Contents

Preface IX

1 Introduction 1
 1.1 Collider Energy 2
 1.2 Collider Intensity 4
 1.3 Why Big Colliders and Big Detectors Are Necessary 6
 1.4 The Tringides Challenge 7
 1.5 Useful Units, and One-Dimensional Lorentz Transformation 8
 1.6 Problems 10

2 Particles of the “Standard Model” 11
 2.1 Some Bubble Chamber Photographs 18
 2.1.1 Berkeley 10-in. Bubble Chamber 20
 2.2 Problems 21

3 Particle Detectors 25
 3.1 Particles Traveling through Atoms 25
 3.1.1 Particle Interactions with Atomic Electrons (e^-) 26
 3.1.2 Particle Interactions with Nuclei (Z_e) 31
 3.2 Tracking Systems 38
 3.2.1 Momentum Measurement of Charged Particles 40
 3.2.2 Impact Parameter Measurement 43
 3.2.3 Summary of Tracking 46
 3.3 Calorimetry: Energy Measurement 48
 3.3.1 EM Particles, e^- and γ 49
 3.3.2 Hadronic Particles (Particles Composed of Quarks) 51
 3.3.3 Calorimeter Constant Terms 65
 3.4 Time, or Velocity, Measurements 68
 3.5 Signal Distribution among Channels 71
 3.6 Problems 72

4 Particle Identification 77
 4.1 Discriminating Charged Leptons from Charged Pions 79
 4.1.1 Telling a μ^\pm from a π^\pm 79
 4.1.2 Telling an e^\pm from a π^\pm 82

Particle Physics Experiments at High Energy Colliders. John Hauptman
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40825-2
4.2 Discriminating Hadrons from Each Other 87
4.2.1 Telling a K^\pm or a p from a π^\pm 87
4.2.2 Neutral Hadrons: n and K^0_L 88
4.3 Identifying “Jets” 88
4.3.1 Discriminating a Light Quark (u, d, s) from a Gluon (g) 88
4.4 Identifying $W^\pm \rightarrow q\bar{q}$ and $Z^0 \rightarrow q\bar{q}$ Decays into Hadrons 89
4.5 Identifying Particles by Their Lifetimes 89
4.5.1 Identifying Weak s-baryon Decays: $\Lambda(sdu)$, $\Sigma(sqq)$, $\Xi(ssq)$, and $\Omega(sss)$ 89
4.5.2 Identifying Weak Heavy Quark Decays: $B(bNq)$ and $D(cNq)$ 90
4.5.3 Identifying a τ^\pm Lepton 90
4.6 Telling a γ from $\pi^0 \rightarrow \gamma\gamma$ and $e^\pm \rightarrow e\gamma$ 92
4.7 Identifying a Neutrino (ν) in an Event 93
4.8 Transition Radiation Proportional to γ 93
4.9 Time to Mass 93
4.10 Problems 95

5 Particle Accelerators and Colliders 97
5.1 Cyclotrons, Betatrons, Synchrotrons, and FFAGs 98
5.1.1 Beam Rates, RF, Machine Geometry 100
5.1.2 Machine Backgrounds 101
5.2 Beam Optics 102
5.3 Detectors at Electron, Proton, and Muon Colliders 105
5.3.1 Electron Colliders: e^+e^- 105
5.3.2 Proton Colliders: $p\bar{p}$ and $\bar{p}p$ 107
5.3.3 Muon Colliders: $\mu^+\mu^-$ 108
5.3.4 Asymmetric Colliders: e^-p and B Factories 108
5.4 Problems 109

6 General Principles of Big Detectors 111
6.1 Detectors at Big Colliders 113
6.2 Design Principles 114
6.3 Magnetic Field Geometries 116
6.3.1 Summary of Magnetic Field Geometries 126
6.4 Tracking System Geometries 128
6.5 Calorimeter Geometries 130
6.6 Muon System Geometries 131
6.7 Problems and Strategies 132
6.7.1 Problems with Solenoidal Iron-based Muon Systems 132
6.7.2 Problems with the Distribution of Material 135
6.8 Problems 135

7 4th Concept Detector 137
7.1 Description of the 4th Detector 138
7.1.1 Gross Design 144
7.1.2 Tracking Systems: Pixel Vertex and Main Tracking 146