quadrupole
moment as in Eq. (1.35) but with a pos-
itive sign is expected. We would like to
illustrate the application of Eq. (1.35) with
examples near the doubly magic nucleus
16O8 (see also Section 1.7). The orbit that
the ninth nucleon can occupy has j = 5/2
and we can use Eqs. (1.13) and (1.14) to esti-
mate <r2>. This yields for 17F8 using the
free-proton charge Q =−5.9 fm2, which is
in excellent agreement with the experi-
mental absolute value given in Firestone
et al. (1996) of |Q| = 5.8(4) fm2. For the odd
neutron nucleus 17O9, one finds exper-
imentally Q = −2.578 fm2, which shows
the need for effective charges and can
be reproduced using 0.44e as neutron
effective charge. Finally, if we place five
neutrons in the j = 5/2 orbit, we have
the N = 13 isotones and expect moments
of Q = +2.6 fm2. Experimentally, one
finds Q = 20.1(3) fm2 in 25Mg13 and
Q = 10.1(2) fm2 in 23Ne13. This observa-
tion of much larger quadrupole moments
occurs for most atomic nuclei having sev-
eral nucleons in an orbit or in several orbits,
indicating that the model is too simple and
that all of the electric charges must be con-
sidered. This holds especially if the core is
not spherically symmetric and the motion
becomes collective.

1.6
Excited States and Level Structures

1.6.1
The First Excited State in Even–Even Nuclei

The most obvious characteristic of the
various nuclei is that all of the even–even
nuclei have ground-state spins and parities
of 0+. This not only categorizes one large
group of nuclei but also indicates that
the nuclear force is such that it couples,

preferentially, pairs of like nucleons to
angular momentum zero. The second
observation is that the first excited state
in even–even nuclei is almost always a
2+ excitation. This can be understood by
the combination of good total angular
momentum and the Pauli principle. If one
couples two nucleons in orbit j and implies
the antisymmetrization, one obtains

ϕ(j, j; JM) = 1

2

∑
mm′

(jmjm′|JM)(ψ1(jm)ψ2(jm′)

−ψ2(jm)ψ1(jm′)) (1.36)

with the Clebsch–Gordan coupling coeffi-
cient for the angular momentum coupling.
This can, however, be rewritten as the m-
values are in the summation. Using the
symmetry properties, one arrives at

ϕ
(
j, j; JM

) = 1

2

(
1 − (−1)2j−J

)
×
∑
mm′

(jmjm′|JM)ψ1(jm)ψ2(jm′)

(1.37)

The phase factor, and the fact that
2j is an odd number, imply that states
with odd values of J do not exist. One
might wonder whether this is an essential
property of fermions, but surprisingly
it is not. Consider bosons with integer
angular momentum l. Then, owing to
symmetrization, Eq. (1.36) becomes

ϕ(l, l; JM)= 1

2

∑
mm′

(lmlm′|JM)

×(ψ1(lm)ψ2(lm′)

+ψ2(lm)ψ1(lm′)) (1.38)

which yields after reordering,

ϕ(l, l; JM)= 1

2

(
1 + (−1)2l−J

)∑
mm′

×(lmlm′|JM)ψ1(lm)ψ2(lm′)

(1.39)
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but now 2l is even and again all states with
odd J-values disappear. The fact that both
bosons and fermions yield similar results
is very important for nuclear models.
It means that one can often describe
even–even atomic nuclei using either
fermionic nucleons or collective bosons
such as phonons.

1.6.2
Regions of Different Level Structures

The existence of a low-lying 2+ excita-
tion can be explained in different ways,
that is, short-range interaction, a collective
quadrupole vibration, or as a first excited
state of a rotational band. Which interpre-
tation is right or better and which mixture
of interpretations is right depends a lot
on where on the Segre chart the nucleus
is located and how the higher excitations
behave. This is illustrated in Figure 1.5,
which shows the known energies of the
first excited states in the even–even Cd
and Hf isotopes. One notices huge differ-
ences in the absolute excitation energies
but also a quite smooth behavior. If one
now also considers the next excited state,
which is a 4+ excitation and plots the ratio
R4/2,

R4/2 = Eexc(4+)

Eexc(2+)
(1.40)

(see also Figure 1.5) more information
can be obtained. In the Hf isotopes, a
clear saturation near R4/2 = 3.33 occurs
indicating that a rotational band, with its
typical I(I + 1) energy dependence, is built
on the ground state. For Cd, we observe
very high 2+ excitation energies and low
R4/2 ratios at the beginning and end of the
isotope chain. This is a clear evidence that at
the extremes, a shell closure occurs, when
N = 50 and 82. In the middle, one finds,

compared to Hf, much higher 2+ excitation
energies and R4/2 ratios slightly above
2, indicating an anharmonic quadrupole
vibrational nature at mid shell.

While the strong pairing of like nucleons
can explain the ground state of even–even
nuclei, it does not yield predictions for
the ground-state spins and parities of odd-
A and odd–odd nuclei. Nevertheless, it
simplifies this task a lot, as in most cases
one can conclude that the ground-state spin
and parity of an odd-A nucleus is equal to
the one of the last odd nucleon. This forms
an important testing ground for the shell
model, which predicts the single-particle
energy, spin, and parity of the subsequent
orbits.

1.6.3
Shell Structures

Various sets of nuclear data indicate
that certain numbers of nucleons, either
neutrons or protons, correspond to the
filling of angular momentum ‘‘shells.’’
These are similar to the atomic shells often
denoted as the K-shell, L-shell, and so on.
In nuclei, the shell filling is similar but not
identical, and the principal shell closings
occur at experimentally observed numbers.
These are for either N or Z equal to 2, 8,
20, 28, 50, 82, and 126. These are the
magic numbers. They occur where there are
drastic changes in neutron cross sections,
nucleon separation energies, and so on.
An interesting, but small, group of nuclei
comprises the doubly magic ones – that
is, nuclei with both neutron and proton
numbers magic. The five stable ones are
4He2, 16O8, 40Ca20, 48Ca28, and 208Pb126.
Note that no stable doubly magic nuclei
with 50 and 82 exist. What is notable
about the doubly magic nuclei is that
their first excited states are at a very



24 1 Nuclear Structure

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Cd

Cd

4
+
1

4
+
1

2
+
1

2
+
1

Hf

Hf

90 100 110 120 130 140 150 160 170 180 190
Λ

1

1.5

2

2.5

3

3.5

4

R
4/

2
E

 (
K

eV
)

(a)

(b)

Figure 1.5 The known energies of the first excited states
in the even–even Cd and Hf isotopes (a). The R4/2 ratios
are also given (b). The left side represents the Cd isotopes
and the right side the Hf isotopes. Arrows mark the closed
shells at A = 98, 130, and 154.

high energy compared with their non-
doubly magic neighbors. The energy in
megaelectronvolts, spin, and parity of these
first excited states is 20.1, 0+; 6.05, 0+; 3.35,

0+; 3.83, 2+; and 2.61, 3−, respectively. Also
the observed spins (and parities) of the first
excited states is very different from that of
all other even–even nuclei.
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Because of these large gaps or changes
in nuclear properties, they divide the low-
lying excited states of nuclei into roughly
three regions. These are, broadly, the
nuclei in the neighborhood of the magic
numbers that are dominated by shell or
single-particle structures and those further
away, which show collective behavior. Of
particular interest are the ones found
between these two, as they may give
clues to the onset of collective motion
in atomic nuclei and other systems. We
mentioned earlier that 126 is a magic
number, but strictly speaking, this holds
only for neutrons as the unstable element
with Z = 126 has not yet been observed.
Nowadays, there is a strong interest to study
whether magic numbers still stay valid in
exotic nuclei far from stability and which
is the next magic number for superheavy
isotopes.

1.6.4
Collective Structures

Within major divisions (even–even, odd-A,
and odd–odd), the excited levels are further
divided into groups that are single-particle
or collective (vibrational or rotational) in
nature. However, because of the strong
pairing force, even–even nuclei do not
show single-particle excited levels but
rather one- or two-particle-hole excitations
or two-quasiparticle excitations. Here, we
introduce the most general features of the
two major classes of collective nuclei. We
restrict ourselves to even–even nuclei for
the sake of simplicity.

1.6.4.1 Vibrational Levels
The intermediate systems between the
tightly bound magic nuclei and the
deformed nuclei are the so-called vibra-
tional nuclei. Here the number of nucleons
outside of a deformable core is small,

and the zero-point energy of the lowest
oscillations is greater than the energy of
deformation, so that the shape of the core
is not stabilized. The motion then is of
quantized surface oscillations with angu-
lar momentum two. One can introduce
creation and destruction phonon operators
Q+

LM and QLM which fulfill the boson com-
mutation rules:

[QLM, Q+
ĹḾ] = δLĹ δMḾ (1.41)

and for which all other commutators
are zero. The angular momentum of the
phonon is L, its magnetic projection M
and its parity π = (−1)L. The magnetic pro-
jection is mostly not of great importance.
In this representation, the number opera-
tor counting the number of L phonons is
given by

N̂L =
∑

M

Q+
LMQLM (1.42)

Using the number operator, the simplest
Hamiltonian becomes

Ĥ =
∑

L

h̄ωL

(
N̂L + L + 1

2

)
(1.43)

where the additional factors are chosen
such that the Hamiltonian corresponds to
the quantized harmonic oscillators for L
phonons. Each of the phonons has energy
h̄ωL. Because most even–even nuclei have
as first excited state a 2+ state, the L = 2
quadrupole phonons are dominant. At
higher energy, there is evidence for the
presence of L = 3 octupole phonon making
a 3− state. Using the energy solution of the
Hamiltonian equation (Eq. (1.43)),

E(NL, L) =
∑

L

h̄ωL

(
NL + L + 1

2

)
(1.44)
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and the proper angular momentum
coupling and symmetrization given in
Eq. (1.39), one arrives at a very simple
prediction. The one-quadrupole phonon
state has L = 2 and Eexc = h̄ω2 and the
two-phonon states have L = 0, 2, 4 and
Eexc = 2h̄ω2. This exactly yields the R4/2
ratio of 2 observed in Figure 1.5.

A nice example of a ‘‘good’’ vibrational
even–even nucleus is 110Cd62. The first
excited 2+ state is at 0.6578 MeV followed
by a 0+, 2+, 4+ states at 1.473, 1.476,
and 1.542 MeV. The ratio R4/2 = 2.35 is
somewhat larger than the one the simple
model gives.

1.6.4.2 Rotational Levels
If the number of nucleons outside the
deformable core is such that the zero-
point oscillations are much less than the
energy of deformation, then the system
will have a stable but deformed shape and
one must quantize a rigid rotator. From
classical considerations, we know that, if
the system has a permanent, nonspherical
shape, there exists a body-fixed system in
which the inertial tensor I is diagonal and
is related to the laboratory-fixed system
by an Euler transformation. We denote
these two coordinate systems as (1,2,3)
and (x,y,z), respectively. The inertial tensor
then has components I1, I2, and I3, so that
the Hamiltonian is just

Ĥ = 1

2

(
L̂2

1

I1
+ L̂2

2

I2
+ L̂2

3

I3

)
(1.45)

with L̂1,2,3 the body-fixed angular momen-
tum. The simplest system is the one for
which all moments of inertia are equal:
I1 = I2 = I3 = I. Then the energies are
directly found:

Ĥ = h̄2

2I
(L(L + 1)) (1.46)

The system specified by Eq. (1.45) pos-
sesses the symmetry properties belonging
to the point group D2 for which four repre-
sentations exist. The Hamiltonian operator
(Eq. (1.45)) does not mix different repre-
sentations. The basis functions are those
of a symmetric top, |LMK> being diagonal
in L2, Lz, and L3 with the usual eigen-
values L(L + 1), M, and K, respectively.
Here K is the projection of the angu-
lar momentum on the body-fixed frame.
Applying this formula for the ground-state
rotational band with K = 0, we find now
R4/2 = 3.33. However, states with differ-
ent K-values are degenerated. This is not
found in real deformed nuclei.

If the inertia tensor is such that
I1 �= I2 �= I3, an asymmetric top problem
results. In this case, the wave functions are
to be expanded in terms of the symmetric-
top functions:

|LM〉 =
+L∑

K=−L

AK |LMK〉 (1.47)

The 1, 2, 3 labels of the momental
ellipsoid’s semiaxes are quite arbitrary
and can be chosen in 24 different ways
for right- (left-) handed systems. These
24 relabelings can be produced by three
different relabeling transformations T1,
T2, and T3 [32], which correspond to label
interchanges and operate on the |LM>

wave functions. They have the properties

T2
1 = T4

2 = T3
3 = 1 (1.48)

From these relations, one can generate
Table 1.1, relating the four representations
and the values of angular momentum
and parity allowed in each. Note in
particular that the A and B2 representations
are associated with positive-parity (π =+)
states, while B1 and B3 representations
are associated with negative parity (π =−)
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Table 1.1 The representation of the point group D2 to which
the states belong, and the allowed values of the angular
momentum and parity associated with them.

Representation K Parity Allowed L-values

A Even + L = 0,2,2,3,4,4,4,5,5
B1 Even − L = 1,2,3,3,4,4,5,5,5
B2 Odd + L = 1,2,3,3,4,4,5,5,5
B3 Odd − L = 1,2,3,3,4,4,5,5,5

states. From this table, we note that only
the rigid rotator systems belonging to
the A representation have a zero angular
momentum state. They must be associated
with the lowest levels of even–even nuclei
and form the K = 0 ground-state band with
K = 0 and L = 0, 2, 4, 6, . . . followed by the
γ-vibrational band with K = 2 and L = 2, 3,
4, 5, . . . .

Negative-parity states in even–even
nuclei could be associated with either the
B1 or B3 representations. If one argues that,
given two (or more) possibilities, the lowest
set of states will be the most symmetric,
then because the B1 representation arises
from sums over even K quantum numbers,
one should associate this representation
with the lowest-lying negative-parity states
in even–even systems. Furthermore, in
the deformed regions, the negative-parity
bands in these nuclei not only lie above the
ground-state rotational band but they also
have as their band head a 1− level. This
is another indication that these negative-
parity rotational bands belong to the B1

representation.
The problem of solving the asymmetric,

rigid rotor is far more involved than
the symmetric rotor as all of the latter’s
eigenvalues can be given in closed form. To
proceed along this line, one sets I0 = I1 =
I2 �= I3. The Hamiltonian of the system

then becomes

Ĥsym = 1

2

(
L̂2

1 + L̂2
2

I0
+ L̂2

3

I3

)

= 1

2

(
L̂2

I0
+

(
1

I3
− 1

I0

)
L̂2

3

)
(1.49)

and both of the operators appearing are
diagonal. Thus, we obtain immediately the
eigenvalues

Esym = h2

2

(
L (L + 1)

I0
+

(
1

I3
− 1

I0

)
K2

)
(1.50)

This expression is model independent
and only depends upon the ratio of the
moments of inertia I0/I3. There have been
recent observations of ‘‘superdeformation’’
for rare earth nuclei with spheroidal-axes
ratios of 2 : 1. For symmetric rotational
systems with K = 0, the ratio R4/2 is
10/3 rather than 2 for the vibrational
systems. Thus, this ratio differentiates well
between rotational and vibrational systems.
In recent years, there was quite some
interest in how these shape changes occur
[33, 34], as they can be treated as quantum-
phase transitions. Atomic nuclei that have
an R4/2 ratio of around 2.9 lie at the
critical point of the spherical-deformed
phase transition.
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1.6.5
Odd-A Nuclei

1.6.5.1 Single-Particle Levels
Near the magic numbers, the ground
and lower excited states appear to be
mainly single-particle states, that is, states
that do not seem to possess collective
properties. For instance, near the doubly
magic nucleus 16O8, one finds that both
15N8 and 15O7 have 1/2− ground states and
nearly identical lower excited states. This
shows that the N = Z = 8 shell is filled by
a p1/2 orbit. Above the closed shell are
17F8 and 17O9 both of which have the
expected 5/2+ ground state from the d5/2

orbit. These data clearly support the notion
that angular momentum shells are filled in
a manner similar to the electronic shells of
the elements.

1.6.5.2 Vibrational Levels
The nucleons all possess intrinsic spin
1/2 and angular momentum l, so that
the simplest model for vibrational odd-A
nuclei that one might construct is to add
a single nucleon to an even–even core in
which the nucleons of each kind pair to
zero angular momentum. If the core is a
good vibrational nucleus (R4/2 ∼ 2), then
the ground state of the odd-A system will
have the angular momentum properties of
the odd nucleon. Furthermore, by coupling
this nucleon to the excited states of the
core, one should expect to be able to
determine the angular momenta of the
odd-A nucleus’s excited states. An example
is the coupling of a neutron to the
vibrational nucleus 110Cd62 (Section 1.6.2)
to yield the odd-A nucleus 111Cd63, which
has a ground-state spin of 1/2+. One might
expect that there would be two excited states
built on the first excited 2+ state with spins
3/2+ and 5/2+. This nucleus does indeed
have a 3/2+, 5/2+ pair as its first excited

states, which are at 245.4 and 342.1 keV.
Coupling of the 1/2+ neutron with the two-
phonon states would lead to excited state
spins from 1/2+ through 9/2+. Such a set
of states does appear at higher energies.
However, it is difficult to pick out which
states might belong to the two-phonon core
states. Below them there is a first negative
parity state with spin 11/2− at 396.22 keV,
which indicates that one has the presence
of a low-lying h11/2 neutron orbit.

1.6.5.3 Rotational Levels
One might expect that a simple model
for the odd-A rotational levels would
follow that of the vibrational levels.
However, the experimental data do not
show such a similar structure. As an
example we consider 157Gd93 which has a
3/2− ground state. Following the reasoning
for vibrational nuclei, one expects from the
coupling with the first excited 2+ state a
multiplet with spins 1/2−, 3/2−, 5/2−, and
7/2−. Instead, one observes a rotational-
like band with the spin sequence: 5/2−,
7/2−, 9/2−, 11/2−, . . . . This is due to the
fact that the ground-state band has also
a given value of K and we conclude that
K = 3/2.

1.6.6
Odd–Odd Nuclei

As noted in Section 1.6.1, there are only
four stable odd–odd nuclei; however, a
great deal of data exist for all of this
class of nuclei. Again, one might feel that
these nuclei would be well represented by
an even–even core plus a neutron–proton
pair. Even if these are coupled to a spin-zero
core, there is still considerable ambiguity
as to how these couple to form the ground-
state spin of the system. For instance, if the
proton and neutron angular momenta are
jp, jn, respectively, then their vector sum



1.7 Nuclear Models 29

can lead to the range of J values∣∣∣jp − jn

∣∣∣ ≤ J ≤ jp + jn (1.51)

One can obtain the values of jp and
jn from the ground-state spins of the
neighboring odd-A nuclei with one less
neutron or one less proton, respectively. In
order to determine more exactly the range
of the possible ground-state spins of these
nuclei, one must make use of Nordheim’s
rules, which are the following:Strong rule,
for η = 0:

J =
∣∣∣jp − jn

∣∣∣ (1.52)

Weak rule, for η = ±1:

J =
∣∣∣jp − jn

∣∣∣ or jp + jn (1.53)

with

η = (jp − lp) + (jn − ln) (1.54)

In general, these do not work all of the
time. To predict the excited states spins
is even more difficult, making odd–odd
nuclei the most difficult to describe.

1.7
Nuclear Models

1.7.1
Introduction

The nucleus, being a many-body collection
of A particles interacting through a short
range but strong force, is not easily
dealt with. From a theoretical point of
view, making use of an accurate many-
body calculation is impossible because
these are beyond the scope of current
theoretical methods. Thus, calculations
based upon various simple models are

able to provide a good deal of physical
insight as well as making predictions of
measurable properties, providing a way
to categorize the vast amounts of data
available from nuclear physics laboratories.
While these approaches may seem to be
organized in an historical order, all are to
greater or less extent being continuously
refined.

The nuclear many-body problem is
not solved definitely, owing to the large
number of strongly interacting particles.
To illustrate the difficulties, we take the
example of 208Pb. If we consider up to two-
body interactions between the nucleons,
the general Hamiltonian is given by

H =
208∑
i=1

ti + 1

2

208∑
i �=j

Vij (1.55)

The radius of this nucleus is 7 fm, while
the strong force between two nucleons
varies significantly on the scale of 0.2 fm.
If one would calculate only the two-body
interaction on a mesh, one should foresee
for each nucleon at least 100 mesh points in
each direction and for all 208 nucleons the
number of possible combinations would
be 1003.208. For a fast computer today 109

operations per second are feasible, which
gives 1016 operations per year. Thus to
perform the calculation one would need
101232 years, while the age of our universe
is only 2 × 1010 years.

As an exact treatment is impossible,
one of the major characteristics of nuclear
structure calculations is the choice of
the right approximations and truncations
needed to make a calculation feasible while
keeping the essential physics. Of great help
thereby is the extensive use of symme-
try concepts, which allow one to simplify
the many-body problem and make the
calculations tractable. Many quite differ-
ent approaches have turned out to be
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successful for certain classes of atomic
nuclei. Most theoretical models rely on
spherical symmetry, which allow the use
of the very powerful ‘‘Racah machinery,’’
originally developed for atomic physics
by Guilio Racah. The introduction of
irreducible tensors and coupling coeffi-
cients then provides the necessary tech-
nical skills to perform nuclear structure
calculations.

The first approach is based on the
experimental observation of magic num-
bers and leads to the nuclear shell
model as described in Section 1.7.2. In
Section 1.7.3 we introduce the deformed
shell model, which allows the description
of medium-heavy nuclei that are deformed.
Section 1.7.4 is devoted to the collective
model in which medium heavy and heavy
nuclei are described by a quantum liquid
droplet.

In Section 1.7.5, we will deal with a
new theoretical approach to many-body
problems originating from nuclear physics:
the interacting boson approximation (IBA).
Although the IBA is a method that was
developed to describe the atomic nucleus,
it has since been applied to molecules,
quarks, and fullerenes. The major assump-
tion of the interacting boson model (IBM)
is twofold. First, because of the shell struc-
ture evinced by many experiments, only
the valence nucleons are considered to
be important for the low-energy excited
states of the atomic nucleus. Those move
to a first approximation in orbits formed
by their commonly created average field,
which is spherical symmetric. Secondly,
between like nucleons, either protons or
neutrons, there is a dominant pairing force
when they occupy the same orbit. This
allows to replace coupled fermion pairs
by real bosons that are simpler to deal
with.

1.7.2
The Spherical-Shell Model

One of the first and best understood
nuclear models is the nuclear shell model.
The major assumption of this model is that
nucleons up to a good approximation move
independently in a spherically symmetric
averaged field U(ri) created by the other
nucleons. This means that the many-body
Hamiltonian is rewritten as

H = H0 + Vres (1.56)

with

H0 =
N∑

i=1

ti +
N∑

i=1

U(ri) (1.57)

and the residual interaction V res is given
by

Vres = 1

2

N∑
i �=j

Vij −
N∑

i=1

U(ri) (1.58)

The shell model uses the ansatz
(Eq. (1.57)) in which the single parti-
cles move in a potential well provided by
the other particles. While it might seem
improbable that nuclei made up of a large
number of strongly interacting particles
could in any way be represented by such
a model, one must recall that the Pauli
principle prevents most interactions of a
nucleon in the nucleus. In general, scatter-
ing cannot take place, as most of the states
into which a low-energy nucleon can scatter
are filled. This implies that the mean free
path for nucleon motion is quite long, and
a single-particle model is worth exploring.

One obvious and important characteris-
tic of odd-A nuclei is their ground-state
spins and parities. Starting with the light-
est nuclei, the general order of odd-A
ground-state spins and parities is 1/2+ for
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neutron and proton and after the strongly
bound 4He 3/2−, 1/2− then, after 16O8,
it becomes 5/2+, 3/2+, 1/2+ and then,
after 40Ca20, 7/2−, 5/2−, 3/2−, 1/2− an
order reminiscent of the atomic shells in
which the alternating parities are related
to the orbital angular momentum sug-
gesting a sequence: s-p-d and s-f and p
to which a spin one-half is coupled. To
obtain a model with such an ordering of
angular momentum l-values requires solv-
ing a single-particle Schrodinger equation
with a reasonable potential function. The
form of this potential is not too impor-
tant because only minor changes in l-value
order occur using one or another r depen-
dence. The two simplest to calculate are
the isotropic harmonic oscillator and the
infinite square well. The latter is not realis-
tic because the nucleon separation energy
is quite finite and well-known for most
nuclei. (One might also consider a potential
function related to the charge distribu-
tions of Eqs. (1.16) and (1.19); however,
these would require extensive numerical
computing to extract the eigenvalues.) The
angular momentum order of the levels and
the number of particles in each for the
isotropic harmonic oscillator is 1s (2); 1p
(6), 1d, 2s (12); If, 2p (20); lg, 2d, 3s (30);
and so on. (The semicolons separate the
levels with different quanta of energy h̄ω,
and most are degenerate.) The total num-
ber of levels thus becomes 2, 8, 20, 40, 70,
112, 168, which only agrees with the lowest
observed ‘‘magic numbers’’ 2, 8, 20, 28, 50,
82, and 126 (cf. Section 1.6.1).

It took the genius of Maria Goeppert
Mayer [35] and others [36] to realize that by
adding a spin–orbit term of the form

Vls = −V(r)
−→
l •−→s (1.59)

the theoretical order could be brought into
agreement with that observed. The minus

sign guarantees that the j = l + 1/2 level
will lie below the j = l − 1/2 level, as
observed and the dependence on l makes
that the effect increases with l leaving
the shell closures at 2, 8, 20 unaffected
while introducing a new shell closure at
28 due to the lowering of the 1f7/2 orbit.
Further, the observed closures at 50, 82,
126, are obtained in a natural way. Also
the spins of the odd-A ground states
is mostly correctly predicted. The shell
model explains via large gaps between the
single-particle orbital energies the large
binding energies of nuclei having Z or
N a magic number making the number of
stable isotopes/isotones particularly large,
for example, there are 10 stable Sn isotopes
with Z = 50. For the excited states, magic
nuclei show them at very high excitation
energies as one needs to break the closed
shell and lift one particle over the large
shell gap. As an example in the doubly
magic nucleus 208Pb, an energy of 2.6 MeV
is needed to create the first excited 3− state
and even 4.085 MeV for the 2+ state.

The robustness of double-magic nuclei
allows a major truncation for shell model
calculations. It turns out that they can in
first instance be treated as inert cores,
whereby the spins of all of the particles
in the core pair off to zero. Thereby,
only the so-called valence nucleons need
to be considered. This is of importance
as with increasing number of nucleons
and possible orbitals, the shell model
allows for many different configurations.
As angular momentum and parity are
conserved, the residual interaction used
can be diagonalized separately for a
given spin and parity. Nevertheless, the
dimensions become quickly huge.

Although the shell model is one of the
older nuclear models, it has become of
increasing use in the last decades. This
is due to two key aspects. The first is
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the tremendous increase in computing
power allowing large-scale shell model
codes to be developed, including quan-
tum Monte Carlo diagonalization. The
second is the construction of effective
in medium interactions starting from the
nucleon–nucleon scattering data. Hereby
the elimination of the hard core repulsion
of the nucleon–nucleon interaction was
crucial and produced a universal, so-called
V low-k interaction. The recent progress
opens the direct way from quantum chro-
modynamics (QCD) to the effective inter-
actions, which is in particular very much
needed for the study of exotic nuclei. The
most involved calculations are done for
light nuclei up to 11B. Here no-core shell
model calculations are able to describe
accurately binding energies and excited
states for very light nuclei [37].

1.7.3
The Deformed Shell Model

As the very large quadrupole moments of
the nuclei in the middle of the higher
shells cannot be explained by the simple
spherical model, their explanation requires
large contributions from the even–even
core, which carries all (or almost all)
of the charge. It can be shown that
a single-particle moving in a nonrigid
potential well will have a lower energy
if the well is not spherical, rather than
if it is spherical. As the lowering of
the particle energy is proportional to the
eccentricity, such a system will assume a
deformed equilibrium shape. The nuclear
Hamiltonian will now contain a term that
produces deviations from spherical:

H = H0 + Hd − Vls(r) + cl2 (1.60)

where H0 is the isotropic harmonic
oscillator Hamiltonian and V ls(r) is the

spin–orbit term, both of which have proved
so successful for the spherical-shell model.
(The I2 term helps give the proper level
order in the isotropic limit.) Expanding
the nuclear surface in spherical harmonics
gives

S(θ , φ) = R0

⎡⎣a0 +
∑

λ>1,μ

aλμYλμ (θ , φ)

⎤⎦
(1.61)

where R0 is the radius of the spherical
nucleus and a0 is unity to quantities of
second order and assures that the volume
remains constant for small deformations.
Taking the lowest order, one has that

S(θ , φ) = R0

[
1 +

+2∑
−2

a2μY2μ (θ , φ)

]
(1.62)

[This expression should be compared
with the nuclear charge distribution of
Eq. (1.19).] It is customary to take only
the symmetric term a20 in this equation
to be nonzero. This then leads to the
deformation term in the Hamiltonian

Hd = −Ka20ω
2
0r2Y20(θ , φ) (1.63)

The full Hamiltonian can now be
diagonalized using a set of spherical shell
model basis states, and the resulting
deformed, single-particle states are called
Nilsson states after Sven Gosta Nilsson [38],
who first carried out this diagonalization.
The operators in Eq. (1.60) do not connect
oscillator states differing by one principal
oscillator quantum number, N, but do
connect states differing by two. Nilsson
neglected matrix elements not diagonal in
N. This is a reasonably good assumption
as oscillator states differing by N = 2 are
rather far apart, except for states belonging
to large N and large deformation (i.e.,
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nuclei with large A and large quadrupole
moments). The Nilsson levels are labeled
�|N,n3,�]. The symbol � is the projection
of the particle angular momentum j on the
three axes of the body-fixed axis system and
is a good quantum number. In the limit of
very large deformations, the single-particle
energy is given by

E =
(

n3 + 1

2

)
h̄ω3 + (n⊥ + 1)h̄ω⊥

(1.64)
where the symbol ω3 is the oscillator
frequency along the symmetry axis and
the symbol ω⊥ is the oscillator frequency
in the perpendicular directions. Thus,
in the limit of very large deformations,
one has N = n3 + n⊥. In this same limit,
the projection of the orbital angular
momentum on the symmetry axis becomes
the last label,

N = ±n⊥, ±n⊥ − 2, . . . , ±1 or 0

(1.65)
This scheme is used to label not only

the ground states of deformed nuclei but
also the excited state rotational band heads.
The level order will now be L, L + 1,
L + 2, . . . , as a result of core rotation,
so that, when a level does not fit into this
sequence, it must belong to a different
single-particle band. One now proceeds
to assign quantum numbers to the states
by determining the odd-nucleon number;
then, because the Nilsson energy levels are
plotted against the core deformation, one
assigns the deformation by finding that
place where a Nilsson level appears with
the measured ground-state spin. The next
Nilsson level up should give the excited-
band head, and so on. As an example,
consider the nucleus 173Lu102, which has a
7/2+ ground state. Following the procedure
above, the appropriate level is the 7/2[404],

with excited members 9/2+, 11/2+, 13/2+.
Just above the 9/2+ level is a close doublet
with spins 5/2−, 1/2−, which has been
assigned to the 1/2[541] Nilsson level. The
3/2− level belonging to this band lies above
the 9/2+ state. This nonuniform order
of a 1/2 band is an example of Coriolis
coupling, which mixes the level order of
�= 1/2 bands.

1.7.4
Collective Models of Even–Even Nuclei

In Section 1.6.4.2, where the rotational-
level structures of even–even nuclei were
discussed, it was pointed out that the
moments of inertia play a crucial role to
describe the atomic nucleus as a rigid-body
momental ellipsoid. Bohr [32] proposed
a model of the momental ellipsoid and
thus of deformed even–even nuclei and
the cores of odd-A and odd–odd nuclei.
Several important assumptions were made
in order to extract these moments of
inertia. The first is that the nuclear core
is incompressible, so that the nuclear
density is constant. Second, the flow is
assumed to be irrotational, so that a velocity
potential exists and satisfies Laplace’s
equation. Finally, it must be assumed that
the motion is such as to preserve the
principal axis system. The moments of
inertia for quadrupole deformations then
are

I2
k = 4B2β

2sin2
(

γ − 2π

3
k

)
(1.66)

Here B2 and β are the quadrupole
mass and deformation parameters, while
γ is an asymmetry parameter whose
range is 0 ≤ γ ≤ π/6. There are similar
relations for other deformations such as
octupole (Y3), hexadecapole (Y4), and so
on. The Hamiltonian for this system is
now
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Hquad = 1

2
B2(β̇2 + β2γ̇ )

+ 1

B2β
2

3∑
k=1

L2
k

sin2 (
γ − 2π

k

) + 1

2
C2β

2

(1.67)

If the system is not rigid, then the
deformation and asymmetry parameters
are no longer fixed, and the system can
execute either deformation (β) vibrations
or asymmetry (γ ) vibrations, or both. The β-
vibrational bands have angular momentum
0 – they are akin to molecular ‘‘breathing’’
modes – and the γ-vibrational bands have
angular momentum 2. Thus, nuclei will
exhibit ground-state bands where nβ = 0
and nγ = 0, β-bands nβ = 1, nγ = 0), γ-
bands (nβ = 0, nγ = 1), and higher order
bands. Although the β-vibrations are
the simplest, they are not really well
established [39], much better established
are γ-bands of which double excitations
with nγ = 2 are found in nature [40].

In his original paper, Bohr [32] argued
that the nucleus would stabilize around
γ = 0, so that the momental ellipsoid was
symmetric (long and thin, cigarlike), while
the surface itself was spheroidal. Then I3 =
0. This leads to difficulties as Eq. (1.50)
shows that the energy eigenvalues become
infinite unless K = 0. Thus, the ground-
state bands of even–even nuclei have K = 0,
and the angular momentum sequence
becomes 0, 2, 4, 6, . . . , which is what
is observed. These models automatically
conform to the A representation. Again, if
the system is not rigid, against β-vibrations,
there will be one or more β-bands above the
ground-state rotational band that mimic
the ground-state band in spin sequence,
but because <β2> will be greater than for
the ground state, the levels will be closer
together.

Finally, in this model if γ is not
constant, γ-vibrations can arise with

angular momentum 2. (One might think
of these as equatorial bulges moving
around the nuclear equator. They are akin
to the well-known Jacobi ellipsoids of a
self-gravitating, rotating fluid.) These γ-
vibrations then produce a γ-band that is
different in spin sequence from the β- and
ground-state bands. This occurs because
Kγ = 2, not 0. The γ-band sequence is
2, 3, 4, 5, . . . . There can be several γ-
bands with different K values and different
spin sequences. The lowest one has Kγ = 2,
while the next will have Kγ = 0 and 4, and
so on.

It must be made clear that the Bohr
model is only applicable for the low-lying
positive-parity levels. The negative-parity
levels belonging to the B1 representation
have moments of inertia that are consid-
erably more complicated as they represent
an octupole or pearlike shape.

An example of a well-developed
rotational system is 154Sm92 where
R4/2 = 3.25. This nucleus has a well-
developed ground-state rotational band
with the spin sequence 0+, 2+, 4+, . . . ,
12+ with the first excited state rather low
in energy at 81.99 keV. It has a β-band
with a 0+ band head 1099.28 keV, followed
by the first excited 2+ state at 1177.78 keV
(	E = 78.52 keV). This is a striking
example of the increase in the moment of
inertia due to the quantum of β-vibrational
energy. Furthermore, the K = 2 γ-band,
with sequence 2+, 3+, 4+, . . . , starts at
1440.05 keV.

Also to be seen is an octupole band
starting with the 1− level at 921.39 keV,
followed by the 2−, 3−, 5−, . . . in the
expected order. Thus, one sees four well-
developed rotational bands fitting quite
nicely into the model scheme.

Further, the collective behavior mani-
fests itself in the quadrupole moments and
electric quadrupole transitions. The axially
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symmetric core collective model yields for
a state with quantum numbers K and I a
laboratory quadrupole moment Q :

Q = 3K2 − I(I + 1)

(I + 1)(2I + 3)
Q0 (1.68)

with an intrinsic quadrupole moment Q0

given by

Q0 = 3√
5π

ZR2
0β(1 + 0.16β) (1.69)

The fact that by definition K has to be
lower than I (Eq. (1.74)) produces almost
always a change of sign between intrin-
sic and laboratory quadrupole moments.
Related to the intrinsic quadrupole
moments are the B(E2) values. In between
states belonging to a given K band, they are
given by

B(E2; Ii → If ) = 5

16π
e2Q2

0

〈
IiK20|If K

〉2

(1.70)

When comparing Eq. (1.70) directly with
the data, one often extracts the transition
quadrupole moment Q t as being the Q0

value obtained for a given transition. A
very useful relation is obtained for B(E2)
ratios between states belonging to bands
having different K quantum numbers.
These relations are called the Alaga rules
and yield

B(E2; Ii → If )

B(E2; Ii → Íf )
=

⎛⎝
〈
IiK2	K|If Kf

〉
〈
IiK2	K|Íf Kf

〉
⎞⎠2

(1.71)

whereby 	K = Kf − K as is expected for an
angular momentum projection quantum
number. Using the Alaga rules it is possible
to determine the K values of rotational
bands.

If one does not follow the Bohr assump-
tion that the nucleus will stabilize around
γ = 0 but around some other value within
its range, then one has to deal with an
asymmetric rotator, which will have a
considerably more complicated eigenvalue
structure. Davydov and Filippov [41] made
an extensive investigation and showed that
one obtained better results with such a
model than with a symmetric one. How-
ever, one loses the computational simplic-
ity of the symmetric model.

1.7.5
Boson Models

The models discussed up until now and
that have been used most extensively would
seem to be almost mutually exclusive.
The shell model and its modifications,
such as Nilsson’s extension to a deformed
system, focus on the single-particle aspects
of nuclear structure. On the other hand, the
collective model of Bohr and Mottelson,
and extensions, place the emphasis on
the cooperative, or fluid, aspects of these
systems. Thus, they seem to stand apart
and be almost unrelated. This has led to the
next step, the investigation of models that
are called microscopic models or calculations.
These include pairing models (similar
to the Bardeen–Cooper–Schriefer theory
of superconductivity) and the random-
phase approximation, to name but two.
A more recent and still developing set of
microscopic models is called the interacting
boson models, which we present here briefly.

The solutions of the nuclear shell model
lead to single-particle orbits that can be
occupied by the neutrons and protons.
Because of the Pauli principle, each
nucleon in an atomic nucleus can occupy
only different orbits. It turns out that
once more the short range of the nuclear
force leads to a dominant component when
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one wants to take account of the residual
interaction. The dominant component is
called pairing interaction and energetically
favors the formation of nucleon pairs made
out of two nucleons moving in orbits
|njm> and |nj-m>, coupling to a two-
nucleon state with total spin J = 0. To
a lesser extent, the formation of nucleon
pairs with spin J = 2, 4, 6 in that sequence
is also favored. As the number of protons
and neutrons is generally different in not
too light nuclei, the single-particle orbits
occupied by both will generally be very
different and thus the pairing will be
effective only between like nucleons (either
protons or neutrons). When one is mainly
interested in the low-energy excitations of
the atomic nucleus, one can treat this
structure in terms of interacting, nucleon
pairs via the residual interaction. However,
a many-body problem composed of paired
fermions, although more correct, is still
very difficult to solve. Instead by replacing
these n = nν + nπ fermions by

N = nν + nπ

2
(1.72)

real bosons with L = 0, 2 (and eventually 4,
6, . . . ), one has enormously simplified the
original n-body problem. For instance, one
does not need to bother about which orbits
are occupied by the protons and neutrons,
while keeping the essential physics. This
is the essence of what is now called the
interacting boson approximation, which was
proposed and elaborated by Iachello and
Arima in the second half of the 1970s [42].

The simplest version of the model is
called IBM-1 and deals with s (L = 0) and d
(L = 2) bosons. Considering the constraint
that the number of bosons is fixed
N = ns + nd and limiting the Hamiltonian
to one- and two-body interactions, one
obtains the multipole expansion form

Ĥ = ε̂nd + c1L̂ · L̂ + c2Q̂ · Q̂

+c3T̂3 · T̂3 + c4T̂4 · T̂4 (1.73)

with the operators

L̂m =
√

10(d† × d̃)(1)
m (1.74a)

Q̂m = (s† × d̃ + d† × s)(2)
m

+χ (d† × d̃)(2)
m (1.74b)

T̂3m = (d† × d̃)(3)
m (1.74c)

T̂4m = (d† × d̃)(4)
m (1.74d)

The factor
√

10 is used in order to make
the dipole operator an angular momentum
operator and the first term in Eq. (1.73)
contains the d-boson number operator.
The multipole expansion has six free
parameters of which two are needed for
the quadrupole–quadrupole interaction.
The use of the multipole expansion is
especially advantageous because numerical
studies have shown that the values of the
octupole and hexadecapole interaction are
generally very small. Thus, up to a good
approximation, one can describe a variety
of atomic nuclei at low excitation energies
by the simple four-parameter Hamiltonian:

Ĥχ = ε̂nd + c1L̂ × L̂ + c2Q̂χ × Q̂χ

(1.75)
The index in Eq. (1.75) makes explicit

that the quadrupole operator contains an
additional parameter.

Of importance in the development of the
IBM is the use of dynamical symmetries
providing analytic solutions of the many-
body problem. Because there are in total
six distinct bosons when considering the
magnetic projections, the symmetry of
the many-body problem is U(6) while the
physical symmetry is given by SO(3) the Lie
algebra of the angular momentum. Three
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dynamical symmetries are obtained. They
can be schematically represented by the
chains

U(6)

⎧⎪⎪⎨⎪⎪⎩
⊃ U (5)

⊃ O(6)

}
⊃ SU(3)

⊃ O(5)

⎫⎪⎪⎬⎪⎪⎭ ⊃ O(3)

(1.76)
Each of the three chains can be used

to provide a complete basis to analytically
solve the N s, d boson model. One can
also rewrite the general Hamiltonian as a
combination of all previously determined
Casimir operators:

Ĥ = εC1[U(5)] + αC2[U(5)]

+δC2[SU(3)] + ηC2[O(6)]

+βC2[O(5)] + γ C2[O(3)] (1.77)

where we have omitted all constant terms
that contribute only to the binding ener-
gies. The Casimir form Eq. (1.77), like
Eq. (1.73), contains six parameters and,
once more, all three forms can be trans-
formed into each other. The advantage of
the form Eq. (1.77) lies in the fact that
the three different limits correspond to
three classes of atomic nuclei: vibrational,
rotational, and γ -unstable nuclei corre-
spond to the Hamiltonian with δ = η = 0
(U(5) limit), ε = α = η =β = 0 (SU(3) limit)
and ε =α = δ = 0 (O(6) limit) . In these
cases, closed analytic expressions for exci-
tation energies and wavefunctions can be
obtained [42]. Two of the limits already
had known counterparts in the collective
model. It was the discovery of the third,
the O(6) limit, in the Pt nuclei at the
end of the 1970s [43], that boosted the
use of the model. Soon it became evident
that it formed a good approximation for
the nuclear many-body problem in many
nuclei. Outside the limits the model needs

to be solved numerically and the transi-
tional nuclei can be described.

The IBM-1 model describes only
positive-parity levels of even–even nuclei.
To describe negative-parity states, one must
use negative parity p and f bosons con-
structed in a similar way to the s and
d bosons. Furthermore, the IBM-1 has
no explicit neutron–proton degree of free-
dom. This is introduced in the IBM-2 where
a neutron–proton label is introduced for
the s and d bosons. As the neutron and pro-
ton bosons are distinguishable, the IBM-2
leads to new sets of states, called mixed
symmetry states (in the neutron–proton
degree of freedom). Furthermore, analyt-
ical solutions can be derived for the IBM-2
[44]. Mixed symmetry states have been
observed in many atomic nuclei, especially
in deformed nuclei where the lowest state
is a 1+ state called the scissor state [45], and
also recently in vibrational nuclei [46].

Finally, if one wants to describe odd-
A nuclei, a model denoted interact-
ing boson–fermion model (IBFM) must
be used. Odd-A nuclei always have an
unpaired nucleon that cannot form an s
or d boson because a partner is miss-
ing. Therefore, an odd–even nucleus is
described in the model with N bosons and
one fermion, the unpaired nucleon, which
can occupy several orbitals j. In addition,
for such systems dynamical symmetries,
called Bose–Fermi symmetries, can be used,
although their elaboration is much more
complex [47]. The symmetry starts then
from the product UB(6) × UF(M) with

M =
∑

j

2j + 1 (1.78)

and ends with SU(2). In 1980, a daring
extension of the model was proposed [48].
Using supersymmetry, the structure of
some odd–even nuclei could be related
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to that of the much simpler even–even
nuclei via the embedding of the dynamical
symmetries in a supersymmetry:

U(6/M) ⊃ UB(6) × UF(M)

| | |
[N] [N] [1m] (1.79)

connecting the N s, d bosons + 1 fermion
problem to the N + 1 boson problem by the
supersymmetric reduction rule N = N + m.
This embedding when realized in nature
would reveal itself through the possibility
to describe excited states in an odd–even
nucleus and in the adjacent even–even
nuclei using a common set of quantum
numbers and parameters related via the
supergroup. If dynamical symmetries are
required, only a limited class of atomic
nuclei can be described in this way.
During the 1980s, experimental evidence
was accumulated, but unfortunately it
was not possible to determine completely
the structure of the odd–even nucleus
starting from the even–even nucleus
alone.

Later an extension of supersymmetry
was proposed, which incorporates a dis-
tinction between neutrons and protons.
This extended supersymmetry allows one
to describe a quartet of nuclei in a com-
mon framework. This quartet, called a
magic square, consists of nuclei having the
same total number of bosons (paired nucle-
ons) and fermions (unpaired nucleons).

It consists of an even–even nucleus, two
odd–even nuclei and an odd–odd nucleus.
The latter is interesting in two respects: its
energy spectrum can be predicted from
those of the other three members and
heavy odd–odd nuclei are the most com-
plex objects found in low-energy nuclear
structure. If dynamical supersymmetry is
able to describe these nuclei, which could
not be described by other theoretical mod-
els, strong evidence for its existence can
be obtained. This development is of impor-
tance not only for nuclear physics but for
all other applications of supersymmetry in
physics.

The odd–odd nucleus 196Au is consid-
ered to be the ultimate test of supersym-
metry in nuclear physics for three reasons.
It is situated in a region of nuclei that
was known to exhibit dynamical symme-
tries and supersymmetries. At the same
time, it is the most difficult mass region in
which to describe odd–odd nuclei. Finally,
when its excitations with negative par-
ity were predicted in 1989 on the basis
of the three other nuclei, none of them
were experimentally known. In a detailed
spectroscopic study the excited states of
196Au were determined and a good agree-
ment with the supersymmetric model was
obtained [49]. The results of this combined
effort are illustrated in Figure 1.6. They
reveal good agreement with the analytical
prediction:

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1.6 The lowest observed states (b), are
compared to the theoretical result (a) for the
four members of the quartet (note that one is
dealing with holes in the doubly closed shell
nucleus 208Pb). The even–even nucleus 194Pt,
the negative parity states in the odd-neutron
nucleus 195Pt, the positive parity states in the
odd-proton nucleus 195Au and the negative-
parity states in the odd–odd nucleus 196Au up

to 500 keV can be described using the formula
(Eq. (1.88)) based on dynamical supersymme-
try. Not shown are higher-lying states of the
even–even and odd–even nuclei, which are
also described by supersymmetry. Together with
the spin and parities, the quantum numbers
[N1,N2], <�1,�2>, <σ 1,σ 2,σ 3>, and (τ 1,τ 2)
are also indicated. (Based on [49].)
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E = A(N1 (N1 + 5) + N2(N2 + 3))

+B(�1(�1 + 4) + �2 (�2 + 2))

+B′(σ1(σ1 + 4) + σ2 (σ2 + 2) + σ 2
3 )

+C(τ1(τ1 + 3) + τ2(τ2 + 1))

+DL(L + 1) + EJ(J + 1) (1.80)

obtained using dynamical supersymmetry.

Glossary

Bosons: Quantum particles obeying
Bose–Einstein statistics, so having integral
spin.

Daughter: In a radioactive decay in
which the radioactive nucleus A decays
into nucleus B the nucleus B is said to be
the daughter of nucleus A.

de Broglie wavelength: The wavelength
λ of a particle given by the relation λ = hp,
where h is Planck’s constant and p the
momentum of the particle.

Decay constant λ: If N nuclei are present
at time t, then the decay constant is given
by the number of decaying nuclei −dN/dt
divided by N.

Electron capture: A radioactive decay
process, sometimes called K capture, where
the decay energy Q is greater than the
binding energy of one of the atom’s cloud of
electrons (Q > BEe). The nucleus absorbs
one of the atomic electrons to undergo
β+ decay and emits thereby a neutrino. If
Q > 2mec2, then electron capture competes
with normal β+ decay, whereby a positron
and an electron neutrino are created.

Fermions: Half integer spin particles
obeying Fermi–Dirac statistics.

Half-life T1/2: In radioactive decay, the
time in which half of the nuclei initially
present decay.

Isobars: Nuclei with the same mass
number A but with different numbers of
protons (Z) and neutrons (N).

Isomeric state: An excited nuclear state
whose half-life for γ-emission is quite long;
similar to a metastable state of an atomic
system.

Isotones: Nuclei with the same number
of neutrons (N) but different numbers of
protons (Z) and thus, different values for
A.

Isotope shift: Small changes in the
wavelengths of X-ray optical, and especially
muonic transitions in going from one
isotope to the next, which give a measure
of the change in the nuclear radius as A
changes by one unit.

Isotopes: Nuclei with the same number
of protons (Z) but different numbers of
neutrons (N) and thus, different values of
A.

Lamb shift: A small quantum electrody-
namic effect that is principally due to the
radiative coupling of the orbiting electron
(or muon) with the vacuum field and the
finite nucleus.

Lifetime τ : The reciprocal of the decay
constant. The lifetime is related to the half-
life by T1/2 = ln(2)τ .

Mass defect: The difference between the
mass of a nucleus of mass number A in
atomic mass units less A, 	 = M(A) − A.

Mass excess: Negative of mass defect.

Mirror pair: Two light nuclei with
the same mass number A but with
numbers of protons (Z) and neutrons (N)
interchanged.

Muon: A member of the lepton family
of elementary particles with spin one-
half. The muon is 207 times as heavy
as an electron and has a lifetime of
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2.197 × 10−6 s. The muon, like the electron,
has a negative charge.

Nuclear polarization: A small reduction
in the Coulomb potential caused by the
penetration of the nuclear volume by the
bound orbiting particle (an electron or
muon).

Packing fraction: The mass defect per
unit mass number P =	/A.

Parity π : The behavior of a state
function upon reflection of the coordinates
through the origin, r → −r, then either
φ(−r) =+φ(r) and the state is said to have
positive parity or φ(−r) = −φ(r) and the state
is said to have negative parity.

Pauli principle: The requirement that
in a system of like particles obeying
Fermi–Dirac statistics (half integer spin
particles), no two particles can have the
same set of quantum numbers. More
generally, the Pauli principle requires
wavefunctions for identical particles to be
antisymmetric for fermions and symmetric
for bosons upon interchange of two
particles.

Phonon: In nuclear physics a phonon is
a quantized surface vibration of a quantum
fluid.

Vacuum polarization: A small radiative
correction to the Coulomb potential of
an atom arising from the emission and
reabsorption of virtual positron–electron
pairs.

Valley of stability: In a three-dimensional
plot of the nuclear masses M(Z,N) with
the proton number Z as abscissa neutron
number N as ordinate and M(Z,N) normal
to the Z–N-plane, the stable nuclei will be
found along a region where N ∼ Z, which
appears to form a deep valley – the valley of
stability.

Woods–Saxon potential: For a real
potential function, this is written with an

adjustable surface diffuseness parameter
and a radius parameter R. For a complex
potential, one adds a similar term, V Im.
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