1
Introduction

In 1913, the Nobel Prize in Physics was awarded to Heike Kamerlingh Onnes “for
his investigations on the properties of matter at low temperatures which led, inter
alia, to the production of liquid helium.” His crowning achievement was the lique-
faction of helium in 1908, which pioneered a new era in low-temperature physics
and enabled him to discover superconductivity [3] in 1911.

The theory of superconductivity was developed by Bardeen, Cooper, and Schri-
effer (BCS) in 1957 [4]. “In the competitive world of theoretical physics, the BCS
theory was the triumphant solution of a long-standing riddle. Between 1911 and
1957, all the best theorists in the world ... had tried and failed to explain supercon-
ductivity.” [S]. The path to the development of the theory of superconductivity was
cleared by the pioneering work of Bardeen and Pines [6], who examined the su-
perconducting isotope effect, took into account the electron—phonon interactions,
and determined that electrons could overcome the Coulomb repulsion and attract
each other. This weak attraction between the electrons inside the superconducting
material is the key to explaining the condensation of electrons and their supercon-
ductivity.

In traditional superconductors, the electron—electron attraction, which translates
into a small but noticeable reduction of the total energy, occurs between two elec-
trons having opposite wavevectors and opposite spins. At low temperatures, be-
cause of the electron—electron attraction, the electrons form a condensate, which is
a collective bound state having zero entropy and a reduced total energy, compared
with the zero-temperature Fermi distribution energy. This reduction of energy is
achieved by allowing, even at zero temperature, for some fraction of the electrons
in the superconducting material to have momenta larger than the Fermi momen-
tum, thus maximizing their interaction potential.

Starting from the BCS theory, it was rigorously derived [7] that the condensate
can be described by a collective wavefunction, also called superconducting order
parameter. The order parameter provides the most complete description of the en-
semble of superconducting electrons and depends on three spatial coordinates on-
ly, as
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The normalization of the wavefunction is chosen such that the square of the abso-
lute value of the wavefunction equals half the local density of the condensed elec-
trons nena(r, t).” Like the single-particle wavefunction, the collective condensate
wavefunction is a complex function of the radius-vector r and time t. The fact that
the effective wavefunction of many electrons only depends on one radius-vector r
reflects how all electrons behave “coherently,” that is, as a single particle.

If the gradient of the phase of the order parameter is not equal to zero (i.e., if
V@(r,t) # 0), then the condensate “flows,” that is, it carries a nonzero electrical
current, called “supercurrent.” (Remember that the gradient operator V is a vec-
tor having three components given by the spatial partial derivative operators d/dx,
d/dy, d/0z, where x, y, and z are the Cartesian coordinates.) In some sense, the BCS
condensate acts as a huge “macromolecule” of electrons. As with actual molecules,
one needs to perform a positive work on the condensate to free an electron from
such a huge electronic macromolecule. This work is called the superconducting
energy gap A. The energy of the condensate is reduced due to the attractive inter-
actions between the electrons. The most important property of the BCS condensate
is that it can flow through the lattice of positively charged ions without friction.
This happens because slowing the entire bound state of all electrons is much more
difficult than slowing down single unbound electrons, which exist in normal (i.e.,
nonsuperconducting) metals.

It is frequently stated that electrons in a superconductor form “Cooper pairs”
(CP) or “BCS pairs,” which, by virtue of being bosons, are able to condense at low
temperatures, thus forming a superfluid bosonic state. Qualitative statements of
this sort are difficult to prove or disprove in physics because they do not carry any
precise meaning, unless accompanied by corresponding formulas or graphs. The
view that a superconducting state is a condensate of bosons (CPs) should be consid-
ered incorrect though because there are no bound electronic pairs in a convention-
al superconductor. The BCS state is a collective condensed state of a macroscopic
number of fermions (electrons), not bosons. All condensed electrons participate
equally in the condensate. The term “condensate” represents all electrons partic-
ipating in a collective ground state, in which all the electrons behave quantum-
coherently. Even if a localization phenomenon occurs in disordered superconduct-
ing films and wires, it is still more appropriate to speak about localized condensate
“droplets” or condensate “lakes” than about localized Cooper pairs because two
electrons do not form a superconducting, BCS-condensed state.

The Cooper pair density is usually defined as ncp ~ NyA, where Nj is the
density of states at the Fermi level and A is the energy gap. Here, we use a dif-
ferent convention and define the number of electronic pairs (superpairs) in the
condensate as ng. The two quantities, n, and ncp, differ strongly. To see this, con-
sider that in clean superconductors (i.e., not having impurities or defects) at ze-
ro temperature, ny = n/2, where n is the total density of electrons. Therefore,
nep/ s ~ A/ Eg ~ 0.0001.

1) In that respect, the superconducting order parameter is different from the wavefunction of a
single electron because the squared absolute value of the single-electron wavefunction equals the
probability density of finding the electron at the specified location.
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The physical reality of the density of superconducting electrons, which in our no-
tations equals 2n, is asserted by the measurements of the depth of the magnetic
field penetration. According to the Meissner effect, superconductors expel magnet-
ic field. Yet the expulsion is not perfect. The field penetrates to a certain depth,
called the clean-limit penetration depth, or the London penetration depth, which is
expressed as A2 = mc?/8mn,e?. At zero temperature, the depth is defined through
the total density of electrons in the condensate, which, at T = 0, equals the total
electronic density n. Thus, at T = 0, one gets A} = mc?/4mne’.

The reason it is more convenient to use the number of electronic pairs in the con-
densate is the superconducting parity effect. In a series of beautiful experiments,
Tuominen and coworkers [8] showed that the number of electrons participating in
the BCS condensed state is an even number. If the total number of electrons in a
superconducting island is odd, one of the electrons gets expelled from the conden-
sate, causing a significant energy (A) increase of the whole system. This “uncon-
densed” or “unpaired” electron is located, energetically, above the energy gap of the
superconductor. These experiments, while revealing the parity effect, were done in
a setting resembling a single-electron tunneling transistor [9]. Its advantage is that
in such a device, the number of electrons on a metallic Coulomb “island,” which is
just some small, micrometer-scale, metallic disc, can be controlled precisely, using
the gate electrode of the transistor [9].

The frictionless flow of the BCS condensate requires an explanation, or at least
a discussion. A frictionless flow is equivalent to a current flow, with zero voltage
applied, which continues indefinitely if the system is not perturbed. Such a stable
persistent current is called a supercurrent. The existence of a frictionless super-
current may be justified as follows. First, note that the velocity of the condensate,
also called the “superfluid velocity” vy, is proportional to the phase gradient of its
wavefunction, [1], namely,
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where # = 1.054 x 1073*]s is the reduced Planck’s constant, and m =

9.109 x 1073 kg is the electronic mass. This formula is correct only when the
magnetic field is zero everywhere, so the vector potential is put to zero.” For now,
we assume that the vector potential is zero everywhere. Then, the electrical cur-
rent density carried by the condensate, called the “supercurrent density,” can be
expressed as

Jjo=2env, = (h—n:) nsVo(r,t) (1.3)

2) To simplify the discussion, we assume that the magnetic field is negligible everywhere, so the
corresponding magnetic vector potential can be chosen as zero, A = 0. If the magnetic field is
present, the superfluid velocity is proportional to a linear combination of the phase gradient and
the vector potential.
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where e = —|e| is the electronic charge, and n, = || = Beona(7, t)/2 is the mean
density of the electrons pairs participating in the BCS condensate.” Thus, it is clear
that for the supercurrent to remain steady in time (i.e., to have dj /ot = 0), it
is sufficient to have a constant phase gradient of the corresponding wavefunction
(i-e., dVp(r, t)/0t = 0) and a constant density of the condensate (i.e., dns/dt = 0).

Let us now argue that these two quantities remain fixed in time if no voltage is
applied. Assume that at t = 0, both n, and the phase gradient are greater than
zero and constant in space, that is, there is a uniform supercurrent flow. Then, the
wavefunction can be written as ¢ = /n; exp(ikr). The phase thenis ¢(r) =k - r,
where the vector k is called the wavevector of the wavefunction. The corresponding
superfluid velocity is vy = hik/2m. To show that the resistance of the superconduc-
tor is zero, we will argue that the superfluid velocity, the phase gradient, and n, do
not change with time if the electric field is zero.”

First, let us consider the superfluid density n. Its value is set by the requirement
that the corresponding thermodynamic potential is minimized. For example, if the
volume and the temperature are fixed and the electric field in the superconductor
is zero, then the corresponding thermodynamic potential is Helmholtz free energy,
F = U — TS, where U is the internal energy, T is the temperature and S is the
entropy. Since U and S must be functions of ns, for F to be constant and remain
at its minimum, the density of the condensate ny must remain constant in time.
Small fluctuations near the mean value might be present, but they average to zero
and do not cause any change of the mean superfluid density which defines the
mean supercurrent. The key fact is that in a superconductor at a temperature below
its critical temperature the superfluid density is larger than zero provided that the
thermodynamic equilibrium is established.

The phase gradient of the condensate wavefunction also does not change with
time if the electric and chemical potentials are constant within the sample. Gor’kov
has shown theoretically [10], using his microscopic theory [7, 10], that the phase of
the superconductor wavefunction changes in time as

_ 2eu(r)t

o(r 1) = ZEEE 4 9(r,0)

where ¢(r,0) is the phase at time zero and u(r) is the local value of the electro-
chemical potential, which is defined by the equation Ey4, — Ey = 2eu(r). Here,
Ey is the energy of the condensate containing N electrons, and Ey, is the energy
of the same condensate, after introducing an additional superpair at position r.

(1.4)

3) Such normalization is traditionally used to 4) Compare this with the time-evolution of

stress the superconducting parity effect, that
is, the fact that the number of electrons in a
BCS-condensed state is an even number. It is
curious to note that the BCS quantum state
is such that the number of the pairs is not
exactly defined, but it is subject to quantum
fluctuations. For a large, macroscopic
sample, the uncertainty of the number of
pairs is by many orders of magnitude smaller
than the number itself.

wavefunctions of a single electron. Such
wavefunctions can change in time because
of scattering over impurities or phonons, or
other perturbations. Thus, the fact that the
condensate is able to maintain a constant
nonzero velocity or momentum is not trivial
and requires some discussion. For example,
it would be interesting to understand why

a flowing condensate cannot dissipate its
momentum to phonons.
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The absolute value of the phase does not have any physical significance since it
cannot be measured. On the other hand, the phase difference can be measured. Let
us define the phase difference between two points, r, and ry, as ¢ = ¢, — ¢; =
¢ = P(ry, t) — ¢(r1, t). The time-evolution equation (1.4) can be transformed for
the phase difference as

2eAut
¢ =2 100
where Au = (u(r,) — u(r1)) is the difference of electrochemical potentials and

@ (0) = ¢(r2,0) — ¢(ry,0) is the phase difference at time zero.

The electrochemical potential is the sum of the chemical potential and the lo-
cal electric potential. Assume that the chemical potential is constant everywhere
in the superconducting sample. Then, the difference of electrochemical potentials
becomes the difference of electric potentials, which is the voltage V between two
points. Therefore, Au = V, and the time-evolution equation becomes

2eVt
¢ ="~ +00)

Finally, one can differentiate it with respect to time and obtain

hi—f =2eV (1.5)
where V is the voltage between two points specified by the arbitrary chosen radius
vectors r, and r;. It was Anderson and Dayem [11] who first introduced this popu-
lar presentation of the phase evolution equation, in which the phase difference, ¢,
rather than the local value of the phase itself, ¢ (r, t), is used. Since, fundamentally,
the time-evolution of the phase of the macroscopic superconducting wavefunction
was first derived by Gor’kov (1958) (P.W. Anderson, private communication, 2007),
we elect to call (1.5) as the Gor’kov phase-evolution equation. It was also named
by various authors as the Gor’kov—Josephson equation [12, 14], or the AC Joseph-
son equation [1, 15], or simply the phase-evolution equation. Fundamentally, it is
analogous to the time-dependent Schrodinger equation (see more on this analogy
below).

Incidentally, note that (1.5) is the only equation in the field of superconductivity
which is exact; all others are only approximate. This is why the Gor’kov equation
is used in metrology, in which case the phase rotation is synchronized with the
external electromagnetic field of a known frequency f, so d¢/dt = 2m f. The factor
27t occurs because as the phase completes one cycle, it changes exactly by 2. Then,
according to (1.5), 2 fh = 2¢V. Thus, by measuring voltage, the fundamental
constants ratio #1/e can be determined as /e = V/nf.

If the voltage is zero, the phase difference between any two points on the wire,
r; and r,, does not depend on time. Furthermore, if the electric field is zero, E =
0, then the phase gradient is also time-independent. Remember that the phase
difference and the phase gradient are proportional to each other as ¢ = (r, —
r1)V ¢, assuming that the two points are close to each other. In this notation, the
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voltage is also zero, V. = (r, — r;)E = 0. So, if d¢/dt = 0 and r, # ry, then
d(V¢)/dt = 0. (Note that the phase gradient V¢ is a vector.)

Thus, we have argued that the supercurrent is time-independent under zero elec-
tric field because the supercurrent is a product of the phase gradient V¢ and the
density of the condensate ng, both of which are time-independent, as was discussed
above.

To develop a physical intuition and qualitatively understand the physical origin
of the time-evolution equations of the phase of the wavefunction, we note that the
phase evolution given by (1.4) and (1.5) is analogous to the evolution in time of the
phase of a single quantum particle in the ground state. Below, we develop this anal-
ogy. Consider a particle in a ground state with energy F,. Its complete wavefunc-
tion satisfies the time-dependent Schrédinger equation i49,% = H W, where, for
convenience, we use the notation for the partial time derivative as 9, % = ¥ /0t.
However, in the ground state, we can also write the time-independent Schrédinger
equation as H¥ = E,¥. Combining these two equations, i#9, % = E,%. The so-
lution, that is, the wavefunction of the considered quantum particle in the ground
state, is well known, namely, ¥ (r, t) = 1 (r) exp(—i Eot/h), where y (r) is the time-
independent complex function that defines the spatial distribution of the particle
probability amplitude, ¢t is the time, r is the radius-vector of the particle, and the
imaginary unit satisfies the equality (—i)i = 1. Let us find the phase of this wave-
function. First, remember that any complex number X, can be presented in the
form X, = X,exp(i¢,). The real number ¢, is called the phase of X.. The ab-
solute value or the magnitude of X is X, = /X*X.. Accordingly, for the wave-
function in the ground state, the first, time-independent factor can be presented as
Y (r) = |y(r)|exp(ipo). Here, ¢, is the phase at time zero. Thus, the entire wave-
function is ¥ (r,t) = |y (r)] exp[i(¢po — Eot/h)]. So the phase of the single-particle
wavefunction is ¢ = ¢ — Eot/h. This expression is analogous to the equation
describing the phase of the superconducting condensate, that is, (1.4).

To develop the analogy further, assume that the quantum particle under inves-
tigation is a single electron exposed to a spatially constant electric potential u.
Then, the Hamiltonian is H = (—#%/2m)V?* + eu. Thus, the ground state ener-
gy is Ey = eu and, therefore, the phase of the wavefunction is ¢ = ¢ — eut/h
which is already very similar to (1.4).

To understand the origin of the factor 2 in front of u in (1.4), remember the
parity effect. The BCS condensate always contains an even number of electrons.
Each pair has the charge 2¢ and the mass 2m. Thus, the Hamiltonian for a single
pairis H = (—h?/4m)V? + 2eu, the energy of the ground state is F, = 2eu, and,
therefore, the phase of the wavefunction depends on time as ¢ = ¢o — 2eut/h.
The result is in agreement with (1.4), which follows from the BCS and the Gor’kov
theory. Since in a superconductor all pairs behave coherently, one expects that the
phase evolution of one pair is the same as the phase evolution of the phase-coherent
ensemble of pairs.

An important property of a BCS condensate, either stationary or moving with
respect to the crystal lattice, is that its spectrum of excitations is usually “gapped,”
that is, a finite amount of energy, A, is required to create an excited state. Such ex-
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cited states are called quasiparticles, or Bogoliubov quasiparticles, or bogoliubons
(see [1], p. 61). According to the BCS theory, the gap is A = 1.76kg T,, where
ks = 1.38 x 1072 J/K is the Boltzmann constant and T, is the critical temperature
of the superconductor. The T, is the temperature below which superconductivity
develops. For completeness, we should mention that gapless superconductivity is
in general also possible [16], so the presence of a gap in the spectrum of excitations
is not a necessary condition for zero resistance (for more details, see [1], p. 390).

It is interesting to compare superconductors to semiconductors, in which the
spectrum of excitations is also gapped. The difference is that in semiconductors,
the gapped state, that is, the state in which the valence band is completely filled
and the conduction band is completely empty, is characterized by zero total cur-
rent. To create a nonzero electrical current in a semiconductor, some number of
electrons must be excited from the valence band to the conduction band. Such ex-
cited states are not gapped since the electron(s) present in the conduction band can
change energy by an infinitesimal amount, for example, under the action of exter-
nal electric field or impurities. With time, the excited electrons give up their energy
to phonons and relax back to the lower-energy valence band. As soon as all excited
electrons relax, the electrical current decays to zero. In a superconductor, however,
the supercurrent is associated not with excitations, but with the condensate itself.
Even in the ground state, the supercurrent can be large. For example, if a super-
conducting wire loop is exposed to a perpendicular magnetic field, the velocity of
the condensate is proportional to the magnetic vector-potential, which, in turn, is
proportional to the magnetic flux piercing the loop. Such a magnetically induced
supercurrent is called Meissner current. It is possible because all electrons in su-
perconductors behave coherently, as a single quantum particle (single electron).
For a single electron, the velocity is proportional to vector-potential, assuming that
the phase gradient is zero. The Meissner current does not decay since it is associ-
ated with the ground state, that is, the BCS condensate. The ground state cannot
relax because there are no states having lower energies. The electrons in a normal
metal also participate in persistent currents if a magnetic field is applied. Howev-
er, these currents are all different, and their signs are different since the electrons
are not coherent in a normal metal. Thus, they all add to an extremely small val-
ue, of the order of a current of one electron. In a superconductor, a macroscopic
number of electrons participate in a collective persistent current. In such cases, the
currents of all condensed electrons add up. That is why Meissner currents can be
much stronger than persistent currents in normal metals.

The ability of a superconductor to carry a dissipationless current, that is, a cur-
rent under zero applied voltage, disappears if the superconductor is shaped into a
thin cylinder or a thin wire, or, in other words, if the superconductor is quasi-one-
dimensional (see Figure 1.1). This is because if the diameter of the superconductor
is small, the rate of strong thermal fluctuations, which bring short segments of the
wire into the normal state, is essentially greater than zero at finite temperatures.

Such fluctuations, first predicted by William Little in 1967 [17] and called Lit-
tle’s phase slips (LPS), occur stochastically at random spots on a superconducting
wire and interrupt the dissipationless flow of the condensate. Each such local fluc-
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Figure 1.1 lllustration of a typical experi-
mental realization of a transport experiment
on a nanowire. The wire is connected at its
ends to two macroscopic superconducting
electrodes E1 and E2. The wire itselfis a thin
cylinder having a diameter much smaller than
the magnetic field penetration depth, and also
smaller than the superconductor’s coherence
length. It will always be assumed that the x-

parameter is approximately constant within
any cross-section of the wire, taken perpen-
dicular to the wire axis. Thus, the assumption
that the wire has an exact cylindrical geometry
is not essential, that is, the cross-section can
be of any shape, without having any qualita-
tive effect on the wire behavior. To qualify as
quasi-one-dimensional, the dimensions of the
cross-section of the wire must be smaller than

nﬁ& since, in this case, vortices are not en-
ergetically favorable on the wire [18]. The term
“nanowire” is usually applied to wires which
are much thinner than 1pm in diameter.

axis is directed along the wire and the wire
starts at x = 0 andends atx = L. Since
the wire is assumed to be thinner than the
coherence length, &, it follows that the order

tuation allows the phase difference between the ends of the wire to “slip” by 2n
(in other words, to decrease by 2m), causing the supercurrent to diminish. To un-
dergo a phase slip, the free energy of the condensate must increase somewhat to
overcome a certain energy barrier (usually denoted AF). This barrier equals the
condensation energy density multiplied by the volume of the normal region asso-
ciated with the LPS. As with any barrier crossing process, the LPS are driven by
thermal fluctuations at sufficient temperatures. Such phase slips are referred to as
thermally activated phase slips (TAPS).

As the temperature is lowered, the rate of TAPS exhibits a rapid decline described
by the Arrhenius activation law. The resistance of the wire is linearly proportional
to the rate of TAPS. Thus, as the temperature is reduced, the wire resistance drops
exponentially, or, to be more precise, according to the Arrhenius law [21], namely,
as R ~ exp(—AF(T)/ ks T), where AF(T) is some effective barrier, which will be
discussed in detail below. Such activation dependence of resistance on temperature
was confirmed in experiments by Lukens, Warburton, and Webb [22] and Newbow-
er, Beasley, and Tinkham [23]. Although the resistance of a superconducting wire
is exponentially low at low temperatures, nevertheless, strictly speaking, it does
not become zero at any finite temperature because TAPS has a nonzero probability
at any finite temperature. In other words, there is no thermodynamic phase transi-
tion in a thin wire. As the temperature is reduced below the thermodynamic critical
temperature T, the resistance decreases continuously, never reaching zero.

There is no qualitative difference in the state of the wire above T. and below
T.. Above T, superconducting fluctuations occur. Thus, the wire is not completely
normal. Below T, there are normal-state fluctuations (i.e., the LPS), so the wire is
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not fully superconducting. Thus, the wire undergoes a crossover from a predomi-
nantly normal state above T, to a predominantly superconducting state below T,
but not a phase transition. In fact, the crossover does not happen at T = T, but at
a temperature T; such that AF(T;) ~ kg T. It should be emphasized that nothing
experimentally noticeable happens with the wire either at T = T,. Thus, when fit-
ting data, the T, should be treated as a fitting parameter. The parameter T, controls
the behavior of the resistance through the effective barrier AF since AF = 0 at T,
and increases with cooling. The T, is not a parameter that is directly measurable in
thin wires. This is in contrast with bulk superconductors, in which the T, is simply
the temperature at which the resistance drops to zero.

Generally, one expects that at low temperatures, the thermal activation rate de-
creases exponentially with cooling while the quantum tunneling rate should re-
main roughly constant, thus becoming dominant below a certain crossover tem-
perature, typically denoted T*. Therefore, TAPS, occurring in superconducting
wires below T, should be succeeded by tunneling of phase slips at sufficiently low
temperatures, namely, at T < T*. Such tunneling phase slips are usually called
quantum phase slips (QPS) since, qualitatively speaking, they derive their exis-
tence from quantum fluctuations and the Heisenberg uncertainty of the energy.
If the system undergoing quantum tunneling possesses many internal degrees of
freedom which get involved into the tunneling event, then the tunneling is called
“macroscopic.” For example, tunneling of a condensate involving many electrons
or tunneling of a large molecule composed of many atoms would be considered as
a macroscopic quantum tunneling (MQT). Thus, tunneling of Little’s phase slips is
an example of MQT since a large number of electrons occur in the virtual normal
core of QPS. According to this classification, QPS is a particular case of MQT.

Macroscopic quantum tunneling is one of the advanced research topics of mod-
ern physics, as it belongs to the transitional region between classical and quantum
mechanics. Note that at the fundamental level, the relationship between classical
and the quantum theories is still not fully understood because of the quantum me-
chanics’ reliance on classical mechanics for its justification. This fact is exemplified
by the problem of quantum measurement, which requires the wavefunction to col-
lapse when a quantum system is measured with a classical measuring apparatus.
If the system is strictly isolated, such a collapse is difficult to justify.

In older textbooks, such collapse was explained by making an explicit assump-
tion that the measurement apparatus is classical, not quantum, by definition. The
statement that the apparatus is classical infers that it cannot exist in a quantum su-
perposition of macroscopically distinct states. For example, a voltmeter cannot, in
principle, exist in a superposition of states having different readings, for example,
V = 0and V = 1V simultaneously. It must “choose” one particular reading.

Although such an assumption seems reasonable, it remains desirable to formu-
late quantum mechanics in a self-sufficient manner. Within quantum theory, the
system can be in any quantum superposition of allowed states. For example, elec-
trons can be described by extended wavefunctions, meaning that they are not locat-
ed in any particular point of space, but rather they can occupy many remote points
of space simultaneously. And, although counterintuitive, a voltmeter isolated from
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any interaction with the external world should be able to accept a state of quantum
superposition of states having different readings. Such would be a Schrédinger cat
state.

Therefore, a search for fundamental physical phenomena causing wavefunctions
of large isolated objects to collapse continues [24]. Of course, the puzzle of collapse
is a puzzle only insofar as the measurement apparatus is allowed to only interact
with the quantum system, but not with the environment. On the other hand, if the
measurement apparatus interacts with its environment, say with the rack support-
ing it or with a physicist looking at it, then quantum theory alone predicts that the
wavefunction of the apparatus collapses because of decoherence [25]. Yet, when an
isolated system is considered, such as a hypothetical Schrodinger cat [26] or, as a
different example, the whole Universe, which is presumed to include everything
with which anything can interact, then the expected collapse of the wavefunction
remains unjustified theoretically. These fundamental difficulties led to such im-
pressive ideas as the many-worlds interpretation of quantum mechanics by Hugh
Everett, which is currently a mainstream interpretation [27].

Initiated by Leggett, the field of macroscopic quantum physics has seen wide-
spread development [28-39]. Definitive experimental evidence that a macroscop-
ic system can behave according to the laws of quantum mechanics has been ob-
tained by Clarke and collaborators [33]. Evidence of MQT was also found in exper-
iments using magnetic nanoparticles, in which case the entire particle reverses its
magnetization within a single quantum tunneling event [35]. These experiments
quite convincingly demonstrate that rather large systems (large when compared
with single atoms) can exist in quantum superpositions of macroscopically dis-
tinct states. Recent fundamental recognition [40, 41] of the potential advantages of
computational methods based on quantum bits (qubits) has initiated the search
for practical implementations of systems which can maintain for a sufficiently
long time a quantum superposition of macroscopically distinct states. Such sys-
tems can be built and can indeed operate as qubits [42—44]. It was also proposed
that superconducting nanowires could be used as active elements in flux qubits,
provided that quantum tunneling of the phase difference can occur coherently in
nanowires [45, 50, 51]. According to Khlebnikov [45], “the process [of such tun-
neling in thin superconducting wires] may be suitable for forming quantum su-
perpositions of flux states.” Mooij and Nazarov also proposed that QPS could be
used to build current standards, and thus could advance the field of exact metrolo-
gy [51]. Consequently, understanding QPS is an important topic of modern quan-
tum physics.

The search for QPS in superconductor nanowires was first undertaken in exper-
iments by the Mooij group [52], although QPS was not observed. Later, Giordano’s
experiments [53] gave evidence that QPS might exist. The difficulty of observing
QPS is related, in general, to the fact that the tunneling rate is exponentially sup-
pressed, not only by the width and the height of the tunnel barrier and the large
effective mass of macroscopic systems, but also by their strong interaction with the
environment [30].
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Qualitatively speaking, the suppression of the quantum tunneling by the envi-
ronment can be classified as the quantum Zeno effect. This effect refers to a situa-
tion in which an unstable system, if somehow “observed” continuously, can never
decay by tunneling. Thus, it is possible to strongly slow down the evolution of
the system by continually measuring its state. The quantum Zeno effect is quite
general. It refers to a situation in which the Schrédinger-type time-evolution of a
quantum system is strongly slowed not only by measurements, but also by quan-
tum decoherence caused by various interactions with the environment. The name
originates from Zeno's arrow paradox, which states that an arrow in flight is not
observed to move at any single instance, and therefore cannot possibly be moving
at all. Of course, arrows can move in space very well. Thus, some sort of paradox
is present since the qualitative reasoning leads to a different conclusion. The para-
dox was resolved by Newton and Leibniz with the invention of calculus, which is
a mathematical apparatus allowing exact logical analysis of infinitesimal displace-
ments.

A quantitative description of the environmental effects on a macroscopic quan-
tum system was introduced by Caldeira and Leggett [28, 30, 32]. According to
their theoretical approach, the interaction with the environment can be modeled
as an interaction with a gapless ensemble of harmonic oscillators. The strength
of such an interaction can be characterized by the classical coefficient of viscosi-
ty 7. The prediction of the theory is that if a system interacts with an environment
(o1, as is sometimes said, is subjected to “quantum dissipation,” or it couples to
a “bath of harmonic oscillators”), then its tunneling rate is suppressed by a factor
exp[—AcL7 (A q)*/h] relative to the case in which the tunneling system is perfect-
ly isolated from any environment, but tunnels through the same energy barrier.
Here, Ay is a numerical factor of order unity, # is the viscosity coefficient defined
in the classically accessible region, and A q is the size of the classically inaccessible
region, that is, the tunnel barrier width. The theory is valid only if the distribution
of the oscillators representing the environment is gapless; that is, the distribution
of the oscillator frequencies reaches zero frequency. So the reservoir of oscillators
must be infinite in size. This is the reason why quantum systems coupled to such
dissipative reservoirs are able to undergo quantum phase transitions, such as the
dissipative Schmid—Bulgadaev transition.

As will be discussed in detail later, for superconducting devices, the effective vis-
cosity that sets the environmental suppression of the rate of QPS depends on the
normal conductance of the system. The normal conductance is well defined only
if the device is shunted with a macroscopic normal resistor, which, ideally, should
not depend on temperature. A normal resistor contains gapless normal electrons
which act as an ensemble of harmonic oscillators damping the QPS. In super-
conducting wires, the damping effect might occur because QPS, like Abrikosov
vortices, have normal cores in which the superconducting gap goes to zero.

One of the biggest remaining puzzles is the origin of superconductor-insulator
transitions (SIT) in which a nanowire loses its ability to carry any measurable
constant supercurrent. A qualitative difference between the superconducting state
and a nonsuperconducting state exists only at T = 0. At higher temperatures,
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a nanowire is always resistive because of TAPS. Proving that an SIT does occur
as some parameter of the wire is changed is difficult because of the obvious fact
that zero temperature is inaccessible experimentally. Thus, conclusions about the
occurrence of a quantum transition are usually achieved indirectly. For example,
resistance versus temperature, R(T), curves could be extrapolated to zero tempera-
ture. To argue that an SIT does exist, it is necessary to show that the sample exhibits
at least two qualitatively distinct types of behavior — a superconducting regime and
an insulating regime. The transition between the two distinct regimes is usually
induced by some control parameter, for example, the wire normal-state resistance
R, or its diameter d.

The SIT in thin wires has been analyzed theoretically by many groups. Andrei
Zaikin and collaborators were the first to suggest a model of the SIT in 1D by mak-
ing a quantum analogue of the well-known Kosterlitz-Thouless transition [168].

If the ensemble of samples studied is such that all samples are qualitatively simi-
lar and differ only quantitatively, then the system is said to undergo a crossover, but
not a quantum phase transition. For example, suppose a series of experiments on a
group of nanowires shows that for all samples as T — 0, then R(T) — Ry, and R
is some sample-specific constant, such that 0 < Ry < oco. All samples would then
saturate at a constant resistance with cooling. Such results would indicate that there
is no SIT in the studied type of samples. On the other hand, a crossover might still
be present, if, for example, the experiments show that R, gradually changes from
Ry < R, to Ry > R,, as the wire diameter is gradually reduced. The Giordano
models of QPS predicts such crossover behaviors [108]. It predicts that any wire
has a QPS rate above zero and therefore its resistance is greater than zero at zero
temperature, although, within this model, Ry, depends exponentially on the wire
diameter. Other quantum models predict that a superconductor-insulator phase
transition should occur in thin superconducting wires [168, 194]. Experimental ev-
idence in favor of SIT was published by Bollinger et al. [130].

In many theories of SIT, a quantum tunneling of Little’s phase slips is the key
factor in determining whether the wire is superconducting or insulating. The basic
idea is as follows. If the QPS is suppressed completely (at zero temperature), then
the wire stays phase coherent indefinitely and the supercurrent does not decay;
thus, the wire is classified as superconducting. On the other hand, if the dissipation
and other factors are not sufficiently strong to suppress QPS, the QPS occur and
cause the supercurrent to decay, thus making the nanowire resistive (either normal
or insulating). Although, in many cases, the experimentally observed transition
in thin wires is called SIT, a better name might be SRT, that is, superconductor-
resistor transition. The reason that a short wire can be superconducting is related
to the net rate of QPS being zero at T = 0. The wire can also act as a resistor if the
QPS rate is greater than zero. But, it is difficult to prove and/or expect that for a
short wire the resistance is infinite. So, the insulating state is usually defined mere-
ly by the fact that the resistance increases with cooling. Such behavior, although it
resembles insulators in some sense, might better be called a resistive state, not an
insulating state. Therefore, in each concrete case of an SIT observation, it is impor-
tant to explain the meaning of the I-state and the S-state. On the other hand, as was
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stated above, the meaning of the S-state is always the same within this book — it is
a state of zero resistance at T = 0.

A qualitatively different approach to SIT is the idea that certain factors, such as
enhanced electron—electron repulsion, or unpaired spins, or dangling bonds on
the surface of the wire can become more and more influential as the diameter is
reduced. As a result, these factors can suppress T, of the wire to zero, thus leading
to an SIT for long wires (in which the normal state is localized and thus insulating)
or an SRT for short wires. In latter chapters, we will consider the existing evidence
for quantum transitions in thin wires and some of the theoretical models.
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