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Appendix F
Measurement of the Absolute Populations of Excited
Atoms by Classical Spectroscopy Techniques
Written by Prof. Yu. B. Golubovskii

In plasma spectroscopy, the populations of excited atoms are frequently
measured by the classical (other than laser) light emission and absorp-
tion methods. At the foreground in that case is the problem of adequate
illumination of the spectral instrument and the correct calculation of the
luminous flux that in the final analysis reaches the detector. The speci-
ficity here is that plasma sources are, as a rule, extensive and volumet-
ric. The luminous flux from volumetric plasma sources is compared with
that from standard sources, frequently in the form of flat tungsten-ribbon
photometric lamps. The radiation of such a standard source can be char-
acterized by the surface brightness bλ [Wcm−2 · Å · sr] – the power emit-
ted by a unit surface area into a unit solid angle within a unit wave-
length interval in a direction normal to the area – or by the radiance rλ

[Wcm−2 · Å · sr] – the emission of a unit surface area into a solid angle of
2π. The relation between brightness and radiance for cosine radiators is
well known to be rλ = πbλ. By comparing between the luminous fluxes
from plasma and the standard source, which have been made to travel
one and the same optical path by means of a tilting mirror, one can de-
duce the absolute spectral line intensity Ii,k [Wcm−3] or the continuum
intensity Iλ [Wcm−3 · Å], that is, the power emitted by a unit volume of
plasma into a solid angle of 4 π, either integrally, in the spectral line, or
within a unit wavelength interval in the continuum. The population Ni
[cm−3] of the emitting level is then found from the absolute spectral line
intensity by the relation Ii,k = Ni Ai,khνi,k, where Ai,k[s−1] is the transi-
tion probability and hνi,k is the quantum energy. The traditional scheme
of the experiment is shown in Figure F.1.

When taking measurements with a high spatial resolution, one should
use a good objective lens, corrected for various kinds of aberrations, to
project a reduced real image of the volumetric plasma source onto the
entrance slit of the spectral instrument. In the plane of the slit is formed
a sufficiently sharp real image of the source, because the image reduction
in the longitudinal direction is squared that in the transverse direction.
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Figure F.1 Schematic of absolute line intensity measurements:
1 – standard source (a photometric lamp); 2 – tilting mirror;
3 – plasma source (e.g. a discharge tube); 4 – objective lens
diaphragm; 5 – objective lens; 6 – spectral instrument; 7 and 8 –
entrance and exit slit, respectively; 9 – radiation detector;
10 – image (scaled up) of the plasma object in the slit plane.

Indeed, if one uses the thin lens formula and differentiates,
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one can then see that if the image reduction is defined by the ratio −x′/x,
the ratio between the longitudinal dimensions of the image and the ob-
ject is reduced squared number of times more (x, x′ are conjugate points,
f is the focal length of the objective lens). The minus signs mean that
the image will be reversed and inverted (the near and far sections will
change places). We can cite a typical example of measurements of the
radiation intensity using the positive column of a discharge 20 mm in di-
ameter and 40 cm long. Let the image of the discharge tube reduced by a
factor of 7 be projected onto the slit of the spectral instrument by means
of an objective lens 25 mm in focal length. The reality of measurements
is that the flat tungsten ribbon of the standard source is projected onto
the plane of the slit absolutely sharp (up to the aberrations of the lens),
whereas different sections of the volumetric source prove to be out of fo-
cus in the plane of the slit, except for the section whose distance from
the objective lens coincides with that of the tungsten ribbon. This section
is assumed to be coincident with the center of the discharge tube and
200 cm distant from the objective lens, with the given focal length and
7-fold image reduction. Accordingly, the front and rear windows of the
discharge tube will be 180 cm and 220 cm distant from the objective lens.
In the image plane, they will be 28.2 cm and 29 cm distant from the lens,
while the plane of the slit, 28.6 cm remote from it. The front window
will be reduced by a factor of 6.38, whereas the rear one, 7.58 times. The
image of the discharge tube will look like a conical layer of small thick-
ness, a mere 8 mm, and will be perceived as a sharp image of an object in
the form of a circle some 3 mm in diameter. It is expedient to place two
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crossed slits at the entrance, which will make it possible to isolate from
the image the region of interest with a high (no worse than 0.01 mm) ac-
curacy. It will then be possible to isolate from this circle a small area,
say 2 mm by 2 mm in size, and set the diaphragm of the objective to ap-
proximately 2 cm diameter, so as to match the angular dimensions to the
relative aperture of the spectral instrument (1:10 in our example). In that
case, the solid angle through which the light from the sources is collected
turns out to be small enough. This scheme of illumination of the spectral
instrument provides for a sufficiently good spatial resolution, which will
be discussed later in the text.

The prime task facing the experimenter is to correctly calculate the dif-
ferential luminous fluxes issuing from various elementary plasma vol-
umes and integrate them over that plasma region, whose light passes
through the slit of the spectral instrument. The next, simpler step is to
calculate the luminous flux from the photometric lamp that has passed
through the slit. Taking the ratio between these fluxes, which are pro-
portional to the signals registered from plasma and from the standard
source, one can determine the absolute intensity of the spectral line or
continuum.

This problem can be solved by two equivalent methods. First of all, it is
necessary to find the locus of points of the volumetric source, from which
light enters the spectral instrument. Next, as already mentioned, it is nec-
essary to calculate the luminous flux from an elementary plasma volume,
with due regard for absorption in the source, and finally, integrate over
the locus found, allowing for the possible spatial inhomogeneity.

The second method consists in calculating the illuminance in the plane
of the slit produced by some section of the volumetric source (in the gen-
eral case, the image will be out of focus), summing up the illuminances
from all the sections of the source, and finally, integrating the total illu-
minance over the area of the slit. Naturally both these methods yield the
same final results.

Let the reduced image of the volumetric source be projected into the
slit plane P′ as shown in Figure F.2. The coordinates are reckoned from
the principal planes of the optical system. The plane P, conjugate to P′,
is projected exactly into the slit plane with a reduction of a′/a. Let us iso-
late an elementary volume dV with the coordinates x, r within the limits
of the source in the plane P1, which is projected into the point x′, r′ in
the plane P′

1, and find the luminous flux that passes from the elemen-
tary volume dV through the elementary area dσ′ of the slit on the optical
axis of the system. The luminous flux is captured by the objective lens
within the solid angle Ω and, propagating in the image space, forms a
uniformly illuminated circle of radius ρ in the slit plane, the center of
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Figure F.2 To the calculation of the luminous flux entering the
spectral instrument through the elementary area on the optical
axis in the slit plane.

Figure F.3 Conical surface cutting out that volume in the plasma
source, from which light enters the spectral instrument through the
center of the slit (top). Cylindrical volume equivalent to the cone in
calculating the luminous flux (bottom).

this circle lying at a distance of r′′ from the optical axis (bottom part of
Figure F.1). Obviously, light will pass through the elementary area dσ′

only if the condition r′′ ≤ ρ is satisfied. This condition determines the
locus of those points of the source, light from which enters the spectral
instrument through the small area dσ′. In actual experiments, the solid
angles Ω, Ω′ are small enough, so that the paraxial optics approxima-
tion can be used. Using the similitude of triangles and expressing the
primed coordinates in terms of the unprimed ones by the rules of geo-
metrical optics, one can write down, accurate up to second-order, terms
of the condition for the passage of light through the slit of the spectral
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instrument in the form

r ≤ R
(

1 − x
a

)
.

This expression describes in the space of the object a conical surface with
vertex at the point x = a, which rests on a circle of radius R on the surface
of the objective lens as on a base (Figure F.3). Since it is only a fraction of
the luminous flux, equal to the ratio dσ′/πρ2, that will pass through the
elementary area dσ′ of the slit (which is equivalent to the capture of the
luminous flux within a small solid angle dΩ shaded in Figure F.1), the
luminous flux gathered from the elementary volume dV turns out to be

dF =
IdV
4π

Ω(x)
dσ′

πρ2(x)
. (F.1)

The total flux that has passed through dσ′ is obtained by integrating over
the conical surface. For a homogeneous and nonabsorbing source, we
have
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I
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π
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Integration with respect to ϕ gives 2π. Considering that

Ω(x) = πR2/x2; ρ = R
f (a − x)
x(a − f )

,

we get an interesting corollary, namely, the integrand in x
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is independent of the coordinate x and is equal to the solid angle Ω′

at which the objective is viewed from the point dσ′. Integration with
respect to x is in this case reduced to multiplication into the length L of
the source, and finally it follows from formula (F.2) that

F = Idσ′L
Ω′

4π
= IdσL

Ω
4π

, (F.4)

where dσ = dσ′ (a/a′)2 is the element of the area dσ′ scaled into the
image space with a magnification of (a/a′)2 and Ldσ is the volume of a
cylinder of length L and base area dσ. This result shows that, subject to
the assumptions made above, the luminous flux gathered from any sec-
tion of the cone within the limits of the volumetric source is the same.
Only small fractions of light, equal to dσ′/πρ2, pass from elementary
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Figure F.4 Conical surface cutting out that region of the source,
from which light enters the spectral instrument through a finite-
size slit.

volumes in the unfocused image, but these volumes are sufficiently nu-
merous for these two factors to be completely offset for any section of the
volumetric source. Thus, for the illumination scheme under considera-
tion, a cone inscribed in the volumetric source is totally equivalent to a
cylinder of length L and base area dσ, the luminous flux from each ele-
ment of the cylinder being gathered through a solid angle of Ω = πR2/a2

(shaded region in the bottom part of Figure F.3). The effective diaphragm
radius R can be determined either by the diameter of the objective lens
or by the relative aperture of the spectral instrument, for the angle Ω′ can
be limited by the collimator of a spectrograph.

Figure F.2 shows the region of the volumetric source, whose light
passes through the elementary area dσ′ of the slit, which is located on
the optical axis (the vertex of the cone coincides with dσ′, point slit ap-
proximation). If the slit is of finite size σ′, light passing through the other
elementary areas of the slit will be gathered from the cones whose ver-
tices coincide with the images of these areas in the space of the object. To
calculate the luminous flux that has passed through the slit of finite size,
it is necessary to swing the optical axis from one edge of the slit to the
other. The region from which radiation enters the spectral instrument in
the case of finite-size slit is shaded in Figure F.4. This region determines
spatial resolution in absolute measurements. One can demonstrate that
in this case, analogy also holds between the cone from Figure F.3 and a
cylinder with a length of L and a cross-sectional area of σ equal to the
total area σ′ of the slit increased by a factor of (a/a′)2. In actual exper-
imental conditions, spatial resolution is of the order of a millimeter and
can be bettered to a few fractions of a millimeter, depending on the size
of the slit and the effective diaphragm. As in any physical experiments,
the improvement of spatial resolution worsens the signal-to-noise ratio
at the output of the recording system, and so a reasonable trade-off deci-
sion is required in selecting the parameters of the optical system.

With the luminous flux calculation scheme suggested, one can easily
introduce corrections for the axial inhomogeneity within the limits of the
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source if one puts I(x) = I0Ψ(x/L), where I0 is the maximum intensity
and the function Ψ describes the relative axial radiation intensity dis-
tribution. Obviously the magnitude of the luminous flux is in this case
given by

F = I0dσL
Ω
4π

ψ; ψ =
1
L

∫ a+L/2

a−L/2
Ψ (x/L) dx. (F.5)

The radial inhomogeneity in the given illumination scheme can be disre-
garded at small angular apertures.

As applied to an axially symmetric source viewed across the axis (Fig-
ure F.5), expression (F.5) assumes the form

F(y) = I0dσR0
Ω
4π

ψ(y); (F.6)

ψ(y) = 2
∫ √

1−y2

0
Ψ(r)dx = 2

∫ 1

y

Ψ(r)dr√
r2 − y2

. (F.6a)

The relative coordinates x, y, r range between 0 and 1, I0 is the absolute
radiation intensity at the center of the source, ψ(y) is the measured rela-
tive transverse distribution normalized to unity at the center and Ψ(r) is
the relative radial intensity distribution. To convert from the measured
transverse distribution ψ(y) to the true radial distribution Ψ(r), it is nec-
essary to solve Abel‘s equation (F.6)a by any of the numerous methods
developed for the purpose.

Spatial resolution can be improved with the aid of the instrument func-
tion that describes the broadening of a delta-shaped point source in the
course of projection into the plane of the slit. Indeed, the aberrations
of the projection optics and the finite sizes of the slits and effective di-
aphragms result in instrumental distortions as regards spatial measure-
ments. The instrument function is rather difficult to calculate, but its
form can be easily found by replacing the volumetric with by a point one
and scanning its image in the actual experimental setup. The instrument
function thus obtained should be normalized to unit surface area. In that
case, the measured radial distribution F′(r) will be related to the true
distribution F(r) by the convolution-type equation

F′(r) =
∫

F(ρ)A(r − ρ) dρ.

To exclude instrumental distortions, use can be made of the well-
developed methods for solving ill-posed problems. Allowing for instru-
mental distortions is especially important when measuring luminous
fluxes across the axis in axially symmetric sources (Figure F.5). One
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Figure F.5 Luminous flux gathered from an axially symmetric
source viewed across the axis.

should first correct the observed transverse distribution for the spatial
instrumental distortions and then take the Abelian transformation to get
the true radial distribution. One has to deal here with the successive so-
lution of two first-order integral equations, which is generally a complex
enough problem. Figure F.6 presents some illustrative examples show-
ing what instrumental distortions one can expect when measuring radial
line intensity distributions along and across the axis of a discharge. For
example, when studying the radial structure of a contracted discharge
filament 3 mm in radius, the radial distribution measured along the axis
is F′(r) (Figure F.6a). The instrument function is approximated by a
Gaussian curve with a half-width of 1 mm. Following correction for the
instrumental distortions, one gets the curve F(r) which at maximum
differs by ca. 30% from the measured one. The transverse distribution
measured across the axis (Figure F.6b) is ψ(y), and the radial distribution
recovered from it without correction made for the instrumental distor-
tions is Ψ1(r), while that recovered with due regard for the distortions,
Ψ2(r). Taking account of instrumental distortions is especially important
where plasma glow is concentrated in peripheral regions, for example,
in the case of skin effect. In that case, the effect of instrumental distor-
tions in the analysis of the spatial structure of a plasma source can be
appreciable.



F Measurement of the Absolute Populations of Excited Atoms 591

Figure F.6 Illustrating the effect of instrumental distortions when
taking spatial luminous flux measurements for an axially sym-
metric source viewed (a) along and (b) across the axis. F′(r) and
F(r) – observed and recovered radial distributions for the source
viewed along the axis, ψ(r) – observed transverse distribution,
Ψ1(r) – radial distribution recovered without allowing for instru-
mental distortions, Ψ2(r) – radial distribution recovered with due
regard for instrumental distortions.

This luminous flux calculation method makes it possible to easily take
account of self-absorption within the limits of an axially homogeneous
source. To this end, one should multiply expression (F.1) into the prob-
ability that quanta will cover the distance from the point with the coor-
dinates x, r to the boundary of the source without being absorbed and
then integrate it over the conical surface. The probability that the quanta
emitted in a spectral line with an emission profile of εν will cover the
distance x without being absorbed is

w(x) =
∫ ∞

0
εν exp(−kνx)dν, (F.7)

where kνis the absorption line profile,
∫ ∞

0 ενdν = 1.
It proves convenient to move the origin of coordinates to the point

x = a. Multiplying expression (F.1) by (F.7) and integrating over the
conical surface with due regard for property (F.3), we get

F = Idσ
Ω
4π

∫ L/2

−L/2
dx

∫ ∞

0
εν exp

(
−kν

(
L
2
− x

))
dν. (F.8)
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Changing the order of integration and integrating with respect to the
coordinate, we have

F = IdσL
Ω
4π

∫ ∞

0

εν

kνL
(1 − exp (−kνL)) dν ≡ IdσL

Ω
4π

S(k0L), (F.9)

where S(k0L) is the Ladenburg function and k0 is the absorption coef-
ficient at the line center. Expression (F.9) gives in absolute measure the
magnitude of the luminous flux that has passed through the slit of the
spectral instrument from the volumetric plasma source in the given illu-
mination scheme in the presence of reabsorption within the limits of the
source.

The Ladenburg function shows how much the luminous flux emitted
by the plasma column of fixed length is reduced as the absorption coeffi-
cient grows higher. The product of the column length and the Ladenburg
function shows how the radiant flux increases with increasing column
length at a fixed absorption coefficient. The integrand in expression (F.9)
shows how the spectral line profile deforms outside of the source as the
optical density is increased. Obviously expression (F.9) becomes (F.4) if
one puts kν → 0 and expands the exponent in the integrand in (F.9) into a
series. Passage to the limit of high absorption coefficient values is not so
obvious. If one simply neglects the exponent in comparison with unity
in expression (F.9), then, assuming similar emission and absorption line
profiles, one obtains divergence on integrating with respect to frequency
between infinite limits. The important point is that despite the great op-
tical thickness near the line center, absorption in the far wings of the line
becomes weak, the exponent approaches unity and cannot be omitted
when taking the integral in expression (F.9). Actually this means that
photons in the line wings can move large distances without being ab-
sorbed and leave the plasma volume. One can expunge the divergence if
one formally cuts off the spectral line wings at some fixed frequencies. In
this hypothetical case, integration over a finite spectral interval, with the
exponent disregarded and the emission line profile normalization taken
into account, yields

F = Idσ
Ω
4π

1
k0

,

and the luminous flux no longer depends on the length of the source.
For real line profiles, the Ladenburg functions fail to reach saturation.
Figure F.7 presents the luminous flux issuing from a plasma column as a
function of the column length at a fixed absorption coefficient.

To confine the emission of spectral lines within the volume of plasma,
it is necessary to introduce stimulated transitions along with the spon-
taneous ones and to take into account the broadening and overlapping
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Figure F.7 Luminous flux as a function of the discharge column
length at a fixed absorption coefficient for a Doppler and a Lorentz
line profile.

of spectral lines. In this case the intensity in the line center will be equal
to the Planck’s blackbody intensity value. Based on expression (F.9), one
can construct classical methods for measuring the densities of emitting
atoms, which was started by Ladenburg and co-workers and described
in many books on plasma spectroscopy.

Formula (F.4) for an optically thin source and (F.9) for a source with
self-absorption can be used to calculate the absolute intensities of spec-
tral lines. To this end, it is necessary to calculate the luminous flux that
has passed through the slit from a standard source to be located at a dis-
tance of a from the objective lens, which is attained by means of a tilting
mirror. Let S be the surface area of the ribbon filament of the photo-
metric lamp and b =

∫ ∞
0 bλ dλ, the integral brightness determined from

the ribbon temperature specified in the lamp certificate, depending on
the filament current. The luminous flux that has been gathered by the
objective lens and passed through the slit with a surface area of dσ′ is
obviously

Fst = bSΩ
dσ′

S′ = bdσ′
( a

a′

)2
Ω = bdσΩ.

This expression is tantamount to the statement that the image brightness
is equal to the brightness of the object. The luminous flux issuing from
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the spectral instrument’s exit slit with a width of δl will be

Fst = bλ

(
dλ

dl

)
δldσΩ ∼ ust (F.10)

where (dλ
dl ) is the dispersion of the spectral instrument and ust is the reg-

istering system signal proportional to the luminous flux from the stan-
dard source. If the width of the spectral line emitted by plasma is much
smaller than the spectral width of the exit slit, the signal upl from the
plasma source will be proportional to the luminous flux F that in its turn
is determined by the integral line intensity I (formulas (F.4) and (F.9)). If
we take the ratio between the luminous fluxes registered from the plasma
and the standard source, we will have, on canceling out the geometrical
factors identical in both cases, the following simple expressions for cal-
culating the absolute intensities of spectral lines:

• for optically thin sources,

I = 4πbλ

(
dλ

dl

)
δl

1
L

upl

ust
, (F.11)

• for sources with reabsorption,

I = 4πbλ

(
dλ

dl

)
δl

1
L

S(kνL)
upl

ust
. (F.12)

When registering a continuous spectrum from an optically thin source,
the luminous flux passing trough the exit slit of small spectral width will
be

F = Iλ

(
dλ

dl

)
δldσL

Ω
4π

.

From the ratio between the luminous fluxes from plasma and the stan-
dard source we have the following expression for the absolute intensity
of the continuum at a wavelength of λ:

Iλ = 4πbλ
1
L

upl

ust
. (F.13)

Thus, formulas (F.11) through (F.13) enable one to calculate the absolute
intensities of spectral lines and continua and determine the populations
of emitting atoms, and expression (F.9) can help one to get the popula-
tions of absorbing atoms when using the classical absorption methods
described in Chapters 3 to 5.
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9
ionization temperatures 17

j
Jacquinot advantage 421, 438

k
Kirchhoff’s law 11, 16
Klein–Nishina formula 61
Kramers formula 54

l
Ladenburg and Levi function

48
Ladenburg and Reiche function

48
Lagrange–Helmholtz principle

30
lambda doubling 271
Landau–Teller relaxation equa-

tion 156
Lande factor 343
laser-induced fluorescence

104, 105, 120
law of mass action 7–9
light intensity 28
light scattering 60
light-gathering power 412,

413, 419–421, 428, 430, 431,
436, 438

limit of discernibility of indi-
vidual lines 368

linear dispersion 410, 417, 421,
437

linear splitting 314
linear Stark effect 34
local electric field 307
local thermal equilibrium 14,

16

Lorentz broadening 32, 36, 41,
46

Lorentz–Lorenz formula 399
Loschmidt number 12

m
magnetic field measurement

method 342
magnetic quantum number

323, 328
Maxwell distribution function

6, 21
measurement of the electron

density 343
Michelson interferometer 414,

425, 430
Milne formula 57
modified diffusion approxima-

tion 226
multipass absorption cells 95,

97, 98
multiphoton fluorescence exci-

tation 334
multiphoton interaction 129
multiplet component 81, 82,

84

n
natural decay 32, 33, 42
noise component 463
noise equivalent power 464
noise factor 86
non-hydrogen-like atoms 364
nonisothermal mixture of parti-

cles 167
nonlinear susceptibility tensor

338, 339
nuclear spin 490, 491
nuclear statistical weight 276

o
optical density 29, 44, 46–48,

50



Index 607

optically thin plasma 20, 24
optico-acoustic detector 466
optogalvanic effect 104, 121–

123, 128, 146
oscillator strengths 44, 45

p
parabolic coordinate 312
parity 491
partial equilibria 14
partial local thermal equilib-

rium 14, 16
partial temperature 17, 21
phase 353–355, 374, 375
phase perturbations 34, 35
phase-matching 138, 139
photocathodes 467, 468
photographic emulsion 472
photoionization 57, 59
photometric parameter 419,

439, 448
photometric quantitie 29
photometric quantity 27
photomultiplier 467–470, 475,

479, 480
photon noise 429, 430, 462
photorecombination 55, 57, 59
photoresistor and photovoltaic

detector 470
Planck formula 11, 13
plasma microfield 326
plasma turbulence 316
plasmatron 456
plasmatrons 456
point symmetry group 489,

490
polarizability 351, 352
polarization intermodulation

excitation 125
polarization state of the field

322
Poynting vector 12

predissociation 116
probability of radiative tran-

sitions in diatomic molecul
269

profile homogeneous 33
profile of the π- and σ-

component 344
profile of the Dγ line 317
profile of the Hα spectral line

316
profile of the Hδ spectral line

314
profile of the spectral line 321
pulsed light source 448
pyroelectric detector 465

q
quadratic Stark effect 34–36
quality of a photographic im-

age 477
quantitative spectroscopy 27
quantum efficiency 463, 473
quantum numbers 487
quantum photodetectors 461,

472
quasineutrality 1
quenching cross section 34

r
Rabi frequency 93, 108, 109
radiant emittance 27–29
radiant energy density 27
radiant flux 27, 28, 30
radiation induced by the static

337
radiation transfer 29, 47, 50
Radon integral transformation

72
random processes 32
raster spectrometer 431



608 Index

ratio between the Thomson and
the Rayleigh scattered inten-
sity 383

Rayleigh criterion 411, 418,
478

Rayleigh scattering 63
recombination continuum 51
reduced field 307
reflection and transmission of

film 400
reflection coefficient 398, 399,

401, 403–405, 422, 425, 437
refractive index 351, 352
relative intensities of lines in

the rotational structure 180
resolving power 409–411, 418,

419, 425, 428, 430, 432, 436–
438, 477–479, 485

resonance fluorescence 63
rotational statistical sum 200
rotational temperature 154,

169–171, 179, 184, 188–190,
200, 205, 216, 218, 230

Rydberg atom 323, 326, 329

s
Saha-Boltzmann formula 9
satellite branche 511, 512, 521,

550, 561
satellite intensity ratio 317,

319, 321
saturation power density 86,

87
scattering cross-section per unit

volume 375
scattering region 378, 379, 386
scattering signal 375, 378, 388,

390
selection rule 508, 510, 512,

518, 519, 532, 535, 537, 546, 561
sensitivity 414, 461–470, 473–

476, 478

series of dielectric layers 405
sharpness factor 419
shift cross section 36, 42
skin layer 399, 400
slit instrument 409, 410, 432
solar constant 30
solar photosphere 301, 303
source function 154
spectra of a discharge in an He-

Ne mixture 122
spectral absorption coefficient

44, 45, 54
spectral analysis methods 235
spectral density of radiance 28
spectral intensity 12, 16
spectral line profile 31, 33, 36,

38, 42
spectral profile of the Thomson

scattering 376
spectrum of fluctuations 374
spectrum inversion 211–216
spin splitting 488
spontaneous Raman scattering

130, 133, 134, 136, 140, 141
standard sources 583
Stark effect for multielectron

atoms 327
Stark multiplet 312, 323, 325,

328, 335
Stark spectroscopy 307, 322,

323, 334–336, 341, 347, 348
statistical sum 7–9
statistical weight 7
statistical weight for rotational

levels 491
statistical weight of rotational

level of molecules 489
statistical weight of rotational

levels 491
statistical weight of the levels

6



Index 609

statistical weight of the vibra-
tional level 489

statistical wing 38, 42
Stefan–Boltzmann law 11
Stern–Fulmer plots 113
stimulated Raman scattering

135–137, 140
strongly ionized plasma 2, 3
sub-Doppler Stark spectroscopy

336
surface brightness 583
Swan bands 190
symmetry number 490
symmetry operation 491

t
thermal noise 462, 465, 466
thermal photodetector 461,

462, 465, 470, 471
thermodynamic equilibrium

5, 6, 14, 15, 20, 25
thermoelement 464, 465
thermoplastic techniques 479
third-order susceptibility 137
Thomas–Reiche–Kuhn sum rule

45
Thomson and collective 377–

379, 386
time coherence 92
tomographic problem 71
torsional vibrations 494
transfer of radiation 16
translational temperature 19
transparency of the optical sys-

tem 412
Treanor distribution 195, 196
two isolated levels approxima-

tion 308
two- and three-quantum transi-

tion 209
two-level scheme 107, 112

two-photon absorption cross
section 132, 133

two-photon absorption opto-
galvanic spectroscopy 125

two-photon Lamb dip optogal-
vanic spectroscopy 124

two-photon transition 131
two-tube method 75, 78–80
types of fluctuations 377

v
van Held ‘growth curves’ 48
velocity of the ion 165
Vibrational distributions of the

CO molecules 203, 210
vibrational level 174, 191–194,

196, 199, 202, 204, 205, 207,
209, 214, 219, 224, 231, 233

vibrational temperature 191,
193, 199, 200, 202, 205, 212–
214, 219, 221–223, 233

virtual state 130, 134
Voigt profile 42, 43, 48
Volterra integral equation 73
volume spectral density 12
volumetric source 584–586,

588

w
weak coupling approximation

385
weakly ionized plasma 2–4
Weisskopf radius 34, 35
White cell 95
width of the principal diffrac-

tion maximum 411
widths at half-maximum of the

Hα and Hβ lines 362

z
Zeeman effect 311, 343, 344






