Contents

Preface XIII

Part One Materials Science and Raman Spectroscopy Background 1

1 The sp² Nanocarbons: Prototypes for Nanoscience and Nanotechnology 3

- 1.1 Definition of sp^2 Nanocarbon Systems 3
- 1.2 Short Survey from Discovery to Applications 5
- 1.3 Why sp² Nanocarbons Are Prototypes for Nanoscience and Nanotechnology 10
- 1.4 Raman Spectroscopy Applied to *sp*² Nanocarbons *11*

2 Electrons in sp² Nanocarbons 17

- 2.1 Basic Concepts: from the Electronic Levels in Atoms and Molecules to Solids 18
- 2.1.1 The One-Electron System and the Schrödinger Equation 18
- 2.1.2 The Schrödinger Equation for the Hydrogen Molecule 20
- 2.1.3 Many-Electron Systems: the NO Molecule 21
- 2.1.4 Hybridization: the Acetylene C₂H₂ Molecule 23
- 2.1.5 Basic Concepts for the Electronic Structure of Crystals 24
- 2.2 Electrons in Graphene: the Mother of sp^2 Nanocarbons 27
- 2.2.1 Crystal Structure of Monolayer Graphene 27
- 2.2.2 The π -Bands of Graphene 28
- 2.2.3 The σ -Bands of Graphene 31
- 2.2.4 N-Layer Graphene Systems 33
- 2.2.5 Nanoribbon Structure 35
- 2.3 Electrons in Single-Wall Carbon Nanotubes 37
- 2.3.1 Nanotube Structure 38
- 2.3.2 Zone-Folding of Energy Dispersion Relations 40
- 2.3.3 Density of States 44
- 2.3.4 Importance of the Electronic Structure and Excitation Laser Energy to the Raman Spectra of SWNTs 47
- 2.4 Beyond the Simple Tight-Binding Approximation and Zone-Folding Procedure 48

VIII | Contents

- **3** Vibrations in sp² Nanocarbons 53
- 3.1 Basic Concepts: from the Vibrational Levels in Molecules to Solids 55
- 3.1.1 The Harmonic Oscillator 55
- 3.1.2 Normal Vibrational Modes from Molecules to a Periodic Lattice 56
- 3.1.3 The Force Constant Model 59
- 3.2 Phonons in Graphene 61
- 3.3 Phonons in Nanoribbons 65
- 3.4 Phonons in Single-Wall Carbon Nanotubes 66
- 3.4.1 The Zone-Folding Picture 66
- 3.4.2 Beyond the Zone-Folding Picture 67
- 3.5 Beyond the Force Constant Model and Zone-Folding Procedure 69
- 4 Raman Spectroscopy: from Graphite to sp² Nanocarbons 73
- 4.1 Light Absorption 73
- 4.2 Other Photophysical Phenomena 75
- 4.3 Raman Scattering Effect 78
- 4.3.1 Light–Matter Interaction and Polarizability: Classical Description of the Raman Effect 79
- 4.3.2 Characteristics of the Raman Effect 81
- 4.3.2.1 Stokes and Anti-Stokes Raman Processes 81
- 4.3.2.2 The Raman Spectrum 82
- 4.3.2.3 Raman Lineshape and Raman Spectral Linewidth Γ_q 82
- 4.3.2.4 Energy Units: cm^{-1} 84
- 4.3.2.5 Resonance Raman Scattering and Resonance Window Linewidth γ_r 85
- 4.3.2.6 Momentum Conservation and Backscattering Configuration of Light 86
- 4.3.2.7 First and Higher-Order Raman Processes 86
- 4.3.2.8 Coherence 87
- 4.4 General Overview of the sp^2 Carbon Raman Spectra 88
- 4.4.1 Graphite 88
- 4.4.2 Carbon Nanotubes Historical Background 92
- 4.4.3 Graphene 96
- 5 Quantum Description of Raman Scattering 103
- 5.1 The Fermi Golden Rule 103
- 5.2 The Quantum Description of Raman Spectroscopy 108
- 5.3 Feynman Diagrams for Light Scattering 111
- 5.4 Interaction Hamiltonians 114
- 5.4.1 Electron-Radiation Interaction 114
- 5.4.2 Electron–Phonon Interaction 115
- 5.5 Absolute Raman Intensity and the *E*_{laser} Dependence 116
- 6 Symmetry Aspects and Selection Rules: Group Theory 121
- 6.1 The Basic Concepts of Group Theory 122
- 6.1.1 Definition of a Group 122
- 6.1.2 Representations 123
- 6.1.3 Irreducible and Reducible Representations 124

- 6.1.4 The Character Table 126
- 6.1.5 Products and Orthogonality 127
- 6.1.6 Other Basis Functions 128
- 6.1.7 Finding the IRs for Normal Modes Vibrations 128
- 6.1.8 Selection Rules 130
- 6.2 First-Order Raman Scattering Selection Rules 130
- 6.3 Symmetry Aspects of Graphene Systems 132
- 6.3.1 Group of the Wave Vector 132
- 6.3.2 Lattice Vibrations and π Electrons 135
- 6.3.3 Selection Rules for the Electron–Photon Interaction 138
- 6.3.4 Selection Rules for First-Order Raman Scattering 140
- 6.3.5 Electron Scattering by $q \neq 0$ Phonons 141
- 6.3.6 Notation Conversion from Space Group to Point Group Irreducible Representations 141
- 6.4 Symmetry Aspects of Carbon Nanotubes 142
- 6.4.1 Compound Operations and Tube Chirality 143
- 6.4.2 Symmetries for Carbon Nanotubes 145
- 6.4.3 Electrons in Carbon Nanotubes 151
- 6.4.4 Phonons in Carbon Nanotubes 151
- 6.4.5 Selection Rules for First-Order Raman Scattering 152
- 6.4.6 Insights into Selection Rules from Matrix Elements and Zone Folding 153
- Part Two Detailed Analysis of Raman Spectroscopy in Graphene Related Systems 159

7 The G-band and Time-Independent Perturbations 161

- 7.1 G-band in Graphene: Double Degeneracy and Strain 162
- 7.1.1 Strain Dependence of the G-band 163
- 7.1.2 Application of Strain to Graphene 165
- 7.2 The G-band in Nanotubes: Curvature Effects on the Totally Symmetric Phonons 165
- 7.2.1 The Eigenvectors 166
- 7.2.2 Frequency Dependence on Tube Diameter 168
- 7.3 The Six G-band Phonons: Confinement Effect 169
- 7.3.1 Mode Symmetries and Selection Rules in Carbon Nanotubes 169
- 7.3.2 Experimental Observation Through Polarization Analysis 170
- 7.3.3 The Diameter Dependence of $\omega_{\rm G}$ 172
- 7.4 Application of Strain to Nanotubes 174
- 7.5 Summary 175
- 8 The G-band and the Time-Dependent Perturbations 179
- 8.1 Adiabatic and Nonadiabatic Approximations 179
- 8.2 Use of Perturbation Theory for the Phonon Frequency Shift 181
- 8.2.1 The Effect of Temperature 181
- 8.2.2 The Phonon Frequency Renormalization 183

X | Contents

8.3	Experimental Evidence of the Kohn Anomaly on the G-band of Graphene 186
8.3.1	Effect of Gate Doping on the G-band of Single-Layer Graphene 186
8.3.2	Effect of Gate Doping on the G-band of Double-Layer Graphene 186
8.3.2 8.4	Effect of the Kohn Anomaly on the G-band of M-SWNTs vs. S-SWNTs 187
8.4.1	The Electron–Phonon Matrix Element: Peierls-Like Distortion 188
8.4.2	Effect of Gate Doping on the G-band of SWNTs: Theory 191
8.4.3	Comparison with Experiments 194
8.4.4	Chemical Doping of SWNTs 196
8.5	Summary 197
	·
9	Resonance Raman Scattering: Experimental Observations of the Radial
	Breathing Mode 199
9.1	The Diameter and Chiral Angle Dependence of the RBM Frequency 200
9.1.1	Diameter Dependence: Elasticity Theory 200
9.1.2	Environmental Effects on the RBM Frequency 202
9.1.3	Frequency Shifts in Double-Wall Carbon Nanotubes 206
9.1.4	Linewidths 208
9.1.5	Beyond Elasticity Theory: Chiral Angle Dependence 209
9.2	Intensity and the Resonance Raman Effect: Isolated SWNTs 211
9.2.1	The Resonance Window 211
9.2.2	Stokes and Anti-Stokes Spectra with One Laser Line 214
9.2.3	Dependence on Light Polarization 215
9.3	Intensity and the Resonance Raman Effect: SWNT Bundles 216
9.3.1	The Spectral Fitting Procedure for an Ensemble of Large Diameter Tubes 217
9.3.2	The Experimental Kataura Plot 218
9.4	Summary 220
	·
10	Theory of Excitons in Carbon Nanotubes 223
10.1	The Extended Tight-Binding Method: $\sigma - \pi$ Hybridization 224
10.2	Overview on the Excitonic Effect 225
10.2.1	The Hydrogenic Exciton 226
10.2.2	The Exciton Wave Vector 227
10.2.3 10.2.4	The Exciton Spin228Localization of Wavefunctions in Real Space229
10.2.4	Uniqueness of the Exciton in Graphite, SWNTs and C_{60} 230
10.3 10.3.1	Exciton Symmetry 231 The Symmetry of Excitons 231
10.3.2	Selection Rules for Optical Absorption 234
10.5.2	Exciton Calculations for Carbon Nanotubes 234
10.4.1	Bethe–Salpeter Equation 235
10.4.2	Exciton Energy Dispersion 236
10.4.3	Exciton Wavefunctions 237
10.4.4	Family Patterns in Exciton Photophysics 241
10.5	Exciton Size Effect: the Importance of Dielectric Screening 243
	1 0 0 0 0

Contents XI

- 10.5.1 Coulomb Interaction by the 2s and σ Electrons 243
- 10.5.2 The Effect of the Environmental Dielectric Constant κ_{env} Term 245
- 10.5.3 Further Theoretical Considerations about Screening 246
- 10.6 Summary 248
- 11 Tight-Binding Method for Calculating Raman Spectra 251
- General Considerations for Calculating Raman Spectra 252 11.1
- 11.2 The (*n*, *m*) Dependence of the RBM Intensity: Experiment 253
- Simple Tight-Binding Calculation for the Electronic Structure 11.3 255
- Extended Tight-Binding Calculation for Electronic Structures 11.4 258
- 11.5 Tight-Binding Calculation for Phonons 259
- 11.5.1 Bond Polarization Theory for the Raman Spectra 260
- 11.5.2 Non-Linear Fitting of Force Constant Sets 261
- 11.6 Calculation of the Electron–Photon Matrix Element 263
- 11.6.1 Electric Dipole Vector for Graphene 264
- 11.7 Calculation of the Electron–Phonon Interaction 266
- 11.8 Extension to Exciton States 269
- 11.8.1 Exciton–Photon Matrix Element 270
- 11.8.2 The Exciton–Phonon Interaction 271
- 11.9 Matrix Elements for the Resonance Raman Process 272
- 11.10 Calculating the Resonance Window Width 273
- 11.11 Summary 274
- 12 Dispersive G'-band and Higher-Order Processes: the Double Resonance Process 277
- 12.1 General Aspects of Higher-Order Raman Processes 278
- The Double Resonance Process in Graphene 280 12.2
- 12.2.1 The Double Resonance Process 280
- 12.2.2 The Dependence of the $\omega_{G'}$ Frequency on the Excitation Laser Energy 284
- 12.2.3 The Dependence of the G'-band on the Number of Graphene Layers 286
- 12.2.4 Characterization of the Graphene Stacking Order by the G' Spectra 288
- 12.3 Generalizing the Double Resonance Process to Other Raman Modes 289
- 12.4 The Double Resonance Process in Carbon Nanotubes 290
- 12.4.1 The G'-band in SWNTs Bundles 292
- 12.4.2 The (n, m) Dependence of the G'-band 294
- 12.5 Summary 296

13 Disorder Effects in the Raman Spectra of sp² Carbons 299

- 13.1 Quantum Modeling of the Elastic Scattering Event 301
- The Frequency of the Defect-Induced Peaks: the Double Resonance 13.2 Process 304
- 13.3 Quantifying Disorder in Graphene and Nanographite from Raman Intensity Analysis 307
- 13.3.1 Zero-Dimensional Defects Induced by Ion Bombardment 308
- 13.3.2 The Local Activation Model 310

- XII | Contents
 - 13.3.3 One-Dimensional Defects Represented by the Boundaries of Nanocrystallites 313
 - 13.3.4 Absolute Raman Cross-Section 317
 - 13.4 Defect-Induced Selection Rules: Dependence on Edge Atomic Structure 317
 - 13.5 Specificities of Disorder in the Raman Spectra of Carbon Nanotubes 320
 - 13.6 Local Effects Revealed by Near-Field Measurements 321
 - 13.7 Summary 323

Summary of Raman Spectroscopy on sp² Nanocarbons 327 14

- 14.1 Mode Assignments, Electron, and Phonon Dispersions 327
- 14.2 The G-band 328
- The Radial Breathing Mode (RBM) 330 14.3
- 14.4 G'-band 332
- 14.5 D-band 333
- 14.6 Perspectives 334

References 335

Index 351