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Fundamentals of Mathematical Modeling of
One-Dimensional Flows of Fluid and Gas in Pipelines

1.1
Mathematical Models and Mathematical Modeling

Examination of phenomena is carried out with the help of models. Each model
represents a definite schematization of the phenomenon taking into account
not all the characteristic factors but some of them governing the phenomena
and characterizing it from some area of interest to the researcher.

For example, to examine the motion of a body the material point model is
often used. In such a model the dimensions of the body are assumed to be
equal to zero and the whole mass to be concentrated at a point. In other words
we ignore a lot of factors associated with body size and shape, the material
from which the body is made and so on. The question is: to what extent would
such a schematization be efficient in examining the phenomenon? As we all
know such a body does not exist in nature. Nevertheless, when examining the
motion of planets around the sun or satellites around the earth, and in many
other cases, the material point model gives brilliant results in the calculation
of the trajectories of a body under consideration.

In the examination of oscillations of a small load on an elastic spring we
meet with greater schematization of the phenomenon. First the load is taken
as a point mass m, that is we use the material point model, ignoring body
size and shape and the physical and chemical properties of the body material.
Secondly, the elastic string is also schematized by replacing it by the so-called
restoring force F = −k · x, where x(t) is the deviation of the material point
modeling the load under consideration from the equilibrium position and k is
the factor characterizing the elasticity of the string. Here we do not take into
account the physical-chemical properties of the string, its construction and
material properties and so on. Further schematization could be done by taking
into account the drag arising from the air flow around the moving load and
the rubbing of the load during its motion along the guide.

The use of the differential equation

m
d2x

dt2
= −k · x, (1.1)
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expressing the second Newtonian law is also a schematization of the
phenomenon, since the motion is described in the framework of Euclidian
geometry which is the model of our space without taking into account the
relativistic effects of the relativity theory.

The fact that the load motion can begin from an arbitrary position with an
arbitrary initial velocity may be taken into account in the schematization by
specifying initial conditions at

t = 0 : x = x0; v =
(

dx

dt

)
0

= v0. (1.2)

Equation (1.1) represents the closed mathematical model of the considered
phenomenon and when the initial conditions are included (1.2) this is the
concrete mathematical model in the framework of this model. In the given case
we have the so-called initial value (Cauchy) problem allowing an exact solution.
This solution permits us to predict the load motion at instants of time t > 0
and by so doing to discover regularities of its motion that were not previously
evident. The latest circumstance contains the whole meaning and purpose of
mathematical models.

It is also possible of course to produce another more general schematization
of the same phenomenon which takes into account a great number of
characteristic factors inherent to this phenomenon, that is, it is possible, in
principle, to have another more general model of the considered phenomenon.

This raises the question, how can one tell about the correctness or
incorrectness of the phenomenon schematization when, from the logical
point of view, both schematizations (models) are consistent? The answer is:
only from results obtained in the framework of these models. For example,
the above-outlined model of load oscillation around an equilibrium position
allows one to calculate the motion of the load as

x(t) = x0 · cos

(√
k

m
· t

)
+

√
m

k
·v0 · sin

(√
k

m
· t

)
having undamped periodic oscillations. How can one evaluate the obtained
result? On the one hand there exists a time interval in the course of which
the derived result accords well with the experimental data. Hence the model
is undoubtedly correct and efficient. On the other hand the same experiment
shows that oscillations of the load are gradually damping in time and come
to a stop. This means that the model (1.1) and the problem (1.2) do not take
into account some factors which could be of interest for us, and the accepted
schematization is inadequate.

Including in the number of forces acting on the load additional forces,
namely the forces of dry −f0 · sign(ẋ) and viscous −f1 · ẋ friction (where the
symbol sign(ẋ) denotes the function ẋ− sign equal to 1, at ẋ > 0; equal to −1,
at ẋ < 0 and equal to 0, at ẋ = 0), that is using the equation

m
d2x

dt2
= −k · x − f0 · sign(ẋ) − f1 · ẋ (1.3)
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instead of Eq. (1.1), one makes the schematization (model) more complete.
Therefore it adequately describes the phenomenon.

But even the new model describes only approximately the model under
consideration. In the case when the size and shape of the load strongly affect
its motion, the motion itself is not one-dimensional, the forces acting on the
body have a more complex nature and so on. Thus it is necessary to use more
complex schematizations or in another words to exploit more complex models.
Correct schematization frequently represents a challenging task, requiring
from the researcher great experience, intuition and deep insight into the
phenomenon to be studied (Sedov, 1965).

Of special note is the continuum model, which occupies a highly important
place in the following chapters. It is known that all media, including
liquids and gases, comprise a great collection of different atoms and
molecules in permanent heat motion and with complex interactions.
By molecular interactions we mean such properties of real media as
compressibility, viscosity, heat conductivity, elasticity and others. The
complexity of these processes is very high and the governing forces
are not always known. Therefore such seemingly natural investigation
of medium motion through a study of discrete molecules is absolutely
unacceptable.

One of the general schematization methods for fluid, gas and other
deformable media motion is based on the continuum model. Because each
macroscopic volume of the medium under consideration contains a great
number of molecules the medium could be approximately considered as if
it fills the space continuously. Oil, oil products, gas, water or metals may be
considered as a medium continuously filling one or another region of the
space. That is why a system of material points continuously filling a part of space
is called a continuum.

Replacement of a real medium consisting of separate molecules by a
continuum represents of course a schematization. But such a schemati-
zation has proved to be very convenient in the use of the mathemat-
ical apparatus of continuous functions and, as was shown in practice,
it is quite sufficient for studying the overwhelming majority of observed
phenomena.

1.1.1
Governing Factors

In the examination of different phenomena the researcher is always restricted
by a finite number of parameters called governing factors (parameters) within
the limits of which the investigation is being studied. This brings up the
question: How to reveal the system of governing parameters?

It could be done for example by formulating the problem mathematically
or, in other words, by building a mathematical model of the considered
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phenomenon as was demonstrated in the above-mentioned example. In this
problem the governing parameters are:

x, t, m, k, f0, f1, x0, v0.

But, in order to determine the system of governing parameters, there is no
need for mathematical schematization of the process. It is enough to be guided,
as has already been noted, by experience, intuition and understanding of the
mechanism of the phenomenon.

Let us investigate the decrease in a parachutist’s speed v in the air when
his motion can be taken as steady. Being governed only by intuition it
is an easy matter to assume the speed to be dependent on the mass of
the parachutist m, acceleration due to g, the diameter of the parachute
canopy D, the length L of its shroud and the air density ρ. The viscosity of
the air flowing around the parachute during its descent can be taken into
account or ignored since the force of viscous friction is small compared to
parachute drag. Both cases represent only different schematizations of the
phenomenon.

So the function sought could be assumed to have the following general form
v = f (m, g, D, L, ρ). Then the governing parameters are:

m, g, D, L, ρ.

The use of dimensional theory permits us to rewrite the formulated dependence
in invariant form, that is, independent of the system of measurement units
(see Chapters 6 and 7)

v√
gD

= f̃

(
m

ρD3
,

L

D

)
, ⇒ v = √

gD · f̃

(
m

ρD3
,

L

D

)
.

Thus, among five governing parameters there are only two independent
dimensionless combinations, m/ρD3 and L/D, defining the sought-for
dependence.

1.1.2
Schematization of One-Dimensional Flows of Fluids and Gases in Pipelines

In problems of oil and gas transportation most often schematization of the
flow process under the following conditions is used:
• oil, oil product and gas are considered as a continuum continuously filling

the whole cross-section of the pipeline or its part;
• the flow is taken as one-dimensional, that is all governing parameters

depend only on one space coordinate x measured along the pipeline axis
and, in the general case, on time t;

• the governing parameters of the flow represent values of the corresponding
physical parameters averaged over the pipeline cross-section;
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• the profile of the pipeline is given by the dependence of the height of the
pipeline axis above sea level on the linear coordinate z(x);

• the area S of the pipeline cross-section depends, in the general case, on x
and t. If the pipeline is assumed to be undeformable, then S = S(x). If the
pipeline has a constant diameter, then S(x) = S0 = const.;

• the most important parameters are:
ρ(x, t) – density of medium to be transported, kg m−3;
v(x, t) – velocity of the medium, m s−1;
p(x, t) – pressure at the pipeline axis, Pa = N m−2;
T(x, t) – temperature of the medium to be transported, degrees;
τ(x, t) – shear stress (friction force per unit area of the pipeline internal
surface), Pa = N m−2;
Q(x, t) = vS – volume flow rate of the medium, m3 s−1;
Ṁ(x, t) = ρvS – mass flow rate of the medium, kg s−1 and other.

Mathematical models of fluid and gas flows in the pipeline are based
on the fundamental laws of physics (mechanics and thermodynamics) of a
continuum, modeling a real fluid and a real gas.

1.2
Integral Characteristics of Fluid Volume

In what follows one needs the notion of movable fluid volume of the continuum
in the pipeline. Let, at some instant of time, an arbitrary volume of the
medium be transported between cross-sections x1 and x2 of the pipeline
(Figure 1.1).

If the continuum located between these two cross-sections is identified
with a system of material points and track is kept of its displacement in
time, the boundaries x1 and x2 become dependent on time and, together
with the pipeline surface, contain one and the same material points of
the continuum. This volume of the transported medium is called the
movable fluid volume or individual volume. Its special feature is that it
always consists of the same particles of the continuum under consideration.
If, for example, the transported medium is incompressible and the pipeline
is non-deformable, then S = S0 = const. and the difference between the
demarcation boundaries (x2 − x1) defining the length of the fluid volume
remains constant.

Figure 1.1 Movable fluid volume of the
continuum.
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Exploiting the notion of fluid or individual volume of the transported
medium in the pipeline one can introduce the following integral quantities:

M =
∫ x2(t)

x1(t)
ρ(x, t) · S(x, t) dx − mass of fluid volume (kg);

I =
∫ x2(t)

x1(t)
ρ(x, t) · v(x, t) · S(x, t) dx − momentum of fluid volume

(kg m s−1
);

Ekin =
∫ x2(t)

x1(t)
αk

ρv2

2
S(x, t) dx − kinetic energy of the fluid volume (J),

where αk is the factor;

Ein =
∫ x2(t)

x1(t)
ρ(x, t) · ein(x, t) · S(x, t) dx − internal energy of the fluid

volume, where ein is the density of the internal energy (J kg−1), that is the
internal energy per unit mass.

These quantities model the mass, momentum and energy of a material point
system.

Since the main laws of physics are often formulated as connections between
physical quantities and the rate of their change in time, we ought to adduce
the rule of integral quantity differentiation with respect to time. The symbol
of differentiation d()/ dt denotes the total derivative with respect to time,
associated with individual particles of a continuum whereas the symbol ∂()/∂t
denotes the local derivative with respect to time, that is the derivative of a
flow parameter with respect to time at a given space point, e.g. x = const. The
local derivative with respect to time gives the rate of flow parameter change at
a given cross-section of the flow while, at two consecutive instances of time,
different particles of the continuum are located in this cross-section.

The total derivative with respect to time is equal to

d

dt

∫ x2(t)

x1(t)
A(x, t) · S(x, t) dx.

From mathematical analysis it is known how an integral containing a
parameter, in the considered case it is t, is differentiated with respect to
this parameter, when the integrand and limits of integration depend on this
parameter. We have

d

dt

∫ x2(t)

x1(t)
A(x, t) · S(x, t) dx =

∫ x2(t)

x1(t)

∂

∂t
[A(x, t) · S(x, t)] dx

+ A(x, t) · S(x, t)|x2(t) · dx2

dt
− A(x, t) · S(x, t)|x1(t) · dx1

dt
.
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First, at frozen upper and lower integration limits, the integrand is
differentiated (the derivative being local) and then the integrand calculated at
the upper and lower integration limits is multiplied by the rates of change of
these limits dx2/ dt and dx1/ dt, the first term having been taken with a plus
sign and the second with a minus sign (see Appendix B).

For the case of the fluid volume of the medium the quantities dx2/ dt and
dx1/ dt are the corresponding velocities v2(t) and v1(t) of the medium in the
left and right cross-sections bounding the considered volume. Hence

d

dt

∫ x2(t)

x1(t)
A(x, t) · S(x, t) dx =

∫ x2(t)

x1(t)

∂

∂t
[A(x, t) · S(x, t)] dx

+ A(x, t) · v(x, t) · S(x, t)|x2(t) − A(x, t) · v(x, t) · S(x, t)|x1(t).

If, in addition, we take into account the well-known Newton–Leibniz formula,
according to which

A(x, t) · v(x, t) · S(x, t)|x2(t) − A(x, t) · v(x, t) · S(x, t)|x1(t)

=
∫ x2(t)

x1(t)

∂

∂x
[A(x, t) · v(x, t) · S(x, t)] dx,

we obtain

d

dt

∫ x2(t)

x1(t)
A(x, t) · S(x, t) dx =

∫ x2(t)

x1(t)

(
∂AS

∂t
+ ∂ASv

∂x

)
dx. (1.4)

1.3
The Law of Conservation of Transported Medium Mass. The Continuity Equation

The density ρ(x, t), the velocity of the transported medium v(x, t) and the
area of the pipeline cross-section S(x, t) cannot be chosen arbitrarily since
their values define the enhancement or reduction of the medium mass in
one or another place of the pipeline. Therefore the first equation would be
obtained when the transported medium is governed by the mass conservation
law

d

dt

∫ x2(t)

x1(t)
ρ(x, t) · S(x, t) dx = 0, (1.5)

This equation should be obeyed for any fluid particle of the transported
medium, that is for any values x1(t) and x2(t).

Applying to Eq. (1.4) the rule (1.5) of differentiation of integral quantity with
regard to fluid volume, we obtain∫ x2(t)

x1(t)

(
∂ρS

∂t
+ ∂ρvS

∂x

)
dx = 0.
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Since the last relation holds for arbitrary integration limits we get the following
differential equation

∂ρS

∂t
+ ∂ρvS

∂x
= 0, (1.6)

which is called continuity equation of the transported medium in the pipeline.
If the flow is stationary, that is the local derivative with respect to time is

zero (∂()/∂t = 0), the last equation is simplified to

dρvS

dx
= 0 ⇒ Ṁ = ρvS = const. (1.7)

This means that in stationary flow the mass flow rate Ṁ is constant along the
pipeline.

If we ignore the pipeline deformation and take S(x) ∼= S0 = const.,
from Eq. (1.7) it follows that ρv = const. From this follow two important
consequences:

1. In the case of a homogeneous incompressible fluid (sometimes oil and
oil product can be considered as such fluids) ρ ∼= ρ0 = const. and the
flow velocity v(x) = const. Hence the flow velocity of a homogeneous
incompressible fluid in a pipeline of constant cross-section does not change
along the length of the pipeline.

Example. The volume flow rate of the oil transported by a pipeline with
diameter D = 820 mm and wall thickness δ = 8 mm is 2500 m3 h−1. It is
required to find the velocity v of the flow.

Solution. The internal diameter d of the oil pipeline is equal to

d = D − 2δ = 0.82 − 2 · 0.008 = 0.804 m;

v = 4Q/πd2 = const.

v = 4 · 2500/(3600 · 3.14 · 0.8042) ∼= 1.37 m s−1.

2. In the case of a compressible medium, e.g. a gas, the density ρ(x)

changes along the length of pipeline section under consideration. Since
the density is as a rule connected with pressure, this change represents
a monotonic function decreasing from the beginning of the section to
its end. Then from the condition ρv = const. it follows that the velocity
v(x) of the flow also increases monotonically from the beginning of the
section to its end. Hence the velocity of the gas flow in a pipeline with
constant diameter increases from the beginning of the section between
compressor stations to its end.

Example. The mass flow rate of gas transported along the pipeline
(D = 1020 mm, δ = 10 mm) is 180 kg s−1. Find the velocity of the gas flow
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v1 at the beginning and v2 at the end of the gas-pipeline section, if the
density of the gas at the beginning of the section is 45 kg m−3 and at the
end is 25 kg m−3.

Solution. v1 = Ṁ/(ρ1 S) = 4 · 180/(45 · 3.14 · 12) ∼= 5.1 m s−1;
v2 = Ṁ/(ρ2 S) = 4 · 180/(25 · 3.14 · 12) ∼= 9.2 m s−1, that is the gas flow
velocity is enhanced by a factor 1.8 towards the end as compared with the
velocity at the beginning.

1.4
The Law of Change in Momentum. The Equation of Fluid Motion

The continuity equation (1.6) contains several unknown functions, hence the
use of only this equation is insufficient to find each of them. To get additional
equations we can use, among others, the equation of the change in momentum
of the system of material points comprising the transported medium. This law
expresses properly the second Newton law applied to an arbitrary fluid volume
of transported medium

dI

dt
= d

dt

∫ x2(t)

x1(t)
v · ρS dx = (p1 S1 − p2 S2) +

∫ x2(t)

x1(t)
p
∂S

∂x
dx

−
∫ x2(t)

x1(t)
πd · τw dx −

∫ x2(t)

x1(t)
ρg sin α(x) · S dx. (1.8)

On the left is the total derivative of the fluid volume momentum of the
transported medium with respect to time and on the right the sum of all
external forces acting on the considered volume.

The first term on the right-hand side of the equation gives the difference
in pressure forces acting at the ends of the single continuum volume.
The second term represents the axial projection of the reaction force
from the lateral surface of the pipe (this force differs from zero when
S �= const.). The third term defines the friction force at the lateral surface
of the pipe (τw is the shear stress at the pipe walls, that is the friction
force per unit area of the pipeline internal surface, Pa). The fourth term
gives the sliding component of the gravity force (α(x) is the slope of the
pipeline axis to the horizontal, α > 0 for ascending sections of the pipeline;
α < 0 for descending sections of the pipeline; g is the acceleration due to
gravity).

Representing the pressure difference in the form of an integral over the
length of the considered volume

p1 S1 − p2 S2 = −
∫ x2(t)

x1(t)

∂pS

∂x
dx
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and noting that

−
∫ x2(t)

x1(t)

∂pS

∂x
dx +

∫ x2(t)

x1(t)
p
∂S

∂x
dx = −

∫ x2(t)

x1(t)
S

∂p

∂x
dx,

we obtain the following equation

d

dt

∫ x2(t)

x1(t)
ρvS dx =

∫ x2(t)

x1(t)

(
−S

∂p

∂x
− S · 4

d
τw − Sρg sin α(x)

)
dx.

Now applying to the left-hand side of this equation the differentiation rule of
fluid volume∫ x2(t)

x1(t)

(
∂ρvS

∂t
+ ∂ρv2 S

∂x

)
dx

=
∫ x2(t)

x1(t)

(
−S

∂p

∂x
− S · 4

d
τw − Sρg sin α(x)

)
dx.

As far as the limits of integration in the last relation are arbitrary one can
discard the integral sign and get the differential equation

∂ρvS

∂t
+ ∂ρv2 S

∂x
= S ·

(
− ∂p

∂x
− 4

d
τw − ρg sin α(x)

)
. (1.9)

If we represent the left-hand side of this equation in the form

v

(
∂ρS

∂t
+ ∂ρvS

∂x

)
+ ρS

(
∂v

∂t
+ v

∂v

∂x

)
and take into account that in accordance with the continuity equation (1.6) the
expression in the first brackets is equal to zero, the resulting equation may be
written in a more simple form

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= − ∂p

∂x
− 4

d
τw − ρg sin α(x). (1.10)

The expression in brackets on the left-hand side of Eq. (1.10) represents the
total derivative with respect to time, that is the particle acceleration

w = dv

dt
= ∂v

∂t
+ v

∂v

∂x
. (1.11)

Now the meaning of Eq. (1.10) becomes clearer: the product of unit volume
mass of transported medium and its acceleration is equal to the sum of all
forces acting on the medium, namely pressure, friction and gravity forces. So
Eq. (1.10) expresses the Newton’s Second Law and can therefore also be called
the flow motion equation.

Remark. about the connection between total and partial derivatives with respect
to time. The acceleration w = dv/ dt is a total derivative with respect to time
(symbol d()/ dt), since we are dealing with the velocity differentiation of one
and the same fixed particle of the transported medium moving from one
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cross-section of the pipeline to another one, whereas the partial derivative with
respect to time (symbol ∂()/∂t) has the meaning of velocity differentiation at
a given place in space, that is at a constant value of x. Thus such a derivative
gives the change in velocity of different particles of the transported medium
entering a given cross-section of the pipeline.

Let a particle of the medium at the instant of time t be in the cross-section
x of the pipeline and so have velocity v(x, t). In the next instant of time t + �t
this particle will transfer to the cross-section x + �x and will have velocity
v(x + �x, t + �t). The acceleration w of this particle is defined as the limit

w = dv

dt
= lim

�t⇒0

v(x + �x, t + �t) − v(x, t)

�t
= ∂v

∂t

∣∣∣∣
x

+ ∂v

∂x

∣∣∣∣
t

· dx

dt
.

Since dx/ dt = v(x, t) is the velocity of the considered particle, from the last
equality it follows that

dv

dt
= ∂v

∂t
+ v · ∂v

∂x
. (1.12)

A similar relation between the total derivative ( d/ dt), or as it is also called
the individual or Lagrangian derivative, and the partial derivative (∂/∂t), or as
it is also called the local or Eulerian derivative, has the form (1.12) no matter
whether the case in point is velocity or any other parameter A(x, t)

dA(x, t)

dt
= ∂A(x, t)

∂t
+ v · ∂A(x, t)

∂x
.

1.5
The Equation of Mechanical Energy Balance

Consider now what leads to the use of the mechanical energy change law as
applied to the system of material points representing a fluid particle of the
transported medium. This law is written as:

dEkin

dt
= dAex

dt
+ dAin

dt
(1.13)

that is the change in kinetic energy of a system of material points dEkin is equal
to the sum of the work of the external dAex and internal dAin forces acting on
the points of this system.

We can calculate separately the terms of this equation but first we should
define more exactly what meant by the kinetic energy Ekin. If the transported
medium moves in the pipeline as a piston with equal velocity v(x, t) over the
cross-section then the kinetic energy would be expressed as the integral

Ekin =
∫ x2(t)

x1(t)

ρv2

2
S dx.
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But, in practice, such a schematization is too rough because, as experiments
show, the velocity of the separate layers of the transported medium (fluid or
gas) varies over the pipe cross-section. At the center of the pipe it reaches the
greatest value, whereas as the internal surface of the pipe is approached the
velocity decreases and at the wall itself it is equal to zero. Furthermore, if at
a small velocity of the fluid the flow regime is laminar, with an increase in
velocity the laminar flow changes into a turbulent one (pulsating and mixing
flow) and the velocities of the separate particles differ significantly from the
average velocity v of the flow. That is why models of the flow are, as a rule,
constructed with regard to the difference in flow velocity from the average
velocity over the cross-section.

The true velocity u of a particle of the transported medium is given as the sum
u = v + �u of the average velocity over the cross-section v(x, t) and the additive
one (deviation) �u representing the difference between the true velocity and
the average one. The average value of this additive �u is equal to zero, but
the root-mean-square (rms) value of the additive (�u)2 is non-vanishing.
The deviation characterizes the kinetic energy of the relative motion of the
continuum particle in the pipeline cross-section. Then the kinetic energy of the
transported medium unit mass ekin may be presented as the sum of two terms

ekin = v2

2
+ (�u)2

2

namely the kinetic energy of the center of mass of the considered point system
and the kinetic energy of the motion of these points relative to the center of
mass. If the average velocity v �= 0, then

ρv2

2
+ ρ(�u)2

2
= ρv2

2
·
(

1 + (�u)2

v2

)
= αk · ρv2

2

where αk = 1 + (�u)2/v2 > 1. For laminar flow αk = 4/3, while for turbulent
flow the value of αk lies in the range 1.02–1.05.

Remark. It should be noted that in one-dimensional theory, as a rule, the cases
v = 0 and (�u)2 �= 0 are not considered.

With regard to the introduced factor the kinetic energy of any movable
volume of transported medium may be represented as

Ekin =
∫ x2(t)

x1(t)
αk · ρv2

2
· S dx.

Let us turn now to the calculation of the terms in the mechanical energy
equation (1.13). Let us calculate first the change in kinetic energy

dEkin

dt
= d

dt

(∫ x2(t)

x1(t)
αk · ρv2

2
S dx

)
.
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Employing the rule of integral quantity integration with reference to the fluid
volume, that is an integral with variable integration limits, we get

dEkin

dt
=

∫ x2(t)

x1(t)

[
∂

∂t

(
αk · ρv2

2
S

)
+ ∂

∂x

(
αk · ρv2

2
S · v

)]
dx.

The work of the external forces (in this case they are the forces of pressure and
gravity), including also the work of external mechanical devices, e.g. pumps if
such are used, is equal to

dAex

dt
= (p1Sv1 − p2Sv2) −

∫ x2(t)

x1(t)
ρg sin α · v · S dx + Nmech

= −
∫ x2(t)

x1(t)

∂

∂x
(pSv) dx −

∫ x2(t)

x1(t)
ρg sin α · v · S dx + Nmech.

The first term on the right-hand side of the last expression gives the work
performed in unit time or, more precisely, the power of the pressure force
applied to the initial and end cross-sections of the detached volume. The
second term gives the power of the gravity force and the third term Nmech the
power of the external mechanical devices acting on the transported medium
volume under consideration.

The work of the internal forces (pressure and internal friction) executed in
unit time is given by

dAin

dt
=

∫ x2(t)

x1(t)
p
∂(Sv)

∂x
dx +

∫ x2(t)

x1(t)
nin · ρS dx.

The first term on the right-hand side gives the work of the pressure force in
unit time, that is the power, for compression of the particles of the medium,
the factor ∂(Sv)/∂x · dx giving the rate of elementary volume change. The
second term represents the power of the internal friction forces, that is the
forces of mutual friction between the internal layers of the medium, nin

denoting specific power, that is per unit mass of the transported medium.
In what follows it will be shown that this quantity characterizes the amount
of mechanical energy converting into heat per unit time caused by mutual
internal friction of the transported particles of the medium.

Gathering together all the terms of the mechanical energy equation we get∫ x2(t)

x1(t)

[
∂

∂t

(
αk · ρv2

2
S

)
+ ∂

∂x

(
αk · v2

2
ρvS

)]
dx

= −
∫ x2(t)

x1(t)
ρSv

[(
1

ρ

∂p

∂x

)
+ g sin α

]
dx +

∫ x2(t)

x1(t)
nin · ρS dx + Nmech.

If the transported medium is barotropic, that is the pressure in it depends only
on the density p = p(ρ), one can introduce a function P(ρ) of the pressure
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such that dP = dp/ρ, P(ρ) = ∫
dp/ρ and 1

ρ

∂p
∂x = ∂P(ρ)

∂x . If, moreover, we take
into account the equality sin α(x) = ∂z/∂x, where the function z(x) is referred
to as the pipeline profile, the last equation could be rewritten in the simple
form ∫ x2(t)

x1(t)

[
ρS

∂

∂t

(
αkv2

2

)
+ ρvS

∂

∂x

(
αkv2

2
+ P(ρ) + gz

)]
dx

=
∫ x2(t)

x1(t)
nin · ρS dx + Nmech. (1.14)

If we assume that in the region [x1(t), x2(t)] external sources of mechanical
energy are absent. Then Nmech = 0 and we can go from the integral equality
(1.14) to a differential equation using, as before, the condition of arbitrariness
of integration limits x1(t) and x2(t) in Eq. (1.14). Then the sign of the integral
can be omitted and the corresponding differential equation is

ρS
∂

∂t

(
αkv2

2

)
+ ρvS

∂

∂x

(
αkv2

2
+ P(ρ) + gz

)
= ρS · nin (1.15)

or

∂

∂t

(
αkv2

2

)
+ v · ∂

∂x

(
αkv2

2
+

∫
dp

ρ
+ gz

)
= nin. (1.16)

This is the sought differential equation expressing the law of mechanical energy
change. It should be emphasized that this equation is not a consequence of the
motion equation (1.10). It represents an independent equation for modeling
one-dimensional flows of a transported medium in the pipeline.

If we divide both parts of Eq. (1.16) by g we get

∂

∂t

(
αkv2

2g

)
+ v · ∂

∂x

(
αkv2

2g
+

∫
dp

ρg
+ z

)
= nin

g
.

The expression

H = αkv2

2g
+

∫
dp

ρg
+ z (1.17)

in the derivative on the left-hand side of the last equation has the dimension of
length and is called the total head. The total head at the pipeline cross-section
x consists of the kinetic head (dynamic pressure) αkv2/2g, the piezometric head∫

dp/ρg and the geometric head z. The concept of head is very important in the
calculation of processes occurring in pipelines.
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1.5.1
Bernoulli Equation

In the case of stationary flow of a barotropic fluid or gas in the pipeline the
derivative ∂()/∂t = 0, hence the following ordinary differential equations apply

v
d

dx

(
αkv2

2g
+

∫
dp

ρg
+ z

)
= nin

g

or

d

dx

(
αkv2

2g
+

∫
dp

ρg
+ z

)
= nin

gv
= i, (1.18)

where i denotes the dimensional quantity nin/gv called the hydraulic gradient

i = dH

dx
= nin

gv
.

Thus the hydraulic gradient, defined as the pressure loss per unit length of
the pipeline, is proportional to the dissipation of mechanical energy into heat
through internal friction between the transported medium layers (i < 0).

In integral form, that is as applied to transported medium located between
two fixed cross-sections x1 and x2, Eq. (1.18) takes the following form(

αkv2

2g
+

∫
dp

ρg
+ z

)
1

−
(

αkv2

2g
+

∫
dp

ρg
+ z

)
2

= −
∫ x2

x1

i dx. (1.19)

This equation is called the Bernoulli equation. It is one of the fundamental
equations used to describe the stationary flow of a barotropic medium in
a pipeline.

For an incompressible homogeneous fluid, which under some conditions can
be water, oil and oil product, ρ = const.,

∫
dp/ρg = p/ρg + const. Therefore

the Bernoulli equation becomes(
αkv2

2g
+ p

ρg
+ z

)
1

−
(

αkv2

2g
+ p

ρg
+ z

)
2

= −
∫ x2

x1

i dx.

If in addition we take i = −i0 = const. (i0 > 0), then(
ακv2

2g
+ p

ρg
+ z

)
1

−
(

ακv2

2g
+ p

ρg
+ z

)
2

= i0 · l1−2 (1.20)

where l1−2 is the length of the pipeline between cross-sections 1 and 2.
This last equation has a simple geometric interpretation (see Figure 1.2). This

figure illustrates a pipeline profile (heavy broken line); the line H(x) denoting
the dependence of the total head H on the coordinate x directed along the
axis of the pipeline (straight line) with constant slope β to the horizontal
(i = dH/ dx = tgβ = const.) and three components of the total head at an
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Figure 1.2 Geometric interpretation of the Bernoulli equation.

arbitrary cross-section of the pipeline: geometric head z(x), piezometric head
p(x)/ρg and kinetic head αkv2(x)/2g.

The line H(x) representing the dependence of the total head H on the
coordinate x along the pipeline axis is called the line of hydraulic gradient.

It should be noted that if we neglect the dynamic pressure (in oil and
oil product pipelines the value of the dynamic pressure does not exceed the
pipeline diameter, e.g. at v ≈ 2 m s−1, αk ≈ 1.05 then v2/2g ∼= 0.25 m), and
the length of the section between the pipeline profile and the line of hydraulic
gradient multiplied by ρg gives the value of the pressure in the pipeline cross-
section x. For example, when the length of the section AA (see Figure 1.2) is
500 m and diesel fuel with density ρ = 840 kg m−3 is transported along the
pipeline, then

p

840 · 9.81
= 500 ⇒ p = 500 · 840 · 9.81 = 4 120 200 (Pa)

or 4.12 MPa (≈42 atm).

1.5.2
Input of External Energy

In fluid flow in the pipeline the mechanical energy is dissipated into heat and
the pressure decreases gradually. Devices providing pressure restoration or
generation are called compressors.

Compressors installed separately or combined in a group form the pumping
plant destined to set the fluid moving from the cross-section with lesser
pressure to the cross-section with greater pressure. To do this it is required to
expend, or deliver from outside to the fluid, energy whose power is denoted by
Nmech.

Let index 1 in the Bernoulli equation refer to parameters at the cross-section
x1 of the pump entrance (suction line) and index 2 at the cross-section x2 of the
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pump exit (discharge line). Since ρvS = const., the Bernoulli equation (1.14)
may be written as:∫ x2

x1

d

dx

[
ρvS ·

(
αkv2

2
+ p

ρ
+ gz

)]
dx =

∫ x2

x1

nin · ρS dx + Nmech.

Ignoring the difference between the kinetic and geometric heads we get

ρvS · p2 − p1

ρ
−

∫ x2

x1

nin · ρS dx = Nmech.

Denoting by �H = (p2 − p1)/ρg the differential head produced by the pump or
pumping plant and taking into account that ρvS = ρQ = const. and nin = gv · i,
we obtain

Nmech = ρgQ · �H −
∫ x2

x1

ρgQ · i dx = ρgQ · �H ·
(

1 −
∫ x2

x1

i

�H
dx

)
.

The expression in parentheses characterizes the loss of mechanical energy
within the pump. Usually this factor is taken into account by insertion of the
pump efficiency η

η =
(

1 −
∫ x2

x1

i/�H dx

)−1

< 1

so that

Nmech = ρgQ · �H

η(Q)
. (1.21)

The relation (1.21) is the main formula used to calculate the power of the
pump generating head �H in fluid pumping with flow rate Q .

1.6
Equation of Change in Internal Motion Kinetic Energy

At the beginning of the previous section it was noted that the total
kinetic energy of the transported medium consisted of two terms – the
kinetic energy of the center of mass of the particle and the kinetic energy
of the internal motion of the center of mass, so that the total energy
of a particle is equal to αkρv2/2, where αk > 1. Now we can derive an
equation for the second component of the kinetic energy, namely the kinetic
energy of the internal or relative motion in the flow of the transported
medium.

Multiplication of motion equation (1.10) by the product vS yields

ρS
d

dt

(
v2

2

)
= − ∂p

∂x
· vS − 4

d
τw · vS − ρgvS · sin α(x).
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Subtracting this equation term-by-term from the Bernoulli equation (1.15),
one obtains

ρS
d

dt

[
(αk − 1)

v2

2

]
= 4

d
τw · vS + ρS · nin.

Introduction of nin = −gv · i0 gives

ρS
d

dt

[
(ακ − 1)

v2

2

]
=

(
4

d
τw · v

)
S − ρgvS · i0. (1.22)

This is the sought equation of change in kinetic energy of internal motion of
one-dimensional flow of the transported medium. Its sense is obvious: the
power of the external friction forces (4τw · vS/d) in one-dimensional flow minus the
power ρgS(v · i0) of internal friction forces between the particles causing transition
of mechanical energy into heat is equal to the rate of change of internal motion
kinetic energy in the flow of the transported medium.

For stationary flow ( d/ dt = 0 + v · ∂/∂x) of the transported medium
Eq. (1.22) gives

d

dx

[
(αk − 1)

v2

2

]
= 4

d

τw

ρ
− g · i0. (1.23)

If v ∼= const., which for the flow of an incompressible medium in a pipeline
with constant diameter is the exact condition, the left-hand part of the equation
vanishes. This means that the tangential friction tension τw at the pipeline
wall and the hydraulic gradient i0 are connected by

τw = ρgd

4
· i0. (1.24)

It must be emphasized that in the general case, including non-stationary flow,
such a connection between τw and i0 is absent (see Section 4.1).

1.6.1
Hydraulic Losses (of Mechanical Energy)

The quantity nin entering into Eq. (1.16) denotes the specific power of the
internal friction force, that is per unit mass of transported medium. This
quantity is very important since it characterizes the loss of mechanical energy
converted into heat owing to internal friction between layers of the medium.
In order to derive this quantity theoretically one should know how the layers
of transported medium move at each cross-section of the pipeline but this is
not always possible. In the next chapter it will be shown that in several cases,
in particular for laminar, flow such motion can be calculated and the quantity
nin can be found. In other cases, such as for turbulent flows of the transported
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medium, it is not possible to calculate the motion of the layers and other
methods of determining nin are needed.

The quantity of specific mechanical energy dissipation nin has the following
dimension (from now onwards dimension will be denoted by the symbol [ ])

[nin] = W

kg
= J

s kg
= N m

s kg
= kg m s−2 m

s kg
= m2

s3
=

[
v3

d

]
.

So the dimension of nin is the same as the dimension of the quantity v3/d,
hence, without disturbance of generality, one can seek nin in the form

nin = −λ

2
· v3

d
(1.25)

where λ is a dimensional factor (λ > 0), the minus sign shows that nin < 0,
that is the mechanical energy decreases thanks to the forces of internal friction.
The factor 1/2 is introduced for the sake of convenience.

The presented formula does not disturb the generality of the consideration
because the unknown dependence of nin on the governing parameters of the
flow is accounted for by the factor λ. This dependence is valid for any medium
be it fluid, gas or other medium with complex specific properties, e.g. waxy
crude oil, suspension or even pulp, that is a mixture of water with large rigid
particles.

For stationary fluid or gas flow one can suppose the factor λ to be dependent
on four main parameters: the flow velocity v (m s−1), the kinematic viscosity
of the flow ν (m2 s−1), the internal diameter of the pipeline d (m) and the
mean height of the roughness of its internal surface � (mm or m), so that
λ = f (v, ν, d, �). The density of the fluid ρ and the acceleration due to gravity
g are not included here because intuition suggests that the friction between
fluid or gas layers will be dependent on neither their density nor the force of
gravity.

Note that the quantity λ is dimensionless, that is its numerical value
is independent of the system of measurement units, while the parameters
v, ν, d, � are dimensional quantities and their numerical values depend on
such a choice. The apparent contradiction is resolved by the well-known
Buckingham I-theorem, in accordance with which any dimensionless quantity
can depend only on dimensionless combinations of parameters governing this
quantity (Lurie, 2001). In our case there are two such parameters

v · d

ν
= Re and

�

d
= ε,

the first is called the Reynolds number and the second the relative roughness of
the pipeline internal surface. Thus

λ = λ(Re, ε).



20 1 Mathematical Modeling of One-Dimensional Flows of Fluid and Gas in Pipelines

The formula (1.25) acquires the form

nin = −λ(Re, ε) · 1

d
· v3

2
. (1.26)

The factor λ in this formula is called the hydraulic resistance factor, one
of the most important parameters of hydraulics and pipeline transportation.
Characteristic values of λ lie in the range 0.01–0.03. More detailed information
about this factor and its dependence on the governing parameters will be
presented below.

Turning to the hydraulic gradient i0, one can write

i0 = −nin

gv
= λ · 1

d
· v2

2g
. (1.27)

Characteristic values of the hydraulic slope are 0.00005–0.005.
If we substitute Eq. (1.27) into the Bernoulli equation (1.20), we obtain(

αkv2

2g
+ p

ρg
+ z

)
1

−
(

αkv2

2g
+ p

ρg
+ z

)
2

= λ(Re, ε) · l1−2

d

v2

2g
. (1.28)

The expression hτ = λ · l1–2/d · v2/2g on the right-hand side of this equation
is called the loss of head in Darcy-Veisbach form.

Using Eq. (1.27) in the case of stationary flow of the transported medium
permits us to get an expression for the tangential friction stress τw at the
pipeline wall. Substitution of Eq. (1.27) into Eq. (1.24), yields

τw = ρgd

4
· i0 = ρgd

4
·
(

λ
1

d

v2

2g

)
= λ

4
· ρv2

2
= Cf · ρv2

2
, (1.29)

Cf (Re, ε) = λ(Re, ε)

4

where the dimensional factor Cf is called the friction factor of the fluid on the
internal surface of the pipeline or the Funning factor (Leibenson et al., 1934).

1.6.2
Formulas for Calculation of the Factor λ(Re, ε)

Details of methods to find and calculate the factor of hydraulic resistance λ in
Eqs. (1.26)–(1.29) and one of the primary factors in hydraulics and pipeline
transportation will be given in Chapter 3. Here are shown several formulas
exploiting the practice.

If the flow of fluid or gas in the pipeline is laminar, that is jetwise or layerwise
(the Reynolds number Re should be less than 2300), then to determine λ the
Stokes formula (see Section 3.1) is used

λ = 64

Re
. (1.30)
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As the Reynolds number increases (Re > 2300) the flow in the pipeline
gradually loses hydrodynamic stability and becomes turbulent, that is vortex
flow with mixing layers. The best known formula to calculate the factor λ in
this case is the Altshuler formula:

λ = 0.11 ·
(

ε + 68

Re

)1/4

(1.31)

valid over a wide range of Reynolds number from 104 up to 106 and higher.
If 104 < Re < 27/ε1.143 and Re < 105, the Altshuler formula becomes the

Blasius formula:

λ = 0.3164
4
√

Re
(1.32)

having the same peculiarity as the Stokes formula for laminar flow, which
does not consider the relative roughness of the pipeline internal surface ε.
This means that for the considered range of Reynolds numbers the pipeline
behaves as a pipeline with a smooth surface. Therefore the fluid flow in this
range is flow in a hydraulic smooth pipe. In this case the friction tension τw at
the pipe wall is expressed by formula

τw = −λ

4
· ρv2

2
= −0.0791

4
√

vd/ν
· ρv2

2
≈ v1.75

signifying that friction resistance is proportional to fluid mean velocity to the
power of 1.75.

If Re > 500/ε, the second term in parentheses in the Altshuler formula can
be neglected compared to the first one. Whence it follows that at great fluid
velocities the fluid friction is caused chiefly by the smoothness of the pipeline
internal surface, that is by the parameter ε. In such a case one can use the
simpler Shiphrinson formula λ = 0.11 · ε0.25. Then

τw = −λ

4
· ρv2

2
= −0.11 · ε1/4

4
· ρv2

2
≈ v2.

From this it transpires that the friction resistance is proportional to the square
of the fluid mean velocity and hence this type of flow is called square flow.

Finally, in the region of flow transition from laminar to turbulent, that
is in the range of Reynolds number from 2320 up to 104 one can use the
approximation formula

λ = 64

Re
· (1 − γ•) + 0.3164

4
√

Re
· γ∗, (1.33)

where γ∗ = 1 − e−0.002·(Re−2320) is the intermittency factor (Ginsburg, 1957). It
is obvious that the form of the last formula assures continuous transfer from
the Stokes formula for laminar flow to the Blasius formula for turbulent flow
in the zone of hydraulic smooth pipes.
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To calculate the hydraulic resistance factor λ of the gas flow in a gas main,
where the Reynolds number Re is very large and this factor depends only on
the condition of the pipeline internal surface, Eq. (1.34) is often used.

λ = 0.067 ·
(

2�

d

)0.2

(1.34)

in which the absolute roughness � is equal to 0.03–0.05 mm.

Exercise 1. The oil (ρ = 870 kg m−3, ν = 15 s St) flows along the pipeline
(D = 156 mm; δ = 5 mm; � = 0.1 mm) with mean velocity v = 0.2 m s−1.
Determine through the Reynolds criterion the flow regime; calculate factors λ

and Cf .

Answer. Laminar; 0.033; 0.0083.

Exercise 2. Benzene (ρ = 750 kg m−3, ν = 0.7 s St) flows along the pipeline
(D = 377 mm; δ = 7 mm; � = 0.15 mm) with mean velocity v = 1.4 m s−1.
Determine through the Reynolds criterion the flow regime; calculate factors λ

and Cf .

Answer. Turbulent; 0.017; 0.0041.

Exercise 3. Diesel fuel (ρ = 840 kg m−3, ν = 6 s St) flows along the pipeline
(D = 530 mm; δ = 8 mm; � = 0.25 mm) with mean velocity v = 0.8 m s−1.
Determine the flow regime; calculate factors λ and Cf .

Answer. Turbulent; 0.022; 0.0054.

1.7
Total Energy Balance Equation

Besides the law (1.13) of mechanical energy change of material points,
applied to an arbitrary continuum volume in the pipeline there is one more
fundamental physical law valid for any continuum – the law of total energy
conservation or, as it is also called, the first law of thermodynamics. This law
asserts that the energy does not appear from anywhere and does not disappear
to anywhere. It changes in total quantity from one form into another. As
applied to our case this law may be written as follows

d(Ekin + Ein)

dt
= dQex

dt
+ dAex

dt
(1.35)

that is the change in total energy (Ekin + Ein) of an arbitrary volume of the
transported medium happens only due to the exchange of energy with
surrounding bodies owing to external inflow of heat dQex and the work
of external forces dAex.
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In Eq. (1.35) Ein is the internal energy of the considered mass of transported
medium, unrelated to the kinetic energy, that is the energy of heat motion,
interaction between molecules and atoms and so on. In thermodynamics
reasons are given as to why the internal energy is a function of state, that
is at thermodynamic equilibrium of a body in some state the energy has a
well-defined value regardless of the means (procedure) by which this state
was achieved. At the same time the quantities dQex/ dt and dAex/ dt are
not generally derivatives with respect to a certain function of state but only
represent the ratio of elementary inflows of heat energy (differential dQex) and
external mechanical energy (differential dAex) to the time dt in which these
inflows happened. It should be kept in mind that these quantities depend on
the process going on in the medium.

In addition to function Ein one more function ein is often introduced,
representing the internal energy of a unit mass of the considered body
ein = Ein/m, where m is the mass of the body.

We can write Eq. (1.35) for a movable volume of transported medium
enclosed between cross-sections x1(t) and x2(t). The terms of this equation are

d(Ekin + Ein)

dt
= d

dt

[∫ x2(t)

x1(t)

(
αk

ρv2

2
+ ρein

)
S dx

]
,

dQex

dt
=

∫ x2(t)

x1(t)
πd · qn dx,

dAex

dt
= −

∫ x2(t)

x1(t)

∂

∂x
(pSv) dx −

∫ x2(t)

x1(t)
ρg sin α · v · S dx + Nmech

where qn is the heat flux going through the unit area of the pipeline surface
per unit time (W m−2); πd · dx is an element of pipeline surface area and d is
the pipeline diameter.

Gathering all terms, we obtain

d

dt

[∫ x2(t)

x1(t)

(
αk · ρv2

2
+ ρein

)
S dx

]
=

∫ x2(t)

x1(t)
πd · qn dx

−
∫ x2(t)

x1(t)

∂

∂x
(pSv) dx −

∫ x2(t)

x1(t)
ρg sin α · v · S dx + Nmech.

Differentiation of the left-hand side of this equation gives∫ x2(t)

x1(t)

{
∂

∂t

[(
αkv2

2
+ ein

)
ρS

]
+ ∂

∂x

[(
αkv2

2
+ ein

)
ρvS

]}
dx

=
∫ x2(t)

x1(t)
πd · qn dx −

∫ x2(t)

x1(t)

∂

∂x

(
p

ρ
ρvS

)
dx

−
∫ x2(t)

x1(t)
ρvSg

∂z

∂x
dx + Nmech
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or ∫ x2(t)

x1(t)

{
∂

∂t

[(
αkv2

2
+ ein

)
ρS

]
+ ∂

∂x

[(
αkv2

2
+ ein + p

ρ

)
ρvS

]}
dx

=
∫ x2(t)

x1(t)
πd · qn dx −

∫ x2(t)

x1(t)
ρvSg

∂z

∂x
dx + Nmech. (1.36)

If we assume that inside the region [x1(t), x2(t)] the external sources of me-
chanical energy are absent, that is Nmech = 0, then it is possible to pass from
integral equality (1.36) to the corresponding differential equation using, as
before, the condition that this equation should be true for any volume of the
transported medium, that is the limits of integration x1(t) and x2(t) in (1.36)
are to be arbitrarily chosen. Then the sign of the integral can be omitted and
the differential equation is

∂

∂t

[(
αkv2

2
+ ein

)
ρS

]
+ ∂

∂x

[(
αkv2

2
+ ein + p

ρ

)
ρvS

]
= πd · qn − ρvSg

∂z

∂x
. (1.37)

Excluding from Eq. (1.37) the change in kinetic energy with the help of the
Bernoulli equation with term by term subtraction of Eq. (1.16) from Eq. (1.37)
we get one more energy equation

ρS
∂

∂t

(
αkv2

2

)
+ ρvS

∂

∂x

(
αkv2

2
+

∫
dp

ρ
+ gz

)
= ρvSg · i

called the equation of heat inflow.
This equation could be variously written. First, it may be written through

the internal energy ein:

∂

∂t
(ein · ρS) + ∂

∂x
(ein · ρvS) = πd · qn − p

∂vS

∂x
− ρvSg · i

or

ρS

(
∂ein

∂t
+ v

∂ein

∂x

)
= πd · qn − p · ∂vS

∂x
− ρvSg · i. (1.38)

This equation proved to be especially convenient for modeling flows of
incompressible or slightly compressible fluids because the derivative ∂(vS)/∂x
expressing the change in fluid volume in the pipeline cross-section is extremely
small as is the work p · ∂(vS)/∂x of the pressure forces. With this in mind
Eq. (1.38) may be written in a particularly simple form:

ρ
dein

dt
∼= 4

d
· qn − ρvg · i. (1.39)
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This means that the rate of internal energy change of the transported medium
is determined by the inflow of external heat through the pipeline surface and
heat extraction due to conversion of mechanical energy into heat produced by
friction between the continuum layers.

Second, the equation of heat inflow can be written using the function
J = ein + p/ρ representing one of the basic thermodynamic functions, enthalpy
or heat content, of the transported medium

∂

∂t
(ein · ρS) + ∂

∂x

[(
ein + p

ρ

)
ρvS

]
= πd · qn + ρvSg ·

(
1

ρg

∂p

∂x
− i

)
or

∂

∂t
(ein · ρS) + ∂

∂x
[J · ρvS] = πd · qn + ρvSg ·

(
1

ρg

∂p

∂x
− i

)
. (1.40)

If we take into account (as will be shown later) that the expression in
parentheses on the right-hand side of this equation is close to zero, since for a
relatively light medium, e.g. gas, the hydraulic slope is expressed through the
pressure gradient by the formula i = 1/ρg · ∂p/∂x, the equation of heat inflow
can be reduced to a simpler form

∂ρS · ein

∂t
+ ∂ρvS · J

∂x
∼= πd · qn (1.41)

in which the dissipation of mechanical energy appears to be absent.

Temperature Distribution in Stationary Flow
The equation of heat inflow in the form (1.39) or (1.41) is convenient to
determine the temperature distribution along the pipeline length in stationary
flow of the transported medium.

1. For an incompressible or slightly compressible medium, e.g. dropping liquid:
water, oil and oil product, this equation has the form

ρv · dein

dx
∼= 4

d
· qn − ρvg · i. (1.42)

The internal energy ein depends primarily on the temperature of the fluid
T , the derivative dein/ dT giving its specific heat Cv (J kg−1 K−1). If we take
Cv = const. then ein = Cv · T + const.

To model the heat flux qn the Newton formula is usually used

qn = −κ · (T − Tex), (1.43)

by which this flow is proportional to the difference between the temperatures
T and Tex in and outside the pipeline, with qn < 0 when T > Tex and qn > 0
when T < Tex. The factor κ (W m−2 K−1) in this formula characterizes the
overall heat resistance of the materials through which the heat is transferred
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from the pipe to the surrounding medium (anticorrosive and heat insulation,
ground, the boundary between ground and air and so on) or the reverse. This
factor is called the heat-transfer factor.

The hydraulic gradient i can sometimes be considered constant i = −i0 ≈
const., if the dissipation of mechanical energy in the stationary fluid flow in
the pipeline with constant diameter is identical at all cross-sections of the
pipeline.

With due regard for all the aforesaid Eq. (1.42) is reduced to the following
ordinary differential equation

ρCvv · dT

dx
= −4κ

d
(T − Tex) + ρvgi0 (1.44)

for temperature T = T(x). From this equation in particular it follows that the
heat transfer through the pipeline wall (the first term on the right-hand side)
lowers the temperature of the transported medium when T(x) > Tex or raises
it when T(x) < Tex, whereas the dissipation of mechanical energy (the second
term on the right-hand side) always implies an increase in the temperature of
the transported medium.

The solution of the differential equation (1.44) with initial condition
T(0) = T0 yields

T(x) − Tex − T⊗
T0 − Tex − T⊗

= exp
(

− πdκ

CvṀ
x

)
. (1.45)

Where T⊗ = gi0Ṁ/πdκ is a constant having the dimension of temperature;
Ṁ = ρvS is the mass flow rate of the fluid (Ṁ = const.). The formula thus
obtained is called the Shuchov formula.

Figure 1.3 illustrates the distribution of temperature T(x) along the pipeline
length x in accordance with Eq. (1.45).

The figure shows that when the initial temperature T0 is greater than
(Tex + T⊗), the moving medium cools down, while when T0 is less than
(Tex + T⊗), the medium gradually heats up. In all cases with increase in the
pipeline length the temperature T → (Tex + T⊗).

In particular from Eq. (1.44) it follows that if the heat insulation of the
pipeline is chosen such that at the initial cross-section of the pipeline x = 0

Figure 1.3 Temperature
distribution along the pipeline length.
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the condition of equality to zero of the right-hand side is obeyed

−4κ

d
(T0 − Tex) + ρvgi0 = 0

that is the factor κ satisfies the condition

κ = ρvdgi0
4(T0 − Tex)

= gṀ · i0
πd · (T0 − Tex)

.

And the temperature of the transported medium would remain constant and
equal to its initial value over the whole pipeline section. In such a case the
heat outgoing from the pipeline would be compensated by the heat extracted
by internal friction between the layers. Such an effect is used, for example,
in oil transportation along the Trans-Alaska oil pipeline (USA, see the cover
picture). Through good insulation of the pipeline the oil is pumped over
without preheating despite the fact that in winter the temperature of the
environment is very low.

From Eq. (1.45) follows the connection between the initial T0 and final TL

temperatures of the transported medium. If in this formula we set x = L,
where L is the length of the pipeline section, we obtain

TL − Tex − T⊗
T0 − Tex − T⊗

= exp
(

−πdκL

CvṀ

)
. (1.46)

Expressing now from (1.46) the argument under the exponent and substituting
the result in Eq. (1.45), we get the expression for the temperature distribution
through the initial and final values

T(x) − Tex − T⊗
T0 − Tex − T⊗

=
(

TL − Tex − T⊗
T0 − Tex − T⊗

)x/L

. (1.47)

Exercise 1. The initial temperature of crude oil (ρ = 870 kg m−3, Cv =
2000 J kg−1 K−1, Q = 2500 m3 h−1), pumping over a pipeline section (d =
800 mm, L = 120 km, i0 = 0.002) is 55 ◦C. The temperature of the surrounding
medium is 8 ◦C. The heat insulation of the pipeline is characterized by the
heat-transfer factor κ = 2 W m−2 K−1. It is required to find the temperature at
the end of the section.

Solution. Calculate first the temperature T⊗:

T⊗ = gi0Ṁ

πdκ
= 9.81 · 0.002 · 870 · (2500/3600)

3.14 · 0.8 · 2
∼= 2.36 K.

Using Eq. (1.46) we obtain

TL − 8 − 2.36

55 − 8 − 2.36
= exp

(
− 3.14 · 0.8 · 2 · 120 · 103

2000 · 870 · (2500/3600)

)
,

from which follows TL
∼= 37.5 ◦C.
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Exercise 2. By how much would the temperature of the oil (Cv =
1950 J kg−1 K−1) be raised due to the heat of internal friction when the
oil is transported by an oil pipeline (L = 150 km, d = 500 mm, i0 = 0.004)
provided with ideal heat insulation (κ = 0)?

Solution. In this case it is impossible to use at once Eq. (1.45) since κ = 0. To
use Eq. (1.47) one should go to the limit at κ → 0, therefore it would be better
to use Eq. (1.44)

ρCvv · dT

dx
= ρvgi0 or Cv · dT

dx
= gi0,

from which �T = gi0L/Cv = 9.81 · 0.004 · 150 · 103/1950 ∼= 3 K.

Exercise 3. It is required to obtain the temperature of oil pumping over the
pipeline section of length 150 km in cross-sections x = 50, 100 and 125 km,
if the temperature at the beginning of the pipeline T0 = 60 ◦C, that at the
end TL = 30 ◦C, and that of the environment Tex = 8 ◦C. The extracted heat of
internal friction may be ignored.

Solution. Using Eq. (1.46), one gets

T(x) − 8

60 − 8
=

(
30 − 8

60 − 8

)x/L

and T(x) = 8 + 52 · (0.4231)x/150.

Substitution in this formula of successive x = 50, 100 and 125 gives
T(50) ∼= 47 ◦C; T(100) ∼= 37.3 ◦C; T(125) ∼= 33.4 ◦C.

2. For stationary flow of a compressible medium, e.g. gas, the equation of heat
inflow (1.41) takes the form

ρvS
dJ

dx
= πd · qn.

In the general case, the gas enthalpy J is a function of pressure and temperature
J = J(p, T), but for a perfect gas, that is a gas obeying the Clapeyron law p = ρRT ,
where R is the gas constant, the enthalpy is a function only of temperature
J = Cp · T + const., where Cp is the gas specific heat capacity at constant
pressure (Cp > Cv; Cp − Cv = R). Regarding Cp = const. and taking as before
qn = −κ · (T − Tex), we transform the last equation to

CpṀ
dT

dx
= −πdκ · (T − Tex)

or

dT

dx
= − πdκ

CpṀ
· (T − Tex).
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The solution of this differential equation with initial condition T(0) = T0 gives

T(x) − Tex

T0 − Tex
= exp

(
− πdκ

CpṀ
x

)
, (1.48)

which is similar to the solution (1.45) for temperature distribution in an
incompressible fluid. The difference consists only in that instead of heat
capacity Cv in the solution (1.47) we use heat capacity Cp and the temperature
T⊗ taking into account the heat of internal friction is absent (for methane
Cp

∼= 2230 J kg−1 K−1; Cv
∼= 1700 J kg−1 K−1).

The temperature TL of the gas at the end of the gas pipeline section is found
from

TL − Tex

T0 − Tex
= exp

(
−πdκL

CpṀ

)
(1.49)

with regard to which the distribution (1.47) takes the form

T(x) − Tex

T0 − Tex
=

(
TL − Tex

T0 − T

)x/L

(1.50)

allowing us to express the temperature through the initial and final
temperatures.

Note that for a real gas the enthalpy J = J(p, T) of the medium depends not
only on temperature but also on pressure, so the equation of heat inflow has a
more complex form. By the dependence J(p, T) is explained, in particular, the
Joule-Thomson effect.

1.8
Complete System of Equations for Mathematical Modeling of One-Dimensional
Flows in Pipelines

This system consists of the following equations.

1. Continuity equation (1.6)

∂ρS

∂t
+ ∂ρvS

∂x
= 0;

2. Momentum (motion) equation (1.10)

ρ

(
∂v

∂t
+ v

∂v

∂x

)
= − ∂p

∂x
− 4

d
τw − ρg sin α(x);

3. Equation of mechanical energy balance (1.15)

∂

∂t

(
αkv2

2

)
+ v · ∂

∂x

(
αkv2

2
+ P(ρ) + gz

)
= vg · i;
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4. Equation of total energy balance (1.37)

∂

∂t

[(
αkv2

2
+ ein

)
ρS

]
+ ∂

∂x

[(
αkv2

2
+ J

)
ρvS

]
= πd · qn − ρvgS

dz

dx
.

The number of unknown functions in this equation is 10: ρ, v, p, S, ein, T, τw,

i, qn, αk, while the number of equations is 4. Therefore there are needed
additional relations to close the system of equations. As closing relations the
following relations are commonly used:
• equation of state p = p(ρ, T), characterizing the properties of the

transported medium;
• equation of pipeline state S = S(p, T) characterizing the deformation ability

of the pipeline;
• calorimetric dependences ein = e(p, T) or J = J(p, T);
• dependence qn = −κ · (T − Tex) or more complex dependences

representing heat exchange between the transported medium and the
environment;

• hydraulic dependence τw = τw(ρ, v, v̇, d, ν, . . .);
• dependences αk = f (ρ, v, ν, d, . . .), or i = f̃ (τw),
characterizing internal structure of medium flow.

To obtain closing relations a more detailed analysis of flow processes is
needed. It is also necessary to consider mathematical relations describing
properties of the transported medium and the pipeline in which the medium
flows.

The division of mechanics in which properties of a transported medium
such as viscosity, elasticity, plasticity and other more complex properties are
studied is called rheology.


