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Weyl’s Law: Spectral Properties of the Laplacian
in Mathematics and Physics
Wolfgang Arendt, Robin Nittka, Wolfgang Peter,1) Frank Steiner

1.1
Introduction

Weyl’s law is in its simplest version a statement on the asymptotic growth of the
eigenvalues of the Laplacian on bounded domains with Dirichlet and Neumann
boundary conditions. In the typical applications in physics one deals either with
the Helmholtz wave equation describing the vibrations of a string, a membrane
(drum), a mass of air in a concert hall, the heat radiation from a body in ther-
mal equilibrium, the fluctuations of the gravitational field in cosmology, or the
Schrödinger equation of a quantum system which may be a simple quantum bil-
liard, an atom, a molecule or a compound nucleus. While Weyl’s seminal work
was provoked by the famous black body radiation problem, i.e. an electromagnetic
cavity problem, in particular by a conjecture put forward independently by Som-
merfeld and Lorentz in 1910, Weyl’s law has its roots in music and, respectively,
acoustics. Already in 1877, Lord Rayleigh had, in his famous book, “The Theory of
Sound” treated the overtones of a violin or piano string and the natural notes of an
organ pipe or the air contained within a room. For a room of cubical shape he de-
rived the correct asymptotic behavior for the overtones. The trick used by Rayleigh
to count the vibrational modes was to reduce the problem to a three-dimensional
lattice-point problem from which he could derive that the number of overtones with
frequency between ν and ν + dν grows at high frequencies, ν → ∞, asymptotically
as V ·ν3 (Weyl’s law!), where V is the volume of the room or analogously of an organ
pipe. In 1900, Rayleigh realized that the same formula can be applied to a physical-
ly completely different, but mathematically equivalent problem: the heat radiation
from a body in thermal equilibrium with radiation, the importance of which had
been pointed out already in 1859 by Kirchhoff. The amount of energy emitted by
a body is determined by the high-frequency spectrum of standing electromagnetic
waves and that spectrum should be essentially the same as for the high overtones
of an organ pipe, say.
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In the crucial black body radiation experiments carried out in the 1890s, which
led Planck, in 1900, to the famous radiation law named after him and to the dis-
covery of quantum theory, one measures the energy density emitted rather than
the energy itself, i.e. the energy divided by the volume V. Thus it follows from
Rayleigh’s asymptotic result V · ν3, derived for a cubical geometry, that the volume
factor is canceled if one considers the energy density, in accordance with the ex-
pectations using physical arguments and, very importantly, in complete agreement
with the experimental findings. It was realized, however, and emphasized by Som-
merfeld and Lorentz in 1910 that there arises the mathematical problem to prove that
the number of sufficiently high overtones which lie between ν and ν + dν is inde-
pendent of the shape of the enclosure and is simply proportional to its volume. It was
a great achievement when Weyl proved in 1911 that, by applying the Fredholm–
Hilbert theory of integral equations, the Sommerfeld–Lorentz conjecture holds!
From then on, Weyl himself and many other mathematicians and physicists have
studied and generalized Weyl’s law by deriving corrections or even complete ex-
pressions for the remainder term.

The Weyl asymptotics as discussed above in the three-dimensional case is par-
ticularly striking if considered as an inverse spectral problem, which became quite
popular after Kac’s talk in 1966 entitled “Can one hear the shape of a drum?”.

Subsequently, several partially affirmative answers to this question have been
given. But, on the other hand, a particularly striking counterexample by Gordon,
Webb and Wolpert from 1992 shows that not all geometric information about the
domain is contained in the spectrum.

This chapter is organized as follows. In Section 1.2 we give a historical account
of Weyl’s law. The following two chapters are devoted to Weyl’s law with remain-
der term and the statistical behavior of the latter using trace formulae. We discuss
the Laplacian on the torus in Section 1.3 and the Laplace–Beltrami operator on
Riemann surfaces in Section 1.4. Then two generalizations of Weyl’s law to Robin
boundary conditions and for unbounded quantum billiards are presented in Sec-
tion 1.5. In Section 1.6 we provide a self-contained proof of Weyl’s law for bounded
Euclidean domains and Dirichlet boundary conditions; the case Weyl himself treat-
ed in his first article on this topic. However, we follow a different, very fruitful, ap-
proach based on heat kernels. In Section 1.7 we give an account on what is known
today about Kac’s question. In particular we show under which precise regularity
assumptions one can hear whether a body is a ball.

1.2
A Brief History of Weyl’s Law

1.2.1
Weyl’s Seminal Work in 1911–1915

In February 1911, David Hilbert presented to a meeting of the Royal Academy of
Sciences of Göttingen a short note [1] written by Hermann Weyl. This note contains
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for the first time a rigorous proof of the asymptotic behavior of the eigenvalues λn

of the two-dimensional (scalar) Helmholtz wave equation

(Δ + λ) u(x) = 0 (x ∈ Ω) (1.1)

satisfying the Dirichlet boundary condition

u(x) = 0 (x ∈ ∂Ω) , (1.2)

where Ω ∈ R2 is an arbitrary bounded domain with area |Ω|, boundary ∂Ω, and

Δ =
∂2

∂x2
1

+
∂2

∂x2
2

denotes the Laplacian on Ω. The “membrane problem” (1.1, 1.2) has nontrivial
solutions u only for a discrete set of eigenvalues

{
λn
}
n∈N. The corresponding eigen-

functions {un}n∈N provide an orthonormal basis of L2(Ω), and we may enumerate
the eigenvalues in increasing order 0 < λ1 u λ2 u . . .

Note that the eigenvalues λn can have different physical interpretations. In the
case of a vibrating membrane with clamped edge, where u describes the transversal
vibrations of the membrane, one has λn = k2

n, where kn = (2π/c) νn is the wave num-
ber which is proportional to the eigenfrequency νn, i.e. to the pure tones which the
membrane is capable of producing. The constant c is the sound velocity depend-
ing on the physical properties of the membrane, i.e. on the mass density and the
tension under which the membrane is held. In the case of quantum mechanics,
where u is the wave function having the meaning of a probability amplitude, Equa-
tion (1.1) is the time independent Schrödinger equation of a freely moving particle
with mass m, and λn =

(
2m/�2

)
En is proportional to the quantal energy levels En.

(� denotes Planck’s constant.)
Since explicit analytical expressions for the eigenvalues are known only for a few

membranes with simple shape (for example equilateral triangles, rectangles, cir-
cles) and their numerical computation for large n is very difficult for general do-
mains, it is natural to study their asymptotic distribution as n → ∞. Applying the
Fredholm–Hilbert theory of linear integral equations, Weyl proved that

lim
n→∞

n
λn

=
|Ω|
4π

. (1.3)

Defining the counting function N(λ) := #
{
λn u λ

}
, (1.3) is equivalent to the asymp-

totic behavior

N(λ) =
|Ω|
4π

λ + o(λ) (λ → ∞) . (1.4)

These results are now called Weyl’s law. Shortly afterwards, Weyl submitted three
papers [2–4] which contain the details of his proof, a generalization of (1.4) to the
three-dimensional scalar wave equation (Ω ⊂ R3),

N(λ) =
|Ω|
6π2 λ3/2 + o(λ3/2) (λ → ∞) , (1.5)
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and the extension to the vector Helmholtz wave equation describing the vibrations
of the electric field E in an empty cavity Ω with perfectly reflecting walls ∂Ω. As
we shall discuss in more detail in Sections 1.2.3–1.2.8, it is exactly this electro-
dynamic cavity problem, studied extensively in those years by theoretical physi-
cists, which was one of the open problems that provoked Weyl to start his seminal
work.

The electromagnetic cavity problem requires of the electric field vector boundary
conditions which are more involved than the simple boundary condition (1.2). In
his first papers [2,4] on this problem, Weyl considered some nonphysical boundary
conditions; following a suggestion of Levi–Civita, in his subsequent paper [5] the
correct boundary conditions E ~ n = 0 and ∇E = 0 on ∂Ω were taken into account.
However, the Gauss law ∇E = 0 on Ω i.e. throughout the interior of the cavity, was
still discarded.

In his paper [5] Weyl went even one step further and conjectured the existence of
a second asymptotic term

N(λ) =
|Ω|
4π

λ ∓ |∂Ω|
4π

√
λ + o

(√
λ
)

(λ → ∞) (1.6)

for the two-dimensional problem (1.1), where |∂Ω| denotes the length of the cir-
cumference of the membrane and the (–) sign refers to the Dirichlet boundary
condition (1.2) and the (+) sign to the Neumann boundary condition (∂u/∂n = 0,
x ∈ ∂Ω), and

N(λ) =
|Ω|
6π2 λ3/2 ∓ |∂Ω|

16π
λ + o (λ) (λ → ∞) (1.7)

for the three-dimensional case, where |∂Ω| now denotes the surface area of ∂Ω. The
formulae (1.6) and (1.7) became known as Weyl’s conjecture. It was justified (under
certain conditions on Ω) by Ivrii [6] and Melrose [7] only in 1980.

In 1915, Weyl concluded his work on the asymptotic behavior of eigenvalues with
a study [8] of the elastic vibrations u of a homogeneous body with volume |Ω| which
are determined by the solutions of the differential equation

BΔu + A grad div u + λu = 0 . (1.8)

Here λ is related to the frequency ν by λ = (2πν)2, and A, B are positive constants
(related to the Lamé coefficients characterizing the elastomechanical properties of
the body). Imposing the boundary conditions∇u = 0 and n ~ u = 0 on the boundary
∂Ω of the body, Weyl proved for arbitrary shapes of the body

N(λ) =
|Ω|
6π2 Fλ3/2 + o

(
λ3/2
)

(λ → ∞) , (1.9)

where F is a function of the elastic constants, F = 2/c3
T + 1/c3

L with cT =
√

B the
transverse and cL =

√
A + B the longitudinal sound velocity.

The Weyl formulae (1.3)–(1.7) and (1.9) are very striking since they tell us that
the coefficient of the leading asymptotic term is determined only by the area, resp.,
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the volume of the domain and is independent of its shape. That is one can “hear”
the area of a drum (a membrane, held fixed along its boundary) or the volume of
a cavity following Marc Kac’s [9] acoustic rephrasing of the problem. We refer to
Sections 1.2.8, 1.3.6, 1.3.7 and 1.7 for more details on Kac’s problem.

In his papers [1, 2], Weyl mentions that his asymptotic formulae “provide in par-
ticular the solution to a problem the importance of which has recently been empha-
sized by Sommerfeld and Lorentz” (here and in the following citations, we employ
free translations from the original German).

1.2.2
The Conjecture of Sommerfeld (1910)

In September 1910, Arnold Sommerfeld delivered a talk at the “82. Naturforscher-
Versammlung” in Königsberg [10]. In this talk he studied the solution of the inho-
mogeneous differential equation in one, two and three dimensions

(ΔΩ + λ) υ = f (1.10)

describing forced vibrations. For this purpose, he introduced the resolvent kernel
(called the “Green function”)

GΩ(x, y; λ) :=
∑

m

um(x)um(y)
λ – λm

(
x, y ∈ Ω

)
, (1.11)

where um(x) are the eigenfunctions of (1.1). In addition to the Dirichlet boundary
condition (1.2), Sommerfeld also considered Neumann boundary conditions and,
“as in the theory of heat conduction”, Robin boundary conditions (h1u + h2 (∂u/∂n) =
0 on ∂Ω, h1, h2 constant or arbitrary functions on ∂Ω). A formal application
of the operator (ΔΩ + λ) to GΩ(x, y; λ) (acting on the first argument x) gives
(ΔΩ + λ) GΩ(x, y; λ) =

∑
m

um(x)um(y), and Sommerfeld remarks that this expression

is zero for x =/ y, but is infinite for x = y. He calls this expression “Zackenfunk-
tion” (“spike function”), the physical interpretation of it is a “unit source” (point
source). This is, of course, an early attempt to introduce the Dirac delta distribu-
tion, since the above expression is nothing other than the completeness relation of
the orthonormal eigenfunctions um ∈ L2(Ω)∑

m

um(x)um(y) = δ(x – y) . (1.12)

The solution of the inhomogeneous problem (1.10) then reads

υ(x) =
∫
Ω

GΩ(x, y; λ)f (y)dy . (1.13)

This result is quite remarkable since it allows one to reduce the problem (1.10)
of the forced vibrations on Ω to the problem (1.1) of the free vibrations on the
same domain Ω. “As some material is fully characterized by its spectral lines i.e.
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by its free vibrational frequencies, so is also the behavior of a domain for arbitrary
vibratory motions completely determined by the spectrum of its free vibrational
possibilities.” [10]

Sommerfeld [10] then discusses the convergence of the series (1.11): “In the
one-dimensional case the series (1.11) is absolutely convergent, in the two- and
three-dimensional case only conditionally convergent. In the first case the growth
of the denominator λ – λm is sufficient for convergence, since [. . . ] the denomina-
tor becomes infinite, as m2. In the latter cases, will λm,n, resp. λm,n,l, equally well
always approach infinity quadratically in m, n, resp. l, as I do not doubt (1). How-
ever, such a growth is not sufficient, as is well known, to render the double sum
over m, n resp., the triple sum over m, n, l, convergent. Rather, here the change
of sign of the nominator um,n(x)um,n(y) plays an essential role as it is guaranteed
in its natural ordering by the oscillatory character of the series.” In the above foot-
note (1) Sommerfeld adds: “The general and rigorous proof of this asymptotic be-
havior of the eigenvalues seems to me an important and grateful mathematical
problem.”

Here we have Sommerfeld’s conjecture which was one of the motives for the pio-
neering work of Weyl.

Sommerfeld considers, as an application of his method, the “problem of acous-
tics of rooms” (using Neumann boundary conditions on the walls), and he empha-
sizes that his “method is fundamentally different from the classical method intro-
duced in mathematical physics by Fourier”, whereby he refers to Fourier’s famous
work “Théorie [analytique] de la chaleur” from 1822.

Here two remarks are in order. i) In his conjecture, Sommerfeld takes for grant-
ed that the eigenvalues depend for example in the three-dimensional case on three
integers (“quantum numbers”) (m, n, l) i.e. λm,n,l, “which each run from 0 to ∞ and
have the meaning of the number of divisions of the domain by nodal surfaces with
respect to the three dimensions. (One may think of the known cases of the paral-
lelepiped or the sphere.)” Consequently, he considers the sum in Equation (1.11)
as a triple sum running over m, n, and l. It is known, however, that the situation
envisaged by Sommerfeld holds in general only for domains for which the wave
equation (1.1) is separable in coordinates

(
q1, q2, q3

)
i.e. where the particular solu-

tions can be written as a product um,n,l = um(q1)υn(q2)wl(q3). In the generic case,
however, i.e. for a cavity with arbitrary shape, the eigenvalues depend on a sin-
gle positive integer only, which just counts the eigenvalues in increasing order, as
assumed in (1.11). ii) Sommerfeld points out that the Green function (1.11) “degen-
erates (G = ∞)” at the points λ = λm “according to the general resonance principle,
except at special positions of the point source, if, for example, um(x) = 0, and there-
fore the critical eigenvibration is not excited.” In the physics literature, the Green
function (1.11) is considered as a distribution by adding a small positive imaginary
part (ε > 0) to λ ∈ R, i.e. one considers the kernel of the regularized resolvent
operator (λ + iε + Δ)–1. We refer also to Sections 1.3.4, 1.4 and 1.6 where expres-
sions similar to (1.11) are given for the Green’s function, for example for the heat
kernel.
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1.2.3
The Conjecture of Lorentz (1910)

At the end of October 1910, i.e. one month after Sommerfeld’s talk, Hendrik An-
toon Lorentz delivered six lectures at Göttingen under the title “Old and new prob-
lems of physics” published [11] from notes taken by Max Born and talked over with
Lorentz. See also the letter dated October 28, 1929, sent by Max Born to Einstein,
together with Born’s comment to this letter from 1969 [12].

Lorentz, who had already received in 1902 the second Nobel prize in physics,
was at that time probably the most famous living theoretical physicist. He was
invited to Göttingen by the Wolfskehl commission of the Göttingen Academy
which was to confer a prize for proving Fermat’s last theorem. As long as the
prize was not awarded, the proceeds from the principal should be used to invite
eminent scientists to lecture at Göttingen. (Paul Wolfskehl (1856–1906), original-
ly a physician, fell ill with multiple sclerosis and then became a mathematician
working mainly on number theory; he taught at the Technical University of Darm-
stadt. The first Wolfskehl lecture was given by Poincaré in 1908 and later lectures
were given, among others, by Einstein and Planck; in 1922 Niels Bohr delivered
his legendary Wolfskehl lectures on his theory of the atom which later became
known as the “Bohr-Festspiele”. In 1997 the Wolfskehl prize was given to Andrew
Wiles.)

In his last three lectures, Lorentz discussed “the phenomenon of radiating heat”.
The end of the fourth lecture reads as follows. “In conclusion there is a mathemat-
ical problem worth mentioning which perhaps will arouse the interest of math-
ematicians who are present. It originates in the radiation theory of Jeans. In an
enclosure with a perfectly reflecting surface there can form standing electromag-
netic waves analogous to tones of an organ pipe; we shall confine our attention only
to the very high overtones. Jeans asks for the energy in the frequency interval dν.
To this end he first of all calculates the number of overtones which lie between the
frequencies ν and ν + dν and then multiplies this number by the energy which be-
longs to the frequency ν, and which according to a theorem of statistical mechanics
is the same for all frequencies. In this manner he gets, indeed, the correct law of
the radiation at long wavelengths.”

“It is here that there arises the mathematical problem to prove that the number
of sufficiently high overtones which lie between ν and ν + dν is independent of the
shape of the enclosure and is simply proportional to its volume. For several simple
shapes, for which the calculation can be carried out, this theorem will be verified in
a Leiden dissertation. There is no doubt that it holds in general even for multiply
connected spaces. Analogous theorems will also hold for other vibrating structures
like elastic membranes and air masses etc.”

Weyl, who was present at Lorentz’s lectures, writes in a footnote of his second
paper [2]: “Lorentz has stated the theorem proven here in Section 1.6 as a plausi-
ble conjecture on physical grounds. The simplest cases, for which the proof can
be achieved by a direct computation of the eigenvalues, are treated in the Leiden
dissertation of Fräulein Reudler.” Actually Johanna Reudler verified [13] that the
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asymptotic number of modes depends only on the volume for three special cases,
the parallelepiped, the sphere, and the cylinder.

There is an apocryphal report that Hilbert predicted that the theorem would not
be proved in his lifetime [9]. Well, as we have seen, he was wrong by many, many
years.

Forty years after Lorentz’s lectures, Weyl came back to the “eigenvalue prob-
lem” [14]: “H.A. Lorentz had impressed upon the mathematicians the urgency for
physics of a settlement of this question. For a pupil of Hilbert around 1910 it was
natural to visualize the question as one concerning integral equations.” In the next
section of this paper [14] Weyl draws attention to a more difficult problem by say-
ing: “The physicist will not be satisfied with a knowledge of the asymptotic behav-
ior of the eigenvalues alone; that of the eigenfunctions should also be investigated.”
And Weyl mentions in this connection Carleman’s law, see Section 1.4.3.

Further on in this paper we read the following sentences: “I feel that these infor-
mations about the proper oscillations of a membrane, valuable as they are, are still
very incomplete. I have certain conjectures on what a complete analysis of their
asymptotic behavior should aim at; but since for more than 35 years I have made
no serious attempt to prove them, I think I had better keep them to myself.”

1.2.4
Black Body Radiation: From Kirchhoff to Wien’s Law

The study of the heat radiation from a body in thermal equilibrium with radiation
has played an eminent role in the history of physics and mathematics for it led
Planck in 1900 to the discovery of the quantum theory and Weyl in 1911 to a first
proof of the eigenvalue asymptotics. (There are several historical studies on this
subject. Here we rely on the excellent account given by Pais [15] who, however,
does not discuss the aspects concerning Weyl’s law.) The importance of the heat
radiation problem was realized already in 1859 by Gustav Kirchhoff [16]. Let the
radiation energy which a body absorbs be converted to thermal energy only, not to
any other energy form, and denote by Eν dν the amount of energy emitted by the
body per unit time per cm2 in the frequency interval dν. (Actually, Kirchhoff uses
the wavelength λ instead of the frequency ν.) Furthermore, let Aν be its absorption
coefficient for frequency ν. Kirchhoff showed that the ratio Eν/Aν is a universal
function which depends only on ν and the equilibrium (absolute) temperature T
and is independent of the shape and any other properties of the body i.e.

Eν

Aν
= J(ν, T ) . (1.14)

A general proof of (1.14) was given much later by Hilbert using the theory of linear
integral equations and his “axiomatic method” [17–19].

Kirchhoff called a body perfectly black or just black for short if Aν = 1. Thus J(ν, T )
is the emitted power of a black body which can be measured if we assume (with
Kirchhoff) that a perfect black body can be realized by “a space enclosed by bod-
ies of equal temperature, through which no radiation can penetrate” [16], i.e. by
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an enclosure with perfectly reflecting walls. Kirchhoff challenged theorists and ex-
perimentalists alike: “It is a highly important task to find this function J. Great
difficulties stand in the way of its experimental determination; nevertheless, there
appear grounds for the hope that it can be found by experiments because there is
no doubt that it has a simple form, as do all functions which do not depend on the
properties of individual bodies and which one has become acquainted with before
now.” [16]

It is worthwhile to mention that Kirchhoff reports in the same paper about his
experiments carried out with sunlight, interpreted as heat radiation of very high
temperature produced in the atmosphere of the sun, and about his discovery of
sodium there. He concludes: “Thus a way is found to ascertain the chemical nature
of the atmosphere of the sun, and the same way promises also some information
on the chemical nature of the brighter fixed stars.” [16]

It will be seen later that Kirchhoff’s statement about the shape-independence of
J(ν, T ) implicitly implies part of Weyl’s law (1.7) stating that the leading term of
the counting function is proportional to the volume V := |Ω| of the cavity by which
the black body is realized. At this point it is convenient to express J in terms of the
spectral energy density ρ(ν, T ) which gives the energy per unit volume of the heat
radiation in thermal equilibrium at temperature T for frequency ν:

J(ν, T ) =
c

8π
ρ(ν, T ) (1.15)

(c is the velocity of light in vacuo.) It was conjectured by Josef Stefan on experimen-
tal grounds in 1879 and proved theoretically by Ludwig Boltzmann in 1884 [20]
that the mean total energy 〈E 〉(T ) radiated by the black body is given by the Stefan–
Boltzmann law

〈E 〉(T ) = V

∞∫
0

ρ(ν, T )dν = VσT 4 , (1.16)

where σ is a universal constant (now called the Stefan–Boltzmann constant, whose
universal value could only be calculated after the discovery of Planck’s law). Boltz-
mann’s proof involves thermodynamics and the electromagnetic theory of Maxwell
according to which the mean radiation pressure

〈
p
〉

obeys the equation of state〈
p
〉

=
1
3
〈E 〉
V

.

Important progress was made by Wilhelm Wien who proved in 1893 that ρ(ν, T )
has to be of the following form (Wien’s displacement law) [21]

ρ(ν, T ) = ν3f (ν/T ) . (1.17)

Thus the heat radiation problem was reduced to determining, instead of J(ν, T ),
the universal function f (x) of the single scaling variable x = ν/T. (Obvious-
ly, from (1.17) one immediately derives the Stefan–Boltzmann law (1.16) with
σ =

∫ ∞
0 x3f (x)dx.) Over the years, many proposals for the correct form of f have

appeared, see for example the four different forms discussed in [22]. Still, 20 years



10 1 Weyl’s Law

later, Einstein wrote in 1913: “It would be edifying if we could weigh the brain sub-
stance which has been sacrificed by the theoretical physicists on the altar of this
universal function f; and the end of these cruel sacrifices is not yet in sight!” [23]

In 1896 Wien proposed [24] the exponential form fW(x) := αe–�x (α, � positive
constants), that is (Wien’s law)

ρW(ν, T ) = αν3e–�ν/T . (1.18)

At the same time, Friedrich Paschen carried out precise measurements [22, 25] in
the near-infrared (for wavelengths λ = c/ν = 1–8 μ m, T = 400–1600 K) which were
in such a good agreement with Wien’s law (1.18) that he concluded: “It would seem
very difficult to find another function of the two variables ν and T [Equation (1.18)]
that represents the observations with as few constants.” [25]. Thus it appeared that
Wien’s law was the final answer to the black-body problem.

1.2.5
Black Body Radiation: Rayleigh’s Law

In June 1900, that is several months before Planck’s revolutionary discovery, Lord
Rayleigh made another proposal [26] which for the first time introduces into the
black body radiation problem the density of states D(ν), that is the density of the
vibrational modes of a black body cavity. This step played an important role since
Rayleigh’s proposal relies on an assumption which 10 years later led to the conjec-
tures of Sommerfeld and Lorentz, and finally to Weyl’s law (as already discussed in
Sections 1.2.1–1.2.3).

Rayleigh’s starting point is the observation that Wien’s law (1.18) “viewed from
the theoretical side [. . . ] appears to me little more than a conjecture . . . ”, and “. . .
the law seems rather difficult of acceptance, especially the implication that as the
temperature is raised, the radiation of given frequency approaches a limit.” [26] In-
deed, one obtains from (1.18) lim

T→∞
ρW(ν, T ) = αν3. He continues: “the question is

one to be settled by experiment; but in the meantime I venture to suggest a modi-
fication of (1.18), which appears to me more probable a priori.” [26]

Without further explanation, Rayleigh assumes, first of all, that the equilibrium
distribution ρ is proportional to the density of the vibrational modes of the cavity
per unit volume, that is ρ(ν, T ) ~ D(ν)/V, where

D(ν) :=
dN
dν

with N(ν) := N
(
(2π/cν)2

)
and N(λ) denotes the leading asymptotic term of the counting function expressed
in terms of the frequency ν. Secondly, he assumes according to the “Boltzmann–
Maxwell doctrine of the partition of energy” (that is the equipartition theorem) that
“every mode of vibration should be alike favored . . . ”. Thus he assumes that “the
energy should be equally divided among all the modes. . . . Since the energy in
each mode is proportional to T” (that is proportional to kBT in modern notation,
where kB denotes Boltzmann’s constant, introduced actually only later by Planck!),
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Rayleigh’s assumption amounts to ρ(ν, T ) ~ (D(ν)/V) · T. As an “illustration” he
first considers “the case of a stretched string vibrating transversely” and derives
the correct Weyl asymptotics N(λ) ~

√
λ, that is N(ν) ~ ν and thus D(ν) = constant

(“when ν is large enough”). Then he continues: “When we pass from one di-
mension to three dimensions, and consider for example the vibrations of a cubic
mass of air, we have (‘Theory of Sound’, paragraph 267) as the equation for ν2,
ν2 = p2 + q2 + r2, where p, q, r are integers representing the number of subdivisions
in the three directions. If we regard p, q, r as the coordinates of points forming a cu-
bic array, ν is the distance of any point from the origin. Accordingly the number
of points for which ν lies between ν and ν + dν, proportional to the volume of the
corresponding spherical shell, may be represented by ν2 dν, and this expresses the
distribution of energy according to the Boltzmann–Maxwell law, so far as regards
the wavelength or frequency. If we apply this result to radiation, we shall have,
since the energy in each mode is proportional to T, Tν2 dν . . . .” [26] Thus Rayleigh
obtains (apart from the numerical coefficient) the correct Weyl asymptotics for
a three-dimensional cavity, that is N(λ) ~ Vλ3/2, see (1.5), which leads to N(ν) ~ Vν3

or D(ν)/V ~ ν2, and thus to

ρREJ(ν, T ) = c1ν2T , (1.19)

which is commonly known as the Rayleigh–Jeans law but which should rather be
referred to as the Rayleigh–Einstein–Jeans law. (We shall discuss below Einstein’s,
Rayleigh’s second, and Jeans’ derivation of (1.19) which includes also the explicit
expression for the coefficient c1.)

Here several remarks are in order. i) It is obvious that Rayleigh did not worry
about the fact that he used the scalar wave equation in his derivation of the mode
asymptotics, by referring to his famous book on acoustics [27], instead of the vector
Maxwell equations, which were studied only later by Weyl [2, 4, 5]. ii) In deriving
the vibrational mode asymptotics for a cubical box, Rayleigh takes for granted that
the result N(ν) ~ Vν3 holds for any shape of the cavity and thus concludes that
D(ν)/V is independent of the shape. In other words, Rayleigh assumes to be true
what 10 years later was formulated as a conjecture by Sommerfeld and Lorentz.
iii) Although his derivation of D(ν)/V ~ ν2 holds only asymptotically for ν → ∞, he
derives from this result the law (1.19) stating that it may have the proper form when
ν/T is small! iv) Rayleigh observes that (1.19) is of the general scaling form (1.17)
(with fREJ(x) = c1/x), and he regards this “as some confirmation of the suitability
of (1.19).” v) Without further comment, Rayleigh writes in his paper [26]: “If we
introduce the exponential factor, the complete expression will be

ρR = c1ν2Te–c2ν/T .” (1.20)

It is this expression which became known as the Rayleigh law. vi) There is no
doubt that Rayleigh must have realized that (1.19) is entirely unacceptable since the
quadratic dependence of ν leads to a physically meaningless divergence (later called
“ultraviolet catastrophe” by Ehrenfest) of the total radiation energy (see (1.16)). Of
course, by multiplying with the exponential “convergence factor” taken over from
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Wien’s law (1.18), the divergence is avoided and the Stefan–Boltzmann law (1.16)
holds with σ = 2c1/c3

2.
At the end of his paper Rayleigh writes [26]: “Whether (1.20) represents the facts

of observation as well as (1.18) I am not in a position to say. It is to be hoped
that the question may soon receive an answer at the hands of the distinguished
experimenters who have been occupied with this subject.”

We can assume that Rayleigh was well informed about the two teams working in
Berlin on black body radiation experiments. The first of these, Otto Lummer and
Ernst Pringsheim, had already shown in February 1900 that Wien’s law (1.18) fails
in the wavelength region λ = 12–18 μm (for T = 300–1650 K) [28]. The second team,
Heinrich Rubens and Ferdinand Kurlbaum, presented their measurements in the
even further infrared (λ = 30–60 μm, T = –188–1500 ◦C) to the Prussian Academy
on October 25, 1900 [29]. In a famous figure, they plotted ρ as a function of T at
the fixed wavelength λ = 51.2 μm and compared their data with some theoretical
curves. One of these was the Wien curve, another the Rayleigh curve. Both curves
did not work! But then we read in the paper [29] that they had compared their data
with a “fifth formula, given by Herr M. Planck after our experiments had already
been concluded . . . ” and which “reproduces our observation within the limits of
error.”

1.2.6
Black Body Radiation: Planck’s Law and the Classical Limit

According to Pais [15], Planck probably discovered his law in the early evening of
Sunday, October 7, 1900, Rubens and his wife had called on the Plancks on the
afternoon of that day. In the course of conversation, Rubens mentioned to Planck
that he had found ρ(ν, T ) to be proportional to T for small ν. Planck went to work
after the visitors left and found an interpolation between his results and Wien’s law,
Equation (1.18). He communicated his formula by postcard to Rubens the same
evening and stated it publicly [30] in a discussion remark on October 19, following
the presentation of a paper by Kurlbaum. Expressed in notations introduced by
Planck two months later, Planck’s law reads:

ρP(ν, T ) =
8πhν3

c3

1
ehν/kBT – 1

, (1.21)

where h denotes Planck’s constant and kB is Boltzmann’s constant.
Let us consider two limits of Planck’s law. First, in the high-frequency or low-

temperature regime, which is now identified as the quantum limit in which the
photon energy hν is much larger than the thermal energy kBT, that is hν/kBT >>
1, we recover Wien’s law (1.18) with α = (8πh)/c3 and � = h/kB. This explains
why Paschen’s experiments [22, 25], for which hν/kBT W 15 holds, were in such
a good agreement with Wien’s law, as already mentioned. At the other extreme of
low frequency or high temperature, hν/kBT << 1, which is obtained from Planck’s
law in the formal limit when Planck’s constant approaches zero, h → 0, and is
now identified as the semiclassical limit, we recover the Rayleigh–Einstein–Jeans
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law (1.19)

ρP(ν, T ) =
8πν2

c3 (kBT )
[
1 + O(h)

]
(h → 0) . (1.22)

A comparison with (1.19) gives the correct value for the constant c1 left undeter-
mined by Rayleigh, that is

c1 =
8πkB

c3 =
8π
c3

R
NA

, (1.23)

which does not depend on h, and where R is the gas constant and NA is Avogadro’s
number.

Since our main interest here is to understand the role played by Weyl’s law, we
are not discussing at this point the arguments using “resonators” which led Planck
to his formula. (Planck’s original derivation does not refer to the vibrations of the
cavity and thus does not involve the density of states.) Using the fact that the correct
formula for the radiating heat, that is Planck’s formula, in the classical limit exactly
takes the form of the Rayleigh–Einstein–Jeans law, we can interpret the latter in
purely classical terms by making the general ansatz (valid only for h = 0!)

ρclass(ν, T ) := lim
V→∞

(
Dem(ν)

V

)
kBT , (1.24)

where Dem(ν) denotes the density of states of the electromagnetic vibrations in
a cavity of volume V. Furthermore, we have taken care of the fact that the predic-
tions of thermodynamics involve the so-called thermodynamic limit V → ∞. Here

Dem(ν) :=
dNem(ν)

dν
with Nem(ν) = 2N(ν) = 2N

(
(2π/cν)2

)
,

where N(λ) denotes the two asymptotic terms of the counting function (1.7) for the
three-dimensional case, and the factor 2 comes from the two polarizations of the
photon. We then obtain

Nem(ν) = V
8π
3c3 ν3 + O|∂Ω|(ν2) (1.25)

which leads to

lim
V→∞

(
Dem(ν)

V

)
=

8π
c3 ν2 (1.26)

since lim
V→∞

(|∂Ω| /V) = 0, where |∂Ω| denotes the surface area of the cavity.

In his famous book, originally published in 1928 in German under the title
“Gruppentheorie und Quantenmechanik” [31, p. 103–104 and p. 402] Weyl treats
the black-body radiation and proves that it “is mathematically equivalent to a sys-
tem of infinitely many oscillators.” He then states, without proof: “For high fre-
quencies ν there are approximately V

(
8πν2 dν/c3

)
modes of oscillation in the fre-

quency interval ν, ν + dν. We are interested above all in the limiting case of an
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infinitely large cavity; the spectrum then becomes continuous and our formula for
the density of frequencies becomes exact.” In a footnote he adds: “This result is
easily obtained by elementary methods for a rectangular parallelepiped. For the
general proof see H. Weyl [4, 5, 8].” It is clear that the limit V → ∞ is an idealiza-
tion which can never be realized in a physical experiment. Rather the “assumption
must always hold that the linear dimensions of all cavities considered and also the
curvature of the radii of all surfaces considered must be large compared with the
wavelengths of the radiation. Then we are allowed, without making a noticeable
error, to neglect the influences of the form of the boundaries caused by diffrac-
tion.” [32, p. 2]

Inserting (1.26) into (1.24), one obtains

ρclass(ν, T ) =
8πkB

c3 ν2T (1.27)

which is precisely the Rayleigh–Einstein–Jeans law (1.19) with the correct power
behavior in ν and the same coefficient (1.23) as obtained from the exact Planck
formula. It is thus seen that heat radiation (in the classical limit) is indeed inde-
pendent of the shape of the cavity due to Weyl’s law and the performance of the
thermodynamical limit.

As shown above, Planck’s radiation law (1.21) from October 1900 can be consid-
ered as a simple interpolation formula which smoothly interpolates between the
Rayleigh–Einstein–Jeans law (1.27) and Wien’s law (1.18). In fact, it differs from
Wien’s law only by the –1 in the denominator. It has rightly been said [15], that
even if Planck had stopped after October 19, he would forever be remembered as
the discoverer of the radiation law. It is a true measure of his greatness that he went
further. He wanted to interpret (1.21). That made him to discover the quantum
theory. Already on December 14, 1900, Planck presented a theoretical derivation of
his formula to the German Physical Society in Berlin [33] and shortly afterwards
(7 January 1901) submitted his famous paper [34]. More and more precise mea-
surements carried out during the following years established Planck’s formula as
the correct phenomenological law of black body radiation. It is thus quite astonish-
ing to learn that several excellent theoretical physicists, in particular Lorentz, Lord
Rayleigh, and Jeans, worked on alternative theories leading to formulae different
from Planck’s. Ironically, since Planck’s derivation does not rely on the density of
states, the origin of Weyl’s law lies just in these alternative approaches. Therefore,
a history of Weyl’s law without a discussion of these differing theories would be
incomplete.

1.2.7
Black Body Radiation: The Rayleigh–Einstein–Jeans Law

First of all, one should understand why some theorists were seeking for different
theories of black body radiation despite the great empirical success of Planck’s for-
mula. The explanation is quite obvious: they realized that Planck’s radiation theory
was not satisfactory from a theoretical point of view; in fact, it was inconsistent! As
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the above quotation from Einstein [23] shows, the problem still existed in 1913; the
ultimate derivation of Planck’s formula was only provided in 1924 using the correct
Bose–Einstein quantum statistics.

In 1903, Lorentz [35] derived (1.19) in the low-frequency limit together with the
value c1 =

(
16πα/3c3

)
for the coefficient c1 where α is a constant such that αT

represents the mean kinetic energy of a molecule of a gas. Comparing (1.19) with
the low-frequency limit of Planck’s formula (1.21), he obtained α = (3/2)kB (see
also (1.23)) and states: “Now the mean kinetic energy of a molecule of a gas would
be (3/2)kT according to Planck . . . there appears therefore to be full agreement be-
tween the two theories in the case of long waves, certainly a remarkable conclusion,
as the fundamental assumptions are widely different.”

The year 1905 is one of the most amazing ones in the history of science: it marks,
first of all, Einstein’s annus mirabilis with his five seminal papers, where only the
first one on the famous light quantum hypothesis [36] concerns us here, since
it deals with the radiation problem, and, secondly, the series of papers published
by Rayleigh [37, 38] and Jeans [39–42] on the radiation problem using the Weyl
asymptotics.

From reading these papers it becomes clear that Einstein is the only one who
takes Planck’s formula serious since it “agrees with all experiments to date” [36].
But in Section 1.1 of this paper entitled “On a difficulty concerning the theory of the
« black radiation »” [36] he implicitly expresses his doubts on Planck’s derivation by
showing that Planck should have obtained (1.27) instead of his formula (1.21)! The
argument is very simple. Planck’s starting point in his derivation is the formula

ρ(ν, T ) =
8πν2

c3 〈E 〉(ν, T ) , (1.28)

where 〈E 〉(ν, T ) is the average energy of a Planck resonator of frequency ν at the
joint equilibrium of matter and radiation at temperature T. Furthermore, the equi-
librium energy of a one-dimensional resonator is according to the equipartition
theorem given by 〈E 〉(ν, T ) = kBT, and inserting this into (1.28), Einstein ob-
tains (1.27). We thus see that the radiation law (1.27), commonly known as the
Rayleigh–Jeans law, ought to be called the Rayleigh–Einstein–Jeans law [15]. Many
years later Einstein said: “If Planck had drawn this conclusion, he probably would
not have made his great discovery, because the foundation would have been with-
drawn from his deductive reasoning.” [43]

Years later Planck himself presented two derivations of (1.27) in his famous book
“Theorie der Wärmestrahlung” [32] and concluded: “It is not too much asserted if
we say in generalizing: The classical theory leads of necessity to Rayleigh’s radiation
law.”

Einstein’s paper [36] was submitted on 17 March 1905, and thus is the earliest
among the above mentioned papers by Rayleigh and Jeans. (Rayleigh’s first pa-
per [37] was submitted on 6 May 1905; Jeans’ first paper on radiation [39] on 20 May
1905.)

As discussed in Section 1.2.5, Rayleigh was the first [26] to have already count-
ed in 1900 “the number of modes corresponding to any finite space occupied by
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radiation” [37] and to obtain the law (1.19), however, without determining the coef-
ficient c1. “Elicited by the very clear statement of his view which Mr. Jeans gives in
NATURE of April 27 (1900) [44]”, he repeats the arguments of his former paper [26]
“with an extension designed to determine the coefficient as well as the law of radia-
tion” [37]. By counting the modes within a cube of length l (Weyl’s law), he obtains
again (1.19) “as probably representing the truth when ν is small.” He remarks that
this formula agrees with Planck’s in the limit when ν is small apart from the fact
that his value for c1 “is eight times as large as that found by Planck.” Rayleigh adds:
“A critical comparison of the two processes would be of interest, but not having
succeeded in following Planck’s reasoning I am unable to undertake it. As apply-
ing to all wavelengths, his formula would have the greater value if satisfactorily
established. On the other hand, the reasoning leading to (1.19) is very simple, and
this formula appears to me a necessary consequence of the law of equipartition as
laid down by Boltzmann and Maxwell. My difficulty is to understand how another
process, also based on Boltzmann’s ideas, can lead to a different result.” [37]

Two days after Rayleigh’s letter [37] Jeans submitted a short letter [39] in reply
to Rayleigh. His main point was “the general question of the applicability of the
theorem of equipartition to the energy of the ether” as opened up by Rayleigh. He
takes up “Lord Rayleigh’s example of a stretched string, say a piano wire” and then
discusses the “vibrations of the ether in a finite enclosure”. He writes: “It is eas-
ily seen that the number of slow vibrations is approximately proportional to the
volume of the enclosure, so that roughly the energy of ether must be measured
per unit volume in order to be independent of the size of the enclosure.” He then
arrives at (1.19), but without determining the value for c1. On June 7, Jeans adds
a “postscript” to his paper [40] and calculates again “the number of degrees of free-
dom of the æther” by referring to Rayleigh’s book [27](!). From this he obtains the
radiation law (1.19) together with the correct value (1.23) for the coefficient c1. “This
is one-eighth of the amount found by Lord Rayleigh, but agrees exactly with that
given by Planck for large values of λ. It seems to me that Lord Rayleigh has intro-
duced an unnecessary factor 8 by counting negative as well as positive values of his
integers p, q, r.” (See the discussion before equation (1.19).) A month later, Rayleigh
replies to Jeans [38]: “In NATURE, May 18, I gave a calculation of the coefficient
of complete radiation at a given absolute temperature for waves of great length
on principles laid down in 1900, and it appeared that the result was eight times
as great as that deduced from Planck’s formula for this case. In connection with
similar work of his own, Mr. Jeans has just pointed out that I have introduced a re-
dundant factor 8 by counting negative as well as positive values of my integers p, q,
r – I hasten to admit the justice of this correction. But while the precise agreement
of results in the case of very long waves is satisfactory so far as it goes, it does not
satisfy the wish expressed in my former letter for a comparison of processes. In
the application to waves that are not long, there must be some limitation on the
principle of equipartition. Is there any affinity in this respect between the ideas of
Prof. Planck and those of Mr. Jeans?”

On July 27, Jeans published another letter [41]: “On two occasions (NATURE,
May 18 and July 13) Lord Rayleigh has asked for a critical comparison of two the-
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ories of radiation, the one developed by Prof. Planck and the other by myself, fol-
lowing the dynamical principles laid down by Maxwell and Lord Rayleigh. It is with
the greatest hesitation that I venture to express my disagreement with some points
in the work of so distinguished a physicist as Prof. Planck, but Lord Rayleigh’s
second demand for a comparison of the two methods leads me to offer the fol-
lowing remarks, which would not otherwise have been published, on the theory of
Prof. Planck.” Jeans then criticises Planck’s concept of the “entropy of a single res-
onator” given by the formula S = kB log W+constant by saying: “The function W, as
at present defined, seems to me to have no meaning. Planck (in common, I know,
with many other physicists) speaks of the ‘probability’ of an event, without spec-
ifying the basis according to which the probability is measured. This conception
of probability seems to me an inexact conception, and as such to have no place in
mathematical analysis.” [41]

Jeans’ critique of Planck’s derivation is fully justified as one can infer from Ein-
stein’s “laudatio” for Planck written in 1913: “This [that is Planck’s] calculation
which, due to the not sufficiently sharp definition of W, could not be performed
without arbitrariness, led to the radiation formula (1.21) . . . ” [23].

Jeans then continues [41] by criticising Planck’s introduction of his famous con-
stant h via the fundamental relation ε = hν. “Here ε is a small quantity, a sort of
indivisible atom of energy, introduced to simplify the calculations. We may legiti-
mately remove this artificial quantity by passing to the limit in which ε = 0 . . . The
relation ε = hν is assumed by Planck in order that the law ultimately obtained
may satisfy Wien’s ‘displacement law’ i.e. may be of the form (1.17). This law is
obtained by Wien from thermodynamical considerations on the supposition that
the energy of the ether is in statistical equilibrium with that of matter at a uniform
temperature. The method of statistical mechanics, however, enables us to go fur-
ther and determine the form of the function f (v/T ); it is found to be 8πkB(T/ν),
so that Wien’s law (1.17) reduces to the law given by expression (1.27). In other
words, Wien’s law directs us to take ε = hν, but leaves h indeterminate, whereas
statistical mechanics gives us the further information that the true value of h is
h = 0. Indeed, this is sufficiently obvious from general principles. The only way
of eliminating the arbitrary quantity ε is by taking ε = 0, and this is the same as
h = 0. – Thus it comes about that in Planck’s final law (1.21) the value of h is left
indeterminate; on putting h = 0, the value assigned to it by statistical mechanics,
we arrive at once at the law (1.27). . . . I carry the method further than Planck, since
Planck stops short of the step of putting h = 0. I venture to express the opinion that
it is not legitimate to stop short at this point, as the hypotheses upon which Planck
has worked lead to the relation h = 0 as a necessary consequence. Of course, I am
aware that Planck’s law is in good agreement with experiment if h is given a value
different from zero, while my own law, obtained by putting h = 0, cannot possibly
agree with experiment. This does not alter my belief that the value h = 0 is the only
value which it is possible to take.” [41]

Although Jeans’ conclusion [41] that Planck should have arrived at the radiation
law (1.27) instead of his formula (1.21) agrees with the conclusions drawn earlier
by Einstein [36] and Rayleigh [37, 38]; his belief that the value h = 0 is the only
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value which Planck’s constant can possibly take shows that he did not realize the
importance of the equation ε = hν (neither did Planck nor Rayleigh!). It was Ein-
stein’s revolutionary light-quantum paper [36] (the only contribution he himself
called revolutionary) which gave a deep meaning to this equation and thus paved
the way towards a quantum theory. Einstein put forward the following “heuristic
view” [36]. “Monochromatic radiation of low density (within the domain of valid-
ity of Wien’s radiation formula) behaves in thermodynamic respect as if it would
consist of mutually independent energy quanta of magnitude R�ν/NA [== hν using
� = h/kB]. – If, in regard to the volume dependence of the entropy, monochromatic
radiation (of sufficiently low density) behaves as a discontinuous medium, which
consists of energy quanta of magnitude [hν], then this suggests an inquiry as to
whether the laws of the generation and conservation of light are also constituted as
if light were to consist of energy quanta of this kind.”

1.2.8
From Acoustics to Weyl’s Law and Kac’s Question

In the previous sections we have discussed how the heat radiation problem was
at the origin of Weyl’s famous work. Furthermore, we have seen that the idea of
expressing the spectral energy density ρ(ν, T ) of the black body radiation in terms
of the density of states D(ν) goes back to Rayleigh [26] who in turn reduced the
problem to the “vibrations of a cubical mass of air”. Thus Weyl’s law actually
has its roots in acoustics. In view of the fact that Rayleigh was a leading expert
in acoustics and the author of the famous book “The Theory of Sound” [27], first
published in 1877, it is not surprising that he realized that the radiation problem
can be related to the number of vibrational modes of a black body cavity. All the
more reason that it is strange to observe that he had difficulties in obtaining the
correct value for the constant c1 in his radiation law (1.19). The problem was of
course a question of the correct boundary conditions in the electromagnetic case.
In his book, Rayleigh writes: “Some of the natural notes of the air contained within
a room may generally be detected on singing the scale. Probably it is somewhat
in this way that blind people are able to estimate the size of rooms.” [27] And in
a footnote he adds: “A remarkable instance is quoted in Young’s Natural Philoso-
phy, II. p. 272, from Darwin’s Zoonomia, II. 487. “The late blind Justice Fielding
walked for the first time into my room, when he once visited me, and after speak-
ing a few words said, ‘This room is about 22 feet long, 18 wide, and 12 high’; all
which he guessed by the ear with great accuracy.” And then Rayleigh continues:
“In long and narrow passages the vibrations parallel to the length are too slow
to affect the ear, but notes due to transverse vibrations may often be heard. The
relative proportions of the various overtones depend upon the place at which the
disturbance is created. In some cases of this kind the pitch of the vibrations, whose
direction is principally transverse, is influenced by the occurrence of longitudinal
motion. . . . ”

These remarks on acoustics lead us directly to Kac’s famous question: “Can one
hear the shape of a drum?” [9], which will be discussed in Sections 1.3.6 and 1.3.7,
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and the more general question: “Can one hear the periodic orbits of a drum?” to be
discussed in Section 1.3.7.

1.3
Weyl’s Law with Remainder Term. I

1.3.1
The Laplacian on the Flat Torus T2

In special cases it is possible to derive exact formulae for the counting function
N(λ) which contain in addition to the Weyl term (and possible higher order terms)
an explicit expression for a remainder function. The most elegant way to derive
these formulae is based on trace formulae; a famous example is the Selberg trace
formula [45–47] to be discussed in Section 1.4. To illustrate the method in a sim-
ple case, we consider the eigenvalue problem –ΔT2 u = λu, where ΔT2 denotes the
Laplacian on a flat torus T2 := S1

L ~ S1
L = R2/(LZ ~ LZ) characterized by a length scale

L > 0. T2 can be represented by the fundamental domain Ω = [0, L] ~ [0, L] ∈ R2 i.e.
by a square with side L, where opposite sides are glued together. Obviously, all of
R2 is covered by the Γ-translates of Ω where Γ is the translation group (LZ)2. This
produces a tessellation of R2 and leads to the periodic boundary conditions

u(x1 + μ1L, x2 + μ2L) = u(x1, x2), (x1, x2) ∈ Ω, (μ1, μ2) ∈ Z2 .

Note that T2 is a smooth, compact manifold with area |Ω| = L2 (but with no
boundary). It is easy to see that (em)m∈Z2 =

(
e2πi(m·x)/L

)
m∈Z2

is an orthonormal ba-
sis of L2(Ω) consisting of eigenvectors of –ΔT2 with discrete eigenvalues (λm)m∈Z2 =(
(4π2)/L2

(
m2

1 + m2
2

))
(m1,m2)∈Z2

.

Let r(n) = #
{
(m1, m2) ∈ Z2, n = m2

1 + m2
2

}
, n ∈ N0, with r(0) = 1, i.e. r(n) denotes

the number of representations of n ∈ N0 as a sum of two squares of integers.
Obviously, the distinct eigenvalues of –ΔT2 ,

(λ̄n)n∈N0 =
(

4π2

|Ω| n
)

n∈N0

,

occur with multiplicity r(n). Then the counting function on the torus reads

N(λ) =
∑
λ̄nuλ

r(n) =
∑

0unu(|Ω|/4π2)λ

r(n) . (1.29)

The very irregular (“valde irregulariter” [48]) number theoretical function r(n) had
already been studied by Gauss [48] who derived the formula r(n) = 4(d1(n) – d3(n)),
n v 1, where d1(n) and d3(n) are the number of divisors of n of the form 4m + 1 and
4m + 3, m ∈ N0, respectively. The first values are r(0) = 1, r(1) = 4, r(2) = 4, r(3) = 0,
r(4) = 4, r(5) = 8. If n == 3(mod 4) then r(n) = 0. For large n one has r(n) = O(nε) for
every ε > 0; r(n) = O

(
(log n)δ

)
is false for every δ. The average order of r(n) is

r̄ := lim
x→∞

1
x

∑
0unux

r(n) = π
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(Gauss resp. the Weyl law, see (1.31)). For further information about r(n), see [49,
pp. 241].

1.3.2
The Classical Circle Problem of Gauss

Let

ν(x) :=
∑

0unux

r(n) =
∑

m2
1+m2

2ux
(m1,m2)∈Z~Z

1 , (1.30)

then

N(λ) = ν
(
|Ω|
4π2 λ

)
and the derivation of Weyl’s law is reduced to a lattice point problem, since ν(x) has
a simple geometric interpretation as the number of lattice points in the interior and
on the boundary of a circle with center (0, 0) and of radius

√
x. The problem of cal-

culating the leading asymptotic behavior of ν(x) for x → ∞ was already considered
by Gauss in 1834 [48] (see also [50, pp. 32–39]). He realized that ν(x) is approxi-
mately given by the sum of the areas of all squares of unit side length which are
inscribed in the circle of radius

√
x, and thus ν(x) is in first approximation equal to

the area of the circle π
(√

x
)2

= πx. Actually, Gauss proved

lim
x→∞

ν(x)
x

= π , (1.31)

which implies Weyl’s law

lim
λ→∞

N(λ)
λ

=
|Ω|
4π

(1.32)

for the counting function (1.29). Based on his result (1.31), Gauss considered ν(x)/x
as an approximation method to calculate π. To this purpose, he thought about the
error one makes at finite x. Again, by geometrical intuition, one sees that the error
should not be larger than the combined area of those squares that are cut by the
boundary of the circle i.e. those contained in an annulus of width 2

√
2, and thus is

approximately given by 2
√

2 times the perimeter of the circle 2π
√

x, and, indeed,
Gauss was able to prove

ν(x) = πx + O
(√

x
)

(x → ∞) ,

which implies

N(λ) =
|Ω|
4π

λ + O
(√

λ
)

(λ → ∞) .

Defining a remainder term P(x),

ν(x) = πx + P(x) ,
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we are led to the classical circle problem, a famous problem in analytic number theo-
ry [51, pp. 181–308]: estimate the remainder function P(x) as accurately as possible.
In particular, determine α0 = inf α in the estimate

P(x) = O(xα) (x → ∞) .

In Figures 1.1 and 1.2 we show plots of ν(x) and P(x), respectively, from which it
becomes clear that P(x) – due to the erratic behavior of r(n) – is a very irregular
function wildly fluctuating about zero. It is therefore no big surprise that to deter-
mine the actual size of P(x), and thus the remainder to Weyl’s law, is a difficult
problem. Considering the difference ν(n + 1/2) – ν(n), n ∈ N, it is easy to see that
P(x) = o(1) is false, and thus 0 u α0 u 1/2. An important result showing that P(x)
is much smaller than the classical result α0 u 1/2 is due to Sierpiński who proved
α0 u 1/3 in 1906 [52, pp. 73–108]. A famous conjecture by Hardy from 1915 states
that α0 should be 1/4, i.e. P(x) = O

(
x1/4+ε

)
for every ε > 0 [53, 54]. Actually, Hardy

proved α0 v 1/4.
During the last 100 years, the values for α0 decreased only by a tiny amount:

α0 u 37/112 = 0.330 . . . (van der Corput 1923 [55]), α0 u 12/37 = 0.324 . . . (Wen-Lin
Yin 1962 [56]), α0 u 7/22 = 0.318 . . . (Iwaniec and Mozzochi 1988 [57]). The best
bound known today is due to Huxley who proved in 1992 that

P(x) = O
(
x23/73 (log x

)315/146
)

;

note that 23/73 = 0.315 . . . is still far away from 1/4! (For a review, see [58].)
Since P(x) is a wildly fluctuating function, it might be that some very rare spikes
exceeding the conjectured x1/4-behavior make it extremely difficult to improve the
best existing bound. In order to “tame” these spikes, one can consider moments
of P(x) and hope that the spikes are being washed out. We shall come back to this
idea in Section 1.3.9 making use of the trace formula for ν(x) which we shall now
derive.

Note added in proof: in a recent unpublished paper [59] it is claimed to present
a proof of Hardy’s conjecture.

1.3.3
The Formula of Hardy–Landau–Voronoï

The counting function ν(x) can be rewritten as

ν(x) =
∑
m∈Z2

θ
(
x – m2

)
,

where θ(x) denotes the Heaviside step function. Instead of θ(x–m2), let us consider
a function g(m) with

– g : R2 → C, continuous
– g(x ) = O

(
1/(‖x‖2+ε)

)
for ‖x‖2 = x2

1 + x2
2 → ∞, ε > 0,

and let us study the sum
∑

m∈Z2
g(m). Using the Poisson summation formula, we obtain∑

m∈Z2

g(m) =
∑
l∈Z2

g̃(l ) , (1.33)
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where g̃ denotes the Fourier transform of g:

g̃(l) =
∫
R2

g(x)e–2πi(l·x) d2x . (1.34)

To apply this to the circle problem, we make the further assumption that g(x) is
a radial function which depends only on ρ = ‖x‖, i.e.

g(x) = g(x1, x2) = φ
(
x2

1 + x2
2

)
= φ
(
ρ2
)

.

Thus

g̃(l) = g̃(l1, l2) =

∞∫
–∞

∞∫
–∞

φ
(
x2

1 + x2
2

)
e–2πi(l1x1+l2x2) dx1 dx2

=

∞∫
0

ρφ
(
ρ2
) 2π∫

0

e–2πi‖l ‖ρ cosϕ dϕdρ = 2π

∞∫
0

ρφ
(
ρ2
)
J0(2π‖l‖ρ)dρ.

Here we have introduced polar coordinates in R2, x1 = ρ cosϕ, x2 = ρ sinϕ, 0 u ϕ u
2π, and have used the integral representation

J0(z) =
1

2π

2π∫
0

e–iz cos ϕ dϕ

for the Bessel function J0(z). Now the Poisson summation formula (1.33) reads

∑
m∈Z2

φ
(
m2
)

= 2π
∑
l∈Z2

∞∫
0

ρφ
(
ρ2
)
J0(2π‖l ‖ρ)dρ ,

or, by introducing the multiplicity r(n) and ρ =
√

x, x v 0:

∞∑
n=0

r(n)φ(n) = π
∞∑

n=0

r(n)

∞∫
0

φ(x)J0

(
2π

√
nx
)
dx . (1.35)

This is the theorem due to Hardy [54, 60, 61], Landau [51, pp. 189] and Voronoï [62].

1.3.4
The Trace Formula on the Torus T2 and the Leading Weyl Term

We recall that the distinct eigenvalues on the torus T2 are given by λ̄n = (2π/L)2 n =
p2

n with pn := (2π/L)
√

n, n ∈ N0, and multiplicities r(n). Introducing in the theo-
rem (1.35) the spectral function h((2π/L) ρ) := φ

(
ρ2
)

with

• h : R→ C, continuous

• h even i.e. h(–p) = h( p) (1.36)

• h( p) = O

⎛⎜⎜⎜⎜⎜⎜⎝ 1∣∣∣p∣∣∣2+ε

⎞⎟⎟⎟⎟⎟⎟⎠ ,
∣∣∣p∣∣∣→ ∞, ε > 0,
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we arrive at the trace formula on the torus T2

∞∑
n=0

r(n)h
(

pn
)

=
|Ω|
2π

∞∫
0

ph( p)dp + |Ω|
∞∑

n=1

r(n)ĥ
(
L
√

n
)

, (1.37)

where ĥ(x) denotes the Fourier–Bessel (or Hankel) transform of h( p):

ĥ(x) :=
1

2π

∞∫
0

ph( p)J0( px)dp .

(In deriving the first term on the right-hand side of (1.37), we have used r(0) = 1 =
J0(0) and L2 = |Ω|.) Note that the left-hand side of (1.37) can be written as the trace
of the trace class operator

h
(
(–ΔT2 )1/2

)
: L2(Ω) → L2(Ω)

with

h
(
(–ΔT2 )1/2

)
f =
∑
m∈Z2

h
( √

λm

) (
em | f ) em , for f ∈ L2(Ω) ,

i.e.

∞∑
n=0

r(n)h
(

pn
)

= Tr h
(
(–ΔT2 )1/2

)
,

which explains why (1.37) is called a trace formula.
Due to the conditions (1.36) on the spectral function h( p), the operator

h
(
(–ΔT2 )1/2

)
is actually a Hilbert–Schmidt operator with kernel Gh(x, y) = Ḡh(y, x) ∈

L2(Ω ~ Ω) satisfying, for f ∈ L2(Ω),

(
h
(
(–ΔT2 )1/2

)
f
)

(x) =
∫
Ω

Gh(x, y) f (y)d2y . (1.38)

Furthermore, Gh(x, y) has the uniformly convergent expression in terms of the or-
thonormal eigenfunctions em ∈ L2(Ω) (Mercer’s theorem)

Gh(x, y) =
∑
m∈Z2

h
( √

λm

)
em(x)ēm(y) , (1.39)

which expresses the fact that em is an eigenfunction of the operator h
(
(–ΔT2 )1/2

)
with eigenvalue h

( √
λm

)
. From this one immediately derives the pre-trace formula

Tr h
(
(–ΔT2 )1/2

)
=
∫
Ω

Gh(x, x)d2x . (1.40)
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Pre-trace formulae of this type are the starting point for the derivation of trace
formulae in the general case, for example in quantum mechanics, where the right-
hand side of (1.40) is expressed by the volume of the classical phase space and the
classical actions evaluated along the periodic orbits of the corresponding classical
system [63].

An alternative way to write the left-hand side of (1.37) is

∞∑
n=0

r(n)h( pn) =

∞∫
0

h
(√

λ
)
dN(λ) ,

where N(λ) is the counting function, and the integral is understood as a Stieltjes
integral. Rewriting in a similar way the first term on the right-hand side of (1.37)

|Ω|
2π

∞∫
0

ph( p)dp =:

∞∫
0

h
(√

λ
)
dN(λ) ,

one obtains dN(λ) = |Ω| /(4π)dλ and thus, immediately, the smooth term

N(λ) =
|Ω|
4π

λ , (1.41)

which turns out to be exactly the leading Weyl term of N(λ), see (1.4) and Sec-
tion 1.3.6.

1.3.5
Spectral Geometry: Interpretation of the Trace Formula
on the Torus T2 in Terms of Periodic Orbits

While the left-hand side of the trace formula (1.37) has a simple spectral interpreta-
tion (being just the sum over the “frequencies” pn =

√
λ̄n of the eigenvibrations on

T2, evaluated on a large class of spectral functions h( p), see Equation (1.36)), the
infinite series on the right-hand side has a simple geometrical interpretation as can
be seen by rewriting (1.37) as follows

∞∑
n=0

r(n)h( pn) = |Ω| ĥ(0) + |Ω|
∞∑

n=1

∞∑
k=1

r
(
k2l2n
)

ĥ (kln) . (1.42)

Here
{
ln
}
n∈N denotes the primitive length spectrum on T2 with

ln = L
√

m2
1 + m2

2 = L
√

n ,

where n is a square-free integer with r(n) =/ 0. ln is the geometrical length of a prim-
itive periodic orbit (closed geodesic) of the classical geodesic flow on T2. The non-
primitive periodic orbits have lengths kln, k v 2, where k counts the kth traversal of
the corresponding primitive periodic orbit with length ln. The trace formula (1.42)
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displays a beautiful relation in spectral geometry relating the spectrum of the Lapla-
cian to the length spectrum of the geodesic flow. The torus T2 is a compact Riemann
surface of genus 1 and Gaussian curvature K = 0. A generalization to surfaces of
higher genus is given by the famous Selberg trace formula [45, 46] which has been
much studied in the field of quantum chaos (see for example [47,64–66]) and string
theory (see for example [67, 68]) and will be discussed in Section 1.4.4.

1.3.6
The Trace of the Heat Kernel on d-Dimensional Tori and Weyl’s Law

The trace formula (1.37), respectively (1.42), has the typical structure of a trace for-
mula and is in some sense a “meta formula” since it allows one to derive an infinite
number of relations depending on the special choice of the spectral function h( p)
satisfying the conditions (1.36). As a first example, let us calculate the trace of the
heat kernel, which is obtained for the choice h( p) = e–p2t, t > 0. With

ĥ(x) =
1

2π

∞∫
0

pe–p2tJ0( px)dp =
1

4πt
e–x2/4t

we get (t > 0)

ΘT2 (t) := Tr etΔ
T2 =

∞∑
n=0

r(n)e–(4π2/|Ω|)nt =
|Ω|
4πt

+
|Ω|
4πt

∞∑
n=1

r(n)e–(|Ω|/4)tn

=
|Ω|
4πt

+
|Ω|
4πt

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)
e–k2l2n/4t.

(1.43)

For t → 0+ one thus obtains the correct |Ω| /(4πt)-term (and no higher order terms

of the type
∞∑

n=–1
antn/2 as occurring in the general case), which yields the correct

Weyl term, and an exponentially small remainder term behaving as O
(
t–1e–L2/4t

)
.

It is thus seen that the Weyl term corresponds to the “zero-length contribution”
in the periodic orbit sum i.e. to the term obtained for l0 := 0, while the exponen-
tial remainder term is determined by the shortest primitive periodic orbit on T2

having the length l1 = L. As to physical applications, let us point out that the func-
tion ΘT2 (t) is for t ~ 1/T, where T denotes absolute temperature, identical to the
partition function in statistical mechanics, and thus the Weyl term determines the
high-temperature limit of the corresponding thermodynamical system.

Note that the trace of the heat kernel rewritten as f (q) :=
∞∑

n=0
r(n)qn with q = eiπτ,

τ = i (4π/ |Ω|) t, plays the role of a generating function of the arithmetic func-
tion r(n). f (q) was already introduced by Jacobi in 1829 who derived

f (q) =

⎛⎜⎜⎜⎜⎜⎝∑
m∈Z

qm2

⎞⎟⎟⎟⎟⎟⎠2 = (θ3(0|τ))2
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for Im τ > 0 in terms of the elliptic theta function θ3. Using the transformation
formula θ3(0 | τ) = (–iτ)–1/2θ3(0 | –1/τ) derived by Poisson in 1823, one obtains
again relation (1.43).

It is not difficult to generalize the result (1.43) to d-dimensional flat tori Td :=
Rd/Γ with Γ = (LZ)d. The translation group Γ has a natural embedding as a lattice
in Rd. To Γ there is associated a uniquely defined dual lattice Γ∗ (called a reciprocal
lattice in physics): Γ∗ =

{
γ∗ ∈ Rn : γ · γ∗ ∈ Z for all γ ∈ Γ

}
. With γ = Ln, n ∈ Zd,

γ∗ = 1/Lm, m ∈ Zd, the eigenvalues of –ΔTd are given by
(
λγ∗
)

γ∗∈Γ∗ = 4π2
∥∥∥γ∗∥∥∥2

with eigenvectors
(
eγ∗
)

γ∗∈Γ∗ =
(
e2πi(γ∗·x)

)
. Furthermore, the length spectrum of the

classical periodic orbits on Td is given by
(∥∥∥γ∥∥∥)

γ∈Γ
. Using the Poisson summa-

tion formula as in the case d = 2, it is straightforward to derive a trace formu-
la on Td from which one obtains, for example, for the trace of the heat kernel
(t > 0)

ΘTd (t) := Tr etΔ
Td =

∑
γ∗∈Γ∗

e–4π2‖γ∗‖2 t =
|Ω|

(4πt)d/2

∑
γ∈Γ

e–‖γ‖2/4t

=
|Ω|

(4πt)d/2
+ O
(
t–d/2e–L2/4t

)
(t → 0+). (1.44)

Here the first term on the right-hand side corresponding to the identity element
I ∈ Γ with ‖I‖ = 0 yields via the Tauberian theorem of Karamata (see Theorem 1.1
in Section 1.6) Weyl’s law for Td (λ → ∞)

N(λ) =
|Ω|

(4π)d/2Γ(1 + d/2)
λd/2 + O

(
λd/2
)

, (1.45)

but the trace formula yields, in addition, an exact expression for the remain-
der term in the same way as discussed in detail for T2 in Section 1.3.9 be-
low.

The case d = 3 has important applications in several fields. For example, in solid
state physics, chemistry and crystallography, one identifies the lattice Γ with the
atomic structure of crystals. Furthermore, the reciprocal lattice Γ∗ is very useful
in analyzing diffraction phenomena in light and neutron scattering off crystals. In
cosmology it has been proposed that the spatial section of our Universe is given by
a 3-torus whose fundamental domain is a cube with side length L � 5 ~ 1026 m �
5.6 ~ 1010 light years [69].

Finally we would like to mention that the case d = 16, i.e. the tori R16/Z16 have
played an important role in the attempts to answer Kac’s question [9], since it had
already been noticed by John Milnor in 1964 that the tori T16 give examples of
nonisometric compact manifolds with the same spectrum of the Laplacian [70].
The construction of these lattices for d = 16 had already been found by Witt in
1941 [71].
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1.3.7
Going Beyond Weyl’s Law: One can Hear the Periodic Orbits
of the Geodesic Flow on the Torus T2

Let us consider another admissible spectral function h( p) in the trace formu-
la (1.42) which is slightly more general than the one used in the previous section
for the heat kernel:

h( p) := J0( ps)e–p2 t , s ∈ R, t > 0 .

With

ĥ(x) =
1

2π

∞∫
0

pJ0( ps)e–p2tJ0( px)dp =
1

4πt
e–(s2+x2)/4tI0

( sx
2t

)
(1.46)

(I0(z) is the modified Bessel function) we arrive at the trace formula (s ∈ R, t > 0)

G(s, t) := Tr
(
J0

(
s(–ΔT2 )1/2

)
etΔ

T2
)

=
∞∑

n=0

r(n)J0

(
s
√

λ̄n

)
e–λ̄nt

=
|Ω|
4πt

e–s2/4t +
|Ω|
4πt

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)

e–(s2+k2l2n)/4tI0

(
skln
2t

)
. (1.47)

Since I0(0) = 1, it follows that (1.47) coincides in the limit s → 0 with the trace
of the heat kernel (1.43), G(0, t) = ΘT2 (t). Performing on the other hand for fixed
s > 0 the limit t → 0+ i.e. eliminating the “regulator” t, one obtains the remarkable
relation (s > 0)

G(s, 0) =
∞∑

n=0

r(n)J0

(
s
√

λ̄n

)
=
|Ω|
2π

∞∑
n=1

∞∑
k=1

r
(
k2l2n
)

kln
δ(s – kln) , (1.48)

which is to be understood as an identity in the sense of distributions. Here we have
used the asymptotic expansion (valid for z → +∞)

I0(z) =
1

√
2πz

ez
(
1 + O

(
1
z

))
and the delta-sequence

1

2
√

πt
e–x2/4t → δ(x) (t → 0+) .

Relation (1.48) tells us that the formal trace G(s, 0) = Tr J0

(
s(–ΔT2 )1/2

)
yields a well-

defined distribution whose singular support is given for s > 0 by

singsupp G(s, 0) =
{
kln
}
, k ∈ N ,

i.e. by the primitive length spectrum
{
ln
}

of the geodesic flow on the torus and
the nonprimitive length spectrum

{
kln
}
, k v 2. Thus the eigenvalues

{
λ̄n

}
of the
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Laplacian on T2 together with their multiplicities
{
r(n)
}

“know” the length spectrum
of the closed geodesics of the classical motion on T2, i.e. one can hear the periodic
orbits of the torus! Since the torus is uniquely given by its area |Ω| and its length
spectrum

{
ln
}
, we can conclude that the complete shape of the torus is audible.

A slightly different operator has been studied by Chazarain [72], Colin de
Verdière [73, 74], and Duistermaat and Guillemin [75, 76], where the Bessel func-
tion J0 is replaced by cos

(
s(–Δ)1/2

)
respectively exp

(
is(–Δ)1/2

)
.

1.3.8
The Spectral Zeta Function on the Torus T2

Define for s ∈ C, Re s > 1, the spectral zeta function on T2:

�T2 (s) := Tr′ (–ΔT2 )–s =
∞∑

n=1

r(n)

λ̄s
n

=
|Ω|s

(2π)2s

∞∑
n=1

r(n)
ns , (1.49)

where the prime at the trace denotes that the eigenvalue λ̄0 = 0 has been omitted.
(Zeta functions of this type for general Laplace–Beltrami operators were introduced
in [77, 78] following a suggestion of Weyl. See also [14].) With the help of

1
ns =

1
Γ(s)

∞∫
0

τs–1e–nτ dτ, n > 0, Re s > 0 ,

we obtain for Re s > 1

Γ(s)�T2 (s) =

1∫
0

ts–1 [ΘT2 (t) – 1
]

dt +

∞∫
1

ts–1 [ΘT2 (t) – 1
]

dt . (1.50)

Hence �T2 (s) is the Mellin transform of ΘT2 (t) with the eigenvalue zero omitted.
Since

ΘT2 (t) = 1 + O
(
e–(4π2/|Ω|)t

)
for t → ∞ ,

the second integral has an analytic continuation to the whole complex s-plane as
an entire function. Inserting in the first integral for ΘT2 (t) the expansion (1.43), we
obtain for Re s > 1

�T2 (s) =
|Ω| /(4π)

s – 1
+ F(s) , (1.51)

where F(s) is an entire function. Thus we can extend the Dirichlet series (1.49)
meromorphically to all s ∈ C having only one simple pole at s = 1 with residue
|Ω| /(4π), which is given by the area of the torus. This pole is a direct consequence
of the leading Weyl term in the expansion (1.43). It thus follows that the Dirichlet

series
∞∑

n=1
r(n)/ns diverges for Re s u 1, but is convergent for Re s > 1, which will be

important in the explicit formula for the remainder term in Weyl’s law. Note that
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there exists the following closed expression, which can be considered as another
generating function of r(n) (see for example [79, pp. 265])

∞∑
n=1

r(n)
ns = 4�(s)L(s)

in terms of the Riemann zeta function �(s) and the Dirichlet L-series L(s) := 1 –
1/3s + 1/5s – . . . with L(1) = π/4, which has an entire extension.

The result (1.51) holds in general for a large class of eigenvalue problems; see for
example reference [47] for the Laplace–Beltrami operator on compact Riemannian
surfaces of genus g v 2. In the case of the Dirichlet Laplacian acting on a smooth
bounded open set Ω ⊂ Rd one can show [80] that �Ω(s) := Tr

(
–ΔD

Ω

)–s
possesses

a meromorphic analytic continuation into the complex s-place with a leading sim-
ple pole at s = d/2 and residue |Ω| /

(
(4π)d/2 Γ(d/2)

)
. In particular, s = 0 turns out to

be a regular point such that the first derivative at s = 0, �′Ω(0) , is well defined. This
fact is then used to regularize the functional determinant of –ΔD

Ω by [80]

det
(
–ΔD

Ω

)
:= exp

(
–�′Ω(0)

)
.

This method was introduced into physics by Stephen Hawking [81] as a convenient
way to compute the determinants arising in the Feynman path integral approach
to quantum field theory and quantum gravity. For applications of this method, see
for example [82, pp. 37–43] in the case of quantum mechanics, and [67] in the case
of string theory.

1.3.9
An Explicit Formula for the Remainder Term in Weyl’s Law
on the Torus T2 and for the Circle Problem

To derive N(λ) from the trace formula (1.37), we choose the function h( p) =
θ
(
λ – p2

)
, λ > 0. We then obtain with

1
2π

∞∫
0

ph( p)dp =
1

2π

√
λ∫

0

pdp =
λ

4π

and

ĥ(x) =
1

2π

√
λ∫

0

pJ0( px)dp =

√
λ

2πx
J1

(√
λx
)

the relation

N(λ) =
|Ω|
4π

λ +
L

2π

√
λ

∞∑
n=1

r(n)
√

n
J1

(
L
√

nλ
)

. (1.52)



30 1 Weyl’s Law

This equation was found for the first time in Hardy’s paper [54] who writes in
a footnote: “The form of this equation was suggested to me by Mr. S. Ramanujan,
. . . ”. (As we shall see below, the sum in (1.52) is not absolutely convergent since
the function h( p) used in the derivation is not continuous. Relation (1.52) can be
derived, however, by using an appropriate smoothing [65, 83].)

In order to study the asymptotic behavior of the remainder term, we employ the
asymptotic formula

J1(x) =

√
2

πx
cos
(
x –

3π
4

)
+ O
(

1
x3/2

)
(x → ∞) ,

and obtain in the limit λ → ∞

Nfl(λ) = λ1/4 1
π

√
L

2π

∞∑
n=1

r(n)
n3/4 cos

(
L
√

λn –
3π
4

)
+ O

⎛⎜⎜⎜⎜⎜⎝ 1
λ1/4

∞∑
n=1

r(n)
n5/4

⎞⎟⎟⎟⎟⎟⎠ , (1.53)

where we have defined the “fluctuating part” of the counting function by Nfl(λ) :=
N(λ) –

(
|Ω| /(4π)

)
λ. Nfl(λ) describes the fluctuations of N(λ) about the mean be-

havior N(λ) :=
(
|Ω| /(4π)

)
λ given by Weyl’s law, see (1.41). In Figure 1.1 we show

a plot of N(λ) for L = 2π (which implies N(λ) = ν(λ) and P(λ) = Nfl(λ) for the re-
mainder term in Gauss’ circle problem) for small values of λ == x (0 u x u 50).
Weyl’s law is indicated as a straight line. One observes that the Weyl term does
indeed describe the mean behavior of the staircase function ν(x) very well, even at
small values of x. The fluctuating part P(x) is shown in Figure 1.2 for small values
(0 u x u 50) and for large values (1011 u x u 1011 + 107) of x and shows a very
erratic behavior fluctuating about zero. In order to understand this behavior, one
has to study the series in (1.53), which is a trigonometric series and therefore more

difficult to control than a Fourier series. (Since
∞∑
1

r(n)/n5/4 < ∞, see Section 1.3.8,

the second term in (1.53) is bounded by λ–1/4, and thus can be neglected.) Due to

the divergence of the sum
∞∑
1

r(n)/n3/4, the trigonometric sum is only conditionally

convergent, explaining the difficulty in proving Hardy’s conjecture which amounts
to the bound O (λε) for every ε > 0 for this sum. (It is possible, however, to re-
place the sharp counting function N(λ) by a smooth counting function depending
on a smoothness parameter which leads to better convergence properties, see [65]
and [83].)

In order to quantify the numerical observation that Nfl(λ) oscillates about zero,
let us calculate the mean value of P(x) (= Nfl(x) for L = 2π):

P̄(x) :=
1
x

x∫
0

P(y)dy .

We then obtain from (1.52) using

x∫
0

√
yJ1
(
2π

√
ny
)

dy =
x

π
√

n
J2

(
2π

√
nx
)
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Figure 1.1 The counting function ν(x) for the Gaussian circle
problem (respectively for a torus with L = 2π). The straight line
shows the leading term πx (Weyl’s law).

and the asymptotics of the Bessel function (x → ∞)

P̄(x) =
1
π

∞∑
n=1

r(n)
n

J2

(
2π

√
nx
)

=
x–1/4

π

∞∑
n=1

r(n)
n5/4 cos

(
2π

√
nx –

5π
4

)
+ O
(
x–3/4

)
, (1.54)

which implies, since the sums in (1.54) are now absolutely convergent, lim
x→∞

∣∣∣P̄(x)
∣∣∣ =

0 [51, pp. 206]. A method to smooth possible spikes in P(x), which originates in
a paper by Cramér in 1922 [84], is to study higher moments of P(x)

Mk(x) :=
1
x

x∫
0

∣∣∣P(y)
∣∣∣k dy (1.55)

for k > 0 and

mk(x) :=
1
x

x∫
0

(
P(y)
)k dy (1.56)

for k = 1, 3, 5, . . .. (Note that m1(x) = P̄(x)). The following results are known [85]

Mk(x) → Ckxk/4, k ∈ [0, 9]
mk(x) → ckxk/4, k = 3, 5, 7, 9.

(x → ∞) (1.57)
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Figure 1.2 The remainder term P(x) of the Gaussian circle
problem (respectively the fluctuating part of the torus problem
with L = 2π) is shown in different intervals.

(C2 = 1/(3π2)
∞∑

n=1
r(n)2/n3/2 [84]). It follows that the moments (1.57) are consistent

with Hardy’s conjecture, P(x) = O
(
x1/4+ε

)
, since this implies

(
mk(x)

)1/k = O
(
x1/4
)

resp.
(
Mk(x)

)1/k = O
(
x1/4
)
, but of course they do not prove it. Nevertheless it seems

justified to say that the “mean” behavior of P(x) is proportional to x1/4 for x → ∞.

1.3.10
The Value Distribution of the Remainder Term in the Circle Problem

In the preceding section we saw that the remainder term P(x) in the circle problem
(respectively the fluctuating part Nfl(λ) in Weyl’s law for the torus problem) is a very
irregular function fluctuating about zero (see Figures 1.1 and 1.2). It thus appears
natural to consider P(x) as a random function of x and to study its statistical proper-
ties in the limit x → ∞, like its moments as in Equations (1.55) and (1.56), its limit
distribution (if it exists), correlations etc., rather than to estimate its magnitude,
i.e. trying to prove Hardy’s conjecture. Since the moment M2(x), see (1.55), is the
variance of P(x), an obvious quantity to study is the normalized remainder term

W(x) :=
P(x)√
M2(x)

.

Since M2(x) → C2
√

x for x → ∞, it turns out to be convenient to consider the
function

F( p) :=
P( p2)
√

p
=

1
π

∞∑
n=1

r(n)
n3/4 cos

(
2π

√
np –

3π
4

)
+ O
(

1
p

)
( p → ∞) (1.58)

as a function of p :=
√

x > 1 and F( p) = 0 for p < 1. Obviously, F( p) fluctuates about
zero and its mean value vanishes asymptotically for p → ∞, whereas Cramér’s
result [84] implies that the second moment of F( p) exists. There now arise the
following questions. i) Does F( p), where p is randomly chosen from the interval
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1, pm

]
, have for pm → ∞ a limit distribution f (α)dα with probability density f (α)?

ii) Assuming that f (α) exists, what is its form? In view of the erratic behavior of
P( p2) and thus of F( p), one may guess that the central limit theorem can be applied
to F( p) and thus f (α) should be a Gaussian.

The study of the distribution of F( p) was initiated by Heath-Brown [85] who
proved that F( p) has indeed a distribution function f (α) in the sense that, for any
interval [a, b] ⊂ C we have

lim
pm→∞

1
pm

μ
{
p ∈ [0, pm

]
: F( p) ∈ [a, b]

}
=

b∫
a

f (α)dα (1.59)

(here μ denotes the Lebesgue measure.) Moreover, he proved that f (α) can be ex-
tended to an entire function on C and decreases faster than polynomially on the
real line as |α| → ∞.

The results of Heath-Brown were developed further by Bleher, Cheng, Dyson and
Lebowitz [86] who proved

lim
pm→∞

1
pm

pm∫
0

g(F( p))ρ
(

p
pm

)
dp =

∞∫
–∞

g(α)f (α)dα (1.60)

for every piecewise continuous bounded function g(x) on R and for an arbitrary
probability density ρ(x) v 0 on [0, 1]. In addition, they showed that for every ε > 0
there exists α0 = α0(ε) > 0 such that, on the real line α ∈ R, we have the upper
bound

0 u f (α) < e–|α|4–ε
(1.61)

when |α| > α0, and that the cumulative distribution C(α) :=
α∫

–∞
f (α′)dα′ satisfies for

every α > α0 the lower bound

C(–α), 1 – C(α) > e–α4+ε
. (1.62)

These results [85, 86] came as a great surprise since they imply that f (α) decreases
for |α| → ∞ roughly as e–α4

and thus faster than a Gaussian density! A numerical
computation of f (α) is shown in Figure 1.3 and compared with a normal Gaussian
distribution. The deviation from a Gaussian distribution is clearly visible; more-
over, one observes that f (α) is skewed towards positive values of α.

In the next section we shall formulate a conjecture which states that the non-
Gaussian behavior of f (α) has its origin in the fact that the circle problem can
be related to the remainder term of Weyl’s law for a quantum mechanical system
whose corresponding classical system (i.e. the geodesic flow on a torus with L = 2π)
is integrable and thus regular.

The proof of the properties (1.60)–(1.62) is based on the fact that F( p) is an almost
periodic function of Besicovitch class B2 [86, 87], which means

lim
N→∞

lim
pm→∞

1
pm

pm∫
0

∣∣∣∣∣∣∣F( p) –
1
π

N∑
n=1

r(n)
n3/4 cos

(
2π

√
np –

3π
4

)∣∣∣∣∣∣∣
2

dp = 0 . (1.63)
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Figure 1.3 The distribution function f (α) is shown for the circle
problem in comparison with a Gaussian normal distribution
(dashed curve).

1.3.11
A Conjecture on the Value Distribution of the Remainder Term in Weyl’s Law
for Integrable and Chaotic Systems

In this section we would like to mention an application of Weyl’s law in quantum
mechanics. Let us consider a bound quantum system i.e. a system whose quantum
Hamiltonian has a purely discrete energy spectrum

{
λn
}
n∈N. To have a specific ex-

ample in mind, think of two-dimensional quantum billiards on a bounded domain
Ω with area |Ω|, for which the time-independent Schrödinger equation reads (in
appropriate units) –ΔΩun(x) = λnun(x) imposing (for example) Dirichlet or Neu-
mann boundary conditions on ∂Ω (see (1.1) and (1.2)). Moreover, let us assume
that Weyl’s law holds in the form

N(λ) = N(λ) + Nfl(λ) , (1.64)

where the smooth part N(λ) describes asymptotically the mean behavior of the
counting function N(λ), i.e. the fluctuating remainder term Nfl(λ) satisfies

1
λ

λ∫
λ1

Nfl(λ′)dλ′ → 0 for λ → ∞ . (1.65)

For “generic” two-dimensional billiards, there exists a three-term formula for N(λ)

N(λ) =
|Ω|
4π

λ ∓ |∂Ω|
4π

√
λ + C , (1.66)

where the first two terms correspond to Weyl’s conjecture (see (1.6) and the re-
marks after (1.7)), and the constant C takes the curvature of ∂Ω and corner correc-
tions into account (see (1.67)).
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The definition of what is meant by “generic” is a very subtle subject, the dis-
cussion of which is beyond the scope of this contribution. Examples of generic
and nongeneric systems are discussed in [88]. A rigorous definition requires the
introduction of geometrical concepts like “nonperiodicity” and “nonblocking”; see
for example [89]. To derive the smoothed counting function N(λ), several averag-
ing procedures have been invented, in particular by Brownell [90], which are de-
scribed in [91]. For a simply connected domain Ω possessing piecewise smooth
arcs of length γi and corners of angle ϕj ∈ (0, 2π] one obtains [91, p. 62] (1.66)
with

C =
1

12π

∑
i

∫
γi

κ(l)dl +
1
24

∑
j

(
π
ϕj

–
ϕj

π

)
, (1.67)

where κ(l) (l ∈ arc γi ⊂ ∂Ω) denotes the curvature of the arc γi. It should be noted,
however, that the three-term formula (1.66) does not imply Nfl(λ) = O(1). On the
contrary, the problem of determining α0 = inf α in the estimate Nfl(λ) = O(λα)
is a very difficult one; the circle problem discussed in Section 1.3.2 being an
illustrative example.

To compare the quantal spectra of different systems, one has to get rid of the
system-dependent constants in N(λ), which is achieved by “unfolding” the spectra
by xn := N(λn). The unfolded spectrum {xn}n∈N has by construction a unit mean
level spacing, and thus the corresponding counting function N̂(x) := # {xn u x}
reads N̂(x) = x + N̂fl(x). Obviously,

1
x – x1

x∫
x1

N̂fl(y)dy → 0 for x → ∞. (1.68)

In analogy to the approach discussed in Section 1.3.10 for the circle problem, we
are interested in the statistical properties of the normalized remainder term

W(x) :=
N̂fl(x)√

D(x)
, (1.69)

where D(x) denotes the variance (� is a constant to be given below)

D(x) :=
�

x – x1

x∫
x1

(
N̂fl(y)

)2
dy . (1.70)

We now consider W(x) as a random variable, where x is chosen randomly from
the interval [x1, xm] and ask whether W(x) possesses in the limit xm → ∞ a limit
distribution. If a limit distribution exists, it has by construction a second moment
of one (if the second moment exists) and a first vanishing moment.
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We are now in a position to formulate the following

Conjencture 1.1 ([92, 93]) For bound conservative and scaling quantum systems the
quantity W(x), Equation (1.69), possesses for x → ∞ a limit distribution with zero mean
and unit variance. This distribution is absolutely continuous with respect to Lebesgue
measure on the real line with a density f (α) i.e.

lim
xm→∞

1
xm

xm∫
x1

g(W(x))ρ
(

x
xm

)
dx =

∞∫
–∞

g(α) f (α)dα , (1.71)

where g(x) is a bounded continuous function on R, and ρ(x) v 0 a probability density on
[0, 1]. Furthermore,

∞∫
–∞

αf (α)dα = 0,

∞∫
–∞

α2f (α)dα = 1 . (1.72)

If the corresponding classical system is strongly chaotic, having only isolated and unstable
periodic orbits, then f (α) is universally a Gaussian,

f (α) =
1
√

2π
e–α2/2 . (1.73)

In contrast, a classically integrable system leads to a system-dependent non-Gaussian
density f (α).

Here a few remarks are in order. i) The normalization used in the defini-
tion (1.69) is crucial in order for a limit distribution to exist since in all interesting
cases D(x) diverges for x → ∞. From Berry’s [94] semiclassical analysis one obtains
for generic integrable billiards

D(x) → c
√

x, x → ∞ , (1.74)

where c is some nonuniversal constant. (For rigorous results, see the discussion of
the torus billiard in Section 1.3.9 and [95]). In contrast, for generic classically chaotic
systems one expects

D(x) → 1
2π2�

ln x, x → ∞ , (1.75)

with � = 1 for systems with anti-unitary symmetry (for example time-reversal sym-
metry) and � = 2 for systems without such a symmetry. ii) The constant � in (1.70)
takes the value � = 2/3, if D(x) obeys (1.74), and � = 1 in the case of (1.75).
iii) The conjecture is proven for some integrable systems like the torus (Gauss
circle) problem, see [96] for a review. iv) The conjecture has been checked numer-
ically for several integrable (like the isospectral billiard shown in Figure 1.5) and
chaotic systems [88, 93] and has been found to hold with high statistical signifi-
cance. v) In Figure 1.4 we show the numerical evaluation of f (α) for the strong-
ly chaotic Hadamard–Gutzwiller model [64] which is the quantum version of the
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geodesic flow on a compact Riemann surface of genus two (for details, see Sec-
tion 1.4). For this system there exists the rigorous Selberg trace formula [45] (see
Equation (1.95) below) which yields for the remainder term N̂fl(x) the explicit ex-
pression (see (1.107) below)

N̂fl(x) =
1
π

arg Z
(

1
2

+ ix
)

(1.76)

in terms of the Selberg zeta function Z(s) evaluated on the critical line s = 1/2 + ix.
For the numerical computation in Figure 1.4 we used the first 6000 eigenvalues
with positive parity (computed by the boundary-element method [97]) of a generic
(nonarithmetic) Riemann surface whose fundamental domain in the Poincaré-disk
model for hyperbolic geometry is described in [97]. We conclude that the computed
histogram is in nice agreement with the conjecture (1.73). vi) In many respects the
nontrivial zeros of the Riemann zeta function �(s) behave like the scaled eigenval-
ues of a hypothetical classically chaotic system without anti-unitary symmetry, see
Sections 1.4.8 and 1.4.9. The analogue of (1.76) reads

N̂fl(x) =
1
π

arg �
(

1
2

+ ix
)

(see (1.108) below) counting only the zeros {xn}n∈N, �(1/2 + ixn) = 0, with Re xn > 0
and –1/2 < Im xn < 1/2 . It has been shown by Selberg’s moment method [98–100]
that the corresponding quantity W(x), with D(x) ~ 1/2π2 ln ln x, has a Gaussian
limit distribution in accordance with the conjecture. For a numerical calculation
of f (α) using the first 50 000 zeros and the 50 000 zeros starting from the 1020 +
143 780 420 th zero, respectively, see Figure 8 in [101], which shows that the con-
vergence of the probability distribution to the proven Gaussian limit distribution is
very slow.
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Figure 1.4 The distribution function f (α) is shown for the
strongly chaotic Hadamard-Gutzwiller model in comparison
with the conjectured Gaussian normal distribution (dashed
curve).



38 1 Weyl’s Law

1.4
Weyl’s Law with Remainder Term. II

1.4.1
The Laplace–Beltrami Operator on d-Dimensional Compact Riemann Manifolds Md

and the Pre-Trace Formula

In many physical applications (ergodic theory, quantum mechanics, nonlinear op-
tics, general relativity, string theory, and cosmology) one has to deal with the wave
equation (or heat or Schrödinger equation) on non-Euclidean spaces. Important ex-
amples are d-dimensional manifolds or orbifolds Md endowed with a Riemannian
metric for which the Euclidean Laplacian has to be replaced by the corresponding
Laplace–Beltrami operator. For simplicity, we discuss only manifolds with constant
Gaussian curvature K.

Let us first consider smooth compact Riemannian manifoldsMd without bound-
ary which are well studied and for which one can derive exact trace formulae
and therefore can obtain full information on Weyl’s law and even on Carleman’s
law [102, 103] involving the eigenfunctions. The simplest case of zero curvature
K = 0 i.e. flat tori Md

Γ = Rd/Γ , where Γ is a group of motions isomorphic to
Zd, which are compact Riemannian manifolds, has already been discussed in Sec-
tion 1.3.

The case of homogeneous manifolds with constant positive curvature K = +1 is
also well understood but will not be treated here.

The case of compact manifolds with constant negative curvature K = –1 and di-
mension d v 2 is highly nontrivial since the eigenvalues and eigenfunctions of the
Laplace–Beltrami operator corresponding to the non-Euclidean (hyperbolic) metric
are not known analytically. The geodesic flow i.e. the free motion of a point par-
ticle on these hyperbolic manifolds was already studied by Jacques Hadamard in
1898 [104, 105] and has played an important role in the development of ergodic
theory ever since. Hadamard proved that all trajectories in this system are unstable
and that neighboring trajectories diverge in time at an exponential rate, the most
striking property of deterministic chaos. In 1980, Martin Gutzwiller drew attention to
this system as a prototype example for quantum chaos [106]. Today the quantum sys-
tem governed by the free Schrödinger equation i.e. the eigenvalue problem of the
Laplace–Beltrami operator on these hyperbolic manifolds (or orbifolds), is known
as the Hadamard–Gutzwiller model [64, 65, 107]. In dimension d = 3, hyperbolic
manifolds are possible candidates for the spatial section of the Universe and are
investigated in cosmology [108].

In order to define a hyperbolic manifold, one considers IsoHd, the group of
isometries on Hd (i.e. the distance-preserving bijections on Hd), where Hd is the
d-dimensional hyperbolic space. The action of an isometry γ of Hd is denoted by
γ(z) with z ∈ Hd. Take a discrete subgroup Γ of IsoHd and identify all points of
Hd which can be transformed into each other by an element of Γ . Those points are
called Γ-equivalent, and we put them into an equivalence class Γ(z) =

{
γ(z) : γ ∈ Γ

}
with z ∈ Hd. The set of those classes defines the hyperbolic d-manifold represented
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by the quotient space Md := Hd/Γ =
{
Γ(z) : z ∈ Hd

}
. To visualize a given manifold,

we have to take one representative from each class such that the set of all repre-
sentatives yields a simply connected set in Hd, called the fundamental domain ΩΓ .
Here we discuss only compact manifolds whose fundamental domain is of finite
volume, |ΩΓ | < ∞. One can cover all of Hd with Γ-translates of ΩΓ . This produces
a tessellation of Hd in analogy to the case discussed in Section 1.3 for flat tori.
The group Γ is then called a hyperbolic crystallographic group or simply a hyper-
bolic lattice. The task is then to study the eigenvalue problem of the hyperbolic
Laplacian –Δu(z) = λu(z), z ∈ Hd, u ∈ L2

(
Hd/Γ , �

)
, where u is automorphic i.e. sat-

isfies u(γ(z)) = �̄(γ)u(z) for all γ ∈ Γ and z ∈ Hd. Here � is any one-dimensional
unitary representation of Γ , also called a character which satisfies

∣∣∣�(γ)
∣∣∣2 = 1 for

all γ ∈ Γ . Due to the compactness of Md, the spectrum of –Δ is discrete with
0 = λ0 < λ1 u λ2 u . . .. (whether λ0 = 0 exists depends on Md).

Let us consider the resolvent kernel GΓ (z, z′; λ) on Hd/Γ for f ∈ L2
(
Hd/Γ , �

)
[
(–Δ – λ)–1 f

]
(z) =

∫
ΩΓ

GΓ (z, z′; λ) f (z′)dμ(z′) , (1.77)

where λ ∈ C\ [0,∞). We then obtain the correlation function [107]

CF(z, z′) :=
∑

n

F(λn)en(z)ēn(z′) =
1
π

∞∫
0

F(λ′) disc GΓ (z, z′; λ′)dλ′ , (1.78)

where the spectral function F(λ) is assumed to obey the following sufficient condi-
tions:

– F(λ) is holomorphic in a strip enclosing the positive real axis,
– F(λ) drops faster than λ–d/2 for λ → ∞.

The last condition is imposed to ensure convergence of the above expression for all
z, z′ ∈ Hd including the diagonal z = z′. For z =/ z′ weaker conditions are sufficient.
Furthermore, we have introduced the discontinuity of GΓ across the cut in the λ-
plane

disc GΓ (z, z′; λ) := lim
ε→0+

1
2i
[
GΓ (z, z′; λ + iε) – GΓ (z, z′; λ – iε)

]
.

Since CF(z, z′) is identical to the automorphic kernel of the operator F(–Δ), we
obtain the pre-trace formula∑

n

F(λn) = Tr F(–Δ) =
∫
ΩΓ

CF(z, z)dμ(z) .

1.4.2
The Sum Rule for the Automorphic Eigenfunctions on Md

In the next step, we make use of the alternative representation of the resolvent
kernel which expresses the Γ-invariant kernel GΓ as a sum (“method of images”)
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over the free resolvent kernel G(d)
0 (z, z′; λ) on Hd

GΓ (z, z′; λ) =
∑
γ∈Γ

�(γ)G(d)
0 (z, γ(z′); λ) .

The crucial point now is that G(d)
0 is explicitly known for all d v 2, see [109]. In-

troduce the wave numbers pn via p0 :=
(
(d – 1)/2

)
i and pn :=

√
λn – (d – 1)2/4 v 0

for n v 1. Here p0 belongs to λ0 = 0 (if it exists), and pn, n v 1, to the eigenvalues
λn v (d – 1)2/4, where we have assumed that there are no so-called “small eigenval-
ues” with 0 < λn < (d – 1)2/4. It is now convenient to replace the spectral function
F(λ) by a new spectral function

h( p) := F
(
p2 +

(d – 1)2

4

)
= F(λ) : C→ C ,

which has to fulfil the following sufficient conditions

• h(–p) = h( p)

• h( p) is holomorphic in the strip
∣∣∣Im p

∣∣∣ u d – 1
2

+ ε, ε > 0 (1.79)

• h( p) = O
(
p–d–δ

)
, δ > 0 for

∣∣∣p∣∣∣→ ∞.

Then the correlation function takes the final form of a “sum rule” for the automorphic
eigenfunctions en (d v 2) [107]

∞∑
n=0

h( pn)en(z)ēn(z′) =
2
π

∑
γ∈Γ

�(γ)

∞∫
0

ph( p)Φ̂(d)(cosh d(z, γ(z′)); p)dp , (1.80)

where d(z, z′) denotes the hyperbolic distance between arbitrary points z, z′ ∈ Hd.
d(z, z′) is a point-pair invariant, i.e. d(γ(z), γ(z′)) = d(z, z′) for all γ ∈ Γ and z, z′ ∈
Hd. For z = z′ the distance τγ := d(z, γ(z)) is the length of a closed orbit, but which
is in general not a periodic one. The function Φ̂(d)(y; p) is explicitly given by (y v 1)

Φ̂(d)(y; p) =
π

(2π)d/2

(y2 – 1)(2–d)/4

2p

∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 P(2–d)/2
–1/2+ip(y) , (1.81)

where Pμ
ν (y) is the associated Legendre function of the first kind.

1.4.3
Weyl’s Law on Md and its Generalization by Carleman

At this point let us introduce the generalized counting function

N(d)
Γ (λ; z, z′) :=

∑
λnuλ

en(z)ēn(z′), (1.82)
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which for z = z′ gives Carleman’s function
∑

λnuλ

∣∣∣en(z)
∣∣∣2 [102,103] and after integrating

over ΩΓ the usual counting function

N(d)
Γ (λ) =

∫
ΩΓ

N(d)
Γ (λ; z, z)dμ(z) =

∑
λnuλ

1 (1.83)

(since
∫

ΩΓ

em(z)ēn(z)dμ(z) = δmn).

We then obtain from the sum rule (1.80) the explicit formula

dN(d)
Γ (λ; z, z′) = dN

(d)
Γ (λ; z, z′) + dN(d)

Γ ,fl(λ; z, z′) (1.84)

with

dN
(d)
Γ (λ; z, z′) :=

1
π

Φ̂(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh d(z, z′);

√
λ –
(

d – 1
2

)2 ⎞⎟⎟⎟⎟⎟⎟⎟⎠ dλ (1.85)

and

dN(d)
Γ ,fl(λ; z, z′) :=

1
π

∑
γ∈Γ ′

�(γ)Φ̂(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝cosh d(z, γ(z′));

√
λ –
(

d – 1
2

)2 ⎞⎟⎟⎟⎟⎟⎟⎟⎠dλ ,

where Γ ′ := Γ\ {I} (I denotes the identity) and �(I) = 1 was used. From our discus-
sion of the trace formula for the tori Td we expect that (1.85) gives the asymptotical-
ly leading smooth contribution to the generalized counting function (1.82). With

d(z, z) = 0 we obtain from (1.85) for z = z′
(

p :=
√

λ –
(
(d – 1)/2

)2 )

N
(d)
Γ (λ; z, z) :=

λ∫
((d–1)/2)2

dN
(d)
Γ (λ; z, z) =

2
π

p∫
0

Φ̂(d)(1; p′
)
p′ dp′ ,

which no longer depends on z! Here Φ̂(d) (1; p
)

follows from (1.81)

Φ̂(d)(1; p) =
π

(2π)d/2

1
2p

∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 lim
y→1+

P(2–d)/2
–1/2+ip(y)

(y2 – 1)(d–2)/4

=
d

(4π)d/2Γ (1 + d/2)
· π

2p
·
∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 (1.86)

and thus

N
(d)
Γ (λ; z, z) =

d
(4π)d/2Γ(1 + d/2)

p∫
0

∣∣∣∣∣∣Γ
(
ip′ + (d – 1) /2

)
Γ(ip′)

∣∣∣∣∣∣2 dp′ . (1.87)
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Using the asymptotic expansion∣∣∣∣∣∣Γ
(
ip + (d – 1) /2

)
Γ(ip)

∣∣∣∣∣∣2 = pd–1
(
1 + O

(
1
p2

))
( p → ∞) ,

we immediately obtain

N
(d)
Γ (λ; z, z) =

1
(4π)d/2Γ(1 + d/2)

λd/2 + O
(
λd/2–1

)
(λ → ∞) (1.88)

and after integration over ΩΓ the non-Euclidean analog of Weyl’s law (d v 2)

N
(d)
Γ (λ) =

|ΩΓ |
(4π)d/2Γ(1 + d/2)

λd/2 + O
(
λd/2–1

)
. (1.89)

Since one can show that the remainder term satisfies N(d)
Γ ,fl(λ; z, z) = O

(
λd/2
)
, we

obtain Carleman’s law

N(d)
Γ (λ; z, z) =

∑
λnuλ

∣∣∣en(z)
∣∣∣2 =

λd/2

(4π)d/2Γ (1 + d/2)
+ Oz

(
λd/2
)

(λ → ∞) , (1.90)

which is a generalization of Weyl’s law since it is not only a statement about
the eigenvalues but also about the eigenfunctions. Note, however, that the sum
rule (1.80) – being an exact explicit expression – contains much more information.
To see this, let us consider the simplest case d = 2 in more detail.

1.4.4
The Selberg Trace Formula and Weyl’s Law

In the case d = 2 we consider compact Riemann surfaces M2 = H2/Γ of genus
g v 2 with Γ a strictly hyperbolic Fuchsian group of the first kind, Γ ∈ PSL(2,R).
Such groups are characterized by the fact that all their group elements γ (except
the unity I) are hyperbolic. Here we choose for H2 the Poincaré!upper half plane
H2 =

{
z = x + iy : x, y ∈ R, y > 0

}
with the hyperbolic metric

ds2 =
dx2 + dy2

y2 ,

which is invariant under fractional linear transformations:

z → γ(z) :=
az + b
cz + d

,

where a, b, c, d ∈ R and ad – bc = 1. Then the Laplace–Beltrami operator is Δ =
y2
(
∂2/∂x2 + ∂2/∂y2

)
. It is also invariant under the group actions γ ∈ Γ . We then

obtain from (1.81)

Φ̂(2)(y; p) =
1
4

tanh(πp)P–1/2+ip(y) ,
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where Pν(y) denotes the Legendre function of the first kind.
Then the sum rule (1.80) takes the simple form (�(γ) = 1 ∀γ ∈ Γ , p0 = i/2,

pn =
√

λn – 1/4 v 0, n v 1) [110]

∞∑
n=0

h( pn)en(z)ēn(z′) =
1

2π

∑
γ∈Γ

ĥ
(
cosh d

(
z, γ(z′)

))
, (1.91)

where the hyperbolic distance on H2 is given by

cosh d(z, z′) = 1 +
(x – x′)2 + y2 + y′2

2yy′
.

Here ĥ denotes the Mehler transform of the spectral function h which is defined
by the relations

h( p) =

∞∫
1

ĥ(y)P–1/2+ip(y)dy (1.92)

ĥ(y) =

∞∫
0

p tanh(πp)h( p)P–1/2+ip(y)dp. (1.93)

In [107, 110] it was shown that the sum rule (1.91) can be used to compute numer-
ically the eigenfunctions en(z) called nonholomorphic (or automorphic) forms or
Maass waveforms, at least if the eigenvalues λn are not too large. Taking the trace of
the sum rule (1.91) one gets with (1.93) and P–1/2+ip(1) = 1 (the SL(2,R)-invariant
area element on H2 is dμ(z) = dxdy/y2)

∞∑
n=0

h( pn) =
|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp +
1

2π

∑
γ∈Γ ′

∫
ΩΓ

ĥ
(
cosh d

(
z, γ(z)

))
dμ(z) .

(1.94)

To evaluate the sum over γ ∈ Γ ′ involving the integral over ĥ is a nontrivial task
and was first achieved by Atle Selberg [45, 46] leading to the famous Selberg trace
formula

∞∑
n=0

h( pn) =
|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp +
∞∑
{γ}p

∞∑
n=1

l(γ)
2 sinh

(
nl(γ)/2

) h̃ (nl(γ)
)

,

(1.95)

where h̃(x) denotes the Fourier transform of h( p)

h̃(x) :=
1

2π

∞∫
–∞

eipxh( p)dp .
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The sum on the right-hand side of (1.95) runs over the length spectrum
{
l(γ)
}
p of the

primitive periodic orbits of the geodesic flow on the surface M2 = H2/Γ . Notice
that the length spectrum is uniquely given by the conjugacy classes of the hyper-
bolic elements in Γ as can be seen as follows. The elements γ ∈ Γ of the discrete
subgroups of PSL(2,R) can be represented as 2 ~ 2 matrices γ =

(
a b
c d

)
with real en-

tries and det γ = ad – bc = 1. For a strictly hyperbolic group one has, for all γ =/ ±I:∣∣∣Tr γ
∣∣∣ =
∣∣∣a + d

∣∣∣ > 2. The Jordan form of these matrices takes the form
(

a 0
0 1/a

)
with

|a| > 1, and the action of γ gives z → γ(z) = a2z, where N(γ) := a2 is called the norm
of the element γ. Since there exists a unique relationship between the conjugacy
classes in Γ and the homotopy classes of closed paths onH2, one can define in each
class a length l(γ) by the length of the shortest path, and then obtains N(γ) = el(γ),
l(γ) > 0. The length l(γ) is then given by cosh(l(γ)/2) =

∣∣∣Tr γ
∣∣∣ /2.

The sums and integrals in the Selberg trace formula are all absolutely convergent
if the spectral function h( p) satisfies conditions (1.79) for d = 2. The Selberg trace
formula (1.95) can be considered as a generalization and noncommutative ana-
logue of the classical Poisson summation formula (1.33), respectively of the trace
formulae (1.37) and (1.42–1.44) for flat tori.

From the Selberg trace formula (1.95) we can immediately read off the complete
Weyl term of the counting function (see the discussion above for general d v 2)

N
M2

Γ

(
p2 +

1
4

)
:=
|ΩΓ |
2π

p∫
0

p′ tanh(πp′)dp′ , (1.96)

which behaves as

N
M2

Γ

(
p2 +

1
4

)
=
|ΩΓ |

6
p3 + O

(
p5
)

for p → 0 ,

and hence we obtain Weyl’s law on compact Riemann surfaces of genus g v 2

N
M2

Γ

(
p2 +

1
4

)
=
|ΩΓ |
4π

(
p2 –

1
12

)
+ O
(
pe–2πp

)
for p → ∞ . (1.97)

This asymptotic formula contains the standard Weyl term proportional to λ and
the volume |ΩΓ |, no term proportional to

√
λ, since M2 has no boundary, it has

a constant term and then an exponentially small correction. Below we shall also
derive the fluctuating remainder term of the counting function.

1.4.5
The Trace of the Heat Kernel on M2

Choosing the spectral function h( p) = e–( p2+1/4)t, t > 0, we obtain for the trace of
the heat kernel on a compact Riemann surface M2 of genus g v 2 possessing the area
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|ΩΓ | = 4π
(
g – 1
)

(Gauss–Bonnet) the explicit formula (t > 0) [47]

ΘM2
(t) :=

∞∑
n=0

e–λnt =
∞∑

n=0

e–( p2
n+1/4)t = ΘM2

1 (t) + ΘM2

2 (t),

ΘM2

1 (t) := |ΩΓ |
e–t/4

(4πt)3/2

∞∫
0

x
sinh (x/2)

e–x2/4t dx

=
|ΩΓ |
4πt

N∑
n=0

bntn + O
(
tN
)
, t → 0+ ,

b0 = 1, bn =
(–1)n

22nn!

⎡⎢⎢⎢⎢⎢⎢⎣1 + 2
n∑

k=1

(
n
k

) (
22k–1 – 1

)
|B2k|
⎤⎥⎥⎥⎥⎥⎥⎦ , n ∈ N,

ΘM2

2 (t) :=
e–t/4

4
√

πt

∑
{γ}p

∞∑
n=1

l(γ)
sinh

((
nl(γ)

)
/2
) e–n2l2(γ)/4t ,

(1.98)

where B2k are the Bernoulli numbers (b1 = –1/3, b2 = 1/15). This formula is the
generalization of Poisson’s transformation formula for the elliptic theta function
θ3 discussed in Section 1.3.6 to Riemann surfaces of genus g v 2. Thus ΘM2

(t) can
be called the non-Euclidean theta function. The formula (1.98) is quite interesting
since it shows that for compact Riemann surfaces of genus g v 2 the complete
small-t asymptotics is explicitly known, see the term ΘM2

1 , and not just the leading
Weyl term |ΩΓ | /4πt. Furthermore, there even exists a closed expression for this
contribution as an integral which is valid for all t > 0 and is not just an asymptotic
result in the limit t → 0+. Moreover, the remainder term ΘM2

2 also has an explicit
representation as a sum over the length spectrum of periodic orbits. This term is
exponentially small in the limit t → 0+ and is determined by the shortest periodic
orbit with primitive length l(γ1) > 0, i.e. ΘM2

2 (t) = O
(
t–1/2e–l2(γ1)/4t

)
in close analogy

with the behavior on the torus T2.

1.4.6
The Trace of the Resolvent on M2 and Selberg’s Zeta Function

In order to calculate the trace of the resolvent of –Δ on M2, one is led to substi-
tute h( p) =

(
1/4 + p2 – λ

)–1
in the trace formula. This function violates, however,

the asymptotic condition in Equation (1.79) for
∣∣∣p∣∣∣ → ∞, i.e. the resolvent is not

of trace class as a consequence of Weyl’s law which tells us that the eigenvalues
behave as λn = 1/4 + p2

n ~ (4π/ΩΓ ) n for n → ∞. Thus the resolvent has to be regu-
larized properly. A very convenient regularization is given by the following choice.
(Re s, Re σ > 1)

h( p) =
1

p2 + (s – 1/2)2 –
1

p2 + (σ – 1/2)2 ,
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which fulfills all the conditions (1.79) in the trace formula. For the integral (Weyl)
term in the trace formula (1.95) one then obtains

|ΩΓ |
2π

∞∫
0

p tanh(πp)h( p)dp = –
|ΩΓ |
2π
(
ψ(s) – ψ(σ)

)
,

where ψ(s) := Γ ′(s)/Γ(s) is the digamma function. Using the Fourier transform
(Re s > 1/2, x v 0)

1
2π

∞∫
–∞

eipx

p2 + (s – 1/2)2 dp =
1

2s – 1
e–(s–1/2)x,

the Selberg trace formula for the trace of the regularized resolvent reads (Re s, Re σ > 1)

∞∑
n=0

(
1

λn + s(s – 1)
–

1
λn + σ(σ – 1)

)
= –

|ΩΓ |
2π
(
ψ(s) – ψ(σ)

)
+

1
2s – 1

A(s) –
1

2σ – 1
A(σ) , (1.99)

where the function A(s) is for Re s > 1 given by the absolutely convergent double
sum

A(s) :=
∑
{γ}p

∞∑
n=1

l(γ)e–(s–1/2)nl(γ)

2 sinh
(
nl(γ)/2

) .

It was one of Selberg’s deep insights to realize that A(s) can be rewritten for Re s > 1
as the logarithmic derivative of a kind of zeta function Z(s):

A(s) =
∑
{γ}p

∞∑
n=1

l(γ)e–(s–1/2)nl(γ)

enl(γ)/2 – e–nl(γ)/2
=
∑
{γ}p

∞∑
n=1

l(γ)e–snl(γ)

1 – e–nl(γ)

=
∑
{γ}p

∞∑
n=1

l(γ)e–snl(γ)
∞∑

k=0

e–knl(γ) =
∑
{γ}p

∞∑
k=0

l(γ)
∞∑

n=1

e–(s+k)nl(γ)

=
∑
{γ}p

∞∑
k=0

l(γ)
e–(s+k)l(γ)

1 – e–(s+k)l(γ)
=
∑
{γ}p

∞∑
k=0

d
ds

ln
(
1 – e–(s+k)l(γ)

)

=
d
ds

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∏{γ}p

∞∏
k=0

(
1 – e–(s+k)l(γ)

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =:
Z′(s)
Z(s)

.

Here we have defined the Selberg zeta function (Re s > 1) [45]

Z(s) :=
∏
{γ}p

∞∏
k=0

(
1 – e–(s+k)l(γ)

)
, (1.100)
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which is given as a generalized Euler product over the lengths of the primitive
periodic orbits. It follows from Selberg’s trace formula that the infinite products
in (1.100) are absolutely convergent for Re s > 1. Replacing A(s) and A(σ) in (1.99)
by Selberg’s zeta function, we obtain an exact relation [47] which expresses the
trace of the regularized resolvent of –Δ on an arbitrary compact Riemann surface
of genus g v 2 in terms of the well-known ψ-function and Selberg’s zeta function.
On the other hand, this relation allows us to prove that Z(s) can be continued to the
left of Re s = 1. This can be seen by rewriting (1.99) as follows [47]

1
2s – 1

Z′(s)
Z(s)

= –2
(
g – 1
)

ψ(σ) +
(

1
2σ – 1

Z′(σ)
Z(σ)

–
1

σ(σ – 1)

)
(1.101)

+ 2
(
g – 1
)

ψ(s) +
1

s(s – 1)
+

∞∑
n=1

(
1

λn + s(s – 1)
–

1
λn + σ(σ – 1)

)
.

Note that the sum over the eigenvalues no longer contains the zero mode λ0 = 0.
Keeping the regulator σ fixed with Re σ > 1, we see that the right-hand side
of (1.101), derived for Re s > 1, is actually meromorphic for all s ∈ C. Thus the
left-hand side of (1.101) is also meromorphic, and so we obtain the analytic contin-
uation of Z(s) on C. In fact, further inspection shows that the Selberg zeta function
is an entire function of s of order 2 whose “trivial” zeros are at s = –k, k ∈ N, with
multiplicity 2(g – 1)(2k + 1). Furthermore, s = 1 is a simple zero, and s = 0 is a zero
of multiplicity 2g – 1. In addition Z(s) can have a finite number of zeros on the real
axis between 0 and 1 located at s = 1/2 ±

√
1/4 – λn corresponding to the so-called

“small” eigenvalues 0 < λn < 1/4. For surfaces of genus g > 2, one has at most
4g – 3 small eigenvalues [111, 112], while in the case of g = 2 there is at most one
small eigenvalue [113].

More importantly, Z(s) has an infinite number of “nontrivial” zeros located at s =
1/2 ± ipn, pn v 0, i.e. lying on the critical line Re s = 1/2, and thus one can say that
the Riemann hypothesis is valid for Z(s), a very remarkable result! One therefore has
the exact quantization condition (pn ∈ R)

Z
(

1
2

+ ipn

)
= 0 (1.102)

for the quantal eigenvalues λn = p2
n + 1/4 v 1/4 of the Schrödinger equation, which

are completely determined by the lengths of the classical periodic orbits of the
corresponding classical Hamiltonian system.

The reason behind the validity of the Riemann hypothesis in this case is obvious-
ly that s(s–1) is an eigenvalue of a self-adjoint operator, and hence is real, whenever s
is a zero of Z(s) within the critical strip. The question of whether something sim-
ilar holds for the nontrivial zeros of the Riemann zeta function, will be discussed
below.

The information on the zeros of Z(s) enables us now to eliminate the regulator σ
in (1.101) by taking the limit σ → 1. With ψ(1) = –γ, where γ is Euler’s constant,
we define the generalized Euler constant γΔ

γΔ := 2
(
g – 1
)

γ + B
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with

B := lim
σ→1

(
1

2σ – 1
Z′(σ)
Z(σ)

–
1

σ(σ – 1)

)
=

1
2

Z′′(1)
Z′(1)

– 1 .

Since Z(s) possesses a simple zero at s = 1, one has Z′(1) =/ 0 (actually Z′(1) > 0
holds) and thus the constant B is well defined. We then obtain for the trace of the
regularized resolvent of –Δ on M2 = H2/Γ the final result [47]

1
s(s – 1)

+
∞∑

n=1

(
1

λn + s(s – 1)
–

1
λn

)
=

1
2s – 1

Z′(s)
Z(s)

– γΔ – 2(g – 1)ψ(s) . (1.103)

1.4.7
The Functional Equation for Selberg’s Zeta Function Z(s)

To derive the functional equation for Z(s), we notice that s(s – 1) is invariant under
s → 1 – s and 2s – 1 changes sign. If we then subtract (1.103) evaluated at 1 – s from
the same expression evaluated at s, we obtain

1
2s – 1

d
ds

ln
Z(s)

Z(1 – s)
= 2(g – 1)

(
ψ(s) – ψ(1 – s)

)
.

Using the functional equation

ψ
(

1
2

+ z
)

– ψ
(

1
2

– z
)

= π tan(πz)

for the digamma function this then leads, with z = s –1/2, to the functional equation
for Z(s)

Z(s) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝|ΩΓ |
s–1/2∫
0

x tan(πx)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠Z(1 – s) . (1.104)

Evaluating the functional equation on the critical line i.e. choosing s = 1/2 + ip,
p ∈ R, we get

Z
(

1
2

+ ip
)

= e–2πiN
M2

Γ (p2+1/4)Z
(

1
2

– ip
)

, (1.105)

where the smooth term N
M2

Γ of the counting function given in (1.96) enters as
a phase. It follows that the function

�( p) := Z
(

1
2

+ ip
)
eiπN

M2

Γ ( p2+1/4)

satisfies the simple functional equation �( p) = �(–p), and furthermore that �( p) is
real if p ∈ R, i.e. on the critical line.
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1.4.8
An Explicit Formula for the Remainder Term in Weyl’s Law on M2

and the Hilbert–Polya Conjecture on the Riemann Zeros

Using the argument principle, one can derive the exact Weyl formula (p v 0, p =/ pn)
for the counting function

NM2

Γ

(
p2 +

1
4

)
= N

M2

Γ

(
p2 +

1
4

)
+

1
π

arg Z
(

1
2

+ ip
)

, (1.106)

which proves that the fluctuating term (remainder term) of the counting function
is determined by the Selberg zeta function on the critical line

NM2

Γ ,fl

(
p2 +

1
4

)
=

1
π

arg Z
(

1
2

+ ip
)

. (1.107)

The derivation of (1.106) is completely analogous to the well-known calculation
leading to the counting function NR(t) for the nontrivial Riemann zeros

NR(t) = NR(t) +
1
π

arg �
(

1
2

+ it
)

, (1.108)

which counts the number of zeros of the Riemann zeta function �(s) in the region
0 < Re s < 1, 0 < Im s u t. Here the smooth term NR(t) is given by the famous
Riemann–von Mangoldt formula [114]

NR(t) =
t

2π
ln t –

1 + ln 2π
2π

t +
7
8

+ O
(

1
t

)
(t → ∞) . (1.109)

Note that Selberg introduced his zeta function Z(s) around 1950 in analogy with the
Riemann zeta function �(s) with the intention to shed some light on the properties
of the nontrivial Riemann zeros and the Riemann hypothesis. He noticed the striking
similarities between his trace formula (1.95) and the so-called explicit formulae
in the theory of prime numbers [115], whose most general form is André Weil’s
explicit formula [116].

Weil’s explicit formula establishes a deep relation between the nontrivial zeros
ρn = 1/2 + iτn, τn ∈ C, of �(s) and the prime numbers p:

∞∑
n=1

h(τn) =
1

4π

∞∫
–∞

ψ
(

1
4

+ i
τ
2

)
h(τ)dτ + h

(
i
2

)
– h̃(0)

ln π
2

–
∑

p

∞∑
n=1

ln p
pn/2 h̃(n ln p) ,

(1.110)

where the “test function” h(τ) satisfies the same conditions (1.79) as the spectral
function in the Selberg trace formula for d = 2, and h̃(x) is again its Fourier trans-
form. Here the sum on the right-hand side runs over all primes p. Comparing
Weil’s formula (1.110) with Selberg’s trace formula (1.95), one is tempted to inter-
pret the nontrivial zeros of �(s) as eigenvalues of a hypothetical “Riemann operator”
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and the logarithm of the prime numbers as the “lengths” l( p) := ln p of the primi-
tive “periodic orbits” of the corresponding hypothetical geodesic flow. The term on
the right-hand side of (1.110) involving the summation over the primes then reads

–
∑

p

∞∑
n=1

l( p)
enl( p)/2

h̃(nl( p)) , (1.111)

which is strikingly similar to the corresponding term in the Selberg trace formu-
la (1.95) involving the summation over periodic orbits. Note, however, the differ-
ence between the denominator

+2 sinh
(

nl(γ)
2

)
= enl(γ)/2 – e–nl(γ)/2

in (1.95) which has a dynamical interpretation in terms of the linearized Poincaré
recurrence map for unstable hyperbolic periodic orbits, see for example [82,92], and
the corresponding denominator –enl( p)/2 in (1.111), for which no dynamical inter-
pretation has been found until now; see, however, the paper by Alain Connes [117]
who has devised a hermitian operator whose eigenvalues are the nontrivial Rie-
mann zeros. His operator is the Perron–Frobenius operator (called the transfer op-
erator in physics) of a classical dynamical system. In his framework he has found
an explanation for the minus sign in (1.111).

At first sight it seems that there is another obstruction to the interpretation of
the Riemann zeros as the eigenvalues of a dynamical system since the smooth
counting function NR(t) (1.109) goes asymptotically as λ/(2π) ln λ, if we put t = λ,
which differs from the standard behavior according to Weyl’s law in dimension 2.
It will be seen, however, in Section 1.5.2 that such logarithmic modifications to
Weyl’s law can occur, for example in membrane problems, for which the domain Ω
is unbounded.

Mathematical wisdom has usually attributed the formulation of the idea of a hy-
pothetical Riemann operator to Hilbert and Polya, independently, some time in the
1910s. (See Odlyzko’s correspondence with Polya [118].)

There is another difference between the Riemann and the Selberg case. In the
definition of Z(s) in (1.100) one has a double product, whereas �(s) involves only
a single one. Furthermore, the “Euler factor” occurs in Z(s) with the (+1) in the
exponent, and in the case of �(s) with a (–1). It turns out that, when one generalizes
the Selberg zeta function to spaces of higher rank, the natural exponents are certain
Euler characteristics which can take positive or negative values [119]. To get rid of
the second product in (1.100), one simply considers the ratio

R(s) :=
Z(s)

Z(s + 1)
=
∏
{γ}p

(
1 – e–sl(γ)

)
, (1.112)

and ends up with the Ruelle zeta function R(s) [120], which is now a meromorphic
function. R(s) or rather 1/R(s) has been discussed in terms of Beurling’s general-
ized prime numbers and in connection with a generalized prime number theo-
rem [121].
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1.4.9
The Prime Number Theorem vs. the Prime Geodesic Theorem on M2

The famous prime number theorem states that the number of primes up to x,
π(x) := #

{
p : p u x

}
, is asymptotically equal to the logarithmic integral, given for

x > 1 by (
�

means the Cauchy principal value of the integral)

li(x) :=

x�

0

dt
ln t

=
x

ln x
+

x
(ln x)2 + . . . (x → ∞) .

The fact that the density of primes near x is about 1/ ln x was already conjectured
by Gauss in 1792 at the age of 15. To derive a formula for π(x) was Riemann’s main
goal in his famous paper from 1859, and it was for this purpose that he studied
�(s) which had been introduced for integer argument already in 1735 by Euler who
discovered among several other relations the formula �(2) = π2/6 and in 1737
established the Euler product for �(m), m v 2. The prime number theorem was
proved in 1896 independently by Hadamard and de la Vallée Poussin by using the
Riemann zeta function. It is worthwhile noticing that the first “elementary” proof
was found by Selberg in 1949, see for example [46].

If one associates the prime numbers with the “lengths” l( p) := ln p, the counting
function N(l) := #

{
p : l( p) u l

}
counts the number of hypothetical “periodic orbits”

with length up to l. The prime number theorem is then converted into

N(l) == π
(
el
)

~ li
(
el
)

~
el

l
, (l → ∞) . (1.113)

It is this result which gives perhaps the strongest support to the Hilbert–Polya con-
jecture, since it turns out that the counting functionNM2

Γ (l) := #
{
γ ∈ Γ : l(γ) u l

}
of

the genuine periodic orbits of the geodesic flow on M2 obeys Huber’s law [122]

NM2

Γ (l) = li
(
el
)

+ O
(

e(3/4)l

l

)
, (l → ∞) . (1.114)

This is a special case of the general prime geodesic theorem valid for the counting
function of the lengths of the unstable periodic orbits of chaotic systems with a
topological entropy τ > 0. In the general case, one has as leading term eτl/τl. Thus
Huber’s law is consistent with the well-known fact that the geodesic flow on M2

is strongly chaotic, i.e. ergodic, mixing, possesses the Bernoulli property, and has
topological entropy τ = 1. (Actually, all periodic orbits on M2 are unstable and
possess the same Lyapunov exponent λ(γ) = 1.)

Comparing (1.113) with (1.114), one concludes that the hypothetical dynamical
system associated with the Riemann zeros should be chaotic, should have topologi-
cal entropy τ = 1, and should possess a length spectrum of primitive periodic orbits
exactly given by the logarithm of the primes, l( p) = ln p!

The validity of Huber’s law (1.114) can be seen as follows. Due to the existence
of the zero mode λ0 = 0 with multiplicity one, ΘM2

(t) = 1 + O
(
e–λ1t
)
, t → ∞, holds
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for the trace of the heat kernel on M2. Furthermore, one infers from (1.98) that the
complete Weyl term ΘM2

1 (t) satisfies lim
t→∞

ΘM2

1 (t) = 0, and thus the remainder term

ΘM2

2 (t) in (1.98) must satisfy lim
t→∞

ΘM2

2 (t) = 1. One therefore obtains the condition

lim
t→∞

e–t/4

2
√

πt

∞∫
l1

le–l2/4t – l/2 dNM2

Γ (l) = 1 ,

which yields dNM2

Γ (l) = el/ldl + . . . for l → ∞ in complete agreement with Huber’s
law (1.114).

In [123] an explicit formula for dNM2

Γ (l) was derived including an oscillating
remainder term. The derivation starts from Selberg’s trace formula (1.95) and uses
the Möbius inversion formula in complete analogy with Riemann’s explicit formula
for π(x). The formula was used to compute the lowest part of the length spectrum
for the most symmetric compact Riemann surface of genus g = 2 using the first
200 eigenvalues, see Figure 1 in [123].

1.5
Generalizations of Weyl’s Law

1.5.1
Weyl’s Law for Robin Boundary Conditions

In Equations (1.66) and (1.67) we have given the three-term formula for the smooth
term N(λ) for simply connected and bounded two-dimensional domains Ω with
smooth boundary for Dirichlet as well as for Neumann boundary conditions. A gen-
eralization encountered in a nuclear physics context [124–126] are mixed or so-
called Robin boundary conditions

α(x)u(x) + ∂nu(x) = 0 (x ∈ ∂Ω) , (1.115)

which leaves the problem self-adjoint when α is real. The Dirichlet and Neumann
boundary conditions are recovered in the limit α → ∞ and α → 0, respectively. For
constant α v 0 and excluding corners, Sieber et al. [127] derived the three-term Weyl
formula

N(λ) =
|Ω|
4π

λ –
|∂Ω|
4π

⎡⎢⎢⎢⎢⎢⎣1 – 2

⎛⎜⎜⎜⎜⎜⎝
√

1 +
α2

λ
–

α
√

λ

⎞⎟⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎦ √λ

+

⎡⎢⎢⎢⎢⎢⎣1 – 3

√
λ

α

√
1 + α2/λ – 1√

1 + α2/λ

⎤⎥⎥⎥⎥⎥⎦ 1
12π

∫
∂Ω

κdl .
(1.116)

Since ∂nu = O
(√

λ
)

in the limit λ → ∞, the term ∂nu is asymptotically dominant in
the boundary condition (1.115), and hence the mean spectrum will for fixed α al-
ways tend to the Neumann case. Therefore in the derivation of (1.116), λ and α/

√
λ
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have been considered as independent parameters. One observes that the general-
ized Weyl law (1.116) interpolates neatly between the law (1.66), (1.67) for Dirichlet
and Neumann boundary conditions. Formula (1.116) has been checked [127] in the
case of the circle billiard, where 1/(12π)

∫
∂Ω
κdl = 1/6, for which the exact resolvent

kernel is known in closed form.
Apart from applications in nuclear physics, it was shown in [127] that the para-

metric dependence of the spectrum on the boundary condition is a very useful
diagnostic tool in the analysis of spectra.

1.5.2
Weyl’s Law for Unbounded Quantum Billiards

In Section 1.4.8 we have observed that the smooth term NR(λ) of the counting
function of the nontrivial zeros of the Riemann zeta function grows asymptotical-
ly as λ ln λ which contradicts the classical eigenvalue asymptotics given by Weyl’s
law. Thus it appears that the interpretation of the nontrivial Riemann zeros as
eigenvalues of the Laplacian is ruled out. It was pointed out, however, by Barry
Simon [128, 129] that an asymptotic behavior of the form λ ln λ can occur for the
eigenvalues of the two-dimensional Dirichlet Laplacian for certain unbounded re-
gions which have a purely discrete spectrum. Since this nonclassical Weyl asymp-
totics again opens the possibility of identifying the nontrivial Riemann zeros with
the eigenvalues of a hypothetical Riemann operator, it is important to determine
also the nonleading terms of the counting function for such unbounded systems.
As a representative example we here quote only the result for the so-called hyper-
bola billiard which is defined by the two-dimensional Euclidean Dirichlet Laplacian
in the “horn-shaped” region

Ω =
{(

x, y
)
∈ R2

+ : 0 u x · y u 1
}

.

It was shown by Simon [128] that this quantum system possesses a purely discrete
spectrum although the corresponding classical billiard has a continuous spectrum.
In [130] the following asymptotic expansion for the trace of the heat kernel of the
hyperbola billiard was derived (t → 0+)

Θ(t) := Tr etΔ = –
ln t
4πt

–
a′

4πt
+

b

8
√

πt
+ O
(
t–1/4
)

, (1.117)

where a′ = 2 ln(2π) – 1 – γ = 2.0985 . . ., b = 4π3/2/Γ2(1/4) = 1.6944 . . .. Using
the Karamata–Tauberian theorem in the form [129]: lim

t→0+

[
– (tr/ ln t) Tr etΔ

]
= c if and

only if lim
λ→∞

[
(λ–r/ ln λ) N(λ)

]
= c/Γ(r + 1), one derives from (1.117) the leading term

for the counting function

N(λ) =
1

4π
λ ln λ + . . . (λ → ∞).

To obtain the next terms one uses a theorem by Brownell [90] which allows to
obtain a smoothed counting function N(λ). Form (1.117) one then obtains the mean
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asymptotic growth of the number of eigenvalues of the hyperbola billiard [130]

N(λ) =
1

4π
λ ln λ –

a
4π

λ +
b

4π

√
λ + O

(
λ1/4 ln λ

)
(λ → ∞) , (1.118)

where a = 2
(
ln(2π) – γ

)
= 2, 5213 . . .. While the leading term in the last expression

coincides with the first term of NR(λ), Equation (1.109), the second and third terms
are different.

The hyperbola billiard has been extensively investigated in classical and quan-
tum mechanics as a model for quantum chaos [131–133]. It turns out that the clas-
sical periodic orbits can be effectively enumerated using symbolic dynamics with
a ternary code, and thus the length spectrum together with the Lyapunov expo-
nents can be calculated with high precision. The topological entropy of this system
is τ W 0.6. Using the boundary-element method, a large number of eigenvalues
could be calculated. The statistics of the eigenvalues is found to be consistent with
the predictions of random matrix theory for the Gaussian orthogonal ensemble.
Using the semiclassical Gutzwiller trace formula, one can define a dynamical zeta
function defined by an Euler product over the classical periodic orbits in analogy
with the Selberg zeta function (1.100). This zeta function satisfies an approximate
functional equation and thus can be effectively used as a semiclassical quantization
condition in analogy to the exact quantization condition (1.102).

1.6
A Proof of Weyl’s Formula

Only for very special geometries of Ω is it possible to give an explicit formula for the
eigenvalues of the Dirichlet Laplacian. Such a situation had been considered in the
previous sections, another is given by rectangles and cubes. Weyl’s original proof
for Jordan measurable domains consisted in exhausting the domain by rectangles.
This proof needs technical computations which we do not want to cover here. There
is another more structured proof which uses properties of the heat equation and
reveals an interesting connection between the heat kernel and the eigenvalues.

Let Ω ⊂ �N be open and bounded with boundary ∂Ω. We want to impose a mild
regularity condition on Ω, namely we assume that for each ϕ ∈ C(∂Ω) the Dirichlet
problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u ∈ C(Ω) ∩ C2(Ω)

Δu = 0

u|∂Ω = ϕ

(D(ϕ))

has a unique solution; i.e. we assume that Ω is Dirichlet regular. The Dirichlet prob-
lem is a classical subject of Potential Theory with physical interpretation in electro-
statics.

There is a beautiful mathematical theory on the Dirichlet problem, and precise
conditions on the boundary are known which imply Dirichlet regularity. It is a mild
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regularity condition on the boundary. If Ω has C1-boundary or if Ω is a polygon,
then Ω is Dirichlet regular. More generally, Lipschitz continuity of the boundary
suffices. In dimension 2 each simply connected domain (i.e. each open set without
holes) is Dirichet regular.

Dirichlet regularity implies that all eigenfunctions of the Dirichlet Laplacian are
continuous up to the boundary i.e. they lie in the space

C0(Ω) �
{
u ∈ C(Ω) : u|∂Ω = 0

}
.

Thus we may describe the Dirichlet Laplacian very simply by its spectral decompo-
sition. We consider the Hilbert space L2(Ω) with respect to the Lebesgue measure.
Then there exists an orthonormal basis {en : n ∈ �} of L2(Ω) such that

en ∈ C∞(Ω) ∩ C0(Ω) ,

–Δen = λnen ,

where 0 < λ1 u λ2 u · · · u λn → ∞. We call λn the nth eigenvalue of the Dirichlet
Laplacian. Now Weyl’s law says that

lim
λ→∞

N(λ)
λN/2 =

ωN

(4π)N/2 |Ω| (1.119)

where |Ω| is the volume of Ω and ωN = πN/2Γ (1 + N/2) is the volume of the unit
ball in�N. By N(λ) = #

{
n : λn u λ

}
we denote the counting function.

For f ∈ L2(Ω) we let

etΔD
Ω f =

∞∑
n=1

e–λnt (f | en
)

en , (1.120)

where
(
f | g
)

=
∫

Ω fgdx denotes the scalar product in L2(Ω). Then etΔD
Ω is a compact,

self-adjoint operator on L2(Ω). We call the family of operators
(
etΔD

Ω

)
tv0

the semigroup
generated by the Dirichlet Laplacian. This semigroup is positive and dominated by
the Gaussian semigroup (G(t))tv0, i.e. for 0 u f ∈ L2(Ω) we have

0 u etΔD
Ω f u G(t)f , (t > 0) (1.121)

where (
G(t)f

)
(x) �

∫
Ω

k0
t (x, y)f (y) dy ,

k0
t (x, y) � (4πt)–N/2 e–|x–y|2/4t ,

|x – y|2 �
N∑

j=1

(
xj – yj

)2
, x , y ∈ �N .

The domination property (1.121) implies also that etΔD
Ω is defined by a measurable

kernel k̃t(x, y) such that

0 u k̃t(x, y) u k0
t (x, y) for all x, y ∈ Ω . (1.122)
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We will express the kernel k̃t in terms of the eigenfunctions in (1.124). But here we
recall that those operators S on L2(Ω) given by

(Sf )(x) =
∫

Ω
q(x, y)f (y)dy

for some q ∈ L2(Ω ~ Ω) are called Hilbert Schmidt operators. Such a Hilbert Schmidt
operator S is always compact. And if S is self-adjoint, then its eigenvalues (μn)n∈�
satisfy

∑∞
n=1 μ2

n < ∞. Hence in our case

∞∑
n=1

e–2tλn < ∞ for all t > 0 .

Replacing t by t/4 we deduce that

∞∑
n=1

e–tλn/2 < ∞ for all t > 0 . (1.123)

Note that (1.122) implies that∣∣∣e–λnten

∣∣∣ = ∣∣∣∣etΔD
Ω en

∣∣∣∣ u G(t) |en| .

Since ‖en‖L2 = 1, it follows from the Cauchy Schwarz inequality that(
G(t) |en |

)
(x) u ct–N/4 , where c = π–N/42–(3/4)N .

Thus ∣∣∣en(x)
∣∣∣ u ct–N/4eλnt .

Letting t = 1/λn we obtain∣∣∣en(x)
∣∣∣ u c̃λN/4

n (x ∈ Ω, n ∈ �)

where c̃ = c · e.
In view of (1.123), this estimate asserts that for each t > 0, the series

kt(x, y) �
∞∑

n=1

e–λnten(x)en(y) (1.124)

converges uniformly on the set Ω ~ Ω and defines a continuous, bounded function
kt: Ω ~ Ω → � such that kt(x, y) = 0 whenever x ∈ ∂Ω or y ∈ ∂Ω.

Note that(
etΔD

Ω f
)

(x) =
∫

Ω
kt(x, y)f (y)dy , (1.125)

whenever f ∈ {en : n ∈ �}. Since the en form an orthonormal basis of L2(Ω) it fol-
lows that (1.125) remains true for all f ∈ L2(Ω). We have shown that the function kt

is the kernel of the operator etΔD
Ω i.e. k̃t = kt.
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For our purposes the following immediate consequence is crucial.∫
Ω

kt(x, x)dx =
∞∑

n=1

e–λnt (1.126)

This formula allows us to estimate the counting function N(λ) = #
{
n : λn < λ

}
with

the help of the kernel kt. For this we will make use of the following Tauberian
theorem due to Karamata [134].

Theorem 1.1 Let (λn)n∈� be a sequence of positive real numbers such that the series∑
n∈� e–λnt converges for every t > 0. Then for r > 0 and a ∈ � the following are equiva-

lent.

(a) lim
t→0

tr
∑
n∈�

e–λnt = a

(b) lim
λ→∞

λ–rN(λ) =
a

Γ(r + 1)

Here N denotes the counting function N(λ) = #
{
λn u λ

}
, and Γ(r) =

∫ ∞
0 xr–1e–x dx is the

usual Gamma function.

Combining formula (1.126) and Theorem 1.1 we see that Weyl’s law (1.119) is
equivalent to the kernel estimate

lim
t→0

tN/2
∫

Ω
kt(x, x)dx =

|Ω|
(4π)N/2 . (1.127)

It is easily seen that the left-hand side of (1.127) is not greater than the right-hand
side as the kernel kt is bounded by the Gaussian kernel i. e. kt(x, y) u k0

t (x, y) for
x, y ∈ Ω, t > 0.

The lower estimate is more delicate. For this we will consider the heat equation
on the infinite cylinder �+ ~ Ω whose boundary we denote by Γ = ({0} ~ Ω) ∪
((0,∞) ~ ∂Ω). It is a remarkable fact that Dirichlet regularity of Ω also implies that
the following boundary value problem for the heat equation is well-posed.

Theorem 1.2 ([135, Theorem 6.2.8], [136]) Let ψ ∈ C(Γ). Then there exists a unique
solution of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C
(
�+ ~ Ω

)
∩ C∞

(
(0,∞) ~ Ω

)
,

∂

∂t
u(t, x) = Δu(t, x) , (t > 0, x ∈ Ω)

u|Γ = ψ .

(1.128)

This solution satisfies the parabolic maximum principle, which says that for all t > 0
and all 0 u s u t, x ∈ Ω,

u(s, x) u max
Γt

u

where Γt � Γ ∩
(
[0, t] ~ Ω

)
.
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Example 1.1 Let f ∈ C0(Ω) and define ψ ∈ C(Γ) by ψ(0, x) = f (x) for x ∈ Ω, and
ψ(t, z) = 0 for t > 0, z ∈ ∂Ω. Then the solution of (1.128) is given by u(t, x) =

(
etΔD

Ω f
)
(x).

Thus, the semigroup
(
etΔD

Ω

)
tv0

governs the homogeneous boundary value problem (1.128).
Its solution can be expressed by the kernel kt, namely,

u(t, x) =
∫

Ω
kt(x, y)f (y)dy .

For this reason we call kt the heat kernel associated with the Dirichlet Laplacian.

To obtain a lower bound for the kernel we formalize the idea that at some distance
away from the boundary, kt behaves just like the Gaussian kernel.

Lemma 1.1 Let x ∈ Ω be arbitrary, and for y ∈ Ω let t0(y) � dist(y, ∂Ω)2/2N denote
the scaled squared distance of y to the boundary of Ω. Then

k0
t (x, y) – kt(x, y) u

⎧⎪⎪⎨⎪⎪⎩(4πt)–N/2 e– dist(y,∂Ω)2/4t , t u t0(y) ,(
4πt0(y)

)–N/2 e–N/2 , t > t0(y) .

Proof Fix y ∈ Ω. Then by Theorem 1.2 there exists a unique function p(·, ·, y)
solving the parabolic boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(·, ·, y) ∈ C
(
�+ ~ Ω

)
∩ C∞

(
(0,∞) ~ Ω

)
,

∂

∂t
p(t, x, y) = Δxp(t, x, y) , (t > 0, x ∈ Ω)

p(t, x, y) = 0 , (x ∈ Ω)

p(t, x, y) = (4πt)–N/2 e–|x–y|2/4t . (t > 0, x ∈ ∂Ω)

Then p(t, x, y) = k0
t (x, y) – kt(x, y). In fact, let f ∈ C0(Ω) be arbitrary, and let

u(t, x) �
∫

Ω

(
k0

t (x, y)f (y) – p(t, x, y)f (y)
)
dy .

The properties u ∈ C∞
(
(0,∞) ~ Ω

)
, ut = Δu on (0,∞) ~ Ω and u(t, x) = 0 if x ∈ ∂Ω,

t > 0 are obvious. Moreover, it is easy to prove that u can be continuously extended
to t = 0 and u(0, x) = f (x) for all x ∈ Ω. Thus u(t, ·) = etΔD

Ω f according to Example 1.1.

Since p solves a parabolic problem, we can use the parabolic maximum principle
to deduce that p attains its maximum on the boundary i. e.

p(t, x) u sup
0usut
x∈∂Ω

(4πs)–N/2 e–|x–y|2/4s u sup
0usut

(4πs)–N/2 e– dist(y,∂Ω)2/4s . (1.129)

Calculating the derivative of (4πt)–N/2 e– dist(y,∂Ω)2/4t as a function in the variable t one
sees that the maximum is attained at time t = t0(y). We can thus simplify (1.129)
accordingly which completes the proof. q
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We are interested in the error
∫

Ω

(
k0

t (x, x) – k(x, x)
)

dx of the approximation of k0
t

by kt as t tends to 0. Since the lemma essentially says that problems may only
arise near the boundary, it is natural to decompose Ω into a good part Ω1(t) �{
x ∈ Ω : dist(x, ∂Ω) v t1/4

}
and a bad part Ω2(t) � Ω \ Ω1(t). Note that

∣∣∣Ω2(t)
∣∣∣ → 0

as t → 0. If t u 1/4N2, then for every x ∈ Ω1(t) we have t0(x) v
√

t/2N v t. Hence
we can apply the lemma to obtain

tN/2
∫

Ω1(t)

(
k0

t (x, x) – kt(x, x)
)

dx u |Ω| (4π)–N/2 e–
√

t/4t → 0 (t → 0) .

On the other hand, using the trivial estimate kt v 0 we see

tN/2
∫

Ω2(t)

(
k0

t (x, x) – kt(x, x)
)

dx u
∣∣∣Ω2(t)

∣∣∣ (4π)–N/2 → 0 (t → 0) .

Combining these two estimates, we have proved

lim inf
t→0

tN/2
∫

Ω
kt(x, x)dx v lim inf

t→0
tN/2
∫

Ω
k0

t (x, x)dx =
|Ω|

(4π)N/2

This was the missing inequality required to prove (1.127). Since (1.127) has been
shown to be equivalent to Weyl’s law, we have completed the proof.

Weyl’s law also holds for arbitrary bounded open sets, [137, Theorem 1.11].
A simple proof by approximating an arbitrary open set by regular sets from the in-
terior is given in [138, Section 6.5.2]. For further results on domain approximation
we refer to the survey article [139] by Daners.

The proof given here is essentially the one given by Kac [9] who found for-
mula (1.126) and used Karamata’s Tauberian theorem. We were also inspired by
Dodzink [140] and the Diploma thesis by E. Michel [141]. However, the use of
Dirichlet regularity and Theorem 1.2 in particular comes from [138, Chapter 5]
where more details can be found. Concerning the Dirichlet problem we refer
to [142, 143] and the literature mentioned there.

1.7
Can One Hear the Shape of a Drum?

Weyl’s law shows us in particular the following. Assume that Ω ⊂ �N is a bounded
open set and we know all the eigenvalues of the Dirichlet Laplacian. Then we also
know the volume of Ω. Thus the spectrum of the Dirichlet Laplacian determines
the volume. It is natural to ask whether there are other properties or qualities which
we may deduce from the spectrum. Those types of questions are called inverse (spec-
tral) problems. Let us say that two open bounded sets Ω1 and Ω2 in�N are isospectral
if the corresponding Dirichlet Laplacians ΔD

Ω1
and ΔD

Ω2
have the same sequence of

eigenvalues. We already know that isospectral sets have the same volume. There is
another result of this kind.
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Theorem 1.3 Let Ω1, Ω2 ⊂ �N be open bounded sets with Lipschitz boundary. If Ω1

and Ω2 are isospectral, then they have the same surface area.

Here we use the natural measure σ on the boundary ∂Ωi of Ωi i. e. the surface
measure or (which is the same) the (N – 1)-dimensional Hausdorff measure. The
surface area of Ωi is by definition σ (∂Ωi). For a proof, we refer to [144].

The most radical inverse spectral problem is whether the spectrum determines
the domain completely. This question became famous by Marc Kac’s article [9] from
1966. We want to formulate it more precisely. Two open sets Ω1, Ω2 ⊂ �N are
called congruent if there exists an orthogonal matrix B and a vector b in �N such
that Ω2 =

{
Bx + b : x ∈ Ω1

}
. This is just congruence in the Euclidean sense. It is

obvious that congruent open sets are isospectral.

Question 1.1 (Kac’s Question) Let Ω1, Ω2 ⊂ �2 be two bounded smooth domains
which are isospectral. Are they necessarily congruent?

By a domain we mean an open connected set. An open bounded set is called smooth
if the boundary is of class C∞.

Kac’s question became so popular because it has a fascinating physical interpre-
tation. We consider a bounded smooth domain Ω ⊂ �2 as a membrane which is
fixed at the boundary Γ of Ω. If it is set into motion, then the vertical displacement
u(t, x) at time t > 0 at the point x ∈ Ω satisfies the wave equation

utt = c Δu(t, x) (t > 0, x ∈ Ω) .

We normalize physical units in such a way that c = 1.
Of particular interest are solutions of the form u(t, x) = v(x)eiωt which are called

the pure tones of the membrane. In order that such u be a solution of the wave
equation it is necessary and sufficient that

–Δv = ω2v .

Thus u is a solution if and only if v is an eigenfunction of the Dirichlet Laplacian
for the eigenvalue ω2, where ω is the frequency of the displacement u. Now we
see that the eigenvalues of the Dirichlet Laplacian correspond exactly to the pure
tones of the membrane which we can hear. This lead Kac to reformulate his ques-
tion by asking “Can one hear the shape of a drum?”. Following Kac, people like to
formulate inverse spectral problems by asking which properties of Ω one can hear.
For example, we already know that we can hear the volume and the surface area of
a Lipschitz domain.

Kac himself said in [9]: “I believe that one cannot hear the shape of a tambourine
but I may be wrong and I am not prepared to bet large sums either way.”

Today the question raised by Kac is still open. But much more is known about
it. In fact, we may ask more generally if two bounded isospectral domains in �N

are congruent. That is, we consider arbitrary dimensions now and give up the very
restrictive smoothness hypothesis. Let us note though that some hypothesis on the
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boundary is needed to avoid trivialities. For instance, if we consider the disc Ω1 ={
x ∈ �2 : |x| < 1

}
and the punctured disc Ω2 = Ω1 \ {0}, then they are isospectral

but not congruent. In fact, L2(Ω1) = L2(Ω2) and also the Dirichlet Laplacians with
respect to these two open sets are identical. We will describe below precisely which
regularity of the boundary is needed to avoid such simple counterexamples. Here
we want to impose throughout that all bounded domains have a Lipschitz boundary, and
we call them Lipschitz domains for short. They include all polygons in particular.

Before we describe some of the results concerning Kac’s question we mention
that the analogous question for compact manifolds has a negative answer as John
Milnor [70] had already shown in 1964. So the challenge concerns the Euclidean
case. A first counterexample was given by Urakawa [145] in 1982 who constructed
two isospectral Lipschitz domains in �4 which are not congruent. Ten years later,
Gordon, Webb and Wolpert [146] found a two-dimensional example. By putting
together seven triangles they obtained two polygons in�2 which are isospectral but
not congruent, see Figure 1.5. These two polygons are not convex, though. It is an
open question whether convex isospectral polygons in�2 are congruent. However,
in four dimensions convexity alone does not help. There are convex isospectal sets
which are not congruent. In fact, by modifying Urakawa’s example, Gordon and
Webb [147] obtained two truncated convex cones in �4 which are isospectral but
not congruent. These cones are induced by some vector space bases in�4. Here is
an explicit formulation.

Example 1.2 (Gordon, Webb) Let

u1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
–1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u3 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , u4 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
be the first basis of�4 and

v1 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1√
3

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v3 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , v4 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 1.5 Isospectral polygons in two dimensions.
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the second. Consider the corresponding positive cones

C1 �

⎧⎪⎪⎨⎪⎪⎩ 4∑
i=1

aiui : ai v 0, i = 1, . . . , 4

⎫⎪⎪⎬⎪⎪⎭ , C2 �

⎧⎪⎪⎨⎪⎪⎩ 4∑
i=1

aivi : ai v 0, i = 1, . . . , 4

⎫⎪⎪⎬⎪⎪⎭ .

Let B0 �
{
x ∈ �4 : 0 < |x| < 1

}
be the punctured unit ball in �4 with respect to the

Euclidean norm |x| =
√∑4

j=1 x2
j . Then Ω1 � B0 ∩C1 and Ω2 � B0 ∩C2 are isospectral

but not congruent.

So far no smooth counterexample is known in any dimension. But in a very recent
work Zelditch [148] showed that isospectral domains with an analytic boundary,
having some symmetry, are congruent. A simple class of domains having such
a symmetry are ellipses and stadiums. Thus he shows in particular that those do-
mains can be distinguished by their spectra.

Now we describe further positive results. We mention that two isospectral tri-
angles are congruent, see [149] and references therein. Moreover, one can hear
whether a Lipschitz domain in�N is a ball.

Theorem 1.4 Let Ω1 ⊂ �N be a ball and Ω2 ⊂ �N a Lipschitz domain. If Ω1 and Ω2

are isospectral, then they are congruent.

Proof If Ω is a Lipschitz domain, then one can hear its volume |Ω| according to
Weyl’s law. The Faber–Krahn inequality

λΩ
1 v cN |Ω|–2/N (1.130)

holds for all such domains, where λΩ
1 denotes the first eigenvalue of the Dirichlet

Laplacian on Ω and cN is an optimal constant which depends only on the dimen-
sion N [150, Theorem 3.1]. Moreover, (1.130) is an equality if and only if Ω is a ball,
see [151, Theorem 1.2]. q

The above theorem can be found in Kac’s paper [9]. However, Kac uses the isoperi-
metric inequality together with Theorem 1.3 instead of (1.130). For this argument
one has to be able to define the surface area of the domain. The above proof on the
other hand works in much more generality. The result can even be made optimal
in a sense that we will describe now. For this, we need the notion of capacity which
is used to describe the size of sets in �N in terms of Sobolev norms. For a sys-
tematic introduction we refer to [152]. The capacity cap(A) of a set A ⊂ �N may be
any number in [0,∞], but here we only need to know whether a set has capacity 0.
Sets of capacity 0 are also called polar sets. Although it is not trivial to characterize
all polar sets, thinking of them as subsets of �N of dimension at most N – 2 gives
a good impression of how they look. For example, single points in�2 and smooth
curves in�3 are polar, but curves in�2 and surfaces in�3 are not polar. Moreover,
subsets of polar sets and countable unions of polar sets are also polar.
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What makes the notion of capacity paticularly interesting is the fact that the
Dirichlet Laplacian “does not see” polar sets. More precisely, if Ω1 and Ω2 are
open subsets of �N that only differ by a polar set i.e. Ω2 \ Ω1 and Ω1 \ Ω2 are
both polar, then the sets differ only by a set of Lebesgue measure zero, hence
L2(Ω1) = L2(Ω2) as subspaces of L2(�N). But in fact, ΔΩ1

D = ΔΩ2
D as operators on

this space, thus they have the same spectrum. This shows that inverse spectral
problems for the Dirichlet Laplacian are meaningful only up to polar sets. Thus we
are lead to introduce a notion of regularity which asserts that there are no artificial
“polar holes” in the set. More precisely, call an open set Ω in�N regular in capacity
if cap

(
B(z, r) \ Ω

)
> 0 for all z ∈ ∂Ω and all r > 0, where B(z, r) denotes the ball

of radius r centered in z. We refer to [153] where this regularity assumption is in-
troduced and discussed. Here we only mention that all Dirichlet regular sets, and
hence all Lipschitz domains, are regular in capacity.

Given any open set Ω ⊂ �N, there exists a unique open set Ω′ which is regular
in capacity such that Ω ⊂ Ω′ and cap(Ω′ \Ω) = 0. Since the Laplacian does not see
polar sets it is natural to consider merely open sets which are regular in capacity.
An inspection of Daners’ proof [151] shows that for a bounded open set Ω which is
regular in capacity the Faber–Krahn inequality becomes an identity if and only if Ω
is a ball. Thus Theorem 1.4 remains true if we assume that Ω2 is regular in capacity
instead of being a Lipschitz domain. In other words, if Ω2 is an arbitrary open set
which is isospectral to a ball Ω1, then the regular version of Ω2 is a ball of the same
radius, or, what is the same, there exists a ball B ⊂ �N which is a translation of Ω1

such that Ω2 ⊂ B and cap(B \ Ω2) = 0.

1.8
Does Diffusion Determine the Domain?

In this short section we follow a paradigm which is slightly different from that in
the last section. Instead of the wave equation let us consider the diffusion equation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut(t, x) = Δu(t, x) (t > 0, x ∈ Ω) ,
u(0, x) = u0(x) (x ∈ Ω) ,
u(t, z) = 0 (z ∈ ∂Ω) .

(D)

Here again Ω is a Lipschitz domain with boundary Γ . The solution u of (D) has
the following interpretation. Assume that Ω is a body containing water and some
dissolving liquid, for instance ink. Then u0 is the initial concentration of the ink
i. e. for ω ⊂ Ω the amount of ink in ω is given by

∫
ω u0(x)dx. The solution u(t, x)

gives the concentration at time t > 0 i. e. for ω ⊂ Ω,
∫

ω u(t, x)dx is the amount of
ink in ω at time t.

Given u0 ∈ L2(Ω), Equation (D) has a unique solution u : �+ → L2(Ω), where we
let u(t, x) = u(t)(x), given by

u(t) = etΔD
Ω u0 =

∑
n∈�

e–λnt (u0 | en) en ,
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(compare (1.120)). In fact, since (d/dt)e–λnten = e–λnt (–λnen) = e–λntΔen, u is a solu-
tion of (D). Its uniqueness follows from Theorem 1.128, the parabolic maximum
principle. Thus the semigroup generated by ΔD

Ω, e–tΔD
Ω , is frequently called the dif-

fusion semigroup.
Now let Ω1 and Ω2 be two Lipschitz domains. If Ω1 and Ω2 are isospectral, then

we find orthonormal bases (en)n∈� of L2(Ω1) and
(
fn
)
n∈� of L2(Ω2) such that

–ΔD
Ω1

en = λnen and – ΔD
Ω2

fn = λnfn

for all n ∈ �. Consider the unitary operator U : L2(Ω1) → L2(Ω2) satisfying Uen =
fn. Then

UetΔD
Ω1 = etΔD

Ω2 U (t > 0) , (1.131)

i. e. U intertwines the two diffusion semigroups. In other words, U maps solutions
of the first diffusion equation to solutions of the other diffusion equation. Con-
versely, if we find an intertwining invertible operator U : L2(Ω1) → L2(Ω2), then
Ω1 and Ω2 are isospectral. Now we remember that for the physical interpretation
only positive concentrations 0 u u0 ∈ L2(Ω1) are meaningful. If u0(x) v 0 for all
x ∈ Ω1, then u(t, x) v 0 for all x ∈ Ω1 and all t > 0. This is the positivity property
of the diffusion equation. The physical interpretation motivates us to consider, in-
stead of unitary operators, operators U which preserve positivity. A linear bijective
mapping U : L2(Ω1) → L2(Ω2) is called an order isomorphism if for all f ∈ L2(Ω1),
f v 0 if and only if Uf v 0. If in (1.131) instead of unitary we assume that U is an
order isomorphism, then we obtain a positive result.

Theorem 1.5 Let Ω1 and Ω2 be two Lipschitz domains in�N. Assume that there exists
an order isomorphism U : L2(Ω1) → L2(Ω2) such that (1.131) holds. Then Ω1 and Ω2

are congruent.

For a proof, we refer to [153, Corollary 3.17]. We remark that this result also remains
true if we only assume the domains to be regular in capacity.

This theorem is no longer a purely spectral problem, but it is an inverse problem.
To say that U is an intertwining order isomorphism is the same as saying that U
maps positive solutions to positive solutions. Thus we may rephrase the result by
saying that “Diffusion determines the domain”.
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