Contents

Preface XV

Notation XIX

1 **Magnets for Accelerators** 1
1.1 The Large Hadron Collider 2
1.2 A Magnet Metamorphosis 7
1.3 Superconductor Technology 16
1.3.1 Critical Current Density of Superconductors 16
1.3.2 Strands 19
1.3.3 Cables 22
1.4 The LHC Dipole Coldmass 27
1.5 Superfluid Helium Physics and Cryogenic Engineering 29
1.6 Cryostat Design and Cryogenic Temperature Levels 32
1.7 Vacuum Technology 33
1.8 Powering and Electrical Quality Assurance 35
1.9 Electromagnetic Design Challenges 38
1.9.1 The CERN Field Computation Program ROXIE 42
1.9.2 Analytical and Numerical Field Computation 44
References 46

2 **Algebraic Structures and Vector Fields** 49
2.1 Mappings 49
2.2 Groups, Rings, and Fields 50
2.3 Vector Space 51
2.3.1 Linear Independence and Basis 53
2.4 Linear Transformations 54
2.5 Affine Space 56
2.5.1 Coordinates 58
2.6 Inner Product Space 60
2.6.1	Metric Space	62
2.6.2	Orthonormal Bases	63
2.6.3	The Erhard Schmidt Orthogonalization	64
2.7	Orientation	66
2.8	A Glimpse on Topological Concepts	68
2.8.1	Homotopy	69
2.8.2	The Boundary Operator	70
2.9	Exterior Products	72
2.10	Identities of Vector Algebra	75
2.11	Vector Fields	75
2.12	Phase Portraits	77
2.13	The Physical Dimension System	80
	References	84

3	Classical Vector Analysis	85
3.1	Space Curves	86
3.1.1	The Frenet Frame of Space Curves	88
3.2	The Directional Derivative	93
3.3	Gradient, Divergence, and Curl	94
3.4	Identities of Vector Analysis	96
3.5	Surfaces in E_3	96
3.6	The Differential	98
3.7	Differential Operators on Scalar and Vector Fields in r and r'	102
3.8	The Path Integral of a Vector Field	103
3.9	Coordinate-Free Definitions of the Differential Operators	104
3.10	Integral Theorems	106
3.10.1	The Kelvin–Stokes Theorem	106
3.10.2	Green’s Theorem in the Plane	107
3.10.3	The Gauss–Ostrogradski Divergence Theorem	108
3.10.4	A Variant of the Gauss Theorem	108
3.10.5	Green’s First Identity	109
3.10.6	Green’s Second Identity (Green’s Theorem)	110
3.10.7	Vector Form of Green’s Theorem	110
3.10.8	Generalization of the Integration-by-Parts Rule	110
3.10.9	The Stratton Theorems	111
3.11	Curvilinear Coordinates	111
3.11.1	Components of a Vector Field	113
3.11.2	Contravariant Coefficients	114
3.11.3	Covariant Coefficients	115
3.12	Integration on Space Elements	115
3.13	Orthogonal Coordinate Systems	117
3.13.1	Differential Operators	119
Contents

3.13.2 Cylindrical Coordinates 121
3.13.3 Spherical Coordinates 122
3.14 The Lemmata of Poincaré 125
3.15 De Rham Cohomology 126
3.16 Fourier Series 129
References 136

4 Maxwell’s Equations and Boundary Value Problems in Magnetostatics 137

4.1 Maxwell’s Equations 138
4.1.1 The Global Form 138
4.1.2 The Integral Form 139
4.1.3 The Local Form 141
4.1.4 Maxwell’s Original Set of Equations 142
4.2 Kirchhoff’s Laws 143
4.3 Conversion of Energy in Electromagnetic Fields 143
4.4 Constitutive Equations 144
4.5 Boundary and Interface Conditions 146
4.6 Magnetic Material 151
4.6.1 Ferromagnetism 152
4.6.2 Measurement of Hysteresis Curves 155
4.6.3 Magnetic Anisotropy in Laminated Iron Yokes 159
4.6.4 Magnetostriction 160
4.6.5 Permanent Magnets 161
4.6.6 Magnetization Currents and Fictitious Magnetic Charges 163
4.7 Classification Diagrams for Electromagnetism 165
4.8 Field Lines 167
4.8.1 Classification of Electromagnetic Field Problems 167
4.9 Boundary Value Problems 1: Magnetostatic 171
4.9.1 Scalar-Potential Formulations 171
4.9.2 Vector-Potential Formulations 173
4.9.3 The Scalar Laplace Equation in 2D 179
4.10 Boundary Value Problems 2: Magnetic Diffusion Problems 180
References 184

5 Fields and Potentials of Line-Currents 187

5.1 Green Functions 188
5.2 Potentials on Bounded Domains 189
5.3 Properties of Harmonic Fields 191
5.4 The Biot-Savart Law 193
5.5 Field of a Straight Line-Current Segment 197
5.6 Field of a Ring Current 200
5.7 The Magnetic Dipole Moment 203
5.8 The Magnetic Double Layer 205
5.8.1 The Solid Angle 206
5.8.2 Approximating the Solid Angle of a Current Loop 208
5.9 The Image-Current Method 209
5.9.1 Plane Boundaries 211
5.9.2 Circular Boundaries 213
5.10 Stored Energy in a Magnetostatic Field 216
5.10.1 Self and Mutual Inductance 218
5.10.2 The Geometric Mean Distance 220
5.10.3 Magnetic Flux 222
5.11 Magnetic Energy in Nonlinear Circuits 224
5.11.1 Differential Inductance 224
5.12 Magnetic Forces and the Maxwell Stress Tensor 227
5.13 Fields and Potentials of Magnetization Currents 230
5.14 Magnetic Levitation 232
References 235

6 Field Harmonics 237
6.1 Circular Harmonics 238
6.1.1 Determining the Multipole Coefficients 240
6.1.2 Magnetic Shielding; Permeable Cylindrical Shell in a Uniform Field 253
6.1.3 Integrated Multipoles in Accelerator Magnets 255
6.2 Spherical Harmonics 257
6.2.1 Legendre Series Expression for the Vector Potential 262
6.2.2 Determining the Zonal Harmonics 263
6.3 Separation in Cartesian Coordinates 265
References 268

7 Iron-Dominated Magnets 269
7.1 C-Shaped Dipole 270
7.2 Quadrupole 271
7.3 Ohmic Losses in Dipole and Quadrupole Coils 272
7.4 Magnetic Circuit with Varying Yoke Width 272
7.5 Branched Circuits 274
7.6 Ideal Pole Shapes of Iron-Dominated Magnets 275
7.6.1 Shimming 277
7.7 Rogowski Profiles 278
7.8 Combined-Function Magnets 281
7.9 Permanent Magnet Excitation 282
7.10 Cooling of Normal-Conducting Magnets 287
References 291
Contents

8 Coil-Dominated Magnets 293
8.1 Accelerator Magnets 294
8.1.1 Generation of Pure Multipole Fields 295
8.1.2 Sensitivity to Coil-Block Positioning Errors 305
8.1.3 Force Distribution 305
8.1.4 Margins in the LHC Main Dipole 306
8.2 Combined-Function Magnets and the Unipolar Current Dipole 309
8.3 Rectangular Block-Coil Structures 310
8.4 Field Enhancement in Coil Ends of Accelerator Magnets 311
8.5 Magnetic Force Distribution in the LHC Dipole Coil Ends 312
8.6 Nested Helices 314
8.7 Solenoids 315
8.7.1 Helmholtz and Maxwell Coils 315
8.7.2 Fabry Factors 317
8.7.3 Off-Axis Fields 321
8.7.4 Zonal Harmonics 324
References 325

9 Complex Analysis Methods for Magnet Design 327
9.1 The Field of Complex Numbers 328
9.2 Holomorphic Functions and the Cauchy–Riemann Equations 329
9.3 Power Series 331
9.4 The Complex Form of the Discrete Fourier Transform 333
9.5 Complex Potentials 335
9.6 Conformal Mappings 336
9.7 Complex Representation of Field Quality in Accelerator Magnets 338
9.7.1 Feed-Down 338
9.7.2 Reference Frame Rotation 342
9.7.3 Reflection about the Vertical Axis 343
9.8 Complex Integration 344
9.8.1 Cauchy’s Theorem and the Integral Formula 345
9.8.2 Properties of Holomorphic Functions 346
9.8.3 The Residual Theorem 348
9.9 The Field and Potential of a Line Current 349
9.9.1 Series Expansion of the Line-Current Field 350
9.9.2 Circular Sector Windings 351
9.10 Multipoles Generated by a Magnetic Dipole Moment 351
9.11 Beth’s Current-Sheet Theorem 352
9.12 Electromagnetic Forces on the Dipole Coil 354
9.13 The Field of a Polygonal Conductor 356
9.14 Magnetic Flux Density Inside Elliptical Conductors 358
References 362
10 **Field Diffusion** 363
10.1 Time Constants and Penetration Depths 363
10.2 The Laplace Transform 365
10.3 Conductive Slab in a Time-Transient Applied Field 370
10.3.1 The Step-Excitation Function 371
10.3.2 Linear Ramp of the Applied Field 373
10.3.3 Sinusoidal Excitation 375
10.4 Eddy Currents in the LHC Cold Bore and Beam Screen 376
References 382

11 **Elementary Beam Optics and Field Requirements** 383
11.1 The Equations of Charged Particle Motion in a Magnetic Field 383
11.2 Magnetic Rigidity and the Bending Magnets 387
11.3 The Linear Equations of Motion 389
11.4 Weak Focusing 390
11.5 Thin-Lens Approximations 392
11.6 Transfer Matrices 393
11.7 Strong Focusing and the FODO Cell 395
11.8 The Beta Function, Tune, and Transverse Resonances 397
11.9 Off-Momentum Particles 407
11.9.1 Dispersion 408
11.9.2 Chromaticity 410
11.10 Field Error Specifications 412
References 413

12 **Reference Frames and Magnet Polarities** 415
12.1 Magnet Polarity Conventions 416
12.1.1 Spool-Piece Correctors 418
12.1.2 Twin-Aperture and Two-in-One Magnets 418
12.2 Reference Frames 420
12.3 Multipole Expansions 421
12.3.1 The Magnet Frame 421
12.3.2 The Local Reference Frame of Beam 1 423
12.3.3 Definition of Field Errors in the Accelerator Design Program MAD 424
12.3.4 Transformation between the Magnet and the Beam 1 Frames 424
12.4 Orbit Correctors 426
12.5 Position of the Connection Terminals 426
12.6 Turned Magnets and Magnet Assemblies 427
12.7 Electrical Circuits in the LHC Machine 429
References 432
13 Finite-Element Formulations 433
13.1 One-Dimensional Finite-Element Analysis 434
13.1.1 Quadratic Elements 439
13.2 FEM with the Vector-Potential (Curl–Curl) Formulation 441
13.2.1 The Weak Form in 3D 443
13.2.2 The Weak Form in 2D 444
13.3 Complementary Formulations 445
13.3.1 FEM with Reduced Vector-Potential Formulation 445
13.3.2 FEM, Employing the Vector Poisson Equation 449
13.3.3 The $A-\phi$ Formulation for Eddy-Current Problems 451
References 453

14 Discretization 455
14.1 Quadrilateral Mesh Generation 456
14.1.1 Parametric Modeling 457
14.1.2 Topology Decomposition 458
14.1.3 Domain Decomposition 459
14.1.4 Meshing of Simple Domains 460
14.1.5 Smoothing 461
14.1.6 Remeshing and Morphing 462
14.2 Finite-Element Shape Functions 465
14.2.1 The Linear Triangular Element, 2D 466
14.2.2 Barycentric Coordinates 469
14.2.3 Local Coordinates 470
14.2.4 Mapped Elements 471
14.2.5 Generation of the Shape Functions 474
14.2.6 Transformation of Differential Operators 476
References 479

15 Coupling of Boundary and Finite Elements 481
15.1 The Boundary-Element Method 482
15.1.1 The Node Collocation Method 486
15.2 BEM–FEM Coupling 487
15.3 BEM–FEM Coupling using the Total Scalar-Potential 489
15.4 The M(B) Iteration 491
15.5 Applications 492
15.5.1 2D Calculations 492
15.5.2 Saturation Effects in the Iron Yoke 495
15.5.3 3D Calculations 496
References 502
16 Superconductor Magnetization 503
16.1 Superconductor Magnetization 507
16.2 Critical Surface Modeling 509
16.3 The Critical State Model 513
16.4 The Ellipse on a Cylinder Model 516
16.5 Nested Intersecting Circles and Ellipses 519
16.6 Hysteresis Modeling 521
16.7 Magnet Field Errors due to the Superconducting Filament Magnetization 527
16.8 The M(B) Iteration 530
16.9 Software Implementation 532
16.10 Applications to Magnet Design 532
16.10.1 Compensation of Multipole Field Errors 534
16.11 Nested Magnets 537

References 540

17 Interstrand Coupling Currents 543
17.1 Analysis of Linear Networks 544
17.1.1 The Linear U(I) Relation in a Branch 545
17.1.2 The Topology of Networks 547
17.1.3 The Branch/Node Incidence Matrix and the Node-Potential Method 548
17.1.4 The Mesh Matrix and the Mesh-Current Method 551
17.1.5 Transient Field Analysis 553
17.2 A Network Model for the Interstrand Coupling Currents 555
17.3 Steady-State Calculations 557
17.3.1 Spectral Analysis of the Solution 559
17.4 Time-Transient Analysis 560
17.4.1 Spectral Analysis of the Solution 561
17.5 The M(B) Iteration Scheme for ISCCs 562
17.6 Approximation for the Interstrand Coupling Currents 563
17.7 Interfilament Coupling Currents 564
17.8 Applications to Magnet Design 566
17.8.1 Field Advance 566
17.8.2 Rapid Cycling Magnets 567

References 572

18 Quench Simulation 575
18.1 The Heat Balance Equation 577
18.2 Electrical Network Models of Superconductors 580
18.3 Current Sharing 582
18.4 Winding Schemes and Equivalent Electrical Circuit Diagrams 584
18.5 Quench Detection 585
18.6 Magnet Protection 586
18.7 Numerical Quench Simulation 589
 18.7.1 The Thermal Model 591
 18.7.2 External Electrical Circuits 594
18.8 The Time-Stepping Algorithm 595
18.9 Applications 596
 18.9.1 Validating the Model 598
 18.9.2 Fast Ramping Magnets 601
References 607

19 Differential Geometry Applied to Coil-End Design 609
 19.1 Constant-Perimeter Coil Ends 612
 19.2 Differential Geometry of the Strip Surfaces 615
 19.2.1 The Frenet–Serret Equations for Strips 616
 19.2.2 The Generators of Strips 618
 19.3 Discrete Theory of the Strip Surface 621
 19.4 Optimization of the Strip Surface 627
 19.5 Coil-End Transformations 630
 19.6 Corrector Magnet Coil End with Ribbon Cables 631
 19.7 End-Spacer Manufacturing 633
 19.8 Splice Configurations 634
 References 636

20 Mathematical Optimization Techniques 637
 20.1 Mathematical Formulation of the Optimization Problem 639
 20.2 Optimality Criteria for Unconstrained Problems 641
 20.3 Karush–Kuhn–Tucker Conditions 642
 20.4 Pareto Optimality 644
 20.5 Methods for Decision Making 646
 20.5.1 Goal Programming 646
 20.5.2 The Pareto-Strength Algorithm 650
 20.5.3 Constraint Formulation and Sensitivity Analysis 651
 20.5.4 Payoff Tables 653
 20.6 Box Constraints 654
 20.7 Treatment of Nonlinear Constraints 655
 20.8 Deterministic Optimization Algorithms 655
 20.8.1 Line Search 656
 20.8.2 Multidimensional Search Methods 659
 20.8.3 Gradient Methods 660
 20.9 Genetic Optimization Algorithms 667
 20.9.1 Parameter Representation 669